Circular RNAs and complex diseases: from experimental results to computational models
Circular RNAs (circRNAs) are a class of single-stranded, covalently closed RNA molecules with a variety of biological functions. Studies have shown that circRNAs are involved in a variety of biological processes and play an important role in the development of various complex diseases, so the identi...
Saved in:
Published in | Briefings in bioinformatics Vol. 22; no. 6 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
05.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Circular RNAs (circRNAs) are a class of single-stranded, covalently closed RNA molecules with a variety of biological functions. Studies have shown that circRNAs are involved in a variety of biological processes and play an important role in the development of various complex diseases, so the identification of circRNA-disease associations would contribute to the diagnosis and treatment of diseases. In this review, we summarize the discovery, classifications and functions of circRNAs and introduce four important diseases associated with circRNAs. Then, we list some significant and publicly accessible databases containing comprehensive annotation resources of circRNAs and experimentally validated circRNA-disease associations. Next, we introduce some state-of-the-art computational models for predicting novel circRNA-disease associations and divide them into two categories, namely network algorithm-based and machine learning-based models. Subsequently, several evaluation methods of prediction performance of these computational models are summarized. Finally, we analyze the advantages and disadvantages of different types of computational models and provide some suggestions to promote the development of circRNA-disease association identification from the perspective of the construction of new computational models and the accumulation of circRNA-related data. |
---|---|
AbstractList | Circular RNAs (circRNAs) are a class of single-stranded, covalently closed RNA molecules with a variety of biological functions. Studies have shown that circRNAs are involved in a variety of biological processes and play an important role in the development of various complex diseases, so the identification of circRNA-disease associations would contribute to the diagnosis and treatment of diseases. In this review, we summarize the discovery, classifications and functions of circRNAs and introduce four important diseases associated with circRNAs. Then, we list some significant and publicly accessible databases containing comprehensive annotation resources of circRNAs and experimentally validated circRNA-disease associations. Next, we introduce some state-of-the-art computational models for predicting novel circRNA-disease associations and divide them into two categories, namely network algorithm-based and machine learning-based models. Subsequently, several evaluation methods of prediction performance of these computational models are summarized. Finally, we analyze the advantages and disadvantages of different types of computational models and provide some suggestions to promote the development of circRNA-disease association identification from the perspective of the construction of new computational models and the accumulation of circRNA-related data. Circular RNAs (circRNAs) are a class of single-stranded, covalently closed RNA molecules with a variety of biological functions. Studies have shown that circRNAs are involved in a variety of biological processes and play an important role in the development of various complex diseases, so the identification of circRNA-disease associations would contribute to the diagnosis and treatment of diseases. In this review, we summarize the discovery, classifications and functions of circRNAs and introduce four important diseases associated with circRNAs. Then, we list some significant and publicly accessible databases containing comprehensive annotation resources of circRNAs and experimentally validated circRNA-disease associations. Next, we introduce some state-of-the-art computational models for predicting novel circRNA-disease associations and divide them into two categories, namely network algorithm-based and machine learning-based models. Subsequently, several evaluation methods of prediction performance of these computational models are summarized. Finally, we analyze the advantages and disadvantages of different types of computational models and provide some suggestions to promote the development of circRNA-disease association identification from the perspective of the construction of new computational models and the accumulation of circRNA-related data.Circular RNAs (circRNAs) are a class of single-stranded, covalently closed RNA molecules with a variety of biological functions. Studies have shown that circRNAs are involved in a variety of biological processes and play an important role in the development of various complex diseases, so the identification of circRNA-disease associations would contribute to the diagnosis and treatment of diseases. In this review, we summarize the discovery, classifications and functions of circRNAs and introduce four important diseases associated with circRNAs. Then, we list some significant and publicly accessible databases containing comprehensive annotation resources of circRNAs and experimentally validated circRNA-disease associations. Next, we introduce some state-of-the-art computational models for predicting novel circRNA-disease associations and divide them into two categories, namely network algorithm-based and machine learning-based models. Subsequently, several evaluation methods of prediction performance of these computational models are summarized. Finally, we analyze the advantages and disadvantages of different types of computational models and provide some suggestions to promote the development of circRNA-disease association identification from the perspective of the construction of new computational models and the accumulation of circRNA-related data. |
Author | Zhao, Qi Han, Chen-Di Chen, Xing Wang, Chun-Chun |
Author_xml | – sequence: 1 givenname: Chun-Chun surname: Wang fullname: Wang, Chun-Chun organization: School of Information and Control Engineering, China University of Mining and Technology – sequence: 2 givenname: Chen-Di surname: Han fullname: Han, Chen-Di organization: School of Information and Control Engineering, China University of Mining and Technology – sequence: 3 givenname: Qi surname: Zhao fullname: Zhao, Qi organization: School of Computer Science and Software Engineering, University of Science and Technology Liaoning – sequence: 4 givenname: Xing surname: Chen fullname: Chen, Xing organization: China University of Mining and Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34329377$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc1LxDAQxYMofqyevEuPglSTJmkaD4IsfoEoiHsOaTrVSNqsSSv63xvdVVQ8zcD85r1h3hZa7X0PCO0SfEiwpEe1rY_qWtdFVa6gTcKEyBnmbPWjL0XOWUk30FaMTxgXWFRkHW1QRgtJhdhEs6kNZnQ6ZHc3pzHTfZMZ380dvGaNjaAjxOOsDb7L4HUOwXbQD9plAeLohpgN_hMfBz1Y36dB5xtwcRuttdpF2FnWCZqdn91PL_Pr24ur6el1bmhFhpxjYgTXEqjQTBhRMFIK2rS15JhzIw2XZctMBdJQYWhbG0Na1jSypVLKhtAJOlnozse6g8ak44J2ap7u1OFNeW3V70lvH9WDf1EVF8mcJYH9pUDwzyPEQXU2GnBO9-DHqArORUFJWZYJ3fvp9W3y9csEkAVggo8xQKuMXfwlWVunCFYfeamUl1rmlXYO_ux8yf5HvwMGPJpq |
CitedBy_id | crossref_primary_10_3389_fmicb_2023_1170559 crossref_primary_10_1111_jcmm_18590 crossref_primary_10_1186_s12890_023_02717_9 crossref_primary_10_1186_s12859_022_04883_9 crossref_primary_10_1093_bib_bbac463 crossref_primary_10_1097_MD_0000000000037549 crossref_primary_10_1038_s41598_023_31754_x crossref_primary_10_3934_mbe_2021443 crossref_primary_10_1016_j_neucom_2025_129637 crossref_primary_10_3934_mbe_2023345 crossref_primary_10_1093_bib_bbac613 crossref_primary_10_1016_j_jare_2024_06_002 crossref_primary_10_1016_j_isci_2022_105299 crossref_primary_10_1155_2022_5154122 crossref_primary_10_3389_fgene_2022_1001608 crossref_primary_10_1016_j_ymeth_2023_01_006 crossref_primary_10_1111_jcmm_18180 crossref_primary_10_3934_mbe_2023085 crossref_primary_10_2174_1574893618666230228112411 crossref_primary_10_1093_bfgp_elad010 crossref_primary_10_1016_j_compbiomed_2022_106464 crossref_primary_10_58953_15621790_2024_15_1_2_13 crossref_primary_10_1093_bib_bbad259 crossref_primary_10_3389_fmicb_2022_995323 crossref_primary_10_3389_fmicb_2022_1024104 crossref_primary_10_1093_bib_bbae627 crossref_primary_10_1109_JBHI_2023_3260863 crossref_primary_10_1093_bib_bbac083 crossref_primary_10_1002_jbt_23711 crossref_primary_10_1093_bib_bbad292 crossref_primary_10_1155_2023_7121514 crossref_primary_10_3389_fmicb_2022_1040252 crossref_primary_10_1093_bib_bbac364 crossref_primary_10_1186_s12911_024_02564_6 crossref_primary_10_1093_bfgp_elac011 crossref_primary_10_1007_s11010_022_04578_y crossref_primary_10_3934_mbe_2022630 crossref_primary_10_1093_bib_bbac358 crossref_primary_10_1016_j_ymeth_2023_11_014 crossref_primary_10_1016_j_knosys_2022_110044 crossref_primary_10_1038_s41598_022_11260_2 crossref_primary_10_23919_cje_2022_00_361 crossref_primary_10_1371_journal_pone_0264362 crossref_primary_10_1038_s41598_022_18273_x crossref_primary_10_3892_ol_2023_13762 crossref_primary_10_1016_j_compbiolchem_2022_107722 crossref_primary_10_1186_s12859_022_04957_8 crossref_primary_10_1093_bib_bbad445 crossref_primary_10_1111_jcmm_17889 crossref_primary_10_1093_bib_bbac595 crossref_primary_10_1109_TCBB_2024_3415058 crossref_primary_10_3390_biom12070932 crossref_primary_10_1093_bib_bbac472 crossref_primary_10_1093_bioinformatics_btad499 crossref_primary_10_3389_fmicb_2022_919380 crossref_primary_10_1186_s12864_022_08937_3 crossref_primary_10_1093_bib_bbac104 crossref_primary_10_1038_s41598_022_25730_0 crossref_primary_10_3389_fmicb_2022_1090770 crossref_primary_10_1111_1440_1681_13761 crossref_primary_10_1155_2022_9867660 crossref_primary_10_1080_21655979_2022_2063664 crossref_primary_10_1186_s12859_022_04694_y crossref_primary_10_3389_fendo_2023_1267195 crossref_primary_10_1186_s12859_022_04719_6 crossref_primary_10_1615_CritRevEukaryotGeneExpr_2023046830 crossref_primary_10_1038_s41598_023_27435_4 crossref_primary_10_1093_bib_bbac266 crossref_primary_10_1093_bioinformatics_btad421 crossref_primary_10_1371_journal_pone_0278817 crossref_primary_10_1093_bib_bbac021 crossref_primary_10_1016_j_compbiomed_2022_105984 crossref_primary_10_1186_s12864_022_09027_0 crossref_primary_10_1093_bib_bbad227 crossref_primary_10_1093_bib_bbac379 crossref_primary_10_1016_j_ymthe_2022_01_041 crossref_primary_10_1007_s11704_024_40060_2 crossref_primary_10_1016_j_future_2022_04_012 crossref_primary_10_3389_fimmu_2022_951561 crossref_primary_10_3389_fgene_2022_1049786 crossref_primary_10_1016_j_ab_2024_115554 crossref_primary_10_1038_s41598_022_25745_7 crossref_primary_10_3389_fmicb_2022_1093615 crossref_primary_10_1007_s13042_024_02375_1 crossref_primary_10_3389_fgene_2022_1010089 crossref_primary_10_1016_j_ymeth_2022_10_002 crossref_primary_10_1093_bib_bbad069 crossref_primary_10_1093_bioinformatics_btac100 crossref_primary_10_1093_bioinformatics_btae004 crossref_primary_10_1111_jcmm_70046 crossref_primary_10_1016_j_ymeth_2022_06_005 crossref_primary_10_1093_bfgp_elad053 crossref_primary_10_1093_bib_bbac527 crossref_primary_10_1016_j_compbiomed_2023_107414 crossref_primary_10_1093_bib_bbae546 crossref_primary_10_1016_j_compbiolchem_2023_107833 crossref_primary_10_3934_mbe_2022622 crossref_primary_10_3389_fmicb_2024_1353278 crossref_primary_10_3934_mbe_2022432 crossref_primary_10_1016_j_compbiomed_2022_105881 crossref_primary_10_1142_S0219720024500185 crossref_primary_10_1186_s12864_023_09273_w crossref_primary_10_1093_bib_bbae337 crossref_primary_10_1109_TCBB_2024_3402248 crossref_primary_10_3389_fmicb_2022_963704 crossref_primary_10_1039_D2MO00066K crossref_primary_10_1093_bib_bbac391 crossref_primary_10_1016_j_ymeth_2023_06_006 crossref_primary_10_1186_s12859_022_05069_z crossref_primary_10_1109_TCBB_2024_3447110 crossref_primary_10_1155_2023_8702914 crossref_primary_10_1016_j_heliyon_2023_e23694 crossref_primary_10_3934_mbe_2023534 crossref_primary_10_1093_bioinformatics_btaf088 crossref_primary_10_1186_s12859_023_05148_9 crossref_primary_10_1016_j_compbiomed_2022_106289 crossref_primary_10_1155_2022_4433627 crossref_primary_10_3389_fcell_2023_1160381 crossref_primary_10_3389_fgene_2022_1029300 |
Cites_doi | 10.1378/chest.123.1_suppl.21S 10.1093/bib/bbaa052 10.1186/s13073-019-0663-5 10.7150/ijbs.33806 10.1126/science.1127647 10.1093/eurheartj/ehv713 10.1093/nar/gkx863 10.3390/ijms19113410 10.1038/280339a0 10.1002/ijc.21100 10.1038/s41598-018-29360-3 10.1093/bioinformatics/bty503 10.1038/273203a0 10.1109/JBHI.2019.2891779 10.1093/bioinformatics/btw715 10.1093/bib/bbaa061 10.1093/nar/gkr1009 10.1038/s41419-018-0503-3 10.1093/bib/bbaa158 10.1186/s12864-015-1603-4 10.1016/j.cell.2014.09.001 10.1016/j.jbi.2020.103624 10.1145/2500492 10.1093/bioinformatics/btt426 10.1101/gad.251926.114 10.1038/srep16840 10.1021/acs.jcim.9b00667 10.1097/MD.0000000000003811 10.1371/journal.pcbi.1005912 10.1007/s00018-019-03345-5 10.1093/bioinformatics/btz297 10.1016/S0166-0934(02)00118-0 10.1001/jama.2018.19323 10.12688/f1000research.12852.1 10.1038/nature11993 10.1261/rna.034090.112 10.1093/nar/gkx891 10.1038/nsmb.2959 10.1093/bib/bbv066 10.1016/j.eswa.2017.08.002 10.1261/rna.052282.115 10.1371/journal.pcbi.1007209 10.1073/pnas.73.11.3852 10.1080/15476286.2017.1279788 10.1038/psp.2014.44 10.1016/j.knosys.2019.105261 10.1080/15384101.2017.1380135 10.1016/j.cell.2018.12.021 10.1016/j.celrep.2014.12.019 10.1109/TPAMI.2010.231 10.1096/fasebj.7.1.7678559 10.1186/s12920-020-0679-0 10.1371/journal.pcbi.1006418 10.3389/fgene.2019.00832 10.1186/s12859-018-2522-6 10.1186/s13046-017-0614-1 10.1016/j.molcel.2014.08.019 10.1093/bib/bbx142 10.1093/nar/gkv940 10.1186/s13059-014-0409-z 10.1016/j.prp.2017.02.011 10.1007/s13042-011-0019-y 10.3322/caac.21551 10.1111/febs.14132 10.1038/s41576-019-0158-7 10.1016/j.compbiolchem.2020.107287 10.1007/s00216-013-7476-y 10.1155/2019/5938035 10.1016/j.omtn.2018.12.002 10.1371/journal.pcbi.1007568 10.1016/S2468-1253(16)30079-6 10.7150/ijbs.28260 10.1093/bioinformatics/btz825 10.1038/nrm.2015.32 10.1016/j.omtn.2018.09.020 10.1093/jnci/djx166 10.4155/fsoa-2018-0036 10.1016/j.jmb.2015.02.018 10.1109/TNB.2019.2922214 10.1093/database/baz003 10.1093/bib/bbx130 10.1093/database/baaa019 10.1016/j.gene.2020.145040 10.1016/j.gpb.2018.08.001 10.1261/rna.035667.112 10.1261/rna.043687.113 10.3389/fgene.2013.00283 10.1093/bib/bbz159 10.1371/journal.pcbi.1007872 10.1016/0092-8674(81)90142-2 10.1038/srep34985 10.1016/j.molcel.2013.08.017 10.1371/journal.pone.0090859 10.1038/s41467-018-06862-2 10.1080/15476286.2019.1600395 10.1371/journal.pcbi.1005455 10.1093/bib/bbz080 10.1093/bib/bby083 10.1038/ncomms11215 10.1093/bib/bbz057 10.3892/mmr.2017.6916 10.1038/nmeth.1938 10.1038/s41598-019-45954-x 10.1007/s00438-020-01741-2 10.1016/j.celrep.2014.12.002 10.1016/j.ygeno.2020.06.017 10.7554/eLife.07540 10.1016/j.neucom.2005.12.126 10.1109/TIP.2014.2303638 10.1093/nar/gkv1273 10.1038/nmeth.2810 10.2147/OTT.S150678 10.1038/s41598-020-59040-0 10.1089/dna.2017.3862 10.1080/15476286.2019.1694732 10.1016/j.ymeth.2018.06.001 10.1097/PPO.0000000000000290 10.1007/s40291-020-00499-y 10.1093/database/bay044 10.18632/oncotarget.3469 10.1109/ASONAM.2011.112 10.1109/ACCESS.2019.2920942 10.1007/s00109-017-1600-y 10.1039/C9RA06133A 10.3389/fgene.2019.00897 10.1038/nature11928 10.1145/2623330.2623732 10.1109/TCBB.2017.2701379 10.1016/j.ygeno.2019.08.001 |
ContentType | Journal Article |
Copyright | The Author(s) 2021. Published by Oxford University Press. The Author(s) 2021. Published by Oxford University Press. 2021 |
Copyright_xml | – notice: The Author(s) 2021. Published by Oxford University Press. – notice: The Author(s) 2021. Published by Oxford University Press. 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/bib/bbab286 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-4054 |
ExternalDocumentID | PMC8575014 34329377 10_1093_bib_bbab286 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: ; grantid: 11931008; 61972399 |
GroupedDBID | --- -E4 .2P .I3 0R~ 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAHBH AAIJN AAIMJ AAJKP AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAVAP AAVLN AAYXX ABDBF ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABPTD ABQLI ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACUHS ACUXJ ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHGBF AHMBA AHQJS AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMNDL ANAKG APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C45 CDBKE CITATION CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ K1G KBUDW KOP KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c381t-501c75a9e37a47c7241673dfb95055c9c596f4c8e9c37c3fbcc1f4dd9f3999d13 |
ISSN | 1467-5463 1477-4054 |
IngestDate | Thu Aug 21 18:29:46 EDT 2025 Thu Jul 10 22:27:31 EDT 2025 Mon Jul 21 06:05:31 EDT 2025 Thu Apr 24 23:02:46 EDT 2025 Tue Jul 01 03:39:35 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | circRNA-disease association prediction computational model network algorithm disease circRNA machine learning |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 The Author(s) 2021. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c381t-501c75a9e37a47c7241673dfb95055c9c596f4c8e9c37c3fbcc1f4dd9f3999d13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8575014 |
PMID | 34329377 |
PQID | 2557231666 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8575014 proquest_miscellaneous_2557231666 pubmed_primary_34329377 crossref_citationtrail_10_1093_bib_bbab286 crossref_primary_10_1093_bib_bbab286 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-05 |
PublicationDateYYYYMMDD | 2021-11-05 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Briefings in bioinformatics |
PublicationTitleAlternate | Brief Bioinform |
PublicationYear | 2021 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Wang (2021110815072237200_ref124) 2020; 36 Memczak (2021110815072237200_ref21) 2013; 495 Wei (2021110815072237200_ref106) 2020; 21 Yao (2021110815072237200_ref60) 2018; 8 Zeng (2021110815072237200_ref121) 2020; 21 Wang (2021110815072237200_ref115) 2019; 10 Alberg (2021110815072237200_ref49) 2003; 123 Hinton (2021110815072237200_ref132) 2006; 313 Guo (2021110815072237200_ref55) 2018; 17 Toh (2021110815072237200_ref114) 2010; 6 Deng (2021110815072237200_ref83) 2019; 9 Ivanov (2021110815072237200_ref13) 2015; 10 Chen (2021110815072237200_ref82) 2015; 5 Liu (2021110815072237200_ref64) 2016; 44 Lei (2021110815072237200_ref77) 2018; 19 Starke (2021110815072237200_ref15) 2015; 10 Lei (2021110815072237200_ref119) 2019; 15 Broadbent (2021110815072237200_ref9) 2015; 16 Pham (2021110815072237200_ref54) 2018; 7 Dong (2021110815072237200_ref69) 2018; 16 Wang (2021110815072237200_ref112) 2014; 3 Meng (2021110815072237200_ref71) 2019; 2019 Fang (2021110815072237200_ref14) 2018; 4 Rawla (2021110815072237200_ref35) 2019; 14 Glažar (2021110815072237200_ref63) 2014; 20 Li (2021110815072237200_ref87) 2020; 112 Li (2021110815072237200_ref26) 2015; 6 Chen (2021110815072237200_ref58) 2017; 20 Sun (2021110815072237200_ref122) 2013; 7 Grabowski (2021110815072237200_ref5) 1981; 23 Ezzati (2021110815072237200_ref48) 2005; 116 Chen (2021110815072237200_ref100) 2017; 13 He (2021110815072237200_ref46) 2017; 36 Fan (2021110815072237200_ref80) 2018; 14 Xia (2021110815072237200_ref68) 2018; 46 Zhang (2021110815072237200_ref34) 2018; 9 Ghosal (2021110815072237200_ref59) 2013; 4 Hansen (2021110815072237200_ref24) 2013; 495 Cai (2021110815072237200_ref108) 2011; 33 Wang (2021110815072237200_ref111) 2019; 20 Breiman (2021110815072237200_ref130) 1984 Chen (2021110815072237200_ref66) 2016; 6 Ruan (2021110815072237200_ref74) 2019; 11 Shang (2021110815072237200_ref57) 2016; 95 Li (2021110815072237200_ref70) 2018; 46 Waks (2021110815072237200_ref43) 2019; 321 Huang (2021110815072237200_ref126) 2011; 2 Siegel (2021110815072237200_ref36) 2019; 69 Rophina (2021110815072237200_ref62) 2020; 2020 Zhang (2021110815072237200_ref17) 2013; 51 Yang (2021110815072237200_ref32) 2018; 110 Chen (2021110815072237200_ref81) 2017; 33 Yan (2021110815072237200_ref102) 2018; 19 Chu (2021110815072237200_ref52) 2017; 23 Ge (2021110815072237200_ref89) 2020; 112 Chen (2021110815072237200_ref134) 2017; 20 Liu (2021110815072237200_ref73) 2019; 16 Chen (2021110815072237200_ref135) 2016; 18 Huang (2021110815072237200_ref41) 2017; 16 Cocquerelle (2021110815072237200_ref7) 1993; 7 Zheng (2021110815072237200_ref118) 2020; 16 Wan (2021110815072237200_ref28) 2016 Xiao (2021110815072237200_ref110) 2021; 296 Wang (2021110815072237200_ref10) 2014; 9 Chen (2021110815072237200_ref93) 2018; 34 Ashwal-Fluss (2021110815072237200_ref29) 2014; 56 Zhang (2021110815072237200_ref91) 2018; 145 Zhao (2021110815072237200_ref94) 2019; 35 Chen (2021110815072237200_ref92) 2020; 22 Lei (2021110815072237200_ref116) 2019; 10 Zhao (2021110815072237200_ref33) 2018; 9 Zhao (2021110815072237200_ref85) 2019; 18 Zheng (2021110815072237200_ref25) 2016; 7 Deepthi (2021110815072237200_ref133) 2021; 25 Danan (2021110815072237200_ref6) 2012; 40 Hu (2021110815072237200_ref138) 2018; 15 Lu (2021110815072237200_ref8) 2015; 21 Zhao (2021110815072237200_ref141) 2020; 17 Chen (2021110815072237200_ref95) 2013; 29 Fan (2021110815072237200_ref61) 2018; 2018 Wang (2021110815072237200_ref27) 2016; 37 Nepusz (2021110815072237200_ref105) 2012; 9 Tang (2021110815072237200_ref72) 2019; 20 Li (2021110815072237200_ref86) 2019; 9 Gross (2021110815072237200_ref3) 1978; 273 Liu (2021110815072237200_ref107) 2014; 23 Chen (2021110815072237200_ref56) 2017; 10 Hsu (2021110815072237200_ref4) 1979; 280 Jeck (2021110815072237200_ref20) 2013; 19 Chen (2021110815072237200_ref23) 2016; 17 Komaroff (2021110815072237200_ref47) 2005 Wang (2021110815072237200_ref139) 2019; 59 Abdelmohsen (2021110815072237200_ref31) 2017; 14 Barrett (2021110815072237200_ref11) 2015; 4 Chen (2021110815072237200_ref99) 2019; 15 Perozzi (2021110815072237200_ref88) 2014 Chen (2021110815072237200_ref45) 2018; 14 Sun (2021110815072237200_ref123) 2011 Wang (2021110815072237200_ref127) 2020; 16 Xiao (2021110815072237200_ref104) 2019; 23 Tang (2021110815072237200_ref44) 2017; 36 Chen (2021110815072237200_ref128) Kristensen (2021110815072237200_ref1) 2019; 20 Sanger (2021110815072237200_ref2) 1976; 73 Zhang (2021110815072237200_ref12) 2014; 159 Li (2021110815072237200_ref113) 2020; 13 Deepthi (2021110815072237200_ref131) 2020; 762 Wang (2021110815072237200_ref97) 2020; 22 Rački (2021110815072237200_ref40) 2014; 406 Kelly (2021110815072237200_ref19) 2015; 427 Lai (2021110815072237200_ref42) 2017; 16 Zhao (2021110815072237200_ref98) 2020; 22 Khodor (2021110815072237200_ref30) 2012; 18 Cai (2021110815072237200_ref76) 2021; 22 Yao (2021110815072237200_ref51) 2017; 213 Lei (2021110815072237200_ref79) 2019; 2019 Schwarz (2021110815072237200_ref39) 2002; 105 Lei (2021110815072237200_ref117) 2020; 10 Zhao (2021110815072237200_ref137) 2018; 13 Zheng (2021110815072237200_ref65) 2016; 44 Wang (2021110815072237200_ref120) 2014; 11 Xia (2021110815072237200_ref67) 2017; 18 Li (2021110815072237200_ref37) 2020; 77 Vo (2021110815072237200_ref75) 2019; 176 Li (2021110815072237200_ref16) 2015; 22 Ding (2021110815072237200_ref103) 2020; 87 Guo (2021110815072237200_ref18) 2014; 15 Liang (2021110815072237200_ref22) 2014; 28 You (2021110815072237200_ref78) 2017; 13 Chen (2021110815072237200_ref96) 2016; 17 Liu (2021110815072237200_ref136) 2020; 191 Huang (2021110815072237200_ref125) 2006; 70 Walter (2021110815072237200_ref53) 2016; 1 Chen (2021110815072237200_ref101) 2018; 21 Zhu (2021110815072237200_ref50) 2017; 284 Adnan (2021110815072237200_ref129) 2017; 89 Zhang (2021110815072237200_ref84) 2019; 16 Li (2021110815072237200_ref38) 2018; 96 Xiao (2021110815072237200_ref109) 2020; 112 Qu (2021110815072237200_ref140) 2019; 14 Zhang (2021110815072237200_ref90) 2019; 7 |
References_xml | – volume: 123 start-page: 21s year: 2003 ident: 2021110815072237200_ref49 article-title: Epidemiology of lung cancer publication-title: Chest doi: 10.1378/chest.123.1_suppl.21S – volume: 22 start-page: 2182 year: 2021 ident: 2021110815072237200_ref76 article-title: VirusCircBase: a database of virus circular RNAs publication-title: Brief Bioinform doi: 10.1093/bib/bbaa052 – volume: 11 start-page: 55 year: 2019 ident: 2021110815072237200_ref74 article-title: Comprehensive characterization of circular RNAs in ~1000 human cancer cell lines publication-title: Genome Med doi: 10.1186/s13073-019-0663-5 – volume: 15 start-page: 2911 year: 2019 ident: 2021110815072237200_ref119 article-title: GBDTCDA: Predicting circRNA-disease associations based on gradient boosting decision tree with multiple biological data fusion publication-title: Int J Biol Sci doi: 10.7150/ijbs.33806 – volume: 313 start-page: 504 year: 2006 ident: 2021110815072237200_ref132 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – volume: 37 start-page: 2602 year: 2016 ident: 2021110815072237200_ref27 article-title: A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223 publication-title: Eur Heart J doi: 10.1093/eurheartj/ehv713 – volume: 46 start-page: D925 year: 2018 ident: 2021110815072237200_ref68 article-title: CSCD: a database for cancer-specific circular RNAs publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx863 – volume: 19 year: 2018 ident: 2021110815072237200_ref77 article-title: PWCDA: path weighted method for predicting circRNA-disease associations publication-title: Int J Mol Sci doi: 10.3390/ijms19113410 – volume: 15 start-page: 797 year: 2018 ident: 2021110815072237200_ref138 article-title: HLPI-ensemble: prediction of human lncRNA-protein interactions based on ensemble strategy publication-title: RNA Biol – volume: 280 start-page: 339 year: 1979 ident: 2021110815072237200_ref4 article-title: Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells publication-title: Nature doi: 10.1038/280339a0 – volume: 116 start-page: 963 year: 2005 ident: 2021110815072237200_ref48 article-title: Role of smoking in global and regional cancer epidemiology: current patterns and data needs publication-title: Int J Cancer doi: 10.1002/ijc.21100 – volume: 8 start-page: 11018 year: 2018 ident: 2021110815072237200_ref60 article-title: Circ2Disease: a manually curated database of experimentally validated circRNAs in human disease publication-title: Sci Rep doi: 10.1038/s41598-018-29360-3 – volume: 34 start-page: 4256 year: 2018 ident: 2021110815072237200_ref93 article-title: Predicting miRNA–disease association based on inductive matrix completion publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty503 – volume: 273 start-page: 203 year: 1978 ident: 2021110815072237200_ref3 article-title: Nucleotide sequence and secondary structure of potato spindle tuber viroid publication-title: Nature doi: 10.1038/273203a0 – volume: 23 start-page: 2661 year: 2019 ident: 2021110815072237200_ref104 article-title: Computational prediction of human disease- associated circRNAs based on manifold regularization learning framework publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2019.2891779 – volume: 33 start-page: 733 year: 2017 ident: 2021110815072237200_ref81 article-title: A novel approach based on KATZ measure to predict associations of human microbiota with non-infectious diseases publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw715 – volume: 22 start-page: bbaa061 year: 2020 ident: 2021110815072237200_ref97 article-title: Drug-pathway association prediction: from experimental results to computational models publication-title: Brief Bioinform doi: 10.1093/bib/bbaa061 – volume: 40 start-page: 3131 year: 2012 ident: 2021110815072237200_ref6 article-title: Transcriptome-wide discovery of circular RNAs in Archaea publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr1009 – volume: 9 start-page: 475 year: 2018 ident: 2021110815072237200_ref33 article-title: circRNA disease: a manually curated database of experimentally supported circRNA-disease associations publication-title: Cell Death Dis doi: 10.1038/s41419-018-0503-3 – volume: 22 start-page: bbaa158 year: 2020 ident: 2021110815072237200_ref98 article-title: Microbes and complex diseases: from experimental results to computational models publication-title: Brief Bioinform doi: 10.1093/bib/bbaa158 – volume: 17 start-page: 7661 year: 2018 ident: 2021110815072237200_ref55 article-title: Microarray expression profile analysis of circular RNAs in pancreatic cancer publication-title: Mol Med Rep – volume: 16 start-page: 454 year: 2015 ident: 2021110815072237200_ref9 article-title: Strand-specific RNA sequencing in Plasmodium falciparum malaria identifies developmentally regulated long non-coding RNA and circular RNA publication-title: BMC Genomics doi: 10.1186/s12864-015-1603-4 – volume: 159 start-page: 134 year: 2014 ident: 2021110815072237200_ref12 article-title: Complementary sequence-mediated exon circularization publication-title: Cell doi: 10.1016/j.cell.2014.09.001 – volume: 112 start-page: 103624 year: 2020 ident: 2021110815072237200_ref87 article-title: Potential circRNA-disease association prediction using DeepWalk and network consistency projection publication-title: J Biomed Inform doi: 10.1016/j.jbi.2020.103624 – volume: 7 year: 2013 ident: 2021110815072237200_ref122 article-title: PathSelClus: integrating meta-path selection with user-guided object clustering in heterogeneous information networks publication-title: ACM Trans Knowl Discov Data doi: 10.1145/2500492 – start-page: 1579490 year: 2016 ident: 2021110815072237200_ref28 article-title: Circular RNA-ITCH suppresses lung cancer proliferation via inhibiting the Wnt/beta-catenin pathway – volume: 29 start-page: 2617 year: 2013 ident: 2021110815072237200_ref95 article-title: Novel human lncRNA–disease association inference based on lncRNA expression profiles publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt426 – volume: 28 start-page: 2233 year: 2014 ident: 2021110815072237200_ref22 article-title: Short intronic repeat sequences facilitate circular RNA production publication-title: Genes Dev doi: 10.1101/gad.251926.114 – volume: 5 start-page: 16840 year: 2015 ident: 2021110815072237200_ref82 article-title: KATZLDA: KATZ measure for the lncRNA-disease association prediction publication-title: Sci Rep doi: 10.1038/srep16840 – volume: 59 start-page: 5281 year: 2019 ident: 2021110815072237200_ref139 article-title: A unified framework for the prediction of small molecule–MicroRNA association based on cross-layer dependency inference on multilayered networks publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.9b00667 – volume: 95 start-page: e3811 year: 2016 ident: 2021110815072237200_ref57 article-title: Comprehensive circular RNA profiling reveals that hsa_circ_0005075, a new circular RNA biomarker, is involved in hepatocellular crcinoma development publication-title: Medicine (Baltimore) doi: 10.1097/MD.0000000000003811 – volume: 13 start-page: e1005912 year: 2017 ident: 2021110815072237200_ref100 article-title: LRSSLMDA: laplacian regularized sparse subspace learning for MiRNA-disease association prediction publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1005912 – volume: 77 start-page: 1661 year: 2020 ident: 2021110815072237200_ref37 article-title: CircRNA: a rising star in gastric cancer publication-title: Cell Mol Life Sci doi: 10.1007/s00018-019-03345-5 – volume: 35 start-page: 4730 year: 2019 ident: 2021110815072237200_ref94 article-title: Adaptive boosting-based computational model for predicting potential miRNA-disease associations publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz297 – volume: 105 start-page: 277 year: 2002 ident: 2021110815072237200_ref39 article-title: Detection and quantitation of group A rotaviruses by competitive and real-time reverse transcription-polymerase chain reaction publication-title: J Virol Methods doi: 10.1016/S0166-0934(02)00118-0 – volume: 321 start-page: 288 year: 2019 ident: 2021110815072237200_ref43 article-title: Breast cancer treatment: a review publication-title: JAMA doi: 10.1001/jama.2018.19323 – volume: 7 year: 2018 ident: 2021110815072237200_ref54 article-title: Chronic pancreatitis: review and update of etiology, risk factors, and management publication-title: F1000Res doi: 10.12688/f1000research.12852.1 – volume: 495 start-page: 384 year: 2013 ident: 2021110815072237200_ref24 article-title: Natural RNA circles function as efficient microRNA sponges publication-title: Nature doi: 10.1038/nature11993 – volume: 18 start-page: 2174 year: 2012 ident: 2021110815072237200_ref30 article-title: Cotranscriptional splicing efficiency differs dramatically between Drosophila and mouse publication-title: RNA doi: 10.1261/rna.034090.112 – volume: 46 start-page: D106 year: 2018 ident: 2021110815072237200_ref70 article-title: exoRBase: a database of circRNA, lncRNA and mRNA in human blood exosomes publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx891 – volume: 22 start-page: 256 year: 2015 ident: 2021110815072237200_ref16 article-title: Exon-intron circular RNAs regulate transcription in the nucleus publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.2959 – volume: 17 start-page: 696 year: 2016 ident: 2021110815072237200_ref96 article-title: Drug-target interaction prediction: databases, web servers and computational models publication-title: Brief Bioinform doi: 10.1093/bib/bbv066 – volume: 89 start-page: 389 year: 2017 ident: 2021110815072237200_ref129 article-title: Forest PA: Constructing a decision forest by penalizing attributes used in previous trees publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.08.002 – volume: 21 start-page: 2076 year: 2015 ident: 2021110815072237200_ref8 article-title: Transcriptome-wide investigation of circular RNAs in rice publication-title: RNA doi: 10.1261/rna.052282.115 – volume: 18 start-page: 984 year: 2017 ident: 2021110815072237200_ref67 article-title: Comprehensive characterization of tissue-specific circular RNAs in the human and mouse genomes publication-title: Brief Bioinform – volume: 18 start-page: 558 year: 2016 ident: 2021110815072237200_ref135 article-title: Long non-coding RNAs and complex diseases: from experimental results to computational models publication-title: Brief Bioinform – volume: 15 start-page: e1007209 year: 2019 ident: 2021110815072237200_ref99 article-title: Ensemble of decision tree reveals potential miRNA-disease associations publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1007209 – volume: 20 year: 2019 ident: 2021110815072237200_ref111 article-title: Systematical identification of breast cancer-related circular RNA modules for deciphering circRNA functions based on the non-negative matrix factorization algorithm publication-title: Int J Mol Sci – volume: 73 start-page: 3852 year: 1976 ident: 2021110815072237200_ref2 article-title: Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.73.11.3852 – volume: 14 start-page: 361 year: 2017 ident: 2021110815072237200_ref31 article-title: Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1 publication-title: RNA Biol doi: 10.1080/15476286.2017.1279788 – volume: 3 start-page: e146 year: 2014 ident: 2021110815072237200_ref112 article-title: Systematic analysis of new drug indications by drug-gene-disease coherent subnetworks publication-title: CPT Pharmacometrics Syst Pharmacol doi: 10.1038/psp.2014.44 – volume: 191 start-page: 105261 year: 2020 ident: 2021110815072237200_ref136 article-title: Predicting lncRNA–miRNA interactions based on logistic matrix factorization with neighborhood regularized publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2019.105261 – volume: 16 start-page: 2301 year: 2017 ident: 2021110815072237200_ref42 article-title: Analysis of co-expression networks for circular RNAs and mRNAs reveals that circular RNAs hsa_circ_0047905, hsa_circ_0138960 and has-circRNA7690-15 are candidate oncogenes in gastric cancer publication-title: Cell Cycle doi: 10.1080/15384101.2017.1380135 – volume: 176 start-page: 869 year: 2019 ident: 2021110815072237200_ref75 article-title: The landscape of circular RNA in cancer publication-title: Cell doi: 10.1016/j.cell.2018.12.021 – volume: 10 start-page: 170 year: 2015 ident: 2021110815072237200_ref13 article-title: Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals publication-title: Cell Rep doi: 10.1016/j.celrep.2014.12.019 – ident: 2021110815072237200_ref128 article-title: Fastgcn: fast learning with graph convolutional networks via importance sampling – volume: 33 start-page: 1548 year: 2011 ident: 2021110815072237200_ref108 article-title: Graph regularized nonnegative matrix factorization for data representation publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2010.231 – volume: 7 start-page: 155 year: 1993 ident: 2021110815072237200_ref7 article-title: Mis-splicing yields circular RNA molecules publication-title: FASEB J doi: 10.1096/fasebj.7.1.7678559 – volume: 13 start-page: 42 year: 2020 ident: 2021110815072237200_ref113 article-title: Prediction of circRNA-disease associations based on inductive matrix completion publication-title: BMC Med Genomics doi: 10.1186/s12920-020-0679-0 – volume: 14 start-page: e1006418 year: 2018 ident: 2021110815072237200_ref45 article-title: MDHGI: matrix decomposition and heterogeneous graph inference for miRNA-disease association prediction publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1006418 – volume: 10 start-page: 832 year: 2019 ident: 2021110815072237200_ref115 article-title: Predicting circRNA-disease associations based on circRNA expression similarity and functional similarity publication-title: Front Genet doi: 10.3389/fgene.2019.00832 – volume: 19 start-page: 520 year: 2018 ident: 2021110815072237200_ref102 article-title: DWNN-RLS: regularized least squares method for predicting circRNA-disease associations publication-title: BMC Bioinformatics doi: 10.1186/s12859-018-2522-6 – volume: 36 start-page: 145 year: 2017 ident: 2021110815072237200_ref46 article-title: circGFRA1 and GFRA1 act as ceRNAs in triple negative breast cancer by regulating miR-34a publication-title: J Exp Clin Cancer Res doi: 10.1186/s13046-017-0614-1 – volume: 56 start-page: 55 year: 2014 ident: 2021110815072237200_ref29 article-title: circRNA biogenesis competes with pre-mRNA splicing publication-title: Mol Cell doi: 10.1016/j.molcel.2014.08.019 – volume: 20 start-page: 896 year: 2017 ident: 2021110815072237200_ref58 article-title: RNA methylation and diseases: experimental results, databases, web servers and computational models publication-title: Brief Bioinform doi: 10.1093/bib/bbx142 – volume: 44 start-page: D209 year: 2016 ident: 2021110815072237200_ref64 article-title: CircNet: a database of circular RNAs derived from transcriptome sequencing data publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv940 – volume: 15 start-page: 409 year: 2014 ident: 2021110815072237200_ref18 article-title: Expanded identification and characterization of mammalian circular RNAs publication-title: Genome Biol doi: 10.1186/s13059-014-0409-z – volume: 213 start-page: 453 year: 2017 ident: 2021110815072237200_ref51 article-title: Over-expression of CircRNA_100876 in non-small cell lung cancer and its prognostic value publication-title: Pathol Res Pract doi: 10.1016/j.prp.2017.02.011 – volume: 2 start-page: 107 year: 2011 ident: 2021110815072237200_ref126 article-title: Extreme learning machines: a survey publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-011-0019-y – volume: 69 start-page: 7 year: 2019 ident: 2021110815072237200_ref36 article-title: Cancer statistics, 2019 publication-title: CA Cancer J Clin doi: 10.3322/caac.21551 – volume: 284 start-page: 2170 year: 2017 ident: 2021110815072237200_ref50 article-title: hsa_circ_0013958: a circular RNA and potential novel biomarker for lung adenocarcinoma publication-title: FEBS J doi: 10.1111/febs.14132 – volume: 20 start-page: 675 year: 2019 ident: 2021110815072237200_ref1 article-title: The biogenesis, biology and characterization of circular RNAs publication-title: Nat Rev Genet doi: 10.1038/s41576-019-0158-7 – volume: 87 start-page: 107287 year: 2020 ident: 2021110815072237200_ref103 article-title: Predicting novel CircRNA-disease associations based on random walk and logistic regression model publication-title: Comput Biol Chem doi: 10.1016/j.compbiolchem.2020.107287 – volume: 406 start-page: 661 year: 2014 ident: 2021110815072237200_ref40 article-title: One-step RT-droplet digital PCR: a breakthrough in the quantification of waterborne RNA viruses publication-title: Anal Bioanal Chem doi: 10.1007/s00216-013-7476-y – volume: 2019 start-page: 5938035 year: 2019 ident: 2021110815072237200_ref79 article-title: BRWSP: predicting circRNA-disease associations based on biased random walk to search paths on a multiple heterogeneous network publication-title: Complexity doi: 10.1155/2019/5938035 – volume: 14 start-page: 274 year: 2019 ident: 2021110815072237200_ref140 article-title: In silico prediction of small molecule-miRNA associations based on the hetesim algorithm publication-title: Mol Ther Nucleic Acids doi: 10.1016/j.omtn.2018.12.002 – volume: 16 start-page: e1007568 year: 2020 ident: 2021110815072237200_ref127 article-title: GCNCDA: a new method for predicting circRNA-disease associations based on graph convolutional network algorithm publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1007568 – volume: 1 start-page: 298 year: 2016 ident: 2021110815072237200_ref53 article-title: Symptoms and patient factors associated with diagnostic intervals for pancreatic cancer (SYMPTOM pancreatic study): a prospective cohort study publication-title: Lancet Gastroenterol Hepatol doi: 10.1016/S2468-1253(16)30079-6 – volume: 14 start-page: 1950 year: 2018 ident: 2021110815072237200_ref80 article-title: Prediction of CircRNA-disease associations using KATZ model based on heterogeneous networks publication-title: Int J Biol Sci doi: 10.7150/ijbs.28260 – volume-title: Classification and Regression Trees year: 1984 ident: 2021110815072237200_ref130 – volume: 36 start-page: 4038 year: 2020 ident: 2021110815072237200_ref124 article-title: An efficient approach based on multi-sources information to predict circRNA-disease associations using deep convolutional neural network publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz825 – volume: 17 start-page: 205 year: 2016 ident: 2021110815072237200_ref23 article-title: The biogenesis and emerging roles of circular RNAs publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm.2015.32 – volume: 13 start-page: 464 year: 2018 ident: 2021110815072237200_ref137 article-title: The bipartite network projection-recommended algorithm for predicting long non-coding RNA-protein interactions publication-title: Mol Ther Nucleic Acids doi: 10.1016/j.omtn.2018.09.020 – volume: 110 start-page: 304 year: 2018 ident: 2021110815072237200_ref32 article-title: Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis publication-title: J Natl Cancer Inst doi: 10.1093/jnci/djx166 – year: 2005 ident: 2021110815072237200_ref47 article-title: Harvard medical school family health guide publication-title: Simon and Schuster – volume: 4 start-page: Fso314 year: 2018 ident: 2021110815072237200_ref14 article-title: Circular RNAs as novel biomarkers with regulatory potency in human diseases publication-title: Future Sci OA doi: 10.4155/fsoa-2018-0036 – volume: 427 start-page: 2414 year: 2015 ident: 2021110815072237200_ref19 article-title: Exon Skipping Is Correlated with Exon Circularization publication-title: J Mol Biol doi: 10.1016/j.jmb.2015.02.018 – volume: 18 start-page: 578 year: 2019 ident: 2021110815072237200_ref85 article-title: Integrating bipartite network projection and KATZ measure to identify novel CircRNA-disease associations publication-title: IEEE Trans Nanobioscience doi: 10.1109/TNB.2019.2922214 – volume: 2019 start-page: baz003 year: 2019 ident: 2021110815072237200_ref71 article-title: CircFunBase: a database for functional circular RNAs publication-title: Database (Oxford) doi: 10.1093/database/baz003 – volume: 20 start-page: 515 year: 2017 ident: 2021110815072237200_ref134 article-title: MicroRNAs and complex diseases: from experimental results to computational models publication-title: Brief Bioinform doi: 10.1093/bib/bbx130 – volume: 2020 start-page: baaa019 year: 2020 ident: 2021110815072237200_ref62 article-title: Circad: a comprehensive manually curated resource of circular RNA associated with diseases publication-title: Database (Oxford) doi: 10.1093/database/baaa019 – volume: 762 start-page: 145040 year: 2020 ident: 2021110815072237200_ref131 article-title: An ensemble approach for CircRNA-disease association prediction based on autoencoder and deep neural network publication-title: Gene doi: 10.1016/j.gene.2020.145040 – volume: 16 start-page: 226 year: 2018 ident: 2021110815072237200_ref69 article-title: CIRCpedia v2: an updated database for comprehensive circular RNA annotation and expression comparison publication-title: Genomics Proteomics Bioinformatics doi: 10.1016/j.gpb.2018.08.001 – volume: 14 start-page: 26 year: 2019 ident: 2021110815072237200_ref35 article-title: Epidemiology of gastric cancer: global trends, risk factors and prevention publication-title: Prz Gastroenterol – volume: 19 start-page: 141 year: 2013 ident: 2021110815072237200_ref20 article-title: Circular RNAs are abundant, conserved, and associated with ALU repeats publication-title: RNA doi: 10.1261/rna.035667.112 – volume: 20 start-page: 1666 year: 2014 ident: 2021110815072237200_ref63 article-title: circBase: a database for circular RNAs publication-title: RNA doi: 10.1261/rna.043687.113 – volume: 4 year: 2013 ident: 2021110815072237200_ref59 article-title: Circ2Traits: a comprehensive database for circular RNA potentially associated with disease and traits publication-title: Front Genet doi: 10.3389/fgene.2013.00283 – volume: 21 start-page: 47 year: 2018 ident: 2021110815072237200_ref101 article-title: MicroRNA-small molecule association identification: from experimental results to computational models publication-title: Brief Bioinform – volume: 22 start-page: 485 year: 2020 ident: 2021110815072237200_ref92 article-title: NCMCMDA: miRNA–disease association prediction through neighborhood constraint matrix completion publication-title: Brief Bioinform doi: 10.1093/bib/bbz159 – volume: 16 start-page: e1007872 year: 2020 ident: 2021110815072237200_ref118 article-title: iCDA-CGR: identification of CircRNA-disease associations based on chaos game representation publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1007872 – volume: 23 start-page: 467 year: 1981 ident: 2021110815072237200_ref5 article-title: The intervening sequence of the ribosomal RNA precursor is converted to a circular RNA in isolated nuclei of Tetrahymena publication-title: Cell doi: 10.1016/0092-8674(81)90142-2 – volume: 6 start-page: 34985 year: 2016 ident: 2021110815072237200_ref66 article-title: circRNADb: a comprehensive database for human circular RNAs with protein-coding annotations publication-title: Sci Rep doi: 10.1038/srep34985 – volume: 51 start-page: 792 year: 2013 ident: 2021110815072237200_ref17 article-title: Circular intronic long noncoding RNAs publication-title: Mol Cell doi: 10.1016/j.molcel.2013.08.017 – volume: 9 start-page: e90859 year: 2014 ident: 2021110815072237200_ref10 article-title: Circular RNA is expressed across the eukaryotic tree of life publication-title: PLoS One doi: 10.1371/journal.pone.0090859 – volume: 9 start-page: 4475 year: 2018 ident: 2021110815072237200_ref34 article-title: A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma publication-title: Nat Commun doi: 10.1038/s41467-018-06862-2 – volume: 16 start-page: 899 year: 2019 ident: 2021110815072237200_ref73 article-title: Circbank: a comprehensive database for circRNA with standard nomenclature publication-title: RNA Biol doi: 10.1080/15476286.2019.1600395 – volume: 13 start-page: e1005455 year: 2017 ident: 2021110815072237200_ref78 article-title: PBMDA: a novel and effective path-based computational model for miRNA-disease association prediction publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1005455 – volume: 21 start-page: 1425 year: 2020 ident: 2021110815072237200_ref121 article-title: Predicting disease-associated circular RNAs using deep forests combined with positive-unlabeled learning methods publication-title: Brief Bioinform doi: 10.1093/bib/bbz080 – volume: 20 start-page: 2327 year: 2019 ident: 2021110815072237200_ref72 article-title: TRCirc: a resource for transcriptional regulation information of circRNAs publication-title: Brief Bioinform doi: 10.1093/bib/bby083 – volume: 7 start-page: 11215 year: 2016 ident: 2021110815072237200_ref25 article-title: Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs publication-title: Nat Commun doi: 10.1038/ncomms11215 – volume: 21 start-page: 1356 year: 2020 ident: 2021110815072237200_ref106 article-title: iCircDA-MF: identification of circRNA-disease associations based on matrix factorization publication-title: Brief Bioinform doi: 10.1093/bib/bbz057 – volume: 16 start-page: 2469 year: 2017 ident: 2021110815072237200_ref41 article-title: Expression profile of circular RNAs in human gastric cancer tissues publication-title: Mol Med Rep doi: 10.3892/mmr.2017.6916 – volume: 9 start-page: 471 year: 2012 ident: 2021110815072237200_ref105 article-title: Detecting overlapping protein complexes in protein-protein interaction networks publication-title: Nat Methods doi: 10.1038/nmeth.1938 – volume: 9 start-page: 9605 year: 2019 ident: 2021110815072237200_ref83 article-title: Fusion of multiple heterogeneous networks for predicting circRNA-disease associations publication-title: Sci Rep doi: 10.1038/s41598-019-45954-x – volume: 296 start-page: 223 year: 2021 ident: 2021110815072237200_ref110 article-title: iCDA-CMG: identifying circRNA-disease associations by federating multi-similarity fusion and collective matrix completion publication-title: Mol Genet Genomics doi: 10.1007/s00438-020-01741-2 – volume: 10 start-page: 103 year: 2015 ident: 2021110815072237200_ref15 article-title: Exon circularization requires canonical splice signals publication-title: Cell Rep doi: 10.1016/j.celrep.2014.12.002 – volume: 112 start-page: 3407 year: 2020 ident: 2021110815072237200_ref109 article-title: An in-silico method with graph-based multi-label learning for large-scale prediction of circRNA-disease associations publication-title: Genomics doi: 10.1016/j.ygeno.2020.06.017 – volume: 4 start-page: e07540 year: 2015 ident: 2021110815072237200_ref11 article-title: Circular RNA biogenesis can proceed through an exon-containing lariat precursor publication-title: Elife doi: 10.7554/eLife.07540 – volume: 70 start-page: 489 year: 2006 ident: 2021110815072237200_ref125 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – volume: 23 start-page: 1491 year: 2014 ident: 2021110815072237200_ref107 article-title: Progressive image denoising through hybrid graph Laplacian regularization: a unified framework publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2014.2303638 – volume: 6 start-page: 615 year: 2010 ident: 2021110815072237200_ref114 article-title: An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems publication-title: Pacific Journal of Optimization – volume: 44 start-page: D196 year: 2016 ident: 2021110815072237200_ref65 article-title: deepBase v2.0: identification, expression, evolution and function of small RNAs, LncRNAs and circular RNAs from deep-sequencing data publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1273 – volume: 11 start-page: 333 year: 2014 ident: 2021110815072237200_ref120 article-title: Similarity network fusion for aggregating data types on a genomic scale publication-title: Nat Methods doi: 10.1038/nmeth.2810 – volume: 10 start-page: 5783 year: 2017 ident: 2021110815072237200_ref56 article-title: CircRNA_100782 regulates pancreatic carcinoma proliferation through the IL6-STAT3 pathway publication-title: Onco Targets Ther doi: 10.2147/OTT.S150678 – volume: 10 start-page: 1943 year: 2020 ident: 2021110815072237200_ref117 article-title: Integrating random walk with restart and k-Nearest Neighbor to identify novel circRNA-disease association publication-title: Sci Rep doi: 10.1038/s41598-020-59040-0 – volume: 36 start-page: 901 year: 2017 ident: 2021110815072237200_ref44 article-title: Circular RNA hsa_circ_0001982 promotes breast cancer cell carcinogenesis through decreasing miR-143 publication-title: DNA Cell Biol doi: 10.1089/dna.2017.3862 – volume: 17 start-page: 281 year: 2020 ident: 2021110815072237200_ref141 article-title: SNMFSMMA: using symmetric nonnegative matrix factorization and Kronecker regularized least squares to predict potential small molecule-microRNA association publication-title: RNA Biol doi: 10.1080/15476286.2019.1694732 – volume: 145 start-page: 51 year: 2018 ident: 2021110815072237200_ref91 article-title: Predicting drug-disease associations and their therapeutic function based on the drug-disease association bipartite network publication-title: Methods doi: 10.1016/j.ymeth.2018.06.001 – volume: 23 start-page: 333 year: 2017 ident: 2021110815072237200_ref52 article-title: Diagnosis and detection of pancreatic cancer publication-title: Cancer J doi: 10.1097/PPO.0000000000000290 – volume: 25 start-page: 87 year: 2021 ident: 2021110815072237200_ref133 article-title: Inferring potential CircRNA-disease associations via deep autoencoder-based classification publication-title: Mol Diagn Ther doi: 10.1007/s40291-020-00499-y – volume: 2018 start-page: bay044 year: 2018 ident: 2021110815072237200_ref61 article-title: CircR2Disease: a manually curated database for experimentally supported circular RNAs associated with various diseases publication-title: Database (Oxford) doi: 10.1093/database/bay044 – volume: 6 start-page: 6001 year: 2015 ident: 2021110815072237200_ref26 article-title: Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/β-catenin pathway publication-title: Oncotarget doi: 10.18632/oncotarget.3469 – start-page: 121 volume-title: 2011 International Conference on Advances in Social Networks Analysis and Mining year: 2011 ident: 2021110815072237200_ref123 doi: 10.1109/ASONAM.2011.112 – volume: 7 start-page: 83474 year: 2019 ident: 2021110815072237200_ref90 article-title: Predicting CircRNA-disease associations through linear neighborhood label propagation method publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2920942 – volume: 96 start-page: 85 year: 2018 ident: 2021110815072237200_ref38 article-title: Plasma circular RNA profiling of patients with gastric cancer and their droplet digital RT-PCR detection publication-title: J Mol Med (Berl) doi: 10.1007/s00109-017-1600-y – volume: 9 start-page: 33222 year: 2019 ident: 2021110815072237200_ref86 article-title: NCPCDA: network consistency projection for circRNA–disease association prediction publication-title: RSC Adv doi: 10.1039/C9RA06133A – volume: 10 start-page: 897 year: 2019 ident: 2021110815072237200_ref116 article-title: Predicting circRNA-disease associations based on improved collaboration filtering recommendation system with multiple data publication-title: Front Genet doi: 10.3389/fgene.2019.00897 – volume: 495 start-page: 333 year: 2013 ident: 2021110815072237200_ref21 article-title: Circular RNAs are a large class of animal RNAs with regulatory potency publication-title: Nature doi: 10.1038/nature11928 – start-page: 701 volume-title: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining year: 2014 ident: 2021110815072237200_ref88 doi: 10.1145/2623330.2623732 – volume: 16 start-page: 396 year: 2019 ident: 2021110815072237200_ref84 article-title: Integrating multiple heterogeneous networks for novel LncRNA-disease association inference publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2017.2701379 – volume: 112 start-page: 1335 year: 2020 ident: 2021110815072237200_ref89 article-title: Predicting human disease-associated circRNAs based on locality-constrained linear coding publication-title: Genomics doi: 10.1016/j.ygeno.2019.08.001 |
SSID | ssj0020781 |
Score | 2.6174078 |
SecondaryResourceType | review_article |
Snippet | Circular RNAs (circRNAs) are a class of single-stranded, covalently closed RNA molecules with a variety of biological functions. Studies have shown that... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Algorithms Computational Biology - methods Databases, Genetic Female Humans Machine Learning Models, Genetic Neoplasms - genetics Review RNA, Circular - genetics |
Title | Circular RNAs and complex diseases: from experimental results to computational models |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34329377 https://www.proquest.com/docview/2557231666 https://pubmed.ncbi.nlm.nih.gov/PMC8575014 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9NAFB50RdkX8bpWXRlhn5S4yeQyHd-W7i6L4IrSYt9C5mTCBmpatimov94ztzRZK6gvQ5lMMzDfx8k5c26EHAmuMy6VCooY0iDJGA_EuBABgyosUD_NJOh854-X2cUs-TBP59semya7pJXv4OfOvJL_QRXnEFedJfsPyHYvxQn8jfjiiAjj-FcYT-prG0b65fJk7TPUVgv13ftdTLybySC5Ucl_vVm0prYDmK4O_kbQ9MVZDxy9aEpXprVn3byV9dIVWm17QfJf3ZXz5GrTBHrYSjXn0VdNcFr3rqjN9eznbmbiMkTm_jPqbiFYZNLxrDtaWcmZcI7GqK0I7UUrYz0KZTsltq1mJWupR1lINh6sw2NafTPw6QxY1KX49sPVhRP6R7fJHYbWghZ300_zzu7W9Yxcaibudox7Hbud9sk9_9-hXvKbsXEzZranhEwfkPvOeqAnlgoPyS3VPCJ3bT_RH4_JzBOCakJQJAR1hKCeEO-ppgPt04E6OtB2SQd0oJYOT8js_Gw6uQhc34wAUP9qgzSMgKeFUDEvEg4clbSMx2UlBaq7KQhIRVYlMFYCYg5xJQGiKilLUaG2Ksoofkr2mmWjnhE6ZgkwWaYhEzKRSolQCRmzqIJUQpXJEXnjTy0HV1Re9zZZ5Da4Ic7xtHN32iNy1C1e2Voqu5e99sefo6zTDqyiUcvNOkfzF9HVju4RObBwdC_yOI4IHwDVLdB11IdPmvrK1FPXTWrDKHn-x3e-IPtbzr8ke-31Rh2iLtrKV4ZpvwAOapBI |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Circular+RNAs+and+complex+diseases%3A+from+experimental+results+to+computational+models&rft.jtitle=Briefings+in+bioinformatics&rft.au=Wang%2C+Chun-Chun&rft.au=Han%2C+Chen-Di&rft.au=Zhao%2C+Qi&rft.au=Chen%2C+Xing&rft.date=2021-11-05&rft.eissn=1477-4054&rft.volume=22&rft.issue=6&rft_id=info:doi/10.1093%2Fbib%2Fbbab286&rft_id=info%3Apmid%2F34329377&rft.externalDocID=34329377 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |