Effectively improving the accuracy of PBE functional in calculating the solid band gap via machine learning
[Display omitted] Band gap is one of the most important parameters determining the electronic, optoelectronic, and other applications of a wide range of materials including semiconductors and insulators. However, the accurate prediction of the band gap of these materials has been a persistent diffic...
Saved in:
Published in | Computational materials science Vol. 198; p. 110699 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
Band gap is one of the most important parameters determining the electronic, optoelectronic, and other applications of a wide range of materials including semiconductors and insulators. However, the accurate prediction of the band gap of these materials has been a persistent difficulty in quantum chemistry. Numerous studies have attempted to improve the accuracy of the predicted band gap from standard density functional theory (DFT) calculations with local density approximation (LDA) and generalized gradient approximation (GGA), which are well-known to underestimate the band gap severely. With the rapid development of material databases from both experimental and theoretical studies, herein, we develop a correction model to improve the prediction accuracy for the band gap by combing the widely used Perdew-Burke-Ernzerh (PBE-GGA) functional with machine learning approach. The correction model introduces physically meaningful but computationally efficient descriptors to fit the experimental dataset, and an artificial neural network (ANN) model is established to improve the prediction accuracy of computational results from DFT-PBE functional. The new method brings a highly accurate model for the prediction of the band gaps at high-precision G0W0 level without increasing computational cost at DFT-PBE level. Further, the error distribution of the predicted band gaps is more in line with the normal distribution compared with DFT-PBE and G0W0 methods. The band gap correction model provides a practical way to obtain GW-like quality results from standard DFT calculations, and should be valuable to perform accurate high-throughput screening of semiconductors and insulators for which GW calculations become unfeasible. |
---|---|
AbstractList | [Display omitted]
Band gap is one of the most important parameters determining the electronic, optoelectronic, and other applications of a wide range of materials including semiconductors and insulators. However, the accurate prediction of the band gap of these materials has been a persistent difficulty in quantum chemistry. Numerous studies have attempted to improve the accuracy of the predicted band gap from standard density functional theory (DFT) calculations with local density approximation (LDA) and generalized gradient approximation (GGA), which are well-known to underestimate the band gap severely. With the rapid development of material databases from both experimental and theoretical studies, herein, we develop a correction model to improve the prediction accuracy for the band gap by combing the widely used Perdew-Burke-Ernzerh (PBE-GGA) functional with machine learning approach. The correction model introduces physically meaningful but computationally efficient descriptors to fit the experimental dataset, and an artificial neural network (ANN) model is established to improve the prediction accuracy of computational results from DFT-PBE functional. The new method brings a highly accurate model for the prediction of the band gaps at high-precision G0W0 level without increasing computational cost at DFT-PBE level. Further, the error distribution of the predicted band gaps is more in line with the normal distribution compared with DFT-PBE and G0W0 methods. The band gap correction model provides a practical way to obtain GW-like quality results from standard DFT calculations, and should be valuable to perform accurate high-throughput screening of semiconductors and insulators for which GW calculations become unfeasible. |
ArticleNumber | 110699 |
Author | Wan, Zhongyu Liu, Dongchang Liang, Jinhu Wang, Quan-De |
Author_xml | – sequence: 1 givenname: Zhongyu surname: Wan fullname: Wan, Zhongyu email: zhongyuwanxzit@163.com organization: Low Carbon Energy Institute and School of Chemical Engineering, China University of Mining and Technology, Xuzhou 221008, People’s Republic of China – sequence: 2 givenname: Quan-De surname: Wang fullname: Wang, Quan-De email: quandewang@cumt.edu.cn organization: Low Carbon Energy Institute and School of Chemical Engineering, China University of Mining and Technology, Xuzhou 221008, People’s Republic of China – sequence: 3 givenname: Dongchang surname: Liu fullname: Liu, Dongchang organization: Department of Physics, Sungkyunkwan University, Suwon 16419, South Korea – sequence: 4 givenname: Jinhu surname: Liang fullname: Liang, Jinhu organization: School of Environment and Safety Engineering, North University of China, Taiyuan 030051, People’s Republic of China |
BookMark | eNqNkMtOwzAQAC1UJNrCN-AfSLCdOIkPHEpVHhISHOBsbfxoXRynctJI_XtSFThwgdNeZla7M0OT0AaD0DUlKSW0uNmmqm0a6DvlUkYYTSklhRBnaEqrUiSkInSCpkSwMiGMFxdo1nVbMpqiYlP0sbLWqN4Nxh-wa3axHVxY435jMCi1j6AOuLX49W6F7T6MYBvAYxewAq_2Hvpvumu907iGoPEadnhwgBtQGxcM9gZiGLlLdG7Bd-bqa87R-_3qbfmYPL88PC0Xz4nKKtonnIOtKK8rzmuhGNeWFZAZZjkpSJWTrDYaVE5EUeSGCsJ1XYtSVzmURouszubo9rRXxbbrorFSuR6Op_cRnJeUyGM5uZU_5eSxnDyVG_3yl7-LroF4-Ie5OJlmfG9wJsqRMEEZ7eJYWerW_bnjE5nNkdY |
CitedBy_id | crossref_primary_10_1016_j_jpcs_2024_112196 crossref_primary_10_1016_j_surfin_2022_102470 crossref_primary_10_1038_s41598_023_31928_7 crossref_primary_10_1021_acs_iecr_3c03387 crossref_primary_10_1016_j_commatsci_2024_113108 crossref_primary_10_1016_j_ssc_2023_115216 crossref_primary_10_1016_j_jallcom_2023_172506 crossref_primary_10_1016_j_cplett_2022_140124 crossref_primary_10_1016_j_ssi_2023_116401 crossref_primary_10_1063_5_0226151 crossref_primary_10_1021_acsami_4c10622 crossref_primary_10_1016_j_mtcomm_2024_109405 crossref_primary_10_1016_j_physe_2024_115974 crossref_primary_10_3390_inorganics13010014 crossref_primary_10_1016_j_ijhydene_2022_08_251 crossref_primary_10_1016_j_jallcom_2025_179723 crossref_primary_10_1007_s10904_024_03219_9 crossref_primary_10_1007_s00339_023_07183_y crossref_primary_10_1021_acsami_3c00618 crossref_primary_10_1021_acs_chemmater_4c00986 crossref_primary_10_1016_j_commatsci_2024_113153 crossref_primary_10_1088_1402_4896_ad1976 crossref_primary_10_1088_2058_6272_ad386b crossref_primary_10_1016_j_xcrp_2023_101555 crossref_primary_10_1007_s00894_023_05696_0 crossref_primary_10_1016_j_mssp_2024_108429 crossref_primary_10_1063_5_0165307 crossref_primary_10_1039_D3YA00057E crossref_primary_10_1016_j_jlumin_2024_120811 crossref_primary_10_1039_D4QM00885E crossref_primary_10_1016_j_jmrt_2024_12_003 crossref_primary_10_1149_1945_7111_ac63fb crossref_primary_10_1016_j_mtphys_2024_101381 crossref_primary_10_1039_D3NA00603D crossref_primary_10_1016_j_solener_2023_05_015 crossref_primary_10_1039_D2NA00739H crossref_primary_10_1021_acs_inorgchem_4c03331 crossref_primary_10_1021_acs_inorgchem_4c03037 crossref_primary_10_1016_j_comptc_2024_114538 crossref_primary_10_1039_D4RA01528B crossref_primary_10_3390_catal14040217 crossref_primary_10_1016_j_rinp_2024_107415 |
Cites_doi | 10.1007/s00214-016-1927-4 10.1021/acs.chemrev.6b00041 10.1103/PhysRevLett.51.1884 10.1038/s41557-021-00716-z 10.1016/j.trechm.2020.02.005 10.1002/cem.2992 10.1063/1.4812323 10.1002/cem.3169 10.1021/acs.jctc.5b00099 10.1038/s41597-020-00723-8 10.1073/pnas.1621352114 10.1007/BF03027302 10.1107/S2052520617011945 10.1021/acs.jpclett.6b02757 10.1039/C9TA02356A 10.1063/1.3548872 10.1002/qua.24521 10.1021/acs.chemrev.9b00600 10.1063/1.1564060 10.1021/acs.chemmater.0c02290 10.1021/acs.jpcb.0c08674 10.1103/RevModPhys.61.689 10.1186/s13321-020-00443-6 10.1021/jm00113a022 10.1016/S0009-2614(01)00616-9 10.1021/ci050521b 10.1080/10629360310001624015 10.1021/acs.jpcc.7b07421 10.1021/acs.jpca.0c07802 10.1063/1.3076922 10.1063/1.2404663 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.commatsci.2021.110699 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0801 |
ExternalDocumentID | 10_1016_j_commatsci_2021_110699 S0927025621004262 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AECPX AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SES SEW SMS SPC SPCBC SPD SSM SST SSZ T5K VH1 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c381t-55af815b855b9c25df26a3e2f50608403bedac409664e1905dbb97d84a7ed93b3 |
IEDL.DBID | .~1 |
ISSN | 0927-0256 |
IngestDate | Tue Jul 01 02:01:11 EDT 2025 Thu Apr 24 23:02:26 EDT 2025 Fri Feb 23 02:43:28 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | PBE functional Band gap Artificial neural network Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c381t-55af815b855b9c25df26a3e2f50608403bedac409664e1905dbb97d84a7ed93b3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_commatsci_2021_110699 crossref_primary_10_1016_j_commatsci_2021_110699 elsevier_sciencedirect_doi_10_1016_j_commatsci_2021_110699 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2021 2021-10-00 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: October 2021 |
PublicationDecade | 2020 |
PublicationTitle | Computational materials science |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Verma, Truhlar (b0020) 2017; 8 Verma, Truhlar (b0025) 2020; 2 Kim, Lee, Hong, Yoon, An, Lee, Jeong, Yoo, Kang, Youn, Han (b0130) 2020; 7 Muscat, Wander, Harrison (b0075) 2001; 342 Krukau, Vydrov, Izmaylov, Scuseria (b0065) 2006; 125 Marchenko, Fateev, Petrov, Korolev, Mitrofanov, Petrov, Goodilin, Tarasov (b0090) 2020; 32 Na, Jang, Lee, Chang (b0120) 2020; 124 Anisimov, Zaanen, Andersen (b0055) 1991; 44 Moses, Miao, Yan, Van de Walle (b0030) 2011; 134 Shirley (b0080) 1996; 54 Morales-García, Valero, Illas (b0105) 2017; 121 Perdew, Yang, Burke, Yang, Gross, Scheffler, Scuseria, Henderson, Zhang, Ruzsinszky, Peng, Sun, Trushin, Görling (b0015) 2017; 114 Heyd, Scuseria, Ernzerhof (b0070) 2003; 118 van Schilfgaarde, Kotani, Faleev (b0085) 2006; 96 Jain, Ong, Hautier, Chen, Richards, Dacek, Cholia, Gunter, Skinner, Ceder, Persson (b0095) 2013; 1 Himmetoglu, Floris, de Gironcoli, Cococcioni (b0050) 2014; 114 Ramakrishnan, Dral, Rupp, von Lilienfeld (b0110) 2015; 11 Jing, Kershaw, Li, Huang, Li, Rogach, Gao (b0005) 2016; 116 Gu, Noh, Kim, Jung (b0100) 2019; 7 Jones, Gunnarsson (b0045) 1989; 61 Andrea, Kalayeh (b0165) 1991; 34 Woods-Robinson, Han, Zhang, Ablekim, Khan, Persson, Zakutayev (b0010) 2020; 120 Roy, Ambure, Kar, Ojha (b0135) 2018 Zakharov, Dyachenko, Ivanov (b0145) 2019; 33 Lee, Seko, Shitara, Nakayama, Tanaka (b0125) 2016; 93 Perdew, Levy (b0040) 1983; 51 Kuta, Cortés-Ciriano, Dehaen, Kí, Westen, Tetko, Bender, Svozil (b0140) 2020; 12 Artrith, Keith, François-Xavier, Seungwu, Olexandr, Anubhav, Aron (b0175) 2021; 13 Zhao, Truhlar (b0035) 2009; 130 Verma, Truhlar (b0060) 2016; 135 Balachandran, Shearman, Theiler, Lookman (b0160) 2017; 73 Saxena, Prathipati (b0155) 2003; 14 Nilakantan, Nunn, Greenblatt, Walker, Haraki, Mobilio (b0150) 2006; 46 Lu, Wu, Hu, Li (b0170) 2000; 43 Xu, Lu, Ju, Tian, Li, Lu (b0115) 2021; 125 Verma (10.1016/j.commatsci.2021.110699_b0060) 2016; 135 Shirley (10.1016/j.commatsci.2021.110699_b0080) 1996; 54 Zhao (10.1016/j.commatsci.2021.110699_b0035) 2009; 130 Kim (10.1016/j.commatsci.2021.110699_b0130) 2020; 7 Muscat (10.1016/j.commatsci.2021.110699_b0075) 2001; 342 Morales-García (10.1016/j.commatsci.2021.110699_b0105) 2017; 121 Perdew (10.1016/j.commatsci.2021.110699_b0015) 2017; 114 Lu (10.1016/j.commatsci.2021.110699_b0170) 2000; 43 Na (10.1016/j.commatsci.2021.110699_b0120) 2020; 124 Krukau (10.1016/j.commatsci.2021.110699_b0065) 2006; 125 Xu (10.1016/j.commatsci.2021.110699_b0115) 2021; 125 van Schilfgaarde (10.1016/j.commatsci.2021.110699_b0085) 2006; 96 Zakharov (10.1016/j.commatsci.2021.110699_b0145) 2019; 33 Gu (10.1016/j.commatsci.2021.110699_b0100) 2019; 7 Heyd (10.1016/j.commatsci.2021.110699_b0070) 2003; 118 Marchenko (10.1016/j.commatsci.2021.110699_b0090) 2020; 32 Lee (10.1016/j.commatsci.2021.110699_b0125) 2016; 93 Jing (10.1016/j.commatsci.2021.110699_b0005) 2016; 116 Nilakantan (10.1016/j.commatsci.2021.110699_b0150) 2006; 46 Moses (10.1016/j.commatsci.2021.110699_b0030) 2011; 134 Jones (10.1016/j.commatsci.2021.110699_b0045) 1989; 61 Kuta (10.1016/j.commatsci.2021.110699_b0140) 2020; 12 Himmetoglu (10.1016/j.commatsci.2021.110699_b0050) 2014; 114 Ramakrishnan (10.1016/j.commatsci.2021.110699_b0110) 2015; 11 Roy (10.1016/j.commatsci.2021.110699_b0135) 2018 Verma (10.1016/j.commatsci.2021.110699_b0025) 2020; 2 Andrea (10.1016/j.commatsci.2021.110699_b0165) 1991; 34 Jain (10.1016/j.commatsci.2021.110699_b0095) 2013; 1 Woods-Robinson (10.1016/j.commatsci.2021.110699_b0010) 2020; 120 Verma (10.1016/j.commatsci.2021.110699_b0020) 2017; 8 Perdew (10.1016/j.commatsci.2021.110699_b0040) 1983; 51 Saxena (10.1016/j.commatsci.2021.110699_b0155) 2003; 14 Artrith (10.1016/j.commatsci.2021.110699_b0175) 2021; 13 Balachandran (10.1016/j.commatsci.2021.110699_b0160) 2017; 73 Anisimov (10.1016/j.commatsci.2021.110699_b0055) 1991; 44 |
References_xml | – volume: 121 start-page: 18862 year: 2017 end-page: 18866 ident: b0105 article-title: An Empirical, yet Practical Way To Predict the Band Gap in Solids by Using Density Functional Band Structure Calculations publication-title: The Journal of Physical Chemistry C – volume: 114 start-page: 14 year: 2014 end-page: 49 ident: b0050 article-title: Hubbard-corrected DFT energy functionals: The LDA+U description of correlated systems publication-title: Int. J. Quantum Chem – volume: 124 start-page: 10616 year: 2020 end-page: 10623 ident: b0120 article-title: Tuplewise Material Representation Based Machine Learning for Accurate Band Gap Prediction publication-title: J. Phys. Chem. A – volume: 73 start-page: 962 year: 2017 end-page: 967 ident: b0160 article-title: Predicting displacements of octahedral cations in ferroelectric perovskites using machine learning publication-title: Acta Cryst. B – volume: 7 start-page: 387 year: 2020 ident: b0130 article-title: A band-gap database for semiconducting inorganic materials calculated with hybrid functional publication-title: Sci. Data – volume: 114 start-page: 2801 year: 2017 end-page: 2806 ident: b0015 article-title: Understanding band gaps of solids in generalized Kohn-Sham theory publication-title: Proc. Natl. Acad. Sci. – volume: 51 start-page: 1884 year: 1983 end-page: 1887 ident: b0040 article-title: Physical Content of the Exact Kohn-Sham Orbital Energies: Band Gaps and Derivative Discontinuities publication-title: Phys. Rev. Lett. – volume: 32 start-page: 7383 year: 2020 end-page: 7388 ident: b0090 article-title: Database of Two-Dimensional Hybrid Perovskite Materials: Open-Access Collection of Crystal Structures, Band Gaps, and Atomic Partial Charges Predicted by Machine Learning publication-title: Chem. Mater. – volume: 125 start-page: 601 year: 2021 end-page: 611 ident: b0115 article-title: Machine Learning Aided Design of Polymer with Targeted Band Gap Based on DFT Computation publication-title: J. Phys. Chem. B – volume: 14 start-page: 433 year: 2003 end-page: 445 ident: b0155 article-title: Comparison of MLR, PLS and GA-MLR in QSAR analysis* publication-title: SAR QSAR Environ. Res. – volume: 1 start-page: 011002 year: 2013 ident: b0095 article-title: Commentary: The Materials Project: A materials genome approach to accelerating materials innovation publication-title: APL Mater. – volume: 46 start-page: 1069 year: 2006 end-page: 1077 ident: b0150 article-title: A Family of Ring System-Based Structural Fragments for Use in Structure−Activity Studies: Database Mining and Recursive Partitioning publication-title: J. Chem. Inf. Model. – volume: 7 start-page: 17096 year: 2019 end-page: 17117 ident: b0100 article-title: Machine learning for renewable energy materials publication-title: J. Mater. Chem. A – volume: 125 start-page: 224106 year: 2006 ident: b0065 article-title: Influence of the exchange screening parameter on the performance of screened hybrid functionals publication-title: J. Chem. Phys. – volume: 34 start-page: 2824 year: 1991 end-page: 2836 ident: b0165 article-title: Applications of neural networks in quantitative structure-activity relationships of dihydrofolate reductase inhibitors publication-title: J. Med. Chem. – volume: 130 start-page: 074103 year: 2009 ident: b0035 article-title: Calculation of semiconductor band gaps with the M06-L density functional publication-title: J. Chem. Phys. – volume: 12 start-page: 39 year: 2020 ident: b0140 article-title: QSAR-derived affinity fingerprints (part 1): fingerprint construction and modeling performance for similarity searching, bioactivity classification and scaffold hopping publication-title: J. Cheminf. – volume: 61 start-page: 689 year: 1989 end-page: 746 ident: b0045 article-title: The density functional formalism, its applications and prospects publication-title: Rev. Mod. Phys. – volume: 96 year: 2006 ident: b0085 article-title: Quasiparticle Self-Consistent GW Theory publication-title: Phys. Rev. Lett. – volume: 342 start-page: 397 year: 2001 end-page: 401 ident: b0075 article-title: On the prediction of band gaps from hybrid functional theory publication-title: Chem. Phys. Lett. – year: 2018 ident: b0135 article-title: Is it possible to improve the quality of predictions from an “intelligent” use of multiple QSAR/QSPR/QSTR models? publication-title: J. Chemom. – volume: 118 start-page: 8207 year: 2003 end-page: 8215 ident: b0070 article-title: Hybrid functionals based on a screened Coulomb potential publication-title: J. Chem. Phys. – volume: 8 start-page: 380 year: 2017 end-page: 387 ident: b0020 article-title: HLE16: A Local Kohn-Sham Gradient Approximation with Good Performance for Semiconductor Band Gaps and Molecular Excitation Energies publication-title: The Journal of Physical Chemistry Letters – volume: 13 start-page: 505 year: 2021 end-page: 508 ident: b0175 article-title: Best practices in machine learning for chemistry publication-title: Nat. Chem. – volume: 33 year: 2019 ident: b0145 article-title: Topological characteristics of iterated line graphs in QSAR problem: Octane numbers of saturated hydrocarbons publication-title: J. Chemom. – volume: 93 year: 2016 ident: b0125 article-title: Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques publication-title: PhRvB – volume: 135 start-page: 182 year: 2016 ident: b0060 article-title: Does DFT+U mimic hybrid density functionals? Theor publication-title: Chem. Acc. – volume: 2 start-page: 302 year: 2020 end-page: 318 ident: b0025 article-title: Status and Challenges of Density Functional Theory publication-title: Trends in Chemistry – volume: 54 start-page: 7758 year: 1996 end-page: 7764 ident: b0080 article-title: Self-consistent GW and higher-order calculations of electron states in metals publication-title: PhRvB – volume: 43 start-page: 129 year: 2000 end-page: 136 ident: b0170 article-title: A QSAR of the toxicity of amino-benzenes and their structures publication-title: Science in China Series B-Chemistry – volume: 44 start-page: 943 year: 1991 end-page: 954 ident: b0055 article-title: Band theory and Mott insulators: Hubbard U instead of Stoner I publication-title: PhRvB – volume: 134 start-page: 084703 year: 2011 ident: b0030 article-title: Hybrid functional investigations of band gaps and band alignments for AlN, GaN, InN, and InGaN publication-title: J. Chem. Phys. – volume: 116 start-page: 10623 year: 2016 end-page: 10730 ident: b0005 article-title: Aqueous Based Semiconductor Nanocrystals publication-title: Chem. Rev. – volume: 11 start-page: 2087 year: 2015 end-page: 2096 ident: b0110 article-title: Big Data Meets Quantum Chemistry Approximations: The Δ-Machine Learning Approach publication-title: J. Chem. Theory Comput. – volume: 120 start-page: 4007 year: 2020 end-page: 4055 ident: b0010 article-title: Wide Band Gap Chalcogenide Semiconductors publication-title: Chem. Rev. – volume: 135 start-page: 182 issue: 8 year: 2016 ident: 10.1016/j.commatsci.2021.110699_b0060 article-title: Does DFT+U mimic hybrid density functionals? Theor publication-title: Chem. Acc. doi: 10.1007/s00214-016-1927-4 – volume: 116 start-page: 10623 issue: 18 year: 2016 ident: 10.1016/j.commatsci.2021.110699_b0005 article-title: Aqueous Based Semiconductor Nanocrystals publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00041 – volume: 44 start-page: 943 issue: 3 year: 1991 ident: 10.1016/j.commatsci.2021.110699_b0055 article-title: Band theory and Mott insulators: Hubbard U instead of Stoner I publication-title: PhRvB – volume: 54 start-page: 7758 issue: 11 year: 1996 ident: 10.1016/j.commatsci.2021.110699_b0080 article-title: Self-consistent GW and higher-order calculations of electron states in metals publication-title: PhRvB – volume: 51 start-page: 1884 issue: 20 year: 1983 ident: 10.1016/j.commatsci.2021.110699_b0040 article-title: Physical Content of the Exact Kohn-Sham Orbital Energies: Band Gaps and Derivative Discontinuities publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.51.1884 – volume: 13 start-page: 505 year: 2021 ident: 10.1016/j.commatsci.2021.110699_b0175 article-title: Best practices in machine learning for chemistry publication-title: Nat. Chem. doi: 10.1038/s41557-021-00716-z – volume: 2 start-page: 302 issue: 4 year: 2020 ident: 10.1016/j.commatsci.2021.110699_b0025 article-title: Status and Challenges of Density Functional Theory publication-title: Trends in Chemistry doi: 10.1016/j.trechm.2020.02.005 – year: 2018 ident: 10.1016/j.commatsci.2021.110699_b0135 article-title: Is it possible to improve the quality of predictions from an “intelligent” use of multiple QSAR/QSPR/QSTR models? publication-title: J. Chemom. doi: 10.1002/cem.2992 – volume: 1 start-page: 011002 issue: 1 year: 2013 ident: 10.1016/j.commatsci.2021.110699_b0095 article-title: Commentary: The Materials Project: A materials genome approach to accelerating materials innovation publication-title: APL Mater. doi: 10.1063/1.4812323 – volume: 33 issue: 9 year: 2019 ident: 10.1016/j.commatsci.2021.110699_b0145 article-title: Topological characteristics of iterated line graphs in QSAR problem: Octane numbers of saturated hydrocarbons publication-title: J. Chemom. doi: 10.1002/cem.3169 – volume: 11 start-page: 2087 issue: 5 year: 2015 ident: 10.1016/j.commatsci.2021.110699_b0110 article-title: Big Data Meets Quantum Chemistry Approximations: The Δ-Machine Learning Approach publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.5b00099 – volume: 7 start-page: 387 issue: 1 year: 2020 ident: 10.1016/j.commatsci.2021.110699_b0130 article-title: A band-gap database for semiconducting inorganic materials calculated with hybrid functional publication-title: Sci. Data doi: 10.1038/s41597-020-00723-8 – volume: 114 start-page: 2801 issue: 11 year: 2017 ident: 10.1016/j.commatsci.2021.110699_b0015 article-title: Understanding band gaps of solids in generalized Kohn-Sham theory publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1621352114 – volume: 96 issue: 22 year: 2006 ident: 10.1016/j.commatsci.2021.110699_b0085 article-title: Quasiparticle Self-Consistent GW Theory publication-title: Phys. Rev. Lett. – volume: 93 issue: 11 year: 2016 ident: 10.1016/j.commatsci.2021.110699_b0125 article-title: Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques publication-title: PhRvB – volume: 43 start-page: 129 issue: 2 year: 2000 ident: 10.1016/j.commatsci.2021.110699_b0170 article-title: A QSAR of the toxicity of amino-benzenes and their structures publication-title: Science in China Series B-Chemistry doi: 10.1007/BF03027302 – volume: 73 start-page: 962 issue: 5 year: 2017 ident: 10.1016/j.commatsci.2021.110699_b0160 article-title: Predicting displacements of octahedral cations in ferroelectric perovskites using machine learning publication-title: Acta Cryst. B doi: 10.1107/S2052520617011945 – volume: 8 start-page: 380 issue: 2 year: 2017 ident: 10.1016/j.commatsci.2021.110699_b0020 article-title: HLE16: A Local Kohn-Sham Gradient Approximation with Good Performance for Semiconductor Band Gaps and Molecular Excitation Energies publication-title: The Journal of Physical Chemistry Letters doi: 10.1021/acs.jpclett.6b02757 – volume: 7 start-page: 17096 issue: 29 year: 2019 ident: 10.1016/j.commatsci.2021.110699_b0100 article-title: Machine learning for renewable energy materials publication-title: J. Mater. Chem. A doi: 10.1039/C9TA02356A – volume: 134 start-page: 084703 issue: 8 year: 2011 ident: 10.1016/j.commatsci.2021.110699_b0030 article-title: Hybrid functional investigations of band gaps and band alignments for AlN, GaN, InN, and InGaN publication-title: J. Chem. Phys. doi: 10.1063/1.3548872 – volume: 114 start-page: 14 issue: 1 year: 2014 ident: 10.1016/j.commatsci.2021.110699_b0050 article-title: Hubbard-corrected DFT energy functionals: The LDA+U description of correlated systems publication-title: Int. J. Quantum Chem doi: 10.1002/qua.24521 – volume: 120 start-page: 4007 issue: 9 year: 2020 ident: 10.1016/j.commatsci.2021.110699_b0010 article-title: Wide Band Gap Chalcogenide Semiconductors publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00600 – volume: 118 start-page: 8207 issue: 18 year: 2003 ident: 10.1016/j.commatsci.2021.110699_b0070 article-title: Hybrid functionals based on a screened Coulomb potential publication-title: J. Chem. Phys. doi: 10.1063/1.1564060 – volume: 32 start-page: 7383 issue: 17 year: 2020 ident: 10.1016/j.commatsci.2021.110699_b0090 article-title: Database of Two-Dimensional Hybrid Perovskite Materials: Open-Access Collection of Crystal Structures, Band Gaps, and Atomic Partial Charges Predicted by Machine Learning publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.0c02290 – volume: 125 start-page: 601 issue: 2 year: 2021 ident: 10.1016/j.commatsci.2021.110699_b0115 article-title: Machine Learning Aided Design of Polymer with Targeted Band Gap Based on DFT Computation publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.0c08674 – volume: 61 start-page: 689 issue: 3 year: 1989 ident: 10.1016/j.commatsci.2021.110699_b0045 article-title: The density functional formalism, its applications and prospects publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.61.689 – volume: 12 start-page: 39 year: 2020 ident: 10.1016/j.commatsci.2021.110699_b0140 article-title: QSAR-derived affinity fingerprints (part 1): fingerprint construction and modeling performance for similarity searching, bioactivity classification and scaffold hopping publication-title: J. Cheminf. doi: 10.1186/s13321-020-00443-6 – volume: 34 start-page: 2824 issue: 9 year: 1991 ident: 10.1016/j.commatsci.2021.110699_b0165 article-title: Applications of neural networks in quantitative structure-activity relationships of dihydrofolate reductase inhibitors publication-title: J. Med. Chem. doi: 10.1021/jm00113a022 – volume: 342 start-page: 397 issue: 3 year: 2001 ident: 10.1016/j.commatsci.2021.110699_b0075 article-title: On the prediction of band gaps from hybrid functional theory publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(01)00616-9 – volume: 46 start-page: 1069 issue: 3 year: 2006 ident: 10.1016/j.commatsci.2021.110699_b0150 article-title: A Family of Ring System-Based Structural Fragments for Use in Structure−Activity Studies: Database Mining and Recursive Partitioning publication-title: J. Chem. Inf. Model. doi: 10.1021/ci050521b – volume: 14 start-page: 433 issue: 5–6 year: 2003 ident: 10.1016/j.commatsci.2021.110699_b0155 article-title: Comparison of MLR, PLS and GA-MLR in QSAR analysis* publication-title: SAR QSAR Environ. Res. doi: 10.1080/10629360310001624015 – volume: 121 start-page: 18862 issue: 34 year: 2017 ident: 10.1016/j.commatsci.2021.110699_b0105 article-title: An Empirical, yet Practical Way To Predict the Band Gap in Solids by Using Density Functional Band Structure Calculations publication-title: The Journal of Physical Chemistry C doi: 10.1021/acs.jpcc.7b07421 – volume: 124 start-page: 10616 issue: 50 year: 2020 ident: 10.1016/j.commatsci.2021.110699_b0120 article-title: Tuplewise Material Representation Based Machine Learning for Accurate Band Gap Prediction publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.0c07802 – volume: 130 start-page: 074103 issue: 7 year: 2009 ident: 10.1016/j.commatsci.2021.110699_b0035 article-title: Calculation of semiconductor band gaps with the M06-L density functional publication-title: J. Chem. Phys. doi: 10.1063/1.3076922 – volume: 125 start-page: 224106 issue: 22 year: 2006 ident: 10.1016/j.commatsci.2021.110699_b0065 article-title: Influence of the exchange screening parameter on the performance of screened hybrid functionals publication-title: J. Chem. Phys. doi: 10.1063/1.2404663 |
SSID | ssj0016982 |
Score | 2.5224204 |
Snippet | [Display omitted]
Band gap is one of the most important parameters determining the electronic, optoelectronic, and other applications of a wide range of... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 110699 |
SubjectTerms | Artificial neural network Band gap Machine learning PBE functional |
Title | Effectively improving the accuracy of PBE functional in calculating the solid band gap via machine learning |
URI | https://dx.doi.org/10.1016/j.commatsci.2021.110699 |
Volume | 198 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LawIxEA5iL-2h9EntQ3LoNdV9JCa9WVFsS6XQCt6WyWNlW7uKaMFLf3uTfYhCwUOPGzJhmQzzCN98g9Ct9DkwHkgitGYkNMIjHIASBcDBjz1Q3DUKvwxYfxg-jeiogjplL4yDVRa-P_fpmbcuVhqFNhuzJGm8NYXrpbLx28t51V0He9hyVn73s4Z5eExkA6PcZuJ2b2G87Nk2L7Sn20LR9xwknmUksH9EqI2o0ztCh0W6iNv5Hx2jiklP0MEGieAp-swJiK3XmqxwUr4RYJvYYVBqOQe1wtMYvz50sQti-dsfTlJsb0dlw7uK3dYKE40lpBqPYYa_E8BfGdTS4GK2xPgMDXvd906fFCMUiLKheEEohZh7VHJKpVA-1bHPIDB-7HgFbW0XSKNB2RqPsdDY3IBqKUVL8xBaRotABueomk5Tc4Gwkapli0kwQSBCLiUwETAZNxVQozyQNcRKtUWq4Bd3Yy4mUQkk-4jW-o6cvqNc3zXUXAvOcoqN3SL35b1EW9YS2UCwS_jyP8JXaN995XC-a1RdzJfmxqYlC1nP7K6O9tqPz_3BLwxU5Wo |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60HtSD-MS3e_Aa2jx2u-tNxRIfLYIWeguzj5T4iEWq4L93N9kUBaEHr8lOEmaHeWy--QbgVEYcGY9lILRmQWJEGHBEGihEjlEeouKuUbg_YOkwuRnR0QJcNr0wDlbpfX_t0ytv7a-0vTbbk6JoP3SE66Wy8TusedUXYcmxU9EWLJ1f36aD2c8EJqqZUW594AR-wbzs421qaF9ga8UodKh4VvHA_hGkfgSe3jqs-YyRnNcftQELptyE1R88glvwXHMQW8f18kWK5piA2NyOoFIf76i-yFtO7i-uiItj9fEfKUpiN0hV87v8amuIhSYSS03GOCGfBZLXCm1piB8vMd6GYe_q8TIN_BSFQNloPA0oxZyHVHJKpVAR1XnEMDZR7qgFbXkXS6NR2TKPscTY9IBqKUVX8wS7RotYxjvQKt9KswvESNW19SSaOBYJlxKZiJnMOwqpUSHKPWCN2jLlKcbdpIuXrMGSPWUzfWdO31mt7z3ozAQnNcvGfJGzZl-yXwaT2VgwT3j_P8InsJw-9u-yu-vB7QGsuDs1uu8QWtP3D3Nks5SpPPZW-A3qI-gb |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effectively+improving+the+accuracy+of+PBE+functional+in+calculating+the+solid+band+gap+via+machine+learning&rft.jtitle=Computational+materials+science&rft.au=Wan%2C+Zhongyu&rft.au=Wang%2C+Quan-De&rft.au=Liu%2C+Dongchang&rft.au=Liang%2C+Jinhu&rft.date=2021-10-01&rft.issn=0927-0256&rft.volume=198&rft.spage=110699&rft_id=info:doi/10.1016%2Fj.commatsci.2021.110699&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_commatsci_2021_110699 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0256&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0256&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0256&client=summon |