EMD2FNN: A strategy combining empirical mode decomposition and factorization machine based neural network for stock market trend prediction
•We propose an improved neural network model to predict the stock prices.•The empirical mode decomposition and factorization machine are used in our approach.•The empirical mode decomposition helps overcome the non-stationarity of stock price.•Factorization Machine helps grasp the nonlinear interact...
Saved in:
Published in | Expert systems with applications Vol. 115; pp. 136 - 151 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
01.01.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •We propose an improved neural network model to predict the stock prices.•The empirical mode decomposition and factorization machine are used in our approach.•The empirical mode decomposition helps overcome the non-stationarity of stock price.•Factorization Machine helps grasp the nonlinear interactions among the inputs.•The real data sets are used to demonstrate the accuracy of the new approach.
Stock market forecasting is a vital component of financial systems. However, the stock prices are highly noisy and non-stationary due to the fact that stock markets are affected by a variety of factors. Predicting stock market trend is usually subject to big challenges. The goal of this paper is to introduce a new hybrid, end-to-end approach containing two stages, the Empirical Mode Decomposition and Factorization Machine based Neural Network (EMD2FNN), to predict the stock market trend. To illustrate the method, we apply EMD2FNN to predict the daily closing prices from the Shanghai Stock Exchange Composite (SSEC) index, the National Association of Securities Dealers Automated Quotations (NASDAQ) index and the Standard & Poor’s 500 Composite Stock Price Index (S&P 500), which respectively exhibit oscillatory, upward and downward patterns. The results are compared with predictions obtained by other methods, including the neural network (NN) model, the factorization machine based neural network (FNN) model, the empirical mode decomposition based neural network (EMD2NN) model and the wavelet de-noising-based back propagation (WDBP) neural network model. Under the same conditions, the experiments indicate that the proposed methods perform better than the other ones according to the metrics of Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). Furthermore, we compute the profitability with a simple long-short trading strategy to examine the trading performance of our models in the metrics of Average Annual Return (AAR), Maximum Drawdown (MD), Sharpe Ratio (SR) and AAR/MD. The performances in two different scenarios, when taking or not taking the transaction cost into consideration, are found economically significant. |
---|---|
AbstractList | •We propose an improved neural network model to predict the stock prices.•The empirical mode decomposition and factorization machine are used in our approach.•The empirical mode decomposition helps overcome the non-stationarity of stock price.•Factorization Machine helps grasp the nonlinear interactions among the inputs.•The real data sets are used to demonstrate the accuracy of the new approach.
Stock market forecasting is a vital component of financial systems. However, the stock prices are highly noisy and non-stationary due to the fact that stock markets are affected by a variety of factors. Predicting stock market trend is usually subject to big challenges. The goal of this paper is to introduce a new hybrid, end-to-end approach containing two stages, the Empirical Mode Decomposition and Factorization Machine based Neural Network (EMD2FNN), to predict the stock market trend. To illustrate the method, we apply EMD2FNN to predict the daily closing prices from the Shanghai Stock Exchange Composite (SSEC) index, the National Association of Securities Dealers Automated Quotations (NASDAQ) index and the Standard & Poor’s 500 Composite Stock Price Index (S&P 500), which respectively exhibit oscillatory, upward and downward patterns. The results are compared with predictions obtained by other methods, including the neural network (NN) model, the factorization machine based neural network (FNN) model, the empirical mode decomposition based neural network (EMD2NN) model and the wavelet de-noising-based back propagation (WDBP) neural network model. Under the same conditions, the experiments indicate that the proposed methods perform better than the other ones according to the metrics of Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). Furthermore, we compute the profitability with a simple long-short trading strategy to examine the trading performance of our models in the metrics of Average Annual Return (AAR), Maximum Drawdown (MD), Sharpe Ratio (SR) and AAR/MD. The performances in two different scenarios, when taking or not taking the transaction cost into consideration, are found economically significant. Stock market forecasting is a vital component of financial systems. However, the stock prices are highly noisy and non-stationary due to the fact that stock markets are affected by a variety of factors. Predicting stock market trend is usually subject to big challenges. The goal of this paper is to introduce a new hybrid, end-to-end approach containing two stages, the Empirical Mode Decomposition and Factorization Machine based Neural Network (EMD2FNN), to predict the stock market trend. To illustrate the method, we apply EMD2FNN to predict the daily closing prices from the Shanghai Stock Exchange Composite (SSEC) index, the National Association of Securities Dealers Automated Quotations (NASDAQ) index and the Standard & Poor’s 500 Composite Stock Price Index (S&P 500), which respectively exhibit oscillatory, upward and downward patterns. The results are compared with predictions obtained by other methods, including the neural network (NN) model, the factorization machine based neural network (FNN) model, the empirical mode decomposition based neural network (EMD2NN) model and the wavelet de-noising-based back propagation (WDBP) neural network model. Under the same conditions, the experiments indicate that the proposed methods perform better than the other ones according to the metrics of Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). Furthermore, we compute the profitability with a simple long-short trading strategy to examine the trading performance of our models in the metrics of Average Annual Return (AAR), Maximum Drawdown (MD), Sharpe Ratio (SR) and AAR/MD. The performances in two different scenarios, when taking or not taking the transaction cost into consideration, are found economically significant. |
Author | Zhou, Feng Zhou, Hao-min Yang, Zhihua Yang, Lihua |
Author_xml | – sequence: 1 givenname: Feng surname: Zhou fullname: Zhou, Feng email: fengzhou@gdufe.edu.cn organization: School of Information, Guangdong University of Finance and Economics, Guangzhou 510320, China – sequence: 2 givenname: Hao-min surname: Zhou fullname: Zhou, Hao-min email: hmzhou@math.gatech.edu organization: School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, USA – sequence: 3 givenname: Zhihua surname: Yang fullname: Yang, Zhihua email: yangzh@gdufe.edu.cn organization: School of Information, Guangdong University of Finance and Economics, Guangzhou 510320, China – sequence: 4 givenname: Lihua orcidid: 0000-0003-4294-9233 surname: Yang fullname: Yang, Lihua email: mcsylh@mail.sysu.edu.cn organization: School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China |
BookMark | eNp9kM9u1DAQhy1UJLaFF-BkiXPC2M7GCeJSlRaQSrnA2XImk-L9YwfbS1VeoS-N0-XUQ08jeX7fjOc7ZSc-eGLsrYBagGjfb2pKd7aWILoadA3t-gVbiU6rqtW9OmEr6Ne6aoRuXrHTlDYAQgPoFXu4_PZJXt3cfODnPOVoM93ecwz7wXnnbzntZxcd2h3fh5H4SKU1h-SyC55bP_LJYg7R_bWPL3uLv5wnPthEI_d0iIX0lO9C3PIpxLIi4LbE4pYyz5HKhDnS6HDBX7OXk90levO_nrGfV5c_Lr5U198_f704v65QdSJXzdoOzdD1qKZWgsV1r8QgNQory0mT7rUaEWFswDYdaDVIOWghxgGmDnXbqDP27jh3juH3gVI2m3CIvqw0UighBSi1pOQxhTGkFGkyc3Tl5_dGgFmkm41ZpJtFugFtivQCdU8gdPnRTXHrds-jH48oldP_OIomoSOPxU4kzGYM7jn8H2tRoZE |
CitedBy_id | crossref_primary_10_1007_s11227_024_06403_3 crossref_primary_10_1007_s00500_024_09836_3 crossref_primary_10_1016_j_eswa_2024_124948 crossref_primary_10_1016_j_matpr_2021_05_474 crossref_primary_10_1007_s11042_023_16997_0 crossref_primary_10_1016_j_eswa_2023_121708 crossref_primary_10_1007_s13278_023_01190_w crossref_primary_10_1016_j_eswa_2021_115022 crossref_primary_10_1016_j_eswa_2023_120902 crossref_primary_10_1007_s11390_019_1913_0 crossref_primary_10_1016_j_asoc_2025_112978 crossref_primary_10_12677_AAM_2022_116408 crossref_primary_10_1016_j_asoc_2020_106181 crossref_primary_10_1016_j_iswa_2024_200449 crossref_primary_10_3389_fenrg_2022_811745 crossref_primary_10_1007_s10586_020_03099_x crossref_primary_10_1016_j_asoc_2020_106205 crossref_primary_10_1016_j_asoc_2020_106567 crossref_primary_10_1080_01605682_2024_2438333 crossref_primary_10_3390_s20010007 crossref_primary_10_1007_s10586_022_03707_y crossref_primary_10_1016_j_eswa_2021_115537 crossref_primary_10_1007_s11042_022_11908_1 crossref_primary_10_1155_2021_6641298 crossref_primary_10_3390_e24020146 crossref_primary_10_1016_j_knosys_2021_107092 crossref_primary_10_1515_snde_2021_0096 crossref_primary_10_1016_j_ins_2020_10_023 crossref_primary_10_1016_j_resourpol_2022_103109 crossref_primary_10_1007_s10614_024_10599_0 crossref_primary_10_12720_jait_14_6_1254_1260 crossref_primary_10_1007_s11227_021_04013_x crossref_primary_10_1016_j_resourpol_2022_102778 crossref_primary_10_1016_j_asoc_2022_109876 crossref_primary_10_1109_TCSS_2022_3182375 crossref_primary_10_1080_01969722_2022_2137634 crossref_primary_10_1631_FITEE_1900236 crossref_primary_10_1007_s00500_020_05516_0 crossref_primary_10_1007_s10489_022_03321_w crossref_primary_10_1016_j_asoc_2020_106422 crossref_primary_10_1016_j_asoc_2021_107898 crossref_primary_10_1016_j_asoc_2021_108106 crossref_primary_10_1016_j_eswa_2020_114527 crossref_primary_10_1155_2022_6101045 crossref_primary_10_1109_TFUZZ_2022_3215470 crossref_primary_10_3390_app13084781 crossref_primary_10_1016_j_eswa_2022_116970 crossref_primary_10_1007_s00500_021_06552_0 crossref_primary_10_1016_j_jksuci_2021_10_004 crossref_primary_10_2478_amns_2023_2_01130 crossref_primary_10_1016_j_asoc_2023_110867 crossref_primary_10_1515_snde_2021_0032 crossref_primary_10_1016_j_engappai_2020_103573 crossref_primary_10_1155_2021_5544133 crossref_primary_10_1016_j_eswa_2022_118581 crossref_primary_10_1016_j_eswa_2019_112863 crossref_primary_10_1109_ACCESS_2024_3358406 crossref_primary_10_1016_j_jksuci_2021_06_008 crossref_primary_10_1007_s00500_023_07915_5 crossref_primary_10_3389_fpubh_2022_922795 crossref_primary_10_1016_j_matpr_2021_07_217 crossref_primary_10_1016_j_sna_2022_113581 crossref_primary_10_1155_2022_1775496 crossref_primary_10_2139_ssrn_4170455 crossref_primary_10_1007_s10489_020_01766_5 crossref_primary_10_3390_math9080800 crossref_primary_10_1007_s11831_020_09413_5 crossref_primary_10_1177_1045389X20986997 crossref_primary_10_1080_02522667_2022_2091097 crossref_primary_10_3390_jrfm14110526 crossref_primary_10_3233_IDA_220414 crossref_primary_10_1016_j_resourpol_2020_101730 crossref_primary_10_1016_j_ins_2020_03_062 crossref_primary_10_1016_j_eswa_2022_118161 crossref_primary_10_1016_j_knosys_2022_109324 crossref_primary_10_1007_s11042_024_20321_9 crossref_primary_10_1007_s10479_020_03690_w crossref_primary_10_1016_j_asoc_2024_112359 crossref_primary_10_1155_2021_5694975 crossref_primary_10_1007_s11227_023_05213_3 crossref_primary_10_1007_s10479_021_03979_4 crossref_primary_10_1007_s00500_022_06941_z crossref_primary_10_1007_s11042_021_11029_1 crossref_primary_10_2139_ssrn_4074883 crossref_primary_10_1016_j_eswa_2024_123671 crossref_primary_10_1016_j_eswa_2021_115796 crossref_primary_10_1016_j_eswa_2019_05_007 crossref_primary_10_1016_j_eswa_2022_116659 crossref_primary_10_1007_s00500_023_08441_0 crossref_primary_10_1016_j_eneco_2023_106683 crossref_primary_10_1016_j_mlwa_2022_100302 crossref_primary_10_1016_j_eswa_2025_127243 crossref_primary_10_1016_j_asoc_2019_105747 crossref_primary_10_1142_S0219691320500101 crossref_primary_10_1109_ACCESS_2019_2960548 crossref_primary_10_1007_s40031_021_00583_9 crossref_primary_10_1142_S2424922X19500049 |
Cites_doi | 10.1109/TSP.2008.917360 10.1109/MSP.2012.2205597 10.1016/j.patrec.2006.03.002 10.1038/nature14539 10.1016/j.eswa.2005.09.002 10.1016/j.eswa.2011.04.222 10.1016/j.renene.2012.06.012 10.1016/S0305-0548(02)00037-0 10.1098/rsif.2005.0058 10.1109/TIP.2007.901206 10.1109/LSP.2003.821662 10.1109/ICCV.2015.123 10.1155/2014/708918 10.1016/S0957-4174(99)00042-1 10.1016/j.compeleceng.2015.10.003 10.1016/S0169-2070(01)00093-0 10.1109/LSP.2009.2025925 10.1142/S1793536911000647 10.1016/j.acha.2010.08.002 10.1371/journal.pone.0024391 10.1007/s10444-004-7614-3 10.1016/j.sigpro.2015.10.022 10.1109/LSP.2005.856878 10.1016/j.eswa.2014.10.031 10.1098/rspa.1998.0193 10.1016/j.ins.2003.03.023 10.1016/0169-2070(93)90079-3 10.1016/S0925-2312(03)00372-2 10.1016/j.eswa.2010.03.012 10.1016/j.knosys.2011.09.002 10.1016/j.dsp.2014.02.017 10.1007/s00138-004-0170-5 10.1016/S0925-2312(01)00702-0 10.1016/j.eswa.2014.12.003 10.1109/TSP.2012.2187202 10.1016/S0957-4174(01)00047-1 10.1016/j.eneco.2007.02.012 10.1016/S0957-4174(01)00058-6 10.1146/annurev.fluid.31.1.417 10.1142/S179353690900028X 10.1016/S0167-9236(03)00089-7 10.1109/TSP.2010.2041606 10.1016/S0957-4174(00)00027-0 10.1016/j.sigpro.2014.03.014 10.1016/j.eswa.2011.07.051 10.1109/LSP.2007.904706 10.1109/LSP.2009.2038770 10.1016/j.acha.2012.08.008 10.1016/S0957-4174(02)00079-9 10.1073/pnas.95.9.4816 10.1007/s11760-012-0354-9 10.1016/j.eswa.2005.06.024 10.1016/S0169-2070(98)00053-3 10.1016/S0925-2312(00)00364-7 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright Elsevier BV Jan 2019 |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright Elsevier BV Jan 2019 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.eswa.2018.07.065 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-6793 |
EndPage | 151 |
ExternalDocumentID | 10_1016_j_eswa_2018_07_065 S0957417418304901 |
GrantInformation_xml | – fundername: NSFC grantid: 11771458; 1431015 funderid: https://doi.org/10.13039/501100001809 – fundername: NSF grantid: DMS-1419027; DMS-1620345 funderid: https://doi.org/10.13039/100000001 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABBOA ABFNM ABKBG ABMAC ABMVD ABUCO ABXDB ABYKQ ACDAQ ACGFS ACHRH ACNNM ACNTT ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SC 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c381t-45ab4b89c3f620ac5931b27c1a2007f7973dcc0d40a48073b22b711db0f8c7643 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 |
IngestDate | Mon Jul 14 09:43:44 EDT 2025 Thu Apr 24 23:06:30 EDT 2025 Tue Jul 01 04:05:44 EDT 2025 Fri Feb 23 02:45:29 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Empirical mode decomposition Profitability Neural network Factorization machine Stock market prediction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c381t-45ab4b89c3f620ac5931b27c1a2007f7973dcc0d40a48073b22b711db0f8c7643 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4294-9233 |
PQID | 2131210334 |
PQPubID | 2045477 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2131210334 crossref_primary_10_1016_j_eswa_2018_07_065 crossref_citationtrail_10_1016_j_eswa_2018_07_065 elsevier_sciencedirect_doi_10_1016_j_eswa_2018_07_065 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2019 2019-01-00 20190101 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: January 2019 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Expert systems with applications |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Wang (bib0067) 2002; 22 Peng, Hwang (bib0052) 2008; 56 Yang, Yang, Qi, Suen (bib0074) 2006; 27 Bi, Sun, Huang, Yang, Huang (bib0006) 2007; 16 Rendle (bib0058) 2010 Kim, Han (bib0036) 2000; 19 Zhou, Yang, Zhou, Yang (bib0077) 2016; 121 Huang, Shen, Long, Wu, Shih, Zheng (bib0031) 1998; 454 Vellido, Lisboa, Meehan (bib0065) 1999; 17 Juan, Zhuang, Chin, Lin (bib0034) 2016 Rather, Agarwal, Sastry (bib0057) 2015; 42 Luong, Pham, Manning (bib0044) 2015 Hu, Peng, Hwang (bib0029) 2013; 7 Franses, Ghijsels (bib0019) 1999; 15 Huang, Shen, Long (bib0030) 1999; 31 Pustelnik, Borgnat, Flandrin (bib0054) 2010 Sarantis (bib0059) 2001; 17 Krizhevsky, Sutskever, Hinton (bib0038) 2012; 60 Bahdanau, Cho, Bengio (bib0004) 2014 Hou, Shi (bib0028) 2011; 03 Han, Moraga (bib0020) 1995 Zhang (bib0075) 2003; 50 Koren (bib0037) 2008 Pustelnik, Borgnat, Flandrin (bib0055) 2014; 102 Armano, Marchesi, Murru (bib0003) 2005; 170 Hansen, Nelson (bib0021) 2002; 43 . Flandrin, Rilling, Goncalves (bib0018) 2004; 11 He, Zhang, Ren, Sun (bib0022) 2015 Wang (bib0068) 2003; 24 Oberlin, Meignen, Perrier (bib0047) 2012; 60 Yang, Qi, Yang (bib0072) 2005 Chen, Huang, Riemenschneider, Xu (bib0010) 2006; 24 Hong, Wang, Tao (bib0027) 2009; 16 Chen, He, Kan (bib0011) 2016 Qian, Gao (bib0056) 2017 Chen, Lai, Yeh (bib0009) 2012; 26 Wu (bib0069) 2013; 35 Oh, Kim (bib0049) 2002; 22 He, Chua (bib0024) 2017 Delechelle, Lemoine, Niang (bib0014) 2005; 12 Makridakis (bib0045) 1993; 9 Nunes, Guyot, Deléchelle (bib0046) 2005; 16 Smith (bib0062) 2005; 2 Yang, Yang, Zhou, Yang (bib0070) 2014; 29 Szegedy, Liu, Jia, Sermanet, Reed, Anguelov (bib0063) 2015 Bayer, He, Kanagal, Rendle (bib0005) 2017 Arjo (bib0002) 2009; 48 Daubechies, Lu, Wu (bib0013) 2011; 30 He, K., Zhang, X., Ren, S., & Sun, J. (2015b). Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. 1026–1034. Hinton, Deng, Yu, Dahl, Mohamed, Jaitly (bib0026) 2012; 29 Wang, Wang, Zhang, Guo (bib0066) 2011; 38 Peng, Hwang (bib0053) 2010; 58 Lin, Wang, Zhou (bib0040) 2009; 1 Shen, Han (bib0061) 2004; 37 Clevert, Unterthiner, Hochreiter (bib0012) 2016 Liu, Xu, Li (bib0042) 2016; 49 Chang, Wang, Zhou (bib0007) 2012; 39 Ding, Y., & Selesnick, I.W. (2013). Sparse frequency analysis with sparse-derivative instantaneous amplitude and phase function, arXiv preprint Zhang, Lai, Wang (bib0076) 2008; 30 Chen, Leung, Daouk (bib0008) 2003; 30 Zhou, Mu, Chen, Sornette (bib0078) 2011; 6 Amodei, Anubhai, Battenberg, Case, Casper, Catanzaro (bib0001) 2016 Huang, Shen, Huang, Yuan (bib0032) 1998; 95 Yang, Yang, Qi (bib0073) 2006 Yang, Huang, Yang (bib0071) 2004; 1 Sekine (bib0060) 2007; 14 Diop, Alexandre, Boudraa (bib0016) 2010; 17 He, Zhang, Kan, Chua (bib0025) 2017; 2016 Lecun, Bengio, Hinton (bib0039) 2015; 521 Kim (bib0035) 2003; 55 Jaber, Ismail, Altaher (bib0033) 2014; 2014 Lu (bib0043) 2010; 37 Oentaryo, Lim, Low, Lo, Finegold (bib0048) 2014 Enke, Thawornwong (bib0017) 2005; 29 Ture, Kurt (bib0064) 2006; 31 Liu, Chen, Tian, Li (bib0041) 2012; 48 Omidi, Nourani, Jalili (bib0050) 2011 Patel, Shah, Thakkar, Kotecha (bib0051) 2015; 42 Pustelnik (10.1016/j.eswa.2018.07.065_bib0054) 2010 Vellido (10.1016/j.eswa.2018.07.065_bib0065) 1999; 17 Chang (10.1016/j.eswa.2018.07.065_bib0007) 2012; 39 Chen (10.1016/j.eswa.2018.07.065_bib0009) 2012; 26 Jaber (10.1016/j.eswa.2018.07.065_bib0033) 2014; 2014 Clevert (10.1016/j.eswa.2018.07.065_bib0012) 2016 Lu (10.1016/j.eswa.2018.07.065_bib0043) 2010; 37 Yang (10.1016/j.eswa.2018.07.065_bib0070) 2014; 29 Huang (10.1016/j.eswa.2018.07.065_bib0031) 1998; 454 Lecun (10.1016/j.eswa.2018.07.065_bib0039) 2015; 521 Makridakis (10.1016/j.eswa.2018.07.065_bib0045) 1993; 9 Sarantis (10.1016/j.eswa.2018.07.065_bib0059) 2001; 17 10.1016/j.eswa.2018.07.065_bib0015 He (10.1016/j.eswa.2018.07.065_bib0024) 2017 Rendle (10.1016/j.eswa.2018.07.065_bib0058) 2010 Delechelle (10.1016/j.eswa.2018.07.065_bib0014) 2005; 12 Liu (10.1016/j.eswa.2018.07.065_bib0041) 2012; 48 Juan (10.1016/j.eswa.2018.07.065_bib0034) 2016 Yang (10.1016/j.eswa.2018.07.065_bib0074) 2006; 27 Flandrin (10.1016/j.eswa.2018.07.065_bib0018) 2004; 11 Lin (10.1016/j.eswa.2018.07.065_bib0040) 2009; 1 Wang (10.1016/j.eswa.2018.07.065_bib0067) 2002; 22 Wang (10.1016/j.eswa.2018.07.065_bib0068) 2003; 24 Zhang (10.1016/j.eswa.2018.07.065_bib0076) 2008; 30 Shen (10.1016/j.eswa.2018.07.065_bib0061) 2004; 37 Koren (10.1016/j.eswa.2018.07.065_bib0037) 2008 Smith (10.1016/j.eswa.2018.07.065_bib0062) 2005; 2 Arjo (10.1016/j.eswa.2018.07.065_bib0002) 2009; 48 Ture (10.1016/j.eswa.2018.07.065_bib0064) 2006; 31 Hansen (10.1016/j.eswa.2018.07.065_bib0021) 2002; 43 Oh (10.1016/j.eswa.2018.07.065_bib0049) 2002; 22 Chen (10.1016/j.eswa.2018.07.065_bib0010) 2006; 24 Zhou (10.1016/j.eswa.2018.07.065_sbref0077) 2011; 6 He (10.1016/j.eswa.2018.07.065_bib0025) 2017; 2016 Szegedy (10.1016/j.eswa.2018.07.065_bib0063) 2015 Daubechies (10.1016/j.eswa.2018.07.065_bib0013) 2011; 30 Amodei (10.1016/j.eswa.2018.07.065_bib0001) 2016 Hu (10.1016/j.eswa.2018.07.065_bib0029) 2013; 7 Peng (10.1016/j.eswa.2018.07.065_bib0052) 2008; 56 Peng (10.1016/j.eswa.2018.07.065_bib0053) 2010; 58 Bahdanau (10.1016/j.eswa.2018.07.065_bib0004) 2014 Hou (10.1016/j.eswa.2018.07.065_bib0028) 2011; 03 Yang (10.1016/j.eswa.2018.07.065_bib0073) 2006 Wu (10.1016/j.eswa.2018.07.065_bib0069) 2013; 35 Bi (10.1016/j.eswa.2018.07.065_bib0006) 2007; 16 Pustelnik (10.1016/j.eswa.2018.07.065_bib0055) 2014; 102 Chen (10.1016/j.eswa.2018.07.065_bib0008) 2003; 30 Hinton (10.1016/j.eswa.2018.07.065_bib0026) 2012; 29 Krizhevsky (10.1016/j.eswa.2018.07.065_bib0038) 2012; 60 Patel (10.1016/j.eswa.2018.07.065_bib0051) 2015; 42 Rather (10.1016/j.eswa.2018.07.065_bib0057) 2015; 42 Oentaryo (10.1016/j.eswa.2018.07.065_bib0048) 2014 Kim (10.1016/j.eswa.2018.07.065_bib0035) 2003; 55 Yang (10.1016/j.eswa.2018.07.065_bib0072) 2005 Luong (10.1016/j.eswa.2018.07.065_bib0044) 2015 Han (10.1016/j.eswa.2018.07.065_bib0020) 1995 Zhou (10.1016/j.eswa.2018.07.065_bib0077) 2016; 121 He (10.1016/j.eswa.2018.07.065_bib0022) 2015 Diop (10.1016/j.eswa.2018.07.065_bib0016) 2010; 17 Sekine (10.1016/j.eswa.2018.07.065_bib0060) 2007; 14 Armano (10.1016/j.eswa.2018.07.065_bib0003) 2005; 170 10.1016/j.eswa.2018.07.065_bib0023 Huang (10.1016/j.eswa.2018.07.065_bib0032) 1998; 95 Zhang (10.1016/j.eswa.2018.07.065_bib0075) 2003; 50 Wang (10.1016/j.eswa.2018.07.065_bib0066) 2011; 38 Huang (10.1016/j.eswa.2018.07.065_bib0030) 1999; 31 Kim (10.1016/j.eswa.2018.07.065_bib0036) 2000; 19 Qian (10.1016/j.eswa.2018.07.065_bib0056) 2017 Omidi (10.1016/j.eswa.2018.07.065_bib0050) 2011 Chen (10.1016/j.eswa.2018.07.065_bib0011) 2016 Liu (10.1016/j.eswa.2018.07.065_bib0042) 2016; 49 Nunes (10.1016/j.eswa.2018.07.065_bib0046) 2005; 16 Bayer (10.1016/j.eswa.2018.07.065_bib0005) 2017 Oberlin (10.1016/j.eswa.2018.07.065_bib0047) 2012; 60 Hong (10.1016/j.eswa.2018.07.065_bib0027) 2009; 16 Enke (10.1016/j.eswa.2018.07.065_bib0017) 2005; 29 Yang (10.1016/j.eswa.2018.07.065_bib0071) 2004; 1 Franses (10.1016/j.eswa.2018.07.065_bib0019) 1999; 15 |
References_xml | – volume: 16 start-page: 177 year: 2005 end-page: 188 ident: bib0046 article-title: Texture analysis based on local analysis of the bidimensional empirical mode decomposition publication-title: Machine Vision and Applications – volume: 35 start-page: 181 year: 2013 end-page: 199 ident: bib0069 article-title: Instantaneous frequency and wave shape functions (i) publication-title: Applied & Computational Harmonic Analysis – start-page: 195 year: 1995 end-page: 201 ident: bib0020 article-title: The influence of the sigmoid function parameters on the speed of backpropagation learning. publication-title: International workshop on artificial neural networks: From natural to artificial neural computation – volume: 7 start-page: 1093 year: 2013 end-page: 1102 ident: bib0029 article-title: Multicomponent am-fm signal separation and demodulation with null space pursuit publication-title: Signal Image and Video Processing – start-page: 242 year: 2011 end-page: 246 ident: bib0050 article-title: Forecasting stock prices using financial data mining and neural network publication-title: International conference on computer research and development – volume: 1 start-page: 138 year: 2004 end-page: 146 ident: bib0071 article-title: A novel pitch period detection algorithm based on Hilbert-Huang transform publication-title: Chinese Conference on Advances in Biometric Person Authenticationg – volume: 27 start-page: 1692 year: 2006 end-page: 1701 ident: bib0074 article-title: An EMD-based recognition method for chinese fonts and styles publication-title: Pattern Recognition Letters – volume: 2014 start-page: 708 year: 2014 end-page: 918 ident: bib0033 article-title: Application of empirical mode decomposition with local linear quantile regression in financial time series forecasting. publication-title: The Scientific World Journal – start-page: 995 year: 2010 end-page: 1000 ident: bib0058 article-title: Factorization machines publication-title: ICDM 2010, the IEEE international conference on data mining, Sydney, Australia, 14–17 December – volume: 55 start-page: 307 year: 2003 end-page: 319 ident: bib0035 article-title: Financial time series forecasting using support vector machines publication-title: Neurocomputing – volume: 37 start-page: 7056 year: 2010 end-page: 7064 ident: bib0043 article-title: Integrating independent component analysis-based denoising scheme with neural network for stock price prediction publication-title: Expert Systems with Applications – start-page: 355 year: 2017 end-page: 364 ident: bib0024 article-title: Neural factorization machines for sparse predictive analytics publication-title: arXiv.org – volume: 38 start-page: 14346 year: 2011 end-page: 14355 ident: bib0066 article-title: Forecasting stock indices with back propagation neural network publication-title: Expert Systems with Applications – volume: 03 start-page: 1 year: 2011 end-page: 28 ident: bib0028 article-title: Adaptive data analysis via sparse time-frequency representation publication-title: Advances in Adaptive Data Analysis – volume: 454 start-page: 903 year: 1998 end-page: 995 ident: bib0031 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proceedings of the Royal Society A: Mathematical Physical and Engineering Sciences – start-page: 173 year: 2016 end-page: 182 ident: bib0001 article-title: Deep speech 2: End-to-end speech recognition in english and mandarin publication-title: International Conference on Machine Learning (ICML) – volume: 9 start-page: 527 year: 1993 end-page: 529 ident: bib0045 article-title: Accuracy measures: Theoretical and practical concerns publication-title: International Journal of Forecasting – volume: 30 start-page: 905 year: 2008 end-page: 918 ident: bib0076 article-title: A new approach for crude oil price analysis based on empirical mode decomposition publication-title: Energy Economics – volume: 1 start-page: 543 year: 2009 end-page: 560 ident: bib0040 article-title: Iterative filtering as an alternative algorithm for empirical mode decomposition. publication-title: Advances in Adaptive Data Analysis – volume: 42 start-page: 2162 year: 2015 end-page: 2172 ident: bib0051 article-title: Predicting stock market index using fusion of machine learning techniques publication-title: Expert Systems with Applications – volume: 43 start-page: 173 year: 2002 end-page: 184 ident: bib0021 article-title: Data mining of time series using stacked generalizers publication-title: Neurocomputing – start-page: 426 year: 2008 end-page: 434 ident: bib0037 article-title: Factorization meets the neighborhood: A multifaceted collaborative filtering model publication-title: ACM SIGKDD international conference on knowledge discovery and data mining – volume: 12 start-page: 764 year: 2005 end-page: 767 ident: bib0014 article-title: Empirical mode decomposition: An analytical approach for sifting process publication-title: IEEE Signal Processing Letters – start-page: 1880 year: 2010 end-page: 1884 ident: bib0054 article-title: A multicomponent proximal algorithm for empirical mode decomposition publication-title: Signal processing conference – volume: 2016 start-page: 549 year: 2017 end-page: 558 ident: bib0025 article-title: Fast matrix factorization for online recommendation with implicit feedback publication-title: International Acm Sigir Conference on Research and Development in Information Retrieval ACM – volume: 16 start-page: 841 year: 2009 end-page: 844 ident: bib0027 article-title: Local integral mean-based sifting for empirical mode decomposition publication-title: IEEE Signal Processing Letters – volume: 31 start-page: 417 year: 1999 end-page: 457 ident: bib0030 article-title: A new view of nonlinear water waves: The Hilbert spectrum publication-title: Annual Review of Fluid Mechanics – volume: 60 start-page: 2236 year: 2012 end-page: 2246 ident: bib0047 article-title: An alternative formulation for the empirical mode decomposition publication-title: IEEE Transactions on Signal Processing – volume: 22 start-page: 249 year: 2002 end-page: 255 ident: bib0049 article-title: Analyzing stock market tick data using piecewise nonlinear model publication-title: Expert Systems with Applications – volume: 6 year: 2011 ident: bib0078 article-title: Investment strategies used as spectroscopy of financial markets reveal new stylized facts publication-title: PLoS ONE – volume: 15 start-page: 1 year: 1999 end-page: 9 ident: bib0019 article-title: Additive outliers, GARCH and forecasting volatility publication-title: International Journal of Forecasting – volume: 37 start-page: 583 year: 2004 end-page: 597 ident: bib0061 article-title: Applying rough sets to market timing decisions publication-title: Decision Support Systems – start-page: 43 year: 2016 end-page: 50 ident: bib0034 article-title: Field-aware factorization machines for ctr prediction publication-title: ACM conference on recommender systems – volume: 48 start-page: 545 year: 2012 end-page: 556 ident: bib0041 article-title: A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks publication-title: Renewable Energy – volume: 42 start-page: 3234 year: 2015 end-page: 3241 ident: bib0057 article-title: Recurrent neural network and a hybrid model for prediction of stock returns publication-title: Expert Systems with Applications – volume: 95 start-page: 4816 year: 1998 ident: bib0032 article-title: Engineering analysis of biological variables: An example of blood pressure over 1 day publication-title: Proceedings of the National Academy of Sciences of the United States of America – year: 2014 ident: bib0004 article-title: Neural machine translation by jointly learning to align and translate publication-title: Computer Science – volume: 29 start-page: 927 year: 2005 end-page: 940 ident: bib0017 article-title: The use of data mining and neural networks for forecasting stock market returns publication-title: Expert Systems with Applications – start-page: 1018 year: 2016 end-page: 1027 ident: bib0011 article-title: Context-aware image tweet modelling and recommendation publication-title: ACM on multimedia conference – start-page: 1 year: 2015 end-page: 9 ident: bib0063 article-title: Going deeper with convolutions publication-title: Computer vision and pattern recognition – volume: 24 start-page: 13 year: 2003 end-page: 23 ident: bib0068 article-title: Mining stock price using fuzzy rough set system publication-title: Expert Systems with Applications – volume: 24 start-page: 171 year: 2006 end-page: 195 ident: bib0010 article-title: A b-spline approach for empirical mode decompositions publication-title: Advances in Computational Mathematics – reference: Ding, Y., & Selesnick, I.W. (2013). Sparse frequency analysis with sparse-derivative instantaneous amplitude and phase function, arXiv preprint – start-page: 1341 year: 2017 end-page: 1350 ident: bib0005 article-title: A generic coordinate descent framework for learning from implicit feedback publication-title: International conference on world wide web – volume: 170 start-page: 3 year: 2005 end-page: 33 ident: bib0003 article-title: A hybrid genetic-neural architecture for stock indexes forecasting publication-title: Information Sciences – volume: 60 start-page: 2012 year: 2012 ident: bib0038 article-title: Imagenet classification with deep convolutional neural networks publication-title: Communications of the ACM – year: 2017 ident: bib0056 article-title: Financial series prediction: Comparison between precision of time series models and machine learning methods publication-title: arXiv.org – start-page: 430 year: 2005 end-page: 433 ident: bib0072 article-title: Signal period analysis based on Hilbert-Huang transform and its application to texture analysis publication-title: International conference on image and graphics – volume: 17 start-page: 398 year: 2010 end-page: 401 ident: bib0016 article-title: Analysis of intrinsic mode functions: A PDE approach publication-title: IEEE Signal Processing Letters – volume: 14 start-page: 932 year: 2007 end-page: 935 ident: bib0060 article-title: A new formulation for empirical mode decomposition based on constrained optimization publication-title: IEEE Signal Processing Letters – start-page: 1 year: 2016 end-page: 14 ident: bib0012 article-title: Fast and accurate deep network learning by exponential linear units (ELUs) publication-title: International Conference on Learning Representations (ICLR) – start-page: 770 year: 2015 end-page: 778 ident: bib0022 article-title: Deep residual learning for image recognition publication-title: arXiv.org – volume: 56 start-page: 2669 year: 2008 end-page: 2676 ident: bib0052 article-title: Adaptive signal decomposition based on local narrow band signals publication-title: IEEE Transactions on Signal Processing – volume: 17 start-page: 303 year: 1999 end-page: 314 ident: bib0065 article-title: Segmentation of the on-line shopping market using neural networks publication-title: Expert Systems with Applications – volume: 50 start-page: 159 year: 2003 end-page: 175 ident: bib0075 article-title: Time series forecasting using a hybrid ARIMA and neural network model publication-title: Neurocomputing – volume: 11 start-page: 112 year: 2004 end-page: 114 ident: bib0018 article-title: Empirical mode decomposition as a filter bank publication-title: IEEE Signal Processing Letters – reference: He, K., Zhang, X., Ren, S., & Sun, J. (2015b). Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. 1026–1034. – volume: 30 start-page: 243 year: 2011 end-page: 261 ident: bib0013 article-title: Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool publication-title: Applied and Computational Harmonic Analysis – volume: 49 start-page: 1 year: 2016 end-page: 8 ident: bib0042 article-title: Multi-scale prediction of water temperature using empirical mode decomposition with back-propagation neural networks publication-title: Computers and Electrical Engineering – volume: 22 start-page: 33 year: 2002 end-page: 38 ident: bib0067 article-title: Predicting stock price using fuzzy grey prediction system publication-title: Expert Systems with Applications – volume: 121 start-page: 17 year: 2016 end-page: 29 ident: bib0077 article-title: Optimal averages for nonlinear signal decompositions-another alternative for empirical mode decomposition publication-title: Signal Processing – start-page: 123 year: 2014 end-page: 132 ident: bib0048 article-title: Predicting response in mobile advertising with hierarchical importance-aware factorization machine publication-title: ACM international conference on web search and data mining – volume: 19 start-page: 125 year: 2000 end-page: 132 ident: bib0036 article-title: Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index publication-title: Expert Systems with Applications – volume: 29 start-page: 82 year: 2012 end-page: 97 ident: bib0026 article-title: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups publication-title: IEEE Signal Processing Magazine – volume: 48 start-page: 315 year: 2009 ident: bib0002 article-title: Statistical models: Theory and practice publication-title: Biometrics – volume: 102 start-page: 313 year: 2014 end-page: 331 ident: bib0055 article-title: Empirical mode decomposition revisited by multicomponent non-smooth convex optimization publication-title: Signal Processing – volume: 30 start-page: 901 year: 2003 end-page: 923 ident: bib0008 article-title: Application of neural networks to an emerging financial market: Forecasting and trading the taiwan stock index publication-title: Computers and Operations Research – volume: 26 start-page: 281 year: 2012 end-page: 287 ident: bib0009 article-title: Forecasting tourism demand based on empirical mode decomposition and neural network publication-title: Knowledge-Based Systems – reference: . – volume: 58 start-page: 2475 year: 2010 end-page: 2483 ident: bib0053 article-title: Null space pursuit: An operator-based approach to adaptive signal separation publication-title: IEEE Transactions on Signal Processing – volume: 31 start-page: 41 year: 2006 end-page: 46 ident: bib0064 article-title: Comparison of four different time series methods to forecast hepatitis a virus infection publication-title: Expert Systems with Applications – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib0039 article-title: Deep learning publication-title: Nature – year: 2006 ident: bib0073 article-title: Detection of spindles in sleep EEGs using a novel algorithm based on the Hilbert-Huang transform – volume: 39 start-page: 611 year: 2012 end-page: 620 ident: bib0007 article-title: A novel model by evolving partially connected neural network for stock price trend forecasting publication-title: Expert Systems With Applications – volume: 17 start-page: 459 year: 2001 end-page: 482 ident: bib0059 article-title: Nonlinearities, cyclical behavior and predictability in stock markets: International evidence publication-title: International Journal of Forecasting – start-page: 1412 year: 2015 end-page: 1421 ident: bib0044 article-title: Effective approaches to attention-based neural machine translation publication-title: Conference on Empirical Methods in Natural Language Processing (EMNLP) – volume: 29 start-page: 586 year: 2014 end-page: 593 ident: bib0070 article-title: A novel envelope model based on convex constrained optimization publication-title: Digital Signal Processing – volume: 2 start-page: 443 year: 2005 ident: bib0062 article-title: The local mean decomposition and its application to eeg perception data publication-title: Journal of the Royal Society Interface – volume: 16 start-page: 1956 year: 2007 ident: bib0006 article-title: Robust image watermarking based on multiband wavelets and empirical mode decomposition publication-title: IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society – start-page: 123 year: 2014 ident: 10.1016/j.eswa.2018.07.065_bib0048 article-title: Predicting response in mobile advertising with hierarchical importance-aware factorization machine – volume: 56 start-page: 2669 year: 2008 ident: 10.1016/j.eswa.2018.07.065_bib0052 article-title: Adaptive signal decomposition based on local narrow band signals publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2008.917360 – volume: 29 start-page: 82 year: 2012 ident: 10.1016/j.eswa.2018.07.065_bib0026 article-title: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups publication-title: IEEE Signal Processing Magazine doi: 10.1109/MSP.2012.2205597 – volume: 27 start-page: 1692 year: 2006 ident: 10.1016/j.eswa.2018.07.065_bib0074 article-title: An EMD-based recognition method for chinese fonts and styles publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2006.03.002 – start-page: 1018 year: 2016 ident: 10.1016/j.eswa.2018.07.065_bib0011 article-title: Context-aware image tweet modelling and recommendation – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.eswa.2018.07.065_bib0039 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 2016 start-page: 549 year: 2017 ident: 10.1016/j.eswa.2018.07.065_bib0025 article-title: Fast matrix factorization for online recommendation with implicit feedback publication-title: International Acm Sigir Conference on Research and Development in Information Retrieval ACM – volume: 31 start-page: 41 year: 2006 ident: 10.1016/j.eswa.2018.07.065_bib0064 article-title: Comparison of four different time series methods to forecast hepatitis a virus infection publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2005.09.002 – volume: 60 start-page: 2012 year: 2012 ident: 10.1016/j.eswa.2018.07.065_bib0038 article-title: Imagenet classification with deep convolutional neural networks publication-title: Communications of the ACM – volume: 38 start-page: 14346 year: 2011 ident: 10.1016/j.eswa.2018.07.065_bib0066 article-title: Forecasting stock indices with back propagation neural network publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.04.222 – volume: 1 start-page: 138 year: 2004 ident: 10.1016/j.eswa.2018.07.065_bib0071 article-title: A novel pitch period detection algorithm based on Hilbert-Huang transform publication-title: Chinese Conference on Advances in Biometric Person Authenticationg – volume: 48 start-page: 545 year: 2012 ident: 10.1016/j.eswa.2018.07.065_bib0041 article-title: A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks publication-title: Renewable Energy doi: 10.1016/j.renene.2012.06.012 – year: 2014 ident: 10.1016/j.eswa.2018.07.065_bib0004 article-title: Neural machine translation by jointly learning to align and translate publication-title: Computer Science – volume: 30 start-page: 901 year: 2003 ident: 10.1016/j.eswa.2018.07.065_bib0008 article-title: Application of neural networks to an emerging financial market: Forecasting and trading the taiwan stock index publication-title: Computers and Operations Research doi: 10.1016/S0305-0548(02)00037-0 – volume: 2 start-page: 443 year: 2005 ident: 10.1016/j.eswa.2018.07.065_bib0062 article-title: The local mean decomposition and its application to eeg perception data publication-title: Journal of the Royal Society Interface doi: 10.1098/rsif.2005.0058 – volume: 16 start-page: 1956 year: 2007 ident: 10.1016/j.eswa.2018.07.065_bib0006 article-title: Robust image watermarking based on multiband wavelets and empirical mode decomposition publication-title: IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society doi: 10.1109/TIP.2007.901206 – volume: 11 start-page: 112 year: 2004 ident: 10.1016/j.eswa.2018.07.065_bib0018 article-title: Empirical mode decomposition as a filter bank publication-title: IEEE Signal Processing Letters doi: 10.1109/LSP.2003.821662 – start-page: 173 year: 2016 ident: 10.1016/j.eswa.2018.07.065_bib0001 article-title: Deep speech 2: End-to-end speech recognition in english and mandarin – ident: 10.1016/j.eswa.2018.07.065_bib0023 doi: 10.1109/ICCV.2015.123 – start-page: 355 year: 2017 ident: 10.1016/j.eswa.2018.07.065_bib0024 article-title: Neural factorization machines for sparse predictive analytics publication-title: arXiv.org – volume: 2014 start-page: 708 year: 2014 ident: 10.1016/j.eswa.2018.07.065_bib0033 article-title: Application of empirical mode decomposition with local linear quantile regression in financial time series forecasting. publication-title: The Scientific World Journal doi: 10.1155/2014/708918 – volume: 17 start-page: 303 year: 1999 ident: 10.1016/j.eswa.2018.07.065_bib0065 article-title: Segmentation of the on-line shopping market using neural networks publication-title: Expert Systems with Applications doi: 10.1016/S0957-4174(99)00042-1 – start-page: 1341 year: 2017 ident: 10.1016/j.eswa.2018.07.065_bib0005 article-title: A generic coordinate descent framework for learning from implicit feedback – volume: 49 start-page: 1 year: 2016 ident: 10.1016/j.eswa.2018.07.065_bib0042 article-title: Multi-scale prediction of water temperature using empirical mode decomposition with back-propagation neural networks publication-title: Computers and Electrical Engineering doi: 10.1016/j.compeleceng.2015.10.003 – volume: 17 start-page: 459 year: 2001 ident: 10.1016/j.eswa.2018.07.065_bib0059 article-title: Nonlinearities, cyclical behavior and predictability in stock markets: International evidence publication-title: International Journal of Forecasting doi: 10.1016/S0169-2070(01)00093-0 – volume: 16 start-page: 841 year: 2009 ident: 10.1016/j.eswa.2018.07.065_bib0027 article-title: Local integral mean-based sifting for empirical mode decomposition publication-title: IEEE Signal Processing Letters doi: 10.1109/LSP.2009.2025925 – volume: 03 start-page: 1 year: 2011 ident: 10.1016/j.eswa.2018.07.065_bib0028 article-title: Adaptive data analysis via sparse time-frequency representation publication-title: Advances in Adaptive Data Analysis doi: 10.1142/S1793536911000647 – volume: 30 start-page: 243 year: 2011 ident: 10.1016/j.eswa.2018.07.065_bib0013 article-title: Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool publication-title: Applied and Computational Harmonic Analysis doi: 10.1016/j.acha.2010.08.002 – start-page: 242 year: 2011 ident: 10.1016/j.eswa.2018.07.065_bib0050 article-title: Forecasting stock prices using financial data mining and neural network – volume: 6 issue: 9 year: 2011 ident: 10.1016/j.eswa.2018.07.065_sbref0077 article-title: Investment strategies used as spectroscopy of financial markets reveal new stylized facts publication-title: PLoS ONE doi: 10.1371/journal.pone.0024391 – volume: 24 start-page: 171 year: 2006 ident: 10.1016/j.eswa.2018.07.065_bib0010 article-title: A b-spline approach for empirical mode decompositions publication-title: Advances in Computational Mathematics doi: 10.1007/s10444-004-7614-3 – volume: 121 start-page: 17 year: 2016 ident: 10.1016/j.eswa.2018.07.065_bib0077 article-title: Optimal averages for nonlinear signal decompositions-another alternative for empirical mode decomposition publication-title: Signal Processing doi: 10.1016/j.sigpro.2015.10.022 – volume: 12 start-page: 764 year: 2005 ident: 10.1016/j.eswa.2018.07.065_bib0014 article-title: Empirical mode decomposition: An analytical approach for sifting process publication-title: IEEE Signal Processing Letters doi: 10.1109/LSP.2005.856878 – volume: 42 start-page: 2162 year: 2015 ident: 10.1016/j.eswa.2018.07.065_bib0051 article-title: Predicting stock market index using fusion of machine learning techniques publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2014.10.031 – volume: 454 start-page: 903 year: 1998 ident: 10.1016/j.eswa.2018.07.065_bib0031 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proceedings of the Royal Society A: Mathematical Physical and Engineering Sciences doi: 10.1098/rspa.1998.0193 – volume: 170 start-page: 3 year: 2005 ident: 10.1016/j.eswa.2018.07.065_bib0003 article-title: A hybrid genetic-neural architecture for stock indexes forecasting publication-title: Information Sciences doi: 10.1016/j.ins.2003.03.023 – start-page: 995 year: 2010 ident: 10.1016/j.eswa.2018.07.065_bib0058 article-title: Factorization machines – volume: 9 start-page: 527 year: 1993 ident: 10.1016/j.eswa.2018.07.065_bib0045 article-title: Accuracy measures: Theoretical and practical concerns publication-title: International Journal of Forecasting doi: 10.1016/0169-2070(93)90079-3 – volume: 55 start-page: 307 year: 2003 ident: 10.1016/j.eswa.2018.07.065_bib0035 article-title: Financial time series forecasting using support vector machines publication-title: Neurocomputing doi: 10.1016/S0925-2312(03)00372-2 – volume: 37 start-page: 7056 year: 2010 ident: 10.1016/j.eswa.2018.07.065_bib0043 article-title: Integrating independent component analysis-based denoising scheme with neural network for stock price prediction publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2010.03.012 – start-page: 770 year: 2015 ident: 10.1016/j.eswa.2018.07.065_bib0022 article-title: Deep residual learning for image recognition publication-title: arXiv.org – volume: 26 start-page: 281 year: 2012 ident: 10.1016/j.eswa.2018.07.065_bib0009 article-title: Forecasting tourism demand based on empirical mode decomposition and neural network publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2011.09.002 – volume: 29 start-page: 586 year: 2014 ident: 10.1016/j.eswa.2018.07.065_bib0070 article-title: A novel envelope model based on convex constrained optimization publication-title: Digital Signal Processing doi: 10.1016/j.dsp.2014.02.017 – volume: 16 start-page: 177 year: 2005 ident: 10.1016/j.eswa.2018.07.065_bib0046 article-title: Texture analysis based on local analysis of the bidimensional empirical mode decomposition publication-title: Machine Vision and Applications doi: 10.1007/s00138-004-0170-5 – volume: 50 start-page: 159 year: 2003 ident: 10.1016/j.eswa.2018.07.065_bib0075 article-title: Time series forecasting using a hybrid ARIMA and neural network model publication-title: Neurocomputing doi: 10.1016/S0925-2312(01)00702-0 – volume: 42 start-page: 3234 year: 2015 ident: 10.1016/j.eswa.2018.07.065_bib0057 article-title: Recurrent neural network and a hybrid model for prediction of stock returns publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2014.12.003 – volume: 60 start-page: 2236 year: 2012 ident: 10.1016/j.eswa.2018.07.065_bib0047 article-title: An alternative formulation for the empirical mode decomposition publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2012.2187202 – volume: 22 start-page: 33 year: 2002 ident: 10.1016/j.eswa.2018.07.065_bib0067 article-title: Predicting stock price using fuzzy grey prediction system publication-title: Expert Systems with Applications doi: 10.1016/S0957-4174(01)00047-1 – volume: 30 start-page: 905 year: 2008 ident: 10.1016/j.eswa.2018.07.065_bib0076 article-title: A new approach for crude oil price analysis based on empirical mode decomposition publication-title: Energy Economics doi: 10.1016/j.eneco.2007.02.012 – volume: 48 start-page: 315 year: 2009 ident: 10.1016/j.eswa.2018.07.065_bib0002 article-title: Statistical models: Theory and practice publication-title: Biometrics – volume: 22 start-page: 249 year: 2002 ident: 10.1016/j.eswa.2018.07.065_bib0049 article-title: Analyzing stock market tick data using piecewise nonlinear model publication-title: Expert Systems with Applications doi: 10.1016/S0957-4174(01)00058-6 – start-page: 1880 year: 2010 ident: 10.1016/j.eswa.2018.07.065_bib0054 article-title: A multicomponent proximal algorithm for empirical mode decomposition – volume: 31 start-page: 417 year: 1999 ident: 10.1016/j.eswa.2018.07.065_bib0030 article-title: A new view of nonlinear water waves: The Hilbert spectrum publication-title: Annual Review of Fluid Mechanics doi: 10.1146/annurev.fluid.31.1.417 – year: 2006 ident: 10.1016/j.eswa.2018.07.065_bib0073 – volume: 1 start-page: 543 year: 2009 ident: 10.1016/j.eswa.2018.07.065_bib0040 article-title: Iterative filtering as an alternative algorithm for empirical mode decomposition. publication-title: Advances in Adaptive Data Analysis doi: 10.1142/S179353690900028X – volume: 37 start-page: 583 year: 2004 ident: 10.1016/j.eswa.2018.07.065_bib0061 article-title: Applying rough sets to market timing decisions publication-title: Decision Support Systems doi: 10.1016/S0167-9236(03)00089-7 – volume: 58 start-page: 2475 year: 2010 ident: 10.1016/j.eswa.2018.07.065_bib0053 article-title: Null space pursuit: An operator-based approach to adaptive signal separation publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2010.2041606 – volume: 19 start-page: 125 year: 2000 ident: 10.1016/j.eswa.2018.07.065_bib0036 article-title: Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index publication-title: Expert Systems with Applications doi: 10.1016/S0957-4174(00)00027-0 – start-page: 1412 year: 2015 ident: 10.1016/j.eswa.2018.07.065_bib0044 article-title: Effective approaches to attention-based neural machine translation – volume: 102 start-page: 313 year: 2014 ident: 10.1016/j.eswa.2018.07.065_bib0055 article-title: Empirical mode decomposition revisited by multicomponent non-smooth convex optimization publication-title: Signal Processing doi: 10.1016/j.sigpro.2014.03.014 – volume: 39 start-page: 611 year: 2012 ident: 10.1016/j.eswa.2018.07.065_bib0007 article-title: A novel model by evolving partially connected neural network for stock price trend forecasting publication-title: Expert Systems With Applications doi: 10.1016/j.eswa.2011.07.051 – start-page: 1 year: 2015 ident: 10.1016/j.eswa.2018.07.065_bib0063 article-title: Going deeper with convolutions – volume: 14 start-page: 932 year: 2007 ident: 10.1016/j.eswa.2018.07.065_bib0060 article-title: A new formulation for empirical mode decomposition based on constrained optimization publication-title: IEEE Signal Processing Letters doi: 10.1109/LSP.2007.904706 – volume: 17 start-page: 398 year: 2010 ident: 10.1016/j.eswa.2018.07.065_bib0016 article-title: Analysis of intrinsic mode functions: A PDE approach publication-title: IEEE Signal Processing Letters doi: 10.1109/LSP.2009.2038770 – ident: 10.1016/j.eswa.2018.07.065_bib0015 – start-page: 426 year: 2008 ident: 10.1016/j.eswa.2018.07.065_bib0037 article-title: Factorization meets the neighborhood: A multifaceted collaborative filtering model – volume: 35 start-page: 181 year: 2013 ident: 10.1016/j.eswa.2018.07.065_bib0069 article-title: Instantaneous frequency and wave shape functions (i) publication-title: Applied & Computational Harmonic Analysis doi: 10.1016/j.acha.2012.08.008 – volume: 24 start-page: 13 year: 2003 ident: 10.1016/j.eswa.2018.07.065_bib0068 article-title: Mining stock price using fuzzy rough set system publication-title: Expert Systems with Applications doi: 10.1016/S0957-4174(02)00079-9 – start-page: 43 year: 2016 ident: 10.1016/j.eswa.2018.07.065_bib0034 article-title: Field-aware factorization machines for ctr prediction – start-page: 195 year: 1995 ident: 10.1016/j.eswa.2018.07.065_bib0020 article-title: The influence of the sigmoid function parameters on the speed of backpropagation learning. – start-page: 1 year: 2016 ident: 10.1016/j.eswa.2018.07.065_bib0012 article-title: Fast and accurate deep network learning by exponential linear units (ELUs) – volume: 95 start-page: 4816 year: 1998 ident: 10.1016/j.eswa.2018.07.065_bib0032 article-title: Engineering analysis of biological variables: An example of blood pressure over 1 day publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.95.9.4816 – year: 2017 ident: 10.1016/j.eswa.2018.07.065_bib0056 article-title: Financial series prediction: Comparison between precision of time series models and machine learning methods publication-title: arXiv.org – volume: 7 start-page: 1093 year: 2013 ident: 10.1016/j.eswa.2018.07.065_bib0029 article-title: Multicomponent am-fm signal separation and demodulation with null space pursuit publication-title: Signal Image and Video Processing doi: 10.1007/s11760-012-0354-9 – volume: 29 start-page: 927 year: 2005 ident: 10.1016/j.eswa.2018.07.065_bib0017 article-title: The use of data mining and neural networks for forecasting stock market returns publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2005.06.024 – volume: 15 start-page: 1 year: 1999 ident: 10.1016/j.eswa.2018.07.065_bib0019 article-title: Additive outliers, GARCH and forecasting volatility publication-title: International Journal of Forecasting doi: 10.1016/S0169-2070(98)00053-3 – start-page: 430 year: 2005 ident: 10.1016/j.eswa.2018.07.065_bib0072 article-title: Signal period analysis based on Hilbert-Huang transform and its application to texture analysis – volume: 43 start-page: 173 year: 2002 ident: 10.1016/j.eswa.2018.07.065_bib0021 article-title: Data mining of time series using stacked generalizers publication-title: Neurocomputing doi: 10.1016/S0925-2312(00)00364-7 |
SSID | ssj0017007 |
Score | 2.57553 |
Snippet | •We propose an improved neural network model to predict the stock prices.•The empirical mode decomposition and factorization machine are used in our... Stock market forecasting is a vital component of financial systems. However, the stock prices are highly noisy and non-stationary due to the fact that stock... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 136 |
SubjectTerms | Back propagation networks Economic forecasting Empirical mode decomposition Errors Factorization Factorization machine Markets Mathematical models Neural network Neural networks Predictions Profitability Root-mean-square errors Securities markets Stock exchanges Stock market prediction Trends Wave propagation Wavelet |
Title | EMD2FNN: A strategy combining empirical mode decomposition and factorization machine based neural network for stock market trend prediction |
URI | https://dx.doi.org/10.1016/j.eswa.2018.07.065 https://www.proquest.com/docview/2131210334 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQXLi0PFoVCmgO3FC6ie1dJ72tgNUCYi8UiZvlV6StSlixiyou_QP9052xHaRWFQcukRJ58vA4842Sb75h7LitR86WRhUlt3UhiVtjBA9F8AjOLW5VlF28no2mt_Lybni3xk77WhiiVebYn2J6jNb5yCDP5mAxnw9uMDlAOCT1FfpVFGu4pFS0yr_8eqF5kPycSnp7qqDRuXAmcbzC8idpD1V1FPAkgPk_OP0TpiP2TLbYu5w0wjjd1zZbC90Oe983ZID8fu6y3-fXZ3wym32FMSyT7Owz4JPZ2AUCwv1iHhVBgPrfgA_EJ8-kLTCdh9R8J1dmwn3kWQYgoPNAwpdo2SXaOGCui5fAYIrDqG4aVkSuhcUj_fgh8w_sdnL-7XRa5G4LhUPUXhVyaKy0deNEO-KlccNGVJYrVxn6nNmqRgnvXOllaagMXVjOraoqb8u2dgoTm49svXvowicGxjVoGExZ-1YKY5vWNBYn33PlPWZge6zqp1m7LEVOHTF-6J5z9l2TazS5RpdKo2v22MmLzSIJcbw6eth7T_-1nDQixat2B72rdX6Zl5pXgmTWhJD7bzztZ7aJe036dHPA1lePT-EQk5mVPYqr9YhtjC-uprM_gD_19A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaq7QEulBYQLaWdAzcUrWMn64TbqnS1fWwutFJvll-RFtGw6m5V8Rv408zETiUQ6qGXHBJPHp5kvlH8zTeMfWqribPcqIwLW2UFcWuMFCELHsG5xa3qZRcXzWR-XZzflDdb7GSohSFaZYr9Mab30TrtGafZHK-Wy_E3TA4QDkl9hZaKqIZrm9SpyhHbnp5dzJvHxQTFY9U0js_IINXORJpXWD-Q_FBe9RqehDH_x6d_InUPP7PX7FXKG2Eab22XbYVuj-0MPRkgfaJv2O_TxVcxa5ovMIV1VJ79Bfhwtm8EAeF2texFQYBa4IAPRClPvC0wnYfYfycVZ8JtT7UMQFjngbQv0bKLzHHAdBcvgfEUh1HpNGyIXwurO1r7IfO37Hp2enUyz1LDhcwhcG-yojS2sFXtZDsR3LiylrkVyuWG_mi2qlbSO8d9wQ1VoksrhFV57i1vK6cwt3nHRt3PLrxnYFyNhsHwyreFNLZuTW1x8r1Q3mMSts_yYZq1S2rk1BTjhx5oZ981uUaTazRXGl2zzz4_2qyiFseTo8vBe_qvN0ojWDxpdzi4Wqfvea1FLklpTcri4JmnPWYv5leLS3151lx8YC_xSB3_5Byy0ebuPnzE3GZjj9K7-wfogPil |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EMD2FNN%3A+A+strategy+combining+empirical+mode+decomposition+and+factorization+machine+based+neural+network+for+stock+market+trend+prediction&rft.jtitle=Expert+systems+with+applications&rft.au=Zhou%2C+Feng&rft.au=Zhou%2C+Hao-min&rft.au=Yang%2C+Zhihua&rft.au=Yang%2C+Lihua&rft.date=2019-01-01&rft.issn=0957-4174&rft.volume=115&rft.spage=136&rft.epage=151&rft_id=info:doi/10.1016%2Fj.eswa.2018.07.065&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2018_07_065 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |