EMD2FNN: A strategy combining empirical mode decomposition and factorization machine based neural network for stock market trend prediction

•We propose an improved neural network model to predict the stock prices.•The empirical mode decomposition and factorization machine are used in our approach.•The empirical mode decomposition helps overcome the non-stationarity of stock price.•Factorization Machine helps grasp the nonlinear interact...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 115; pp. 136 - 151
Main Authors Zhou, Feng, Zhou, Hao-min, Yang, Zhihua, Yang, Lihua
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 01.01.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We propose an improved neural network model to predict the stock prices.•The empirical mode decomposition and factorization machine are used in our approach.•The empirical mode decomposition helps overcome the non-stationarity of stock price.•Factorization Machine helps grasp the nonlinear interactions among the inputs.•The real data sets are used to demonstrate the accuracy of the new approach. Stock market forecasting is a vital component of financial systems. However, the stock prices are highly noisy and non-stationary due to the fact that stock markets are affected by a variety of factors. Predicting stock market trend is usually subject to big challenges. The goal of this paper is to introduce a new hybrid, end-to-end approach containing two stages, the Empirical Mode Decomposition and Factorization Machine based Neural Network (EMD2FNN), to predict the stock market trend. To illustrate the method, we apply EMD2FNN to predict the daily closing prices from the Shanghai Stock Exchange Composite (SSEC) index, the National Association of Securities Dealers Automated Quotations (NASDAQ) index and the Standard & Poor’s 500 Composite Stock Price Index (S&P 500), which respectively exhibit oscillatory, upward and downward patterns. The results are compared with predictions obtained by other methods, including the neural network (NN) model, the factorization machine based neural network (FNN) model, the empirical mode decomposition based neural network (EMD2NN) model and the wavelet de-noising-based back propagation (WDBP) neural network model. Under the same conditions, the experiments indicate that the proposed methods perform better than the other ones according to the metrics of Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). Furthermore, we compute the profitability with a simple long-short trading strategy to examine the trading performance of our models in the metrics of Average Annual Return (AAR), Maximum Drawdown (MD), Sharpe Ratio (SR) and AAR/MD. The performances in two different scenarios, when taking or not taking the transaction cost into consideration, are found economically significant.
AbstractList •We propose an improved neural network model to predict the stock prices.•The empirical mode decomposition and factorization machine are used in our approach.•The empirical mode decomposition helps overcome the non-stationarity of stock price.•Factorization Machine helps grasp the nonlinear interactions among the inputs.•The real data sets are used to demonstrate the accuracy of the new approach. Stock market forecasting is a vital component of financial systems. However, the stock prices are highly noisy and non-stationary due to the fact that stock markets are affected by a variety of factors. Predicting stock market trend is usually subject to big challenges. The goal of this paper is to introduce a new hybrid, end-to-end approach containing two stages, the Empirical Mode Decomposition and Factorization Machine based Neural Network (EMD2FNN), to predict the stock market trend. To illustrate the method, we apply EMD2FNN to predict the daily closing prices from the Shanghai Stock Exchange Composite (SSEC) index, the National Association of Securities Dealers Automated Quotations (NASDAQ) index and the Standard & Poor’s 500 Composite Stock Price Index (S&P 500), which respectively exhibit oscillatory, upward and downward patterns. The results are compared with predictions obtained by other methods, including the neural network (NN) model, the factorization machine based neural network (FNN) model, the empirical mode decomposition based neural network (EMD2NN) model and the wavelet de-noising-based back propagation (WDBP) neural network model. Under the same conditions, the experiments indicate that the proposed methods perform better than the other ones according to the metrics of Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). Furthermore, we compute the profitability with a simple long-short trading strategy to examine the trading performance of our models in the metrics of Average Annual Return (AAR), Maximum Drawdown (MD), Sharpe Ratio (SR) and AAR/MD. The performances in two different scenarios, when taking or not taking the transaction cost into consideration, are found economically significant.
Stock market forecasting is a vital component of financial systems. However, the stock prices are highly noisy and non-stationary due to the fact that stock markets are affected by a variety of factors. Predicting stock market trend is usually subject to big challenges. The goal of this paper is to introduce a new hybrid, end-to-end approach containing two stages, the Empirical Mode Decomposition and Factorization Machine based Neural Network (EMD2FNN), to predict the stock market trend. To illustrate the method, we apply EMD2FNN to predict the daily closing prices from the Shanghai Stock Exchange Composite (SSEC) index, the National Association of Securities Dealers Automated Quotations (NASDAQ) index and the Standard & Poor’s 500 Composite Stock Price Index (S&P 500), which respectively exhibit oscillatory, upward and downward patterns. The results are compared with predictions obtained by other methods, including the neural network (NN) model, the factorization machine based neural network (FNN) model, the empirical mode decomposition based neural network (EMD2NN) model and the wavelet de-noising-based back propagation (WDBP) neural network model. Under the same conditions, the experiments indicate that the proposed methods perform better than the other ones according to the metrics of Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). Furthermore, we compute the profitability with a simple long-short trading strategy to examine the trading performance of our models in the metrics of Average Annual Return (AAR), Maximum Drawdown (MD), Sharpe Ratio (SR) and AAR/MD. The performances in two different scenarios, when taking or not taking the transaction cost into consideration, are found economically significant.
Author Zhou, Feng
Zhou, Hao-min
Yang, Zhihua
Yang, Lihua
Author_xml – sequence: 1
  givenname: Feng
  surname: Zhou
  fullname: Zhou, Feng
  email: fengzhou@gdufe.edu.cn
  organization: School of Information, Guangdong University of Finance and Economics, Guangzhou 510320, China
– sequence: 2
  givenname: Hao-min
  surname: Zhou
  fullname: Zhou, Hao-min
  email: hmzhou@math.gatech.edu
  organization: School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, USA
– sequence: 3
  givenname: Zhihua
  surname: Yang
  fullname: Yang, Zhihua
  email: yangzh@gdufe.edu.cn
  organization: School of Information, Guangdong University of Finance and Economics, Guangzhou 510320, China
– sequence: 4
  givenname: Lihua
  orcidid: 0000-0003-4294-9233
  surname: Yang
  fullname: Yang, Lihua
  email: mcsylh@mail.sysu.edu.cn
  organization: School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
BookMark eNp9kM9u1DAQhy1UJLaFF-BkiXPC2M7GCeJSlRaQSrnA2XImk-L9YwfbS1VeoS-N0-XUQ08jeX7fjOc7ZSc-eGLsrYBagGjfb2pKd7aWILoadA3t-gVbiU6rqtW9OmEr6Ne6aoRuXrHTlDYAQgPoFXu4_PZJXt3cfODnPOVoM93ecwz7wXnnbzntZxcd2h3fh5H4SKU1h-SyC55bP_LJYg7R_bWPL3uLv5wnPthEI_d0iIX0lO9C3PIpxLIi4LbE4pYyz5HKhDnS6HDBX7OXk90levO_nrGfV5c_Lr5U198_f704v65QdSJXzdoOzdD1qKZWgsV1r8QgNQory0mT7rUaEWFswDYdaDVIOWghxgGmDnXbqDP27jh3juH3gVI2m3CIvqw0UighBSi1pOQxhTGkFGkyc3Tl5_dGgFmkm41ZpJtFugFtivQCdU8gdPnRTXHrds-jH48oldP_OIomoSOPxU4kzGYM7jn8H2tRoZE
CitedBy_id crossref_primary_10_1007_s11227_024_06403_3
crossref_primary_10_1007_s00500_024_09836_3
crossref_primary_10_1016_j_eswa_2024_124948
crossref_primary_10_1016_j_matpr_2021_05_474
crossref_primary_10_1007_s11042_023_16997_0
crossref_primary_10_1016_j_eswa_2023_121708
crossref_primary_10_1007_s13278_023_01190_w
crossref_primary_10_1016_j_eswa_2021_115022
crossref_primary_10_1016_j_eswa_2023_120902
crossref_primary_10_1007_s11390_019_1913_0
crossref_primary_10_1016_j_asoc_2025_112978
crossref_primary_10_12677_AAM_2022_116408
crossref_primary_10_1016_j_asoc_2020_106181
crossref_primary_10_1016_j_iswa_2024_200449
crossref_primary_10_3389_fenrg_2022_811745
crossref_primary_10_1007_s10586_020_03099_x
crossref_primary_10_1016_j_asoc_2020_106205
crossref_primary_10_1016_j_asoc_2020_106567
crossref_primary_10_1080_01605682_2024_2438333
crossref_primary_10_3390_s20010007
crossref_primary_10_1007_s10586_022_03707_y
crossref_primary_10_1016_j_eswa_2021_115537
crossref_primary_10_1007_s11042_022_11908_1
crossref_primary_10_1155_2021_6641298
crossref_primary_10_3390_e24020146
crossref_primary_10_1016_j_knosys_2021_107092
crossref_primary_10_1515_snde_2021_0096
crossref_primary_10_1016_j_ins_2020_10_023
crossref_primary_10_1016_j_resourpol_2022_103109
crossref_primary_10_1007_s10614_024_10599_0
crossref_primary_10_12720_jait_14_6_1254_1260
crossref_primary_10_1007_s11227_021_04013_x
crossref_primary_10_1016_j_resourpol_2022_102778
crossref_primary_10_1016_j_asoc_2022_109876
crossref_primary_10_1109_TCSS_2022_3182375
crossref_primary_10_1080_01969722_2022_2137634
crossref_primary_10_1631_FITEE_1900236
crossref_primary_10_1007_s00500_020_05516_0
crossref_primary_10_1007_s10489_022_03321_w
crossref_primary_10_1016_j_asoc_2020_106422
crossref_primary_10_1016_j_asoc_2021_107898
crossref_primary_10_1016_j_asoc_2021_108106
crossref_primary_10_1016_j_eswa_2020_114527
crossref_primary_10_1155_2022_6101045
crossref_primary_10_1109_TFUZZ_2022_3215470
crossref_primary_10_3390_app13084781
crossref_primary_10_1016_j_eswa_2022_116970
crossref_primary_10_1007_s00500_021_06552_0
crossref_primary_10_1016_j_jksuci_2021_10_004
crossref_primary_10_2478_amns_2023_2_01130
crossref_primary_10_1016_j_asoc_2023_110867
crossref_primary_10_1515_snde_2021_0032
crossref_primary_10_1016_j_engappai_2020_103573
crossref_primary_10_1155_2021_5544133
crossref_primary_10_1016_j_eswa_2022_118581
crossref_primary_10_1016_j_eswa_2019_112863
crossref_primary_10_1109_ACCESS_2024_3358406
crossref_primary_10_1016_j_jksuci_2021_06_008
crossref_primary_10_1007_s00500_023_07915_5
crossref_primary_10_3389_fpubh_2022_922795
crossref_primary_10_1016_j_matpr_2021_07_217
crossref_primary_10_1016_j_sna_2022_113581
crossref_primary_10_1155_2022_1775496
crossref_primary_10_2139_ssrn_4170455
crossref_primary_10_1007_s10489_020_01766_5
crossref_primary_10_3390_math9080800
crossref_primary_10_1007_s11831_020_09413_5
crossref_primary_10_1177_1045389X20986997
crossref_primary_10_1080_02522667_2022_2091097
crossref_primary_10_3390_jrfm14110526
crossref_primary_10_3233_IDA_220414
crossref_primary_10_1016_j_resourpol_2020_101730
crossref_primary_10_1016_j_ins_2020_03_062
crossref_primary_10_1016_j_eswa_2022_118161
crossref_primary_10_1016_j_knosys_2022_109324
crossref_primary_10_1007_s11042_024_20321_9
crossref_primary_10_1007_s10479_020_03690_w
crossref_primary_10_1016_j_asoc_2024_112359
crossref_primary_10_1155_2021_5694975
crossref_primary_10_1007_s11227_023_05213_3
crossref_primary_10_1007_s10479_021_03979_4
crossref_primary_10_1007_s00500_022_06941_z
crossref_primary_10_1007_s11042_021_11029_1
crossref_primary_10_2139_ssrn_4074883
crossref_primary_10_1016_j_eswa_2024_123671
crossref_primary_10_1016_j_eswa_2021_115796
crossref_primary_10_1016_j_eswa_2019_05_007
crossref_primary_10_1016_j_eswa_2022_116659
crossref_primary_10_1007_s00500_023_08441_0
crossref_primary_10_1016_j_eneco_2023_106683
crossref_primary_10_1016_j_mlwa_2022_100302
crossref_primary_10_1016_j_eswa_2025_127243
crossref_primary_10_1016_j_asoc_2019_105747
crossref_primary_10_1142_S0219691320500101
crossref_primary_10_1109_ACCESS_2019_2960548
crossref_primary_10_1007_s40031_021_00583_9
crossref_primary_10_1142_S2424922X19500049
Cites_doi 10.1109/TSP.2008.917360
10.1109/MSP.2012.2205597
10.1016/j.patrec.2006.03.002
10.1038/nature14539
10.1016/j.eswa.2005.09.002
10.1016/j.eswa.2011.04.222
10.1016/j.renene.2012.06.012
10.1016/S0305-0548(02)00037-0
10.1098/rsif.2005.0058
10.1109/TIP.2007.901206
10.1109/LSP.2003.821662
10.1109/ICCV.2015.123
10.1155/2014/708918
10.1016/S0957-4174(99)00042-1
10.1016/j.compeleceng.2015.10.003
10.1016/S0169-2070(01)00093-0
10.1109/LSP.2009.2025925
10.1142/S1793536911000647
10.1016/j.acha.2010.08.002
10.1371/journal.pone.0024391
10.1007/s10444-004-7614-3
10.1016/j.sigpro.2015.10.022
10.1109/LSP.2005.856878
10.1016/j.eswa.2014.10.031
10.1098/rspa.1998.0193
10.1016/j.ins.2003.03.023
10.1016/0169-2070(93)90079-3
10.1016/S0925-2312(03)00372-2
10.1016/j.eswa.2010.03.012
10.1016/j.knosys.2011.09.002
10.1016/j.dsp.2014.02.017
10.1007/s00138-004-0170-5
10.1016/S0925-2312(01)00702-0
10.1016/j.eswa.2014.12.003
10.1109/TSP.2012.2187202
10.1016/S0957-4174(01)00047-1
10.1016/j.eneco.2007.02.012
10.1016/S0957-4174(01)00058-6
10.1146/annurev.fluid.31.1.417
10.1142/S179353690900028X
10.1016/S0167-9236(03)00089-7
10.1109/TSP.2010.2041606
10.1016/S0957-4174(00)00027-0
10.1016/j.sigpro.2014.03.014
10.1016/j.eswa.2011.07.051
10.1109/LSP.2007.904706
10.1109/LSP.2009.2038770
10.1016/j.acha.2012.08.008
10.1016/S0957-4174(02)00079-9
10.1073/pnas.95.9.4816
10.1007/s11760-012-0354-9
10.1016/j.eswa.2005.06.024
10.1016/S0169-2070(98)00053-3
10.1016/S0925-2312(00)00364-7
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier BV Jan 2019
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier BV Jan 2019
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2018.07.065
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
EndPage 151
ExternalDocumentID 10_1016_j_eswa_2018_07_065
S0957417418304901
GrantInformation_xml – fundername: NSFC
  grantid: 11771458; 1431015
  funderid: https://doi.org/10.13039/501100001809
– fundername: NSF
  grantid: DMS-1419027; DMS-1620345
  funderid: https://doi.org/10.13039/100000001
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABKBG
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNNM
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c381t-45ab4b89c3f620ac5931b27c1a2007f7973dcc0d40a48073b22b711db0f8c7643
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Mon Jul 14 09:43:44 EDT 2025
Thu Apr 24 23:06:30 EDT 2025
Tue Jul 01 04:05:44 EDT 2025
Fri Feb 23 02:45:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Empirical mode decomposition
Profitability
Neural network
Factorization machine
Stock market prediction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-45ab4b89c3f620ac5931b27c1a2007f7973dcc0d40a48073b22b711db0f8c7643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4294-9233
PQID 2131210334
PQPubID 2045477
PageCount 16
ParticipantIDs proquest_journals_2131210334
crossref_primary_10_1016_j_eswa_2018_07_065
crossref_citationtrail_10_1016_j_eswa_2018_07_065
elsevier_sciencedirect_doi_10_1016_j_eswa_2018_07_065
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2019
2019-01-00
20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: January 2019
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Wang (bib0067) 2002; 22
Peng, Hwang (bib0052) 2008; 56
Yang, Yang, Qi, Suen (bib0074) 2006; 27
Bi, Sun, Huang, Yang, Huang (bib0006) 2007; 16
Rendle (bib0058) 2010
Kim, Han (bib0036) 2000; 19
Zhou, Yang, Zhou, Yang (bib0077) 2016; 121
Huang, Shen, Long, Wu, Shih, Zheng (bib0031) 1998; 454
Vellido, Lisboa, Meehan (bib0065) 1999; 17
Juan, Zhuang, Chin, Lin (bib0034) 2016
Rather, Agarwal, Sastry (bib0057) 2015; 42
Luong, Pham, Manning (bib0044) 2015
Hu, Peng, Hwang (bib0029) 2013; 7
Franses, Ghijsels (bib0019) 1999; 15
Huang, Shen, Long (bib0030) 1999; 31
Pustelnik, Borgnat, Flandrin (bib0054) 2010
Sarantis (bib0059) 2001; 17
Krizhevsky, Sutskever, Hinton (bib0038) 2012; 60
Bahdanau, Cho, Bengio (bib0004) 2014
Hou, Shi (bib0028) 2011; 03
Han, Moraga (bib0020) 1995
Zhang (bib0075) 2003; 50
Koren (bib0037) 2008
Pustelnik, Borgnat, Flandrin (bib0055) 2014; 102
Armano, Marchesi, Murru (bib0003) 2005; 170
Hansen, Nelson (bib0021) 2002; 43
.
Flandrin, Rilling, Goncalves (bib0018) 2004; 11
He, Zhang, Ren, Sun (bib0022) 2015
Wang (bib0068) 2003; 24
Oberlin, Meignen, Perrier (bib0047) 2012; 60
Yang, Qi, Yang (bib0072) 2005
Chen, Huang, Riemenschneider, Xu (bib0010) 2006; 24
Hong, Wang, Tao (bib0027) 2009; 16
Chen, He, Kan (bib0011) 2016
Qian, Gao (bib0056) 2017
Chen, Lai, Yeh (bib0009) 2012; 26
Wu (bib0069) 2013; 35
Oh, Kim (bib0049) 2002; 22
He, Chua (bib0024) 2017
Delechelle, Lemoine, Niang (bib0014) 2005; 12
Makridakis (bib0045) 1993; 9
Nunes, Guyot, Deléchelle (bib0046) 2005; 16
Smith (bib0062) 2005; 2
Yang, Yang, Zhou, Yang (bib0070) 2014; 29
Szegedy, Liu, Jia, Sermanet, Reed, Anguelov (bib0063) 2015
Bayer, He, Kanagal, Rendle (bib0005) 2017
Arjo (bib0002) 2009; 48
Daubechies, Lu, Wu (bib0013) 2011; 30
He, K., Zhang, X., Ren, S., & Sun, J. (2015b). Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. 1026–1034.
Hinton, Deng, Yu, Dahl, Mohamed, Jaitly (bib0026) 2012; 29
Wang, Wang, Zhang, Guo (bib0066) 2011; 38
Peng, Hwang (bib0053) 2010; 58
Lin, Wang, Zhou (bib0040) 2009; 1
Shen, Han (bib0061) 2004; 37
Clevert, Unterthiner, Hochreiter (bib0012) 2016
Liu, Xu, Li (bib0042) 2016; 49
Chang, Wang, Zhou (bib0007) 2012; 39
Ding, Y., & Selesnick, I.W. (2013). Sparse frequency analysis with sparse-derivative instantaneous amplitude and phase function, arXiv preprint
Zhang, Lai, Wang (bib0076) 2008; 30
Chen, Leung, Daouk (bib0008) 2003; 30
Zhou, Mu, Chen, Sornette (bib0078) 2011; 6
Amodei, Anubhai, Battenberg, Case, Casper, Catanzaro (bib0001) 2016
Huang, Shen, Huang, Yuan (bib0032) 1998; 95
Yang, Yang, Qi (bib0073) 2006
Yang, Huang, Yang (bib0071) 2004; 1
Sekine (bib0060) 2007; 14
Diop, Alexandre, Boudraa (bib0016) 2010; 17
He, Zhang, Kan, Chua (bib0025) 2017; 2016
Lecun, Bengio, Hinton (bib0039) 2015; 521
Kim (bib0035) 2003; 55
Jaber, Ismail, Altaher (bib0033) 2014; 2014
Lu (bib0043) 2010; 37
Oentaryo, Lim, Low, Lo, Finegold (bib0048) 2014
Enke, Thawornwong (bib0017) 2005; 29
Ture, Kurt (bib0064) 2006; 31
Liu, Chen, Tian, Li (bib0041) 2012; 48
Omidi, Nourani, Jalili (bib0050) 2011
Patel, Shah, Thakkar, Kotecha (bib0051) 2015; 42
Pustelnik (10.1016/j.eswa.2018.07.065_bib0054) 2010
Vellido (10.1016/j.eswa.2018.07.065_bib0065) 1999; 17
Chang (10.1016/j.eswa.2018.07.065_bib0007) 2012; 39
Chen (10.1016/j.eswa.2018.07.065_bib0009) 2012; 26
Jaber (10.1016/j.eswa.2018.07.065_bib0033) 2014; 2014
Clevert (10.1016/j.eswa.2018.07.065_bib0012) 2016
Lu (10.1016/j.eswa.2018.07.065_bib0043) 2010; 37
Yang (10.1016/j.eswa.2018.07.065_bib0070) 2014; 29
Huang (10.1016/j.eswa.2018.07.065_bib0031) 1998; 454
Lecun (10.1016/j.eswa.2018.07.065_bib0039) 2015; 521
Makridakis (10.1016/j.eswa.2018.07.065_bib0045) 1993; 9
Sarantis (10.1016/j.eswa.2018.07.065_bib0059) 2001; 17
10.1016/j.eswa.2018.07.065_bib0015
He (10.1016/j.eswa.2018.07.065_bib0024) 2017
Rendle (10.1016/j.eswa.2018.07.065_bib0058) 2010
Delechelle (10.1016/j.eswa.2018.07.065_bib0014) 2005; 12
Liu (10.1016/j.eswa.2018.07.065_bib0041) 2012; 48
Juan (10.1016/j.eswa.2018.07.065_bib0034) 2016
Yang (10.1016/j.eswa.2018.07.065_bib0074) 2006; 27
Flandrin (10.1016/j.eswa.2018.07.065_bib0018) 2004; 11
Lin (10.1016/j.eswa.2018.07.065_bib0040) 2009; 1
Wang (10.1016/j.eswa.2018.07.065_bib0067) 2002; 22
Wang (10.1016/j.eswa.2018.07.065_bib0068) 2003; 24
Zhang (10.1016/j.eswa.2018.07.065_bib0076) 2008; 30
Shen (10.1016/j.eswa.2018.07.065_bib0061) 2004; 37
Koren (10.1016/j.eswa.2018.07.065_bib0037) 2008
Smith (10.1016/j.eswa.2018.07.065_bib0062) 2005; 2
Arjo (10.1016/j.eswa.2018.07.065_bib0002) 2009; 48
Ture (10.1016/j.eswa.2018.07.065_bib0064) 2006; 31
Hansen (10.1016/j.eswa.2018.07.065_bib0021) 2002; 43
Oh (10.1016/j.eswa.2018.07.065_bib0049) 2002; 22
Chen (10.1016/j.eswa.2018.07.065_bib0010) 2006; 24
Zhou (10.1016/j.eswa.2018.07.065_sbref0077) 2011; 6
He (10.1016/j.eswa.2018.07.065_bib0025) 2017; 2016
Szegedy (10.1016/j.eswa.2018.07.065_bib0063) 2015
Daubechies (10.1016/j.eswa.2018.07.065_bib0013) 2011; 30
Amodei (10.1016/j.eswa.2018.07.065_bib0001) 2016
Hu (10.1016/j.eswa.2018.07.065_bib0029) 2013; 7
Peng (10.1016/j.eswa.2018.07.065_bib0052) 2008; 56
Peng (10.1016/j.eswa.2018.07.065_bib0053) 2010; 58
Bahdanau (10.1016/j.eswa.2018.07.065_bib0004) 2014
Hou (10.1016/j.eswa.2018.07.065_bib0028) 2011; 03
Yang (10.1016/j.eswa.2018.07.065_bib0073) 2006
Wu (10.1016/j.eswa.2018.07.065_bib0069) 2013; 35
Bi (10.1016/j.eswa.2018.07.065_bib0006) 2007; 16
Pustelnik (10.1016/j.eswa.2018.07.065_bib0055) 2014; 102
Chen (10.1016/j.eswa.2018.07.065_bib0008) 2003; 30
Hinton (10.1016/j.eswa.2018.07.065_bib0026) 2012; 29
Krizhevsky (10.1016/j.eswa.2018.07.065_bib0038) 2012; 60
Patel (10.1016/j.eswa.2018.07.065_bib0051) 2015; 42
Rather (10.1016/j.eswa.2018.07.065_bib0057) 2015; 42
Oentaryo (10.1016/j.eswa.2018.07.065_bib0048) 2014
Kim (10.1016/j.eswa.2018.07.065_bib0035) 2003; 55
Yang (10.1016/j.eswa.2018.07.065_bib0072) 2005
Luong (10.1016/j.eswa.2018.07.065_bib0044) 2015
Han (10.1016/j.eswa.2018.07.065_bib0020) 1995
Zhou (10.1016/j.eswa.2018.07.065_bib0077) 2016; 121
He (10.1016/j.eswa.2018.07.065_bib0022) 2015
Diop (10.1016/j.eswa.2018.07.065_bib0016) 2010; 17
Sekine (10.1016/j.eswa.2018.07.065_bib0060) 2007; 14
Armano (10.1016/j.eswa.2018.07.065_bib0003) 2005; 170
10.1016/j.eswa.2018.07.065_bib0023
Huang (10.1016/j.eswa.2018.07.065_bib0032) 1998; 95
Zhang (10.1016/j.eswa.2018.07.065_bib0075) 2003; 50
Wang (10.1016/j.eswa.2018.07.065_bib0066) 2011; 38
Huang (10.1016/j.eswa.2018.07.065_bib0030) 1999; 31
Kim (10.1016/j.eswa.2018.07.065_bib0036) 2000; 19
Qian (10.1016/j.eswa.2018.07.065_bib0056) 2017
Omidi (10.1016/j.eswa.2018.07.065_bib0050) 2011
Chen (10.1016/j.eswa.2018.07.065_bib0011) 2016
Liu (10.1016/j.eswa.2018.07.065_bib0042) 2016; 49
Nunes (10.1016/j.eswa.2018.07.065_bib0046) 2005; 16
Bayer (10.1016/j.eswa.2018.07.065_bib0005) 2017
Oberlin (10.1016/j.eswa.2018.07.065_bib0047) 2012; 60
Hong (10.1016/j.eswa.2018.07.065_bib0027) 2009; 16
Enke (10.1016/j.eswa.2018.07.065_bib0017) 2005; 29
Yang (10.1016/j.eswa.2018.07.065_bib0071) 2004; 1
Franses (10.1016/j.eswa.2018.07.065_bib0019) 1999; 15
References_xml – volume: 16
  start-page: 177
  year: 2005
  end-page: 188
  ident: bib0046
  article-title: Texture analysis based on local analysis of the bidimensional empirical mode decomposition
  publication-title: Machine Vision and Applications
– volume: 35
  start-page: 181
  year: 2013
  end-page: 199
  ident: bib0069
  article-title: Instantaneous frequency and wave shape functions (i)
  publication-title: Applied & Computational Harmonic Analysis
– start-page: 195
  year: 1995
  end-page: 201
  ident: bib0020
  article-title: The influence of the sigmoid function parameters on the speed of backpropagation learning.
  publication-title: International workshop on artificial neural networks: From natural to artificial neural computation
– volume: 7
  start-page: 1093
  year: 2013
  end-page: 1102
  ident: bib0029
  article-title: Multicomponent am-fm signal separation and demodulation with null space pursuit
  publication-title: Signal Image and Video Processing
– start-page: 242
  year: 2011
  end-page: 246
  ident: bib0050
  article-title: Forecasting stock prices using financial data mining and neural network
  publication-title: International conference on computer research and development
– volume: 1
  start-page: 138
  year: 2004
  end-page: 146
  ident: bib0071
  article-title: A novel pitch period detection algorithm based on Hilbert-Huang transform
  publication-title: Chinese Conference on Advances in Biometric Person Authenticationg
– volume: 27
  start-page: 1692
  year: 2006
  end-page: 1701
  ident: bib0074
  article-title: An EMD-based recognition method for chinese fonts and styles
  publication-title: Pattern Recognition Letters
– volume: 2014
  start-page: 708
  year: 2014
  end-page: 918
  ident: bib0033
  article-title: Application of empirical mode decomposition with local linear quantile regression in financial time series forecasting.
  publication-title: The Scientific World Journal
– start-page: 995
  year: 2010
  end-page: 1000
  ident: bib0058
  article-title: Factorization machines
  publication-title: ICDM 2010, the IEEE international conference on data mining, Sydney, Australia, 14–17 December
– volume: 55
  start-page: 307
  year: 2003
  end-page: 319
  ident: bib0035
  article-title: Financial time series forecasting using support vector machines
  publication-title: Neurocomputing
– volume: 37
  start-page: 7056
  year: 2010
  end-page: 7064
  ident: bib0043
  article-title: Integrating independent component analysis-based denoising scheme with neural network for stock price prediction
  publication-title: Expert Systems with Applications
– start-page: 355
  year: 2017
  end-page: 364
  ident: bib0024
  article-title: Neural factorization machines for sparse predictive analytics
  publication-title: arXiv.org
– volume: 38
  start-page: 14346
  year: 2011
  end-page: 14355
  ident: bib0066
  article-title: Forecasting stock indices with back propagation neural network
  publication-title: Expert Systems with Applications
– volume: 03
  start-page: 1
  year: 2011
  end-page: 28
  ident: bib0028
  article-title: Adaptive data analysis via sparse time-frequency representation
  publication-title: Advances in Adaptive Data Analysis
– volume: 454
  start-page: 903
  year: 1998
  end-page: 995
  ident: bib0031
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proceedings of the Royal Society A: Mathematical Physical and Engineering Sciences
– start-page: 173
  year: 2016
  end-page: 182
  ident: bib0001
  article-title: Deep speech 2: End-to-end speech recognition in english and mandarin
  publication-title: International Conference on Machine Learning (ICML)
– volume: 9
  start-page: 527
  year: 1993
  end-page: 529
  ident: bib0045
  article-title: Accuracy measures: Theoretical and practical concerns
  publication-title: International Journal of Forecasting
– volume: 30
  start-page: 905
  year: 2008
  end-page: 918
  ident: bib0076
  article-title: A new approach for crude oil price analysis based on empirical mode decomposition
  publication-title: Energy Economics
– volume: 1
  start-page: 543
  year: 2009
  end-page: 560
  ident: bib0040
  article-title: Iterative filtering as an alternative algorithm for empirical mode decomposition.
  publication-title: Advances in Adaptive Data Analysis
– volume: 42
  start-page: 2162
  year: 2015
  end-page: 2172
  ident: bib0051
  article-title: Predicting stock market index using fusion of machine learning techniques
  publication-title: Expert Systems with Applications
– volume: 43
  start-page: 173
  year: 2002
  end-page: 184
  ident: bib0021
  article-title: Data mining of time series using stacked generalizers
  publication-title: Neurocomputing
– start-page: 426
  year: 2008
  end-page: 434
  ident: bib0037
  article-title: Factorization meets the neighborhood: A multifaceted collaborative filtering model
  publication-title: ACM SIGKDD international conference on knowledge discovery and data mining
– volume: 12
  start-page: 764
  year: 2005
  end-page: 767
  ident: bib0014
  article-title: Empirical mode decomposition: An analytical approach for sifting process
  publication-title: IEEE Signal Processing Letters
– start-page: 1880
  year: 2010
  end-page: 1884
  ident: bib0054
  article-title: A multicomponent proximal algorithm for empirical mode decomposition
  publication-title: Signal processing conference
– volume: 2016
  start-page: 549
  year: 2017
  end-page: 558
  ident: bib0025
  article-title: Fast matrix factorization for online recommendation with implicit feedback
  publication-title: International Acm Sigir Conference on Research and Development in Information Retrieval ACM
– volume: 16
  start-page: 841
  year: 2009
  end-page: 844
  ident: bib0027
  article-title: Local integral mean-based sifting for empirical mode decomposition
  publication-title: IEEE Signal Processing Letters
– volume: 31
  start-page: 417
  year: 1999
  end-page: 457
  ident: bib0030
  article-title: A new view of nonlinear water waves: The Hilbert spectrum
  publication-title: Annual Review of Fluid Mechanics
– volume: 60
  start-page: 2236
  year: 2012
  end-page: 2246
  ident: bib0047
  article-title: An alternative formulation for the empirical mode decomposition
  publication-title: IEEE Transactions on Signal Processing
– volume: 22
  start-page: 249
  year: 2002
  end-page: 255
  ident: bib0049
  article-title: Analyzing stock market tick data using piecewise nonlinear model
  publication-title: Expert Systems with Applications
– volume: 6
  year: 2011
  ident: bib0078
  article-title: Investment strategies used as spectroscopy of financial markets reveal new stylized facts
  publication-title: PLoS ONE
– volume: 15
  start-page: 1
  year: 1999
  end-page: 9
  ident: bib0019
  article-title: Additive outliers, GARCH and forecasting volatility
  publication-title: International Journal of Forecasting
– volume: 37
  start-page: 583
  year: 2004
  end-page: 597
  ident: bib0061
  article-title: Applying rough sets to market timing decisions
  publication-title: Decision Support Systems
– start-page: 43
  year: 2016
  end-page: 50
  ident: bib0034
  article-title: Field-aware factorization machines for ctr prediction
  publication-title: ACM conference on recommender systems
– volume: 48
  start-page: 545
  year: 2012
  end-page: 556
  ident: bib0041
  article-title: A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks
  publication-title: Renewable Energy
– volume: 42
  start-page: 3234
  year: 2015
  end-page: 3241
  ident: bib0057
  article-title: Recurrent neural network and a hybrid model for prediction of stock returns
  publication-title: Expert Systems with Applications
– volume: 95
  start-page: 4816
  year: 1998
  ident: bib0032
  article-title: Engineering analysis of biological variables: An example of blood pressure over 1 day
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– year: 2014
  ident: bib0004
  article-title: Neural machine translation by jointly learning to align and translate
  publication-title: Computer Science
– volume: 29
  start-page: 927
  year: 2005
  end-page: 940
  ident: bib0017
  article-title: The use of data mining and neural networks for forecasting stock market returns
  publication-title: Expert Systems with Applications
– start-page: 1018
  year: 2016
  end-page: 1027
  ident: bib0011
  article-title: Context-aware image tweet modelling and recommendation
  publication-title: ACM on multimedia conference
– start-page: 1
  year: 2015
  end-page: 9
  ident: bib0063
  article-title: Going deeper with convolutions
  publication-title: Computer vision and pattern recognition
– volume: 24
  start-page: 13
  year: 2003
  end-page: 23
  ident: bib0068
  article-title: Mining stock price using fuzzy rough set system
  publication-title: Expert Systems with Applications
– volume: 24
  start-page: 171
  year: 2006
  end-page: 195
  ident: bib0010
  article-title: A b-spline approach for empirical mode decompositions
  publication-title: Advances in Computational Mathematics
– reference: Ding, Y., & Selesnick, I.W. (2013). Sparse frequency analysis with sparse-derivative instantaneous amplitude and phase function, arXiv preprint
– start-page: 1341
  year: 2017
  end-page: 1350
  ident: bib0005
  article-title: A generic coordinate descent framework for learning from implicit feedback
  publication-title: International conference on world wide web
– volume: 170
  start-page: 3
  year: 2005
  end-page: 33
  ident: bib0003
  article-title: A hybrid genetic-neural architecture for stock indexes forecasting
  publication-title: Information Sciences
– volume: 60
  start-page: 2012
  year: 2012
  ident: bib0038
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Communications of the ACM
– year: 2017
  ident: bib0056
  article-title: Financial series prediction: Comparison between precision of time series models and machine learning methods
  publication-title: arXiv.org
– start-page: 430
  year: 2005
  end-page: 433
  ident: bib0072
  article-title: Signal period analysis based on Hilbert-Huang transform and its application to texture analysis
  publication-title: International conference on image and graphics
– volume: 17
  start-page: 398
  year: 2010
  end-page: 401
  ident: bib0016
  article-title: Analysis of intrinsic mode functions: A PDE approach
  publication-title: IEEE Signal Processing Letters
– volume: 14
  start-page: 932
  year: 2007
  end-page: 935
  ident: bib0060
  article-title: A new formulation for empirical mode decomposition based on constrained optimization
  publication-title: IEEE Signal Processing Letters
– start-page: 1
  year: 2016
  end-page: 14
  ident: bib0012
  article-title: Fast and accurate deep network learning by exponential linear units (ELUs)
  publication-title: International Conference on Learning Representations (ICLR)
– start-page: 770
  year: 2015
  end-page: 778
  ident: bib0022
  article-title: Deep residual learning for image recognition
  publication-title: arXiv.org
– volume: 56
  start-page: 2669
  year: 2008
  end-page: 2676
  ident: bib0052
  article-title: Adaptive signal decomposition based on local narrow band signals
  publication-title: IEEE Transactions on Signal Processing
– volume: 17
  start-page: 303
  year: 1999
  end-page: 314
  ident: bib0065
  article-title: Segmentation of the on-line shopping market using neural networks
  publication-title: Expert Systems with Applications
– volume: 50
  start-page: 159
  year: 2003
  end-page: 175
  ident: bib0075
  article-title: Time series forecasting using a hybrid ARIMA and neural network model
  publication-title: Neurocomputing
– volume: 11
  start-page: 112
  year: 2004
  end-page: 114
  ident: bib0018
  article-title: Empirical mode decomposition as a filter bank
  publication-title: IEEE Signal Processing Letters
– reference: He, K., Zhang, X., Ren, S., & Sun, J. (2015b). Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. 1026–1034.
– volume: 30
  start-page: 243
  year: 2011
  end-page: 261
  ident: bib0013
  article-title: Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool
  publication-title: Applied and Computational Harmonic Analysis
– volume: 49
  start-page: 1
  year: 2016
  end-page: 8
  ident: bib0042
  article-title: Multi-scale prediction of water temperature using empirical mode decomposition with back-propagation neural networks
  publication-title: Computers and Electrical Engineering
– volume: 22
  start-page: 33
  year: 2002
  end-page: 38
  ident: bib0067
  article-title: Predicting stock price using fuzzy grey prediction system
  publication-title: Expert Systems with Applications
– volume: 121
  start-page: 17
  year: 2016
  end-page: 29
  ident: bib0077
  article-title: Optimal averages for nonlinear signal decompositions-another alternative for empirical mode decomposition
  publication-title: Signal Processing
– start-page: 123
  year: 2014
  end-page: 132
  ident: bib0048
  article-title: Predicting response in mobile advertising with hierarchical importance-aware factorization machine
  publication-title: ACM international conference on web search and data mining
– volume: 19
  start-page: 125
  year: 2000
  end-page: 132
  ident: bib0036
  article-title: Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index
  publication-title: Expert Systems with Applications
– volume: 29
  start-page: 82
  year: 2012
  end-page: 97
  ident: bib0026
  article-title: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
  publication-title: IEEE Signal Processing Magazine
– volume: 48
  start-page: 315
  year: 2009
  ident: bib0002
  article-title: Statistical models: Theory and practice
  publication-title: Biometrics
– volume: 102
  start-page: 313
  year: 2014
  end-page: 331
  ident: bib0055
  article-title: Empirical mode decomposition revisited by multicomponent non-smooth convex optimization
  publication-title: Signal Processing
– volume: 30
  start-page: 901
  year: 2003
  end-page: 923
  ident: bib0008
  article-title: Application of neural networks to an emerging financial market: Forecasting and trading the taiwan stock index
  publication-title: Computers and Operations Research
– volume: 26
  start-page: 281
  year: 2012
  end-page: 287
  ident: bib0009
  article-title: Forecasting tourism demand based on empirical mode decomposition and neural network
  publication-title: Knowledge-Based Systems
– reference: .
– volume: 58
  start-page: 2475
  year: 2010
  end-page: 2483
  ident: bib0053
  article-title: Null space pursuit: An operator-based approach to adaptive signal separation
  publication-title: IEEE Transactions on Signal Processing
– volume: 31
  start-page: 41
  year: 2006
  end-page: 46
  ident: bib0064
  article-title: Comparison of four different time series methods to forecast hepatitis a virus infection
  publication-title: Expert Systems with Applications
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib0039
  article-title: Deep learning
  publication-title: Nature
– year: 2006
  ident: bib0073
  article-title: Detection of spindles in sleep EEGs using a novel algorithm based on the Hilbert-Huang transform
– volume: 39
  start-page: 611
  year: 2012
  end-page: 620
  ident: bib0007
  article-title: A novel model by evolving partially connected neural network for stock price trend forecasting
  publication-title: Expert Systems With Applications
– volume: 17
  start-page: 459
  year: 2001
  end-page: 482
  ident: bib0059
  article-title: Nonlinearities, cyclical behavior and predictability in stock markets: International evidence
  publication-title: International Journal of Forecasting
– start-page: 1412
  year: 2015
  end-page: 1421
  ident: bib0044
  article-title: Effective approaches to attention-based neural machine translation
  publication-title: Conference on Empirical Methods in Natural Language Processing (EMNLP)
– volume: 29
  start-page: 586
  year: 2014
  end-page: 593
  ident: bib0070
  article-title: A novel envelope model based on convex constrained optimization
  publication-title: Digital Signal Processing
– volume: 2
  start-page: 443
  year: 2005
  ident: bib0062
  article-title: The local mean decomposition and its application to eeg perception data
  publication-title: Journal of the Royal Society Interface
– volume: 16
  start-page: 1956
  year: 2007
  ident: bib0006
  article-title: Robust image watermarking based on multiband wavelets and empirical mode decomposition
  publication-title: IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society
– start-page: 123
  year: 2014
  ident: 10.1016/j.eswa.2018.07.065_bib0048
  article-title: Predicting response in mobile advertising with hierarchical importance-aware factorization machine
– volume: 56
  start-page: 2669
  year: 2008
  ident: 10.1016/j.eswa.2018.07.065_bib0052
  article-title: Adaptive signal decomposition based on local narrow band signals
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2008.917360
– volume: 29
  start-page: 82
  year: 2012
  ident: 10.1016/j.eswa.2018.07.065_bib0026
  article-title: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/MSP.2012.2205597
– volume: 27
  start-page: 1692
  year: 2006
  ident: 10.1016/j.eswa.2018.07.065_bib0074
  article-title: An EMD-based recognition method for chinese fonts and styles
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2006.03.002
– start-page: 1018
  year: 2016
  ident: 10.1016/j.eswa.2018.07.065_bib0011
  article-title: Context-aware image tweet modelling and recommendation
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.eswa.2018.07.065_bib0039
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 2016
  start-page: 549
  year: 2017
  ident: 10.1016/j.eswa.2018.07.065_bib0025
  article-title: Fast matrix factorization for online recommendation with implicit feedback
  publication-title: International Acm Sigir Conference on Research and Development in Information Retrieval ACM
– volume: 31
  start-page: 41
  year: 2006
  ident: 10.1016/j.eswa.2018.07.065_bib0064
  article-title: Comparison of four different time series methods to forecast hepatitis a virus infection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2005.09.002
– volume: 60
  start-page: 2012
  year: 2012
  ident: 10.1016/j.eswa.2018.07.065_bib0038
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Communications of the ACM
– volume: 38
  start-page: 14346
  year: 2011
  ident: 10.1016/j.eswa.2018.07.065_bib0066
  article-title: Forecasting stock indices with back propagation neural network
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.04.222
– volume: 1
  start-page: 138
  year: 2004
  ident: 10.1016/j.eswa.2018.07.065_bib0071
  article-title: A novel pitch period detection algorithm based on Hilbert-Huang transform
  publication-title: Chinese Conference on Advances in Biometric Person Authenticationg
– volume: 48
  start-page: 545
  year: 2012
  ident: 10.1016/j.eswa.2018.07.065_bib0041
  article-title: A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2012.06.012
– year: 2014
  ident: 10.1016/j.eswa.2018.07.065_bib0004
  article-title: Neural machine translation by jointly learning to align and translate
  publication-title: Computer Science
– volume: 30
  start-page: 901
  year: 2003
  ident: 10.1016/j.eswa.2018.07.065_bib0008
  article-title: Application of neural networks to an emerging financial market: Forecasting and trading the taiwan stock index
  publication-title: Computers and Operations Research
  doi: 10.1016/S0305-0548(02)00037-0
– volume: 2
  start-page: 443
  year: 2005
  ident: 10.1016/j.eswa.2018.07.065_bib0062
  article-title: The local mean decomposition and its application to eeg perception data
  publication-title: Journal of the Royal Society Interface
  doi: 10.1098/rsif.2005.0058
– volume: 16
  start-page: 1956
  year: 2007
  ident: 10.1016/j.eswa.2018.07.065_bib0006
  article-title: Robust image watermarking based on multiband wavelets and empirical mode decomposition
  publication-title: IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society
  doi: 10.1109/TIP.2007.901206
– volume: 11
  start-page: 112
  year: 2004
  ident: 10.1016/j.eswa.2018.07.065_bib0018
  article-title: Empirical mode decomposition as a filter bank
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/LSP.2003.821662
– start-page: 173
  year: 2016
  ident: 10.1016/j.eswa.2018.07.065_bib0001
  article-title: Deep speech 2: End-to-end speech recognition in english and mandarin
– ident: 10.1016/j.eswa.2018.07.065_bib0023
  doi: 10.1109/ICCV.2015.123
– start-page: 355
  year: 2017
  ident: 10.1016/j.eswa.2018.07.065_bib0024
  article-title: Neural factorization machines for sparse predictive analytics
  publication-title: arXiv.org
– volume: 2014
  start-page: 708
  year: 2014
  ident: 10.1016/j.eswa.2018.07.065_bib0033
  article-title: Application of empirical mode decomposition with local linear quantile regression in financial time series forecasting.
  publication-title: The Scientific World Journal
  doi: 10.1155/2014/708918
– volume: 17
  start-page: 303
  year: 1999
  ident: 10.1016/j.eswa.2018.07.065_bib0065
  article-title: Segmentation of the on-line shopping market using neural networks
  publication-title: Expert Systems with Applications
  doi: 10.1016/S0957-4174(99)00042-1
– start-page: 1341
  year: 2017
  ident: 10.1016/j.eswa.2018.07.065_bib0005
  article-title: A generic coordinate descent framework for learning from implicit feedback
– volume: 49
  start-page: 1
  year: 2016
  ident: 10.1016/j.eswa.2018.07.065_bib0042
  article-title: Multi-scale prediction of water temperature using empirical mode decomposition with back-propagation neural networks
  publication-title: Computers and Electrical Engineering
  doi: 10.1016/j.compeleceng.2015.10.003
– volume: 17
  start-page: 459
  year: 2001
  ident: 10.1016/j.eswa.2018.07.065_bib0059
  article-title: Nonlinearities, cyclical behavior and predictability in stock markets: International evidence
  publication-title: International Journal of Forecasting
  doi: 10.1016/S0169-2070(01)00093-0
– volume: 16
  start-page: 841
  year: 2009
  ident: 10.1016/j.eswa.2018.07.065_bib0027
  article-title: Local integral mean-based sifting for empirical mode decomposition
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/LSP.2009.2025925
– volume: 03
  start-page: 1
  year: 2011
  ident: 10.1016/j.eswa.2018.07.065_bib0028
  article-title: Adaptive data analysis via sparse time-frequency representation
  publication-title: Advances in Adaptive Data Analysis
  doi: 10.1142/S1793536911000647
– volume: 30
  start-page: 243
  year: 2011
  ident: 10.1016/j.eswa.2018.07.065_bib0013
  article-title: Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool
  publication-title: Applied and Computational Harmonic Analysis
  doi: 10.1016/j.acha.2010.08.002
– start-page: 242
  year: 2011
  ident: 10.1016/j.eswa.2018.07.065_bib0050
  article-title: Forecasting stock prices using financial data mining and neural network
– volume: 6
  issue: 9
  year: 2011
  ident: 10.1016/j.eswa.2018.07.065_sbref0077
  article-title: Investment strategies used as spectroscopy of financial markets reveal new stylized facts
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0024391
– volume: 24
  start-page: 171
  year: 2006
  ident: 10.1016/j.eswa.2018.07.065_bib0010
  article-title: A b-spline approach for empirical mode decompositions
  publication-title: Advances in Computational Mathematics
  doi: 10.1007/s10444-004-7614-3
– volume: 121
  start-page: 17
  year: 2016
  ident: 10.1016/j.eswa.2018.07.065_bib0077
  article-title: Optimal averages for nonlinear signal decompositions-another alternative for empirical mode decomposition
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2015.10.022
– volume: 12
  start-page: 764
  year: 2005
  ident: 10.1016/j.eswa.2018.07.065_bib0014
  article-title: Empirical mode decomposition: An analytical approach for sifting process
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/LSP.2005.856878
– volume: 42
  start-page: 2162
  year: 2015
  ident: 10.1016/j.eswa.2018.07.065_bib0051
  article-title: Predicting stock market index using fusion of machine learning techniques
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2014.10.031
– volume: 454
  start-page: 903
  year: 1998
  ident: 10.1016/j.eswa.2018.07.065_bib0031
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proceedings of the Royal Society A: Mathematical Physical and Engineering Sciences
  doi: 10.1098/rspa.1998.0193
– volume: 170
  start-page: 3
  year: 2005
  ident: 10.1016/j.eswa.2018.07.065_bib0003
  article-title: A hybrid genetic-neural architecture for stock indexes forecasting
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2003.03.023
– start-page: 995
  year: 2010
  ident: 10.1016/j.eswa.2018.07.065_bib0058
  article-title: Factorization machines
– volume: 9
  start-page: 527
  year: 1993
  ident: 10.1016/j.eswa.2018.07.065_bib0045
  article-title: Accuracy measures: Theoretical and practical concerns
  publication-title: International Journal of Forecasting
  doi: 10.1016/0169-2070(93)90079-3
– volume: 55
  start-page: 307
  year: 2003
  ident: 10.1016/j.eswa.2018.07.065_bib0035
  article-title: Financial time series forecasting using support vector machines
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(03)00372-2
– volume: 37
  start-page: 7056
  year: 2010
  ident: 10.1016/j.eswa.2018.07.065_bib0043
  article-title: Integrating independent component analysis-based denoising scheme with neural network for stock price prediction
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.03.012
– start-page: 770
  year: 2015
  ident: 10.1016/j.eswa.2018.07.065_bib0022
  article-title: Deep residual learning for image recognition
  publication-title: arXiv.org
– volume: 26
  start-page: 281
  year: 2012
  ident: 10.1016/j.eswa.2018.07.065_bib0009
  article-title: Forecasting tourism demand based on empirical mode decomposition and neural network
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2011.09.002
– volume: 29
  start-page: 586
  year: 2014
  ident: 10.1016/j.eswa.2018.07.065_bib0070
  article-title: A novel envelope model based on convex constrained optimization
  publication-title: Digital Signal Processing
  doi: 10.1016/j.dsp.2014.02.017
– volume: 16
  start-page: 177
  year: 2005
  ident: 10.1016/j.eswa.2018.07.065_bib0046
  article-title: Texture analysis based on local analysis of the bidimensional empirical mode decomposition
  publication-title: Machine Vision and Applications
  doi: 10.1007/s00138-004-0170-5
– volume: 50
  start-page: 159
  year: 2003
  ident: 10.1016/j.eswa.2018.07.065_bib0075
  article-title: Time series forecasting using a hybrid ARIMA and neural network model
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(01)00702-0
– volume: 42
  start-page: 3234
  year: 2015
  ident: 10.1016/j.eswa.2018.07.065_bib0057
  article-title: Recurrent neural network and a hybrid model for prediction of stock returns
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2014.12.003
– volume: 60
  start-page: 2236
  year: 2012
  ident: 10.1016/j.eswa.2018.07.065_bib0047
  article-title: An alternative formulation for the empirical mode decomposition
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2012.2187202
– volume: 22
  start-page: 33
  year: 2002
  ident: 10.1016/j.eswa.2018.07.065_bib0067
  article-title: Predicting stock price using fuzzy grey prediction system
  publication-title: Expert Systems with Applications
  doi: 10.1016/S0957-4174(01)00047-1
– volume: 30
  start-page: 905
  year: 2008
  ident: 10.1016/j.eswa.2018.07.065_bib0076
  article-title: A new approach for crude oil price analysis based on empirical mode decomposition
  publication-title: Energy Economics
  doi: 10.1016/j.eneco.2007.02.012
– volume: 48
  start-page: 315
  year: 2009
  ident: 10.1016/j.eswa.2018.07.065_bib0002
  article-title: Statistical models: Theory and practice
  publication-title: Biometrics
– volume: 22
  start-page: 249
  year: 2002
  ident: 10.1016/j.eswa.2018.07.065_bib0049
  article-title: Analyzing stock market tick data using piecewise nonlinear model
  publication-title: Expert Systems with Applications
  doi: 10.1016/S0957-4174(01)00058-6
– start-page: 1880
  year: 2010
  ident: 10.1016/j.eswa.2018.07.065_bib0054
  article-title: A multicomponent proximal algorithm for empirical mode decomposition
– volume: 31
  start-page: 417
  year: 1999
  ident: 10.1016/j.eswa.2018.07.065_bib0030
  article-title: A new view of nonlinear water waves: The Hilbert spectrum
  publication-title: Annual Review of Fluid Mechanics
  doi: 10.1146/annurev.fluid.31.1.417
– year: 2006
  ident: 10.1016/j.eswa.2018.07.065_bib0073
– volume: 1
  start-page: 543
  year: 2009
  ident: 10.1016/j.eswa.2018.07.065_bib0040
  article-title: Iterative filtering as an alternative algorithm for empirical mode decomposition.
  publication-title: Advances in Adaptive Data Analysis
  doi: 10.1142/S179353690900028X
– volume: 37
  start-page: 583
  year: 2004
  ident: 10.1016/j.eswa.2018.07.065_bib0061
  article-title: Applying rough sets to market timing decisions
  publication-title: Decision Support Systems
  doi: 10.1016/S0167-9236(03)00089-7
– volume: 58
  start-page: 2475
  year: 2010
  ident: 10.1016/j.eswa.2018.07.065_bib0053
  article-title: Null space pursuit: An operator-based approach to adaptive signal separation
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2010.2041606
– volume: 19
  start-page: 125
  year: 2000
  ident: 10.1016/j.eswa.2018.07.065_bib0036
  article-title: Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index
  publication-title: Expert Systems with Applications
  doi: 10.1016/S0957-4174(00)00027-0
– start-page: 1412
  year: 2015
  ident: 10.1016/j.eswa.2018.07.065_bib0044
  article-title: Effective approaches to attention-based neural machine translation
– volume: 102
  start-page: 313
  year: 2014
  ident: 10.1016/j.eswa.2018.07.065_bib0055
  article-title: Empirical mode decomposition revisited by multicomponent non-smooth convex optimization
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2014.03.014
– volume: 39
  start-page: 611
  year: 2012
  ident: 10.1016/j.eswa.2018.07.065_bib0007
  article-title: A novel model by evolving partially connected neural network for stock price trend forecasting
  publication-title: Expert Systems With Applications
  doi: 10.1016/j.eswa.2011.07.051
– start-page: 1
  year: 2015
  ident: 10.1016/j.eswa.2018.07.065_bib0063
  article-title: Going deeper with convolutions
– volume: 14
  start-page: 932
  year: 2007
  ident: 10.1016/j.eswa.2018.07.065_bib0060
  article-title: A new formulation for empirical mode decomposition based on constrained optimization
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/LSP.2007.904706
– volume: 17
  start-page: 398
  year: 2010
  ident: 10.1016/j.eswa.2018.07.065_bib0016
  article-title: Analysis of intrinsic mode functions: A PDE approach
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/LSP.2009.2038770
– ident: 10.1016/j.eswa.2018.07.065_bib0015
– start-page: 426
  year: 2008
  ident: 10.1016/j.eswa.2018.07.065_bib0037
  article-title: Factorization meets the neighborhood: A multifaceted collaborative filtering model
– volume: 35
  start-page: 181
  year: 2013
  ident: 10.1016/j.eswa.2018.07.065_bib0069
  article-title: Instantaneous frequency and wave shape functions (i)
  publication-title: Applied & Computational Harmonic Analysis
  doi: 10.1016/j.acha.2012.08.008
– volume: 24
  start-page: 13
  year: 2003
  ident: 10.1016/j.eswa.2018.07.065_bib0068
  article-title: Mining stock price using fuzzy rough set system
  publication-title: Expert Systems with Applications
  doi: 10.1016/S0957-4174(02)00079-9
– start-page: 43
  year: 2016
  ident: 10.1016/j.eswa.2018.07.065_bib0034
  article-title: Field-aware factorization machines for ctr prediction
– start-page: 195
  year: 1995
  ident: 10.1016/j.eswa.2018.07.065_bib0020
  article-title: The influence of the sigmoid function parameters on the speed of backpropagation learning.
– start-page: 1
  year: 2016
  ident: 10.1016/j.eswa.2018.07.065_bib0012
  article-title: Fast and accurate deep network learning by exponential linear units (ELUs)
– volume: 95
  start-page: 4816
  year: 1998
  ident: 10.1016/j.eswa.2018.07.065_bib0032
  article-title: Engineering analysis of biological variables: An example of blood pressure over 1 day
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.95.9.4816
– year: 2017
  ident: 10.1016/j.eswa.2018.07.065_bib0056
  article-title: Financial series prediction: Comparison between precision of time series models and machine learning methods
  publication-title: arXiv.org
– volume: 7
  start-page: 1093
  year: 2013
  ident: 10.1016/j.eswa.2018.07.065_bib0029
  article-title: Multicomponent am-fm signal separation and demodulation with null space pursuit
  publication-title: Signal Image and Video Processing
  doi: 10.1007/s11760-012-0354-9
– volume: 29
  start-page: 927
  year: 2005
  ident: 10.1016/j.eswa.2018.07.065_bib0017
  article-title: The use of data mining and neural networks for forecasting stock market returns
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2005.06.024
– volume: 15
  start-page: 1
  year: 1999
  ident: 10.1016/j.eswa.2018.07.065_bib0019
  article-title: Additive outliers, GARCH and forecasting volatility
  publication-title: International Journal of Forecasting
  doi: 10.1016/S0169-2070(98)00053-3
– start-page: 430
  year: 2005
  ident: 10.1016/j.eswa.2018.07.065_bib0072
  article-title: Signal period analysis based on Hilbert-Huang transform and its application to texture analysis
– volume: 43
  start-page: 173
  year: 2002
  ident: 10.1016/j.eswa.2018.07.065_bib0021
  article-title: Data mining of time series using stacked generalizers
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(00)00364-7
SSID ssj0017007
Score 2.57553
Snippet •We propose an improved neural network model to predict the stock prices.•The empirical mode decomposition and factorization machine are used in our...
Stock market forecasting is a vital component of financial systems. However, the stock prices are highly noisy and non-stationary due to the fact that stock...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 136
SubjectTerms Back propagation networks
Economic forecasting
Empirical mode decomposition
Errors
Factorization
Factorization machine
Markets
Mathematical models
Neural network
Neural networks
Predictions
Profitability
Root-mean-square errors
Securities markets
Stock exchanges
Stock market prediction
Trends
Wave propagation
Wavelet
Title EMD2FNN: A strategy combining empirical mode decomposition and factorization machine based neural network for stock market trend prediction
URI https://dx.doi.org/10.1016/j.eswa.2018.07.065
https://www.proquest.com/docview/2131210334
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQXLi0PFoVCmgO3FC6ie1dJ72tgNUCYi8UiZvlV6StSlixiyou_QP9052xHaRWFQcukRJ58vA4842Sb75h7LitR86WRhUlt3UhiVtjBA9F8AjOLW5VlF28no2mt_Lybni3xk77WhiiVebYn2J6jNb5yCDP5mAxnw9uMDlAOCT1FfpVFGu4pFS0yr_8eqF5kPycSnp7qqDRuXAmcbzC8idpD1V1FPAkgPk_OP0TpiP2TLbYu5w0wjjd1zZbC90Oe983ZID8fu6y3-fXZ3wym32FMSyT7Owz4JPZ2AUCwv1iHhVBgPrfgA_EJ8-kLTCdh9R8J1dmwn3kWQYgoPNAwpdo2SXaOGCui5fAYIrDqG4aVkSuhcUj_fgh8w_sdnL-7XRa5G4LhUPUXhVyaKy0deNEO-KlccNGVJYrVxn6nNmqRgnvXOllaagMXVjOraoqb8u2dgoTm49svXvowicGxjVoGExZ-1YKY5vWNBYn33PlPWZge6zqp1m7LEVOHTF-6J5z9l2TazS5RpdKo2v22MmLzSIJcbw6eth7T_-1nDQixat2B72rdX6Zl5pXgmTWhJD7bzztZ7aJe036dHPA1lePT-EQk5mVPYqr9YhtjC-uprM_gD_19A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaq7QEulBYQLaWdAzcUrWMn64TbqnS1fWwutFJvll-RFtGw6m5V8Rv408zETiUQ6qGXHBJPHp5kvlH8zTeMfWqribPcqIwLW2UFcWuMFCELHsG5xa3qZRcXzWR-XZzflDdb7GSohSFaZYr9Mab30TrtGafZHK-Wy_E3TA4QDkl9hZaKqIZrm9SpyhHbnp5dzJvHxQTFY9U0js_IINXORJpXWD-Q_FBe9RqehDH_x6d_InUPP7PX7FXKG2Eab22XbYVuj-0MPRkgfaJv2O_TxVcxa5ovMIV1VJ79Bfhwtm8EAeF2texFQYBa4IAPRClPvC0wnYfYfycVZ8JtT7UMQFjngbQv0bKLzHHAdBcvgfEUh1HpNGyIXwurO1r7IfO37Hp2enUyz1LDhcwhcG-yojS2sFXtZDsR3LiylrkVyuWG_mi2qlbSO8d9wQ1VoksrhFV57i1vK6cwt3nHRt3PLrxnYFyNhsHwyreFNLZuTW1x8r1Q3mMSts_yYZq1S2rk1BTjhx5oZ981uUaTazRXGl2zzz4_2qyiFseTo8vBe_qvN0ojWDxpdzi4Wqfvea1FLklpTcri4JmnPWYv5leLS3151lx8YC_xSB3_5Byy0ebuPnzE3GZjj9K7-wfogPil
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EMD2FNN%3A+A+strategy+combining+empirical+mode+decomposition+and+factorization+machine+based+neural+network+for+stock+market+trend+prediction&rft.jtitle=Expert+systems+with+applications&rft.au=Zhou%2C+Feng&rft.au=Zhou%2C+Hao-min&rft.au=Yang%2C+Zhihua&rft.au=Yang%2C+Lihua&rft.date=2019-01-01&rft.issn=0957-4174&rft.volume=115&rft.spage=136&rft.epage=151&rft_id=info:doi/10.1016%2Fj.eswa.2018.07.065&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2018_07_065
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon