Effectively improving the accuracy of PBE functional in calculating the solid band gap via machine learning

[Display omitted] Band gap is one of the most important parameters determining the electronic, optoelectronic, and other applications of a wide range of materials including semiconductors and insulators. However, the accurate prediction of the band gap of these materials has been a persistent diffic...

Full description

Saved in:
Bibliographic Details
Published inComputational materials science Vol. 198; p. 110699
Main Authors Wan, Zhongyu, Wang, Quan-De, Liu, Dongchang, Liang, Jinhu
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] Band gap is one of the most important parameters determining the electronic, optoelectronic, and other applications of a wide range of materials including semiconductors and insulators. However, the accurate prediction of the band gap of these materials has been a persistent difficulty in quantum chemistry. Numerous studies have attempted to improve the accuracy of the predicted band gap from standard density functional theory (DFT) calculations with local density approximation (LDA) and generalized gradient approximation (GGA), which are well-known to underestimate the band gap severely. With the rapid development of material databases from both experimental and theoretical studies, herein, we develop a correction model to improve the prediction accuracy for the band gap by combing the widely used Perdew-Burke-Ernzerh (PBE-GGA) functional with machine learning approach. The correction model introduces physically meaningful but computationally efficient descriptors to fit the experimental dataset, and an artificial neural network (ANN) model is established to improve the prediction accuracy of computational results from DFT-PBE functional. The new method brings a highly accurate model for the prediction of the band gaps at high-precision G0W0 level without increasing computational cost at DFT-PBE level. Further, the error distribution of the predicted band gaps is more in line with the normal distribution compared with DFT-PBE and G0W0 methods. The band gap correction model provides a practical way to obtain GW-like quality results from standard DFT calculations, and should be valuable to perform accurate high-throughput screening of semiconductors and insulators for which GW calculations become unfeasible.
AbstractList [Display omitted] Band gap is one of the most important parameters determining the electronic, optoelectronic, and other applications of a wide range of materials including semiconductors and insulators. However, the accurate prediction of the band gap of these materials has been a persistent difficulty in quantum chemistry. Numerous studies have attempted to improve the accuracy of the predicted band gap from standard density functional theory (DFT) calculations with local density approximation (LDA) and generalized gradient approximation (GGA), which are well-known to underestimate the band gap severely. With the rapid development of material databases from both experimental and theoretical studies, herein, we develop a correction model to improve the prediction accuracy for the band gap by combing the widely used Perdew-Burke-Ernzerh (PBE-GGA) functional with machine learning approach. The correction model introduces physically meaningful but computationally efficient descriptors to fit the experimental dataset, and an artificial neural network (ANN) model is established to improve the prediction accuracy of computational results from DFT-PBE functional. The new method brings a highly accurate model for the prediction of the band gaps at high-precision G0W0 level without increasing computational cost at DFT-PBE level. Further, the error distribution of the predicted band gaps is more in line with the normal distribution compared with DFT-PBE and G0W0 methods. The band gap correction model provides a practical way to obtain GW-like quality results from standard DFT calculations, and should be valuable to perform accurate high-throughput screening of semiconductors and insulators for which GW calculations become unfeasible.
ArticleNumber 110699
Author Wan, Zhongyu
Liu, Dongchang
Liang, Jinhu
Wang, Quan-De
Author_xml – sequence: 1
  givenname: Zhongyu
  surname: Wan
  fullname: Wan, Zhongyu
  email: zhongyuwanxzit@163.com
  organization: Low Carbon Energy Institute and School of Chemical Engineering, China University of Mining and Technology, Xuzhou 221008, People’s Republic of China
– sequence: 2
  givenname: Quan-De
  surname: Wang
  fullname: Wang, Quan-De
  email: quandewang@cumt.edu.cn
  organization: Low Carbon Energy Institute and School of Chemical Engineering, China University of Mining and Technology, Xuzhou 221008, People’s Republic of China
– sequence: 3
  givenname: Dongchang
  surname: Liu
  fullname: Liu, Dongchang
  organization: Department of Physics, Sungkyunkwan University, Suwon 16419, South Korea
– sequence: 4
  givenname: Jinhu
  surname: Liang
  fullname: Liang, Jinhu
  organization: School of Environment and Safety Engineering, North University of China, Taiyuan 030051, People’s Republic of China
BookMark eNqNkMtOwzAQAC1UJNrCN-AfSLCdOIkPHEpVHhISHOBsbfxoXRynctJI_XtSFThwgdNeZla7M0OT0AaD0DUlKSW0uNmmqm0a6DvlUkYYTSklhRBnaEqrUiSkInSCpkSwMiGMFxdo1nVbMpqiYlP0sbLWqN4Nxh-wa3axHVxY435jMCi1j6AOuLX49W6F7T6MYBvAYxewAq_2Hvpvumu907iGoPEadnhwgBtQGxcM9gZiGLlLdG7Bd-bqa87R-_3qbfmYPL88PC0Xz4nKKtonnIOtKK8rzmuhGNeWFZAZZjkpSJWTrDYaVE5EUeSGCsJ1XYtSVzmURouszubo9rRXxbbrorFSuR6Op_cRnJeUyGM5uZU_5eSxnDyVG_3yl7-LroF4-Ie5OJlmfG9wJsqRMEEZ7eJYWerW_bnjE5nNkdY
CitedBy_id crossref_primary_10_1016_j_jpcs_2024_112196
crossref_primary_10_1016_j_surfin_2022_102470
crossref_primary_10_1038_s41598_023_31928_7
crossref_primary_10_1021_acs_iecr_3c03387
crossref_primary_10_1016_j_commatsci_2024_113108
crossref_primary_10_1016_j_ssc_2023_115216
crossref_primary_10_1016_j_jallcom_2023_172506
crossref_primary_10_1016_j_cplett_2022_140124
crossref_primary_10_1016_j_ssi_2023_116401
crossref_primary_10_1063_5_0226151
crossref_primary_10_1021_acsami_4c10622
crossref_primary_10_1016_j_mtcomm_2024_109405
crossref_primary_10_1016_j_physe_2024_115974
crossref_primary_10_3390_inorganics13010014
crossref_primary_10_1016_j_ijhydene_2022_08_251
crossref_primary_10_1016_j_jallcom_2025_179723
crossref_primary_10_1007_s10904_024_03219_9
crossref_primary_10_1007_s00339_023_07183_y
crossref_primary_10_1021_acsami_3c00618
crossref_primary_10_1021_acs_chemmater_4c00986
crossref_primary_10_1016_j_commatsci_2024_113153
crossref_primary_10_1088_1402_4896_ad1976
crossref_primary_10_1088_2058_6272_ad386b
crossref_primary_10_1016_j_xcrp_2023_101555
crossref_primary_10_1007_s00894_023_05696_0
crossref_primary_10_1016_j_mssp_2024_108429
crossref_primary_10_1063_5_0165307
crossref_primary_10_1039_D3YA00057E
crossref_primary_10_1016_j_jlumin_2024_120811
crossref_primary_10_1039_D4QM00885E
crossref_primary_10_1016_j_jmrt_2024_12_003
crossref_primary_10_1149_1945_7111_ac63fb
crossref_primary_10_1016_j_mtphys_2024_101381
crossref_primary_10_1039_D3NA00603D
crossref_primary_10_1016_j_solener_2023_05_015
crossref_primary_10_1039_D2NA00739H
crossref_primary_10_1021_acs_inorgchem_4c03331
crossref_primary_10_1021_acs_inorgchem_4c03037
crossref_primary_10_1016_j_comptc_2024_114538
crossref_primary_10_1039_D4RA01528B
crossref_primary_10_3390_catal14040217
crossref_primary_10_1016_j_rinp_2024_107415
Cites_doi 10.1007/s00214-016-1927-4
10.1021/acs.chemrev.6b00041
10.1103/PhysRevLett.51.1884
10.1038/s41557-021-00716-z
10.1016/j.trechm.2020.02.005
10.1002/cem.2992
10.1063/1.4812323
10.1002/cem.3169
10.1021/acs.jctc.5b00099
10.1038/s41597-020-00723-8
10.1073/pnas.1621352114
10.1007/BF03027302
10.1107/S2052520617011945
10.1021/acs.jpclett.6b02757
10.1039/C9TA02356A
10.1063/1.3548872
10.1002/qua.24521
10.1021/acs.chemrev.9b00600
10.1063/1.1564060
10.1021/acs.chemmater.0c02290
10.1021/acs.jpcb.0c08674
10.1103/RevModPhys.61.689
10.1186/s13321-020-00443-6
10.1021/jm00113a022
10.1016/S0009-2614(01)00616-9
10.1021/ci050521b
10.1080/10629360310001624015
10.1021/acs.jpcc.7b07421
10.1021/acs.jpca.0c07802
10.1063/1.3076922
10.1063/1.2404663
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.commatsci.2021.110699
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0801
ExternalDocumentID 10_1016_j_commatsci_2021_110699
S0927025621004262
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SMS
SPC
SPCBC
SPD
SSM
SST
SSZ
T5K
VH1
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c381t-55af815b855b9c25df26a3e2f50608403bedac409664e1905dbb97d84a7ed93b3
IEDL.DBID .~1
ISSN 0927-0256
IngestDate Tue Jul 01 02:01:11 EDT 2025
Thu Apr 24 23:02:26 EDT 2025
Fri Feb 23 02:43:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords PBE functional
Band gap
Artificial neural network
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-55af815b855b9c25df26a3e2f50608403bedac409664e1905dbb97d84a7ed93b3
ParticipantIDs crossref_citationtrail_10_1016_j_commatsci_2021_110699
crossref_primary_10_1016_j_commatsci_2021_110699
elsevier_sciencedirect_doi_10_1016_j_commatsci_2021_110699
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2021
2021-10-00
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationTitle Computational materials science
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Verma, Truhlar (b0020) 2017; 8
Verma, Truhlar (b0025) 2020; 2
Kim, Lee, Hong, Yoon, An, Lee, Jeong, Yoo, Kang, Youn, Han (b0130) 2020; 7
Muscat, Wander, Harrison (b0075) 2001; 342
Krukau, Vydrov, Izmaylov, Scuseria (b0065) 2006; 125
Marchenko, Fateev, Petrov, Korolev, Mitrofanov, Petrov, Goodilin, Tarasov (b0090) 2020; 32
Na, Jang, Lee, Chang (b0120) 2020; 124
Anisimov, Zaanen, Andersen (b0055) 1991; 44
Moses, Miao, Yan, Van de Walle (b0030) 2011; 134
Shirley (b0080) 1996; 54
Morales-García, Valero, Illas (b0105) 2017; 121
Perdew, Yang, Burke, Yang, Gross, Scheffler, Scuseria, Henderson, Zhang, Ruzsinszky, Peng, Sun, Trushin, Görling (b0015) 2017; 114
Heyd, Scuseria, Ernzerhof (b0070) 2003; 118
van Schilfgaarde, Kotani, Faleev (b0085) 2006; 96
Jain, Ong, Hautier, Chen, Richards, Dacek, Cholia, Gunter, Skinner, Ceder, Persson (b0095) 2013; 1
Himmetoglu, Floris, de Gironcoli, Cococcioni (b0050) 2014; 114
Ramakrishnan, Dral, Rupp, von Lilienfeld (b0110) 2015; 11
Jing, Kershaw, Li, Huang, Li, Rogach, Gao (b0005) 2016; 116
Gu, Noh, Kim, Jung (b0100) 2019; 7
Jones, Gunnarsson (b0045) 1989; 61
Andrea, Kalayeh (b0165) 1991; 34
Woods-Robinson, Han, Zhang, Ablekim, Khan, Persson, Zakutayev (b0010) 2020; 120
Roy, Ambure, Kar, Ojha (b0135) 2018
Zakharov, Dyachenko, Ivanov (b0145) 2019; 33
Lee, Seko, Shitara, Nakayama, Tanaka (b0125) 2016; 93
Perdew, Levy (b0040) 1983; 51
Kuta, Cortés-Ciriano, Dehaen, Kí, Westen, Tetko, Bender, Svozil (b0140) 2020; 12
Artrith, Keith, François-Xavier, Seungwu, Olexandr, Anubhav, Aron (b0175) 2021; 13
Zhao, Truhlar (b0035) 2009; 130
Verma, Truhlar (b0060) 2016; 135
Balachandran, Shearman, Theiler, Lookman (b0160) 2017; 73
Saxena, Prathipati (b0155) 2003; 14
Nilakantan, Nunn, Greenblatt, Walker, Haraki, Mobilio (b0150) 2006; 46
Lu, Wu, Hu, Li (b0170) 2000; 43
Xu, Lu, Ju, Tian, Li, Lu (b0115) 2021; 125
Verma (10.1016/j.commatsci.2021.110699_b0060) 2016; 135
Shirley (10.1016/j.commatsci.2021.110699_b0080) 1996; 54
Zhao (10.1016/j.commatsci.2021.110699_b0035) 2009; 130
Kim (10.1016/j.commatsci.2021.110699_b0130) 2020; 7
Muscat (10.1016/j.commatsci.2021.110699_b0075) 2001; 342
Morales-García (10.1016/j.commatsci.2021.110699_b0105) 2017; 121
Perdew (10.1016/j.commatsci.2021.110699_b0015) 2017; 114
Lu (10.1016/j.commatsci.2021.110699_b0170) 2000; 43
Na (10.1016/j.commatsci.2021.110699_b0120) 2020; 124
Krukau (10.1016/j.commatsci.2021.110699_b0065) 2006; 125
Xu (10.1016/j.commatsci.2021.110699_b0115) 2021; 125
van Schilfgaarde (10.1016/j.commatsci.2021.110699_b0085) 2006; 96
Zakharov (10.1016/j.commatsci.2021.110699_b0145) 2019; 33
Gu (10.1016/j.commatsci.2021.110699_b0100) 2019; 7
Heyd (10.1016/j.commatsci.2021.110699_b0070) 2003; 118
Marchenko (10.1016/j.commatsci.2021.110699_b0090) 2020; 32
Lee (10.1016/j.commatsci.2021.110699_b0125) 2016; 93
Jing (10.1016/j.commatsci.2021.110699_b0005) 2016; 116
Nilakantan (10.1016/j.commatsci.2021.110699_b0150) 2006; 46
Moses (10.1016/j.commatsci.2021.110699_b0030) 2011; 134
Jones (10.1016/j.commatsci.2021.110699_b0045) 1989; 61
Kuta (10.1016/j.commatsci.2021.110699_b0140) 2020; 12
Himmetoglu (10.1016/j.commatsci.2021.110699_b0050) 2014; 114
Ramakrishnan (10.1016/j.commatsci.2021.110699_b0110) 2015; 11
Roy (10.1016/j.commatsci.2021.110699_b0135) 2018
Verma (10.1016/j.commatsci.2021.110699_b0025) 2020; 2
Andrea (10.1016/j.commatsci.2021.110699_b0165) 1991; 34
Jain (10.1016/j.commatsci.2021.110699_b0095) 2013; 1
Woods-Robinson (10.1016/j.commatsci.2021.110699_b0010) 2020; 120
Verma (10.1016/j.commatsci.2021.110699_b0020) 2017; 8
Perdew (10.1016/j.commatsci.2021.110699_b0040) 1983; 51
Saxena (10.1016/j.commatsci.2021.110699_b0155) 2003; 14
Artrith (10.1016/j.commatsci.2021.110699_b0175) 2021; 13
Balachandran (10.1016/j.commatsci.2021.110699_b0160) 2017; 73
Anisimov (10.1016/j.commatsci.2021.110699_b0055) 1991; 44
References_xml – volume: 121
  start-page: 18862
  year: 2017
  end-page: 18866
  ident: b0105
  article-title: An Empirical, yet Practical Way To Predict the Band Gap in Solids by Using Density Functional Band Structure Calculations
  publication-title: The Journal of Physical Chemistry C
– volume: 114
  start-page: 14
  year: 2014
  end-page: 49
  ident: b0050
  article-title: Hubbard-corrected DFT energy functionals: The LDA+U description of correlated systems
  publication-title: Int. J. Quantum Chem
– volume: 124
  start-page: 10616
  year: 2020
  end-page: 10623
  ident: b0120
  article-title: Tuplewise Material Representation Based Machine Learning for Accurate Band Gap Prediction
  publication-title: J. Phys. Chem. A
– volume: 73
  start-page: 962
  year: 2017
  end-page: 967
  ident: b0160
  article-title: Predicting displacements of octahedral cations in ferroelectric perovskites using machine learning
  publication-title: Acta Cryst. B
– volume: 7
  start-page: 387
  year: 2020
  ident: b0130
  article-title: A band-gap database for semiconducting inorganic materials calculated with hybrid functional
  publication-title: Sci. Data
– volume: 114
  start-page: 2801
  year: 2017
  end-page: 2806
  ident: b0015
  article-title: Understanding band gaps of solids in generalized Kohn-Sham theory
  publication-title: Proc. Natl. Acad. Sci.
– volume: 51
  start-page: 1884
  year: 1983
  end-page: 1887
  ident: b0040
  article-title: Physical Content of the Exact Kohn-Sham Orbital Energies: Band Gaps and Derivative Discontinuities
  publication-title: Phys. Rev. Lett.
– volume: 32
  start-page: 7383
  year: 2020
  end-page: 7388
  ident: b0090
  article-title: Database of Two-Dimensional Hybrid Perovskite Materials: Open-Access Collection of Crystal Structures, Band Gaps, and Atomic Partial Charges Predicted by Machine Learning
  publication-title: Chem. Mater.
– volume: 125
  start-page: 601
  year: 2021
  end-page: 611
  ident: b0115
  article-title: Machine Learning Aided Design of Polymer with Targeted Band Gap Based on DFT Computation
  publication-title: J. Phys. Chem. B
– volume: 14
  start-page: 433
  year: 2003
  end-page: 445
  ident: b0155
  article-title: Comparison of MLR, PLS and GA-MLR in QSAR analysis*
  publication-title: SAR QSAR Environ. Res.
– volume: 1
  start-page: 011002
  year: 2013
  ident: b0095
  article-title: Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
  publication-title: APL Mater.
– volume: 46
  start-page: 1069
  year: 2006
  end-page: 1077
  ident: b0150
  article-title: A Family of Ring System-Based Structural Fragments for Use in Structure−Activity Studies: Database Mining and Recursive Partitioning
  publication-title: J. Chem. Inf. Model.
– volume: 7
  start-page: 17096
  year: 2019
  end-page: 17117
  ident: b0100
  article-title: Machine learning for renewable energy materials
  publication-title: J. Mater. Chem. A
– volume: 125
  start-page: 224106
  year: 2006
  ident: b0065
  article-title: Influence of the exchange screening parameter on the performance of screened hybrid functionals
  publication-title: J. Chem. Phys.
– volume: 34
  start-page: 2824
  year: 1991
  end-page: 2836
  ident: b0165
  article-title: Applications of neural networks in quantitative structure-activity relationships of dihydrofolate reductase inhibitors
  publication-title: J. Med. Chem.
– volume: 130
  start-page: 074103
  year: 2009
  ident: b0035
  article-title: Calculation of semiconductor band gaps with the M06-L density functional
  publication-title: J. Chem. Phys.
– volume: 12
  start-page: 39
  year: 2020
  ident: b0140
  article-title: QSAR-derived affinity fingerprints (part 1): fingerprint construction and modeling performance for similarity searching, bioactivity classification and scaffold hopping
  publication-title: J. Cheminf.
– volume: 61
  start-page: 689
  year: 1989
  end-page: 746
  ident: b0045
  article-title: The density functional formalism, its applications and prospects
  publication-title: Rev. Mod. Phys.
– volume: 96
  year: 2006
  ident: b0085
  article-title: Quasiparticle Self-Consistent GW Theory
  publication-title: Phys. Rev. Lett.
– volume: 342
  start-page: 397
  year: 2001
  end-page: 401
  ident: b0075
  article-title: On the prediction of band gaps from hybrid functional theory
  publication-title: Chem. Phys. Lett.
– year: 2018
  ident: b0135
  article-title: Is it possible to improve the quality of predictions from an “intelligent” use of multiple QSAR/QSPR/QSTR models?
  publication-title: J. Chemom.
– volume: 118
  start-page: 8207
  year: 2003
  end-page: 8215
  ident: b0070
  article-title: Hybrid functionals based on a screened Coulomb potential
  publication-title: J. Chem. Phys.
– volume: 8
  start-page: 380
  year: 2017
  end-page: 387
  ident: b0020
  article-title: HLE16: A Local Kohn-Sham Gradient Approximation with Good Performance for Semiconductor Band Gaps and Molecular Excitation Energies
  publication-title: The Journal of Physical Chemistry Letters
– volume: 13
  start-page: 505
  year: 2021
  end-page: 508
  ident: b0175
  article-title: Best practices in machine learning for chemistry
  publication-title: Nat. Chem.
– volume: 33
  year: 2019
  ident: b0145
  article-title: Topological characteristics of iterated line graphs in QSAR problem: Octane numbers of saturated hydrocarbons
  publication-title: J. Chemom.
– volume: 93
  year: 2016
  ident: b0125
  article-title: Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques
  publication-title: PhRvB
– volume: 135
  start-page: 182
  year: 2016
  ident: b0060
  article-title: Does DFT+U mimic hybrid density functionals? Theor
  publication-title: Chem. Acc.
– volume: 2
  start-page: 302
  year: 2020
  end-page: 318
  ident: b0025
  article-title: Status and Challenges of Density Functional Theory
  publication-title: Trends in Chemistry
– volume: 54
  start-page: 7758
  year: 1996
  end-page: 7764
  ident: b0080
  article-title: Self-consistent GW and higher-order calculations of electron states in metals
  publication-title: PhRvB
– volume: 43
  start-page: 129
  year: 2000
  end-page: 136
  ident: b0170
  article-title: A QSAR of the toxicity of amino-benzenes and their structures
  publication-title: Science in China Series B-Chemistry
– volume: 44
  start-page: 943
  year: 1991
  end-page: 954
  ident: b0055
  article-title: Band theory and Mott insulators: Hubbard U instead of Stoner I
  publication-title: PhRvB
– volume: 134
  start-page: 084703
  year: 2011
  ident: b0030
  article-title: Hybrid functional investigations of band gaps and band alignments for AlN, GaN, InN, and InGaN
  publication-title: J. Chem. Phys.
– volume: 116
  start-page: 10623
  year: 2016
  end-page: 10730
  ident: b0005
  article-title: Aqueous Based Semiconductor Nanocrystals
  publication-title: Chem. Rev.
– volume: 11
  start-page: 2087
  year: 2015
  end-page: 2096
  ident: b0110
  article-title: Big Data Meets Quantum Chemistry Approximations: The Δ-Machine Learning Approach
  publication-title: J. Chem. Theory Comput.
– volume: 120
  start-page: 4007
  year: 2020
  end-page: 4055
  ident: b0010
  article-title: Wide Band Gap Chalcogenide Semiconductors
  publication-title: Chem. Rev.
– volume: 135
  start-page: 182
  issue: 8
  year: 2016
  ident: 10.1016/j.commatsci.2021.110699_b0060
  article-title: Does DFT+U mimic hybrid density functionals? Theor
  publication-title: Chem. Acc.
  doi: 10.1007/s00214-016-1927-4
– volume: 116
  start-page: 10623
  issue: 18
  year: 2016
  ident: 10.1016/j.commatsci.2021.110699_b0005
  article-title: Aqueous Based Semiconductor Nanocrystals
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00041
– volume: 44
  start-page: 943
  issue: 3
  year: 1991
  ident: 10.1016/j.commatsci.2021.110699_b0055
  article-title: Band theory and Mott insulators: Hubbard U instead of Stoner I
  publication-title: PhRvB
– volume: 54
  start-page: 7758
  issue: 11
  year: 1996
  ident: 10.1016/j.commatsci.2021.110699_b0080
  article-title: Self-consistent GW and higher-order calculations of electron states in metals
  publication-title: PhRvB
– volume: 51
  start-page: 1884
  issue: 20
  year: 1983
  ident: 10.1016/j.commatsci.2021.110699_b0040
  article-title: Physical Content of the Exact Kohn-Sham Orbital Energies: Band Gaps and Derivative Discontinuities
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.51.1884
– volume: 13
  start-page: 505
  year: 2021
  ident: 10.1016/j.commatsci.2021.110699_b0175
  article-title: Best practices in machine learning for chemistry
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-021-00716-z
– volume: 2
  start-page: 302
  issue: 4
  year: 2020
  ident: 10.1016/j.commatsci.2021.110699_b0025
  article-title: Status and Challenges of Density Functional Theory
  publication-title: Trends in Chemistry
  doi: 10.1016/j.trechm.2020.02.005
– year: 2018
  ident: 10.1016/j.commatsci.2021.110699_b0135
  article-title: Is it possible to improve the quality of predictions from an “intelligent” use of multiple QSAR/QSPR/QSTR models?
  publication-title: J. Chemom.
  doi: 10.1002/cem.2992
– volume: 1
  start-page: 011002
  issue: 1
  year: 2013
  ident: 10.1016/j.commatsci.2021.110699_b0095
  article-title: Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
  publication-title: APL Mater.
  doi: 10.1063/1.4812323
– volume: 33
  issue: 9
  year: 2019
  ident: 10.1016/j.commatsci.2021.110699_b0145
  article-title: Topological characteristics of iterated line graphs in QSAR problem: Octane numbers of saturated hydrocarbons
  publication-title: J. Chemom.
  doi: 10.1002/cem.3169
– volume: 11
  start-page: 2087
  issue: 5
  year: 2015
  ident: 10.1016/j.commatsci.2021.110699_b0110
  article-title: Big Data Meets Quantum Chemistry Approximations: The Δ-Machine Learning Approach
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.5b00099
– volume: 7
  start-page: 387
  issue: 1
  year: 2020
  ident: 10.1016/j.commatsci.2021.110699_b0130
  article-title: A band-gap database for semiconducting inorganic materials calculated with hybrid functional
  publication-title: Sci. Data
  doi: 10.1038/s41597-020-00723-8
– volume: 114
  start-page: 2801
  issue: 11
  year: 2017
  ident: 10.1016/j.commatsci.2021.110699_b0015
  article-title: Understanding band gaps of solids in generalized Kohn-Sham theory
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1621352114
– volume: 96
  issue: 22
  year: 2006
  ident: 10.1016/j.commatsci.2021.110699_b0085
  article-title: Quasiparticle Self-Consistent GW Theory
  publication-title: Phys. Rev. Lett.
– volume: 93
  issue: 11
  year: 2016
  ident: 10.1016/j.commatsci.2021.110699_b0125
  article-title: Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques
  publication-title: PhRvB
– volume: 43
  start-page: 129
  issue: 2
  year: 2000
  ident: 10.1016/j.commatsci.2021.110699_b0170
  article-title: A QSAR of the toxicity of amino-benzenes and their structures
  publication-title: Science in China Series B-Chemistry
  doi: 10.1007/BF03027302
– volume: 73
  start-page: 962
  issue: 5
  year: 2017
  ident: 10.1016/j.commatsci.2021.110699_b0160
  article-title: Predicting displacements of octahedral cations in ferroelectric perovskites using machine learning
  publication-title: Acta Cryst. B
  doi: 10.1107/S2052520617011945
– volume: 8
  start-page: 380
  issue: 2
  year: 2017
  ident: 10.1016/j.commatsci.2021.110699_b0020
  article-title: HLE16: A Local Kohn-Sham Gradient Approximation with Good Performance for Semiconductor Band Gaps and Molecular Excitation Energies
  publication-title: The Journal of Physical Chemistry Letters
  doi: 10.1021/acs.jpclett.6b02757
– volume: 7
  start-page: 17096
  issue: 29
  year: 2019
  ident: 10.1016/j.commatsci.2021.110699_b0100
  article-title: Machine learning for renewable energy materials
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA02356A
– volume: 134
  start-page: 084703
  issue: 8
  year: 2011
  ident: 10.1016/j.commatsci.2021.110699_b0030
  article-title: Hybrid functional investigations of band gaps and band alignments for AlN, GaN, InN, and InGaN
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3548872
– volume: 114
  start-page: 14
  issue: 1
  year: 2014
  ident: 10.1016/j.commatsci.2021.110699_b0050
  article-title: Hubbard-corrected DFT energy functionals: The LDA+U description of correlated systems
  publication-title: Int. J. Quantum Chem
  doi: 10.1002/qua.24521
– volume: 120
  start-page: 4007
  issue: 9
  year: 2020
  ident: 10.1016/j.commatsci.2021.110699_b0010
  article-title: Wide Band Gap Chalcogenide Semiconductors
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00600
– volume: 118
  start-page: 8207
  issue: 18
  year: 2003
  ident: 10.1016/j.commatsci.2021.110699_b0070
  article-title: Hybrid functionals based on a screened Coulomb potential
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1564060
– volume: 32
  start-page: 7383
  issue: 17
  year: 2020
  ident: 10.1016/j.commatsci.2021.110699_b0090
  article-title: Database of Two-Dimensional Hybrid Perovskite Materials: Open-Access Collection of Crystal Structures, Band Gaps, and Atomic Partial Charges Predicted by Machine Learning
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.0c02290
– volume: 125
  start-page: 601
  issue: 2
  year: 2021
  ident: 10.1016/j.commatsci.2021.110699_b0115
  article-title: Machine Learning Aided Design of Polymer with Targeted Band Gap Based on DFT Computation
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.0c08674
– volume: 61
  start-page: 689
  issue: 3
  year: 1989
  ident: 10.1016/j.commatsci.2021.110699_b0045
  article-title: The density functional formalism, its applications and prospects
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.61.689
– volume: 12
  start-page: 39
  year: 2020
  ident: 10.1016/j.commatsci.2021.110699_b0140
  article-title: QSAR-derived affinity fingerprints (part 1): fingerprint construction and modeling performance for similarity searching, bioactivity classification and scaffold hopping
  publication-title: J. Cheminf.
  doi: 10.1186/s13321-020-00443-6
– volume: 34
  start-page: 2824
  issue: 9
  year: 1991
  ident: 10.1016/j.commatsci.2021.110699_b0165
  article-title: Applications of neural networks in quantitative structure-activity relationships of dihydrofolate reductase inhibitors
  publication-title: J. Med. Chem.
  doi: 10.1021/jm00113a022
– volume: 342
  start-page: 397
  issue: 3
  year: 2001
  ident: 10.1016/j.commatsci.2021.110699_b0075
  article-title: On the prediction of band gaps from hybrid functional theory
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(01)00616-9
– volume: 46
  start-page: 1069
  issue: 3
  year: 2006
  ident: 10.1016/j.commatsci.2021.110699_b0150
  article-title: A Family of Ring System-Based Structural Fragments for Use in Structure−Activity Studies: Database Mining and Recursive Partitioning
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci050521b
– volume: 14
  start-page: 433
  issue: 5–6
  year: 2003
  ident: 10.1016/j.commatsci.2021.110699_b0155
  article-title: Comparison of MLR, PLS and GA-MLR in QSAR analysis*
  publication-title: SAR QSAR Environ. Res.
  doi: 10.1080/10629360310001624015
– volume: 121
  start-page: 18862
  issue: 34
  year: 2017
  ident: 10.1016/j.commatsci.2021.110699_b0105
  article-title: An Empirical, yet Practical Way To Predict the Band Gap in Solids by Using Density Functional Band Structure Calculations
  publication-title: The Journal of Physical Chemistry C
  doi: 10.1021/acs.jpcc.7b07421
– volume: 124
  start-page: 10616
  issue: 50
  year: 2020
  ident: 10.1016/j.commatsci.2021.110699_b0120
  article-title: Tuplewise Material Representation Based Machine Learning for Accurate Band Gap Prediction
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.0c07802
– volume: 130
  start-page: 074103
  issue: 7
  year: 2009
  ident: 10.1016/j.commatsci.2021.110699_b0035
  article-title: Calculation of semiconductor band gaps with the M06-L density functional
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3076922
– volume: 125
  start-page: 224106
  issue: 22
  year: 2006
  ident: 10.1016/j.commatsci.2021.110699_b0065
  article-title: Influence of the exchange screening parameter on the performance of screened hybrid functionals
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2404663
SSID ssj0016982
Score 2.5224204
Snippet [Display omitted] Band gap is one of the most important parameters determining the electronic, optoelectronic, and other applications of a wide range of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110699
SubjectTerms Artificial neural network
Band gap
Machine learning
PBE functional
Title Effectively improving the accuracy of PBE functional in calculating the solid band gap via machine learning
URI https://dx.doi.org/10.1016/j.commatsci.2021.110699
Volume 198
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LawIxEA5iL-2h9EntQ3LoNdV9JCa9WVFsS6XQCt6WyWNlW7uKaMFLf3uTfYhCwUOPGzJhmQzzCN98g9Ct9DkwHkgitGYkNMIjHIASBcDBjz1Q3DUKvwxYfxg-jeiogjplL4yDVRa-P_fpmbcuVhqFNhuzJGm8NYXrpbLx28t51V0He9hyVn73s4Z5eExkA6PcZuJ2b2G87Nk2L7Sn20LR9xwknmUksH9EqI2o0ztCh0W6iNv5Hx2jiklP0MEGieAp-swJiK3XmqxwUr4RYJvYYVBqOQe1wtMYvz50sQti-dsfTlJsb0dlw7uK3dYKE40lpBqPYYa_E8BfGdTS4GK2xPgMDXvd906fFCMUiLKheEEohZh7VHJKpVA-1bHPIDB-7HgFbW0XSKNB2RqPsdDY3IBqKUVL8xBaRotABueomk5Tc4Gwkapli0kwQSBCLiUwETAZNxVQozyQNcRKtUWq4Bd3Yy4mUQkk-4jW-o6cvqNc3zXUXAvOcoqN3SL35b1EW9YS2UCwS_jyP8JXaN995XC-a1RdzJfmxqYlC1nP7K6O9tqPz_3BLwxU5Wo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60HtSD-MS3e_Aa2jx2u-tNxRIfLYIWeguzj5T4iEWq4L93N9kUBaEHr8lOEmaHeWy--QbgVEYcGY9lILRmQWJEGHBEGihEjlEeouKuUbg_YOkwuRnR0QJcNr0wDlbpfX_t0ytv7a-0vTbbk6JoP3SE66Wy8TusedUXYcmxU9EWLJ1f36aD2c8EJqqZUW594AR-wbzs421qaF9ga8UodKh4VvHA_hGkfgSe3jqs-YyRnNcftQELptyE1R88glvwXHMQW8f18kWK5piA2NyOoFIf76i-yFtO7i-uiItj9fEfKUpiN0hV87v8amuIhSYSS03GOCGfBZLXCm1piB8vMd6GYe_q8TIN_BSFQNloPA0oxZyHVHJKpVAR1XnEMDZR7qgFbXkXS6NR2TKPscTY9IBqKUVX8wS7RotYxjvQKt9KswvESNW19SSaOBYJlxKZiJnMOwqpUSHKPWCN2jLlKcbdpIuXrMGSPWUzfWdO31mt7z3ozAQnNcvGfJGzZl-yXwaT2VgwT3j_P8InsJw-9u-yu-vB7QGsuDs1uu8QWtP3D3Nks5SpPPZW-A3qI-gb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effectively+improving+the+accuracy+of+PBE+functional+in+calculating+the+solid+band+gap+via+machine+learning&rft.jtitle=Computational+materials+science&rft.au=Wan%2C+Zhongyu&rft.au=Wang%2C+Quan-De&rft.au=Liu%2C+Dongchang&rft.au=Liang%2C+Jinhu&rft.date=2021-10-01&rft.issn=0927-0256&rft.volume=198&rft.spage=110699&rft_id=info:doi/10.1016%2Fj.commatsci.2021.110699&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_commatsci_2021_110699
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0256&client=summon