Revealing the shear band origin of white etching area in rolling contact fatigue of bearing steel

•Shear band does not have to adiabatic as it can form under quasi static loading.•White etching area and shear band are suggested to be shear localization.•Phase transformation to austenite is observed in white etching area and shear band.•Shear localization occurs at a large micro strain of estimat...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of fatigue Vol. 142; p. 105929
Main Authors Su, Yun-Shuai, Li, Shu-Xin, Yu, Feng, Lu, Si-Yuan, Wang, Yong-Gang
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Shear band does not have to adiabatic as it can form under quasi static loading.•White etching area and shear band are suggested to be shear localization.•Phase transformation to austenite is observed in white etching area and shear band.•Shear localization occurs at a large micro strain of estimated 0.5–0.8 in white etching area. White etching area (WEA) has become a big challenge for bearing failure under rolling contact fatigue. Despite of the extensive investigations, the origin of the WEA has not yet been well understood. This work attempts to elucidate the origin based on a new perspective that both the WEA and the shear band (SB) can be the common responses under shear plastic deformation in bearing steel, rather than the unique phenomenon in rolling contact fatigue. First, the SB is generated under quasi-static compression loading, indicating that the SB does not necessarily have to be adiabatic and is not limited to high strain rate loading. Second, the WEA is produced under rolling contact fatigue. The SB is compared with the WEA in terms of shear localization, microstructures, formation mechanism and crack development. The results suggest that both the SB and the WEA can be regarded as the shear localization under large plastic deformation. The SB consists of either nanocrystallines or well-developed equiaxed grains with transformed austenite. The WEA consists of either nanocrystallines or a mixed structure of amorphous phase and nanocrystallines with transformed austenite. Connecting the WEA with the SB provides a new insight into interpreting the origin and formation mechanism of the WEA, and help the further understanding of bearing failure under rolling contact fatigue.
AbstractList •Shear band does not have to adiabatic as it can form under quasi static loading.•White etching area and shear band are suggested to be shear localization.•Phase transformation to austenite is observed in white etching area and shear band.•Shear localization occurs at a large micro strain of estimated 0.5–0.8 in white etching area. White etching area (WEA) has become a big challenge for bearing failure under rolling contact fatigue. Despite of the extensive investigations, the origin of the WEA has not yet been well understood. This work attempts to elucidate the origin based on a new perspective that both the WEA and the shear band (SB) can be the common responses under shear plastic deformation in bearing steel, rather than the unique phenomenon in rolling contact fatigue. First, the SB is generated under quasi-static compression loading, indicating that the SB does not necessarily have to be adiabatic and is not limited to high strain rate loading. Second, the WEA is produced under rolling contact fatigue. The SB is compared with the WEA in terms of shear localization, microstructures, formation mechanism and crack development. The results suggest that both the SB and the WEA can be regarded as the shear localization under large plastic deformation. The SB consists of either nanocrystallines or well-developed equiaxed grains with transformed austenite. The WEA consists of either nanocrystallines or a mixed structure of amorphous phase and nanocrystallines with transformed austenite. Connecting the WEA with the SB provides a new insight into interpreting the origin and formation mechanism of the WEA, and help the further understanding of bearing failure under rolling contact fatigue.
ArticleNumber 105929
Author Su, Yun-Shuai
Yu, Feng
Wang, Yong-Gang
Lu, Si-Yuan
Li, Shu-Xin
Author_xml – sequence: 1
  givenname: Yun-Shuai
  surname: Su
  fullname: Su, Yun-Shuai
  organization: School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China
– sequence: 2
  givenname: Shu-Xin
  surname: Li
  fullname: Li, Shu-Xin
  email: lishuxin@nbu.edu.cn
  organization: School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China
– sequence: 3
  givenname: Feng
  surname: Yu
  fullname: Yu, Feng
  email: yufeng1@nbu.edu.cn
  organization: School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China
– sequence: 4
  givenname: Si-Yuan
  surname: Lu
  fullname: Lu, Si-Yuan
  organization: School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China
– sequence: 5
  givenname: Yong-Gang
  surname: Wang
  fullname: Wang, Yong-Gang
  organization: School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China
BookMark eNqNkM1OwzAQhC1UJNrCM-AXSPFPHCcHDlXFn1QJCcHZ2jibxlFIkGOKeHscWnHgAqeVducbzc6CzPqhR0IuOVtxxrOrduXaGoLbveNKMDFtVSGKEzLnuS4SmSoxI3PGU5FwLuQZWYxjyxgrmFZzAk-4R-hcv6OhQTo2CJ6W0Fd08G7nejrU9KNxASkG20wy8Ag0HvzQfWN26APYQI8ZJqCMJtNpDIjdOTmtoRvx4jiX5OX25nlzn2wf7x42621iZc5DkspSSaFqJlBLrUudg0oRs8JqrnQGvC5EntmsxkpxFsURg0pCLTWoDFAuyfXB1_phHD3WxroQM8V4HlxnODNTX6Y1P32ZqS9z6Cvy-hf_5t0r-M9_kOsDifG9vUNvRuuwt1g5jzaYanB_enwBmT6Nqw
CitedBy_id crossref_primary_10_1007_s10010_021_00481_y
crossref_primary_10_1111_ffe_14182
crossref_primary_10_3390_met12060910
crossref_primary_10_1007_s11665_022_06782_9
crossref_primary_10_1007_s40194_023_01555_x
crossref_primary_10_1016_j_triboint_2024_110222
crossref_primary_10_1111_ffe_13793
crossref_primary_10_1016_j_ijfatigue_2023_107837
crossref_primary_10_1016_j_jmrt_2023_05_139
crossref_primary_10_1007_s40997_024_00783_w
crossref_primary_10_1016_j_engfailanal_2024_108777
crossref_primary_10_3390_ma15175885
crossref_primary_10_1007_s11668_023_01704_w
crossref_primary_10_1111_ffe_14148
crossref_primary_10_1016_j_triboint_2022_107468
crossref_primary_10_1016_j_triboint_2024_109419
crossref_primary_10_1016_j_triboint_2023_108811
crossref_primary_10_1111_ffe_13728
Cites_doi 10.1016/j.msea.2017.07.063
10.1016/j.mser.2018.06.001
10.1016/0167-6636(89)90003-3
10.1080/10402004.2017.1398848
10.1016/j.matdes.2016.05.081
10.1016/j.ijfatigue.2018.10.023
10.1016/j.wear.2016.08.001
10.1016/j.actamat.2017.09.022
10.1007/s11661-014-2431-x
10.1016/j.wear.2017.03.018
10.1007/s11661-007-9431-z
10.1016/j.triboint.2019.105849
10.1080/10402004.2014.942938
10.1016/j.ijfatigue.2017.08.022
10.1007/BF02586218
10.1016/j.engfracmech.2007.07.002
10.1016/j.ijfatigue.2020.105476
10.1016/j.mechmat.2017.06.003
10.1016/j.ijplas.2016.01.017
10.1016/j.actamat.2013.05.045
10.1016/j.matchar.2019.110081
10.1016/j.actamat.2016.09.012
10.1080/02670836.2016.1195981
10.1103/PhysRevLett.101.165501
10.1016/1359-6454(95)00306-1
10.1016/j.wear.2018.08.022
10.1016/S1359-6462(03)00477-9
10.1007/s11249-015-0602-6
10.1016/j.scriptamat.2016.11.030
10.1016/j.actamat.2019.05.052
10.1115/1.3209132
10.1016/j.actamat.2019.07.009
10.1016/j.matdes.2016.12.089
10.1016/j.msea.2018.02.019
10.1016/j.msea.2016.03.050
10.1016/j.scriptamat.2007.06.024
10.1016/j.ijfatigue.2015.03.011
10.1007/BF02586217
10.1016/j.msea.2013.11.072
10.1016/j.actamat.2015.01.075
10.1080/02670836.2015.1133022
10.1080/10402001003790186
10.1179/174328413X13758854832157
10.2355/isijinternational.45.1897
10.1080/10402004.2013.847999
10.1016/j.pmatsci.2013.06.001
10.1520/JAI102543
10.1016/j.msea.2019.138659
10.1016/j.ijplas.2019.02.008
10.1007/BF02671936
10.1016/j.pmatsci.2013.09.002
10.1016/j.ijfatigue.2016.11.006
10.1016/j.ijfatigue.2009.07.002
10.1016/j.ijfatigue.2017.03.027
10.1146/annurev.ms.09.080179.001435
10.1016/j.jmps.2006.08.002
10.1016/j.matchar.2016.12.002
10.1016/j.actamat.2018.05.056
10.1016/j.actamat.2007.09.003
10.1103/PhysRevLett.122.015503
10.1016/j.triboint.2014.03.012
10.1007/s11249-016-0673-z
10.1016/j.actamat.2005.11.034
10.1016/j.triboint.2019.106131
10.1038/srep37226
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ijfatigue.2020.105929
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3452
ExternalDocumentID 10_1016_j_ijfatigue_2020_105929
S0142112320304606
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AABCJ
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABDEX
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
T9H
TN5
VH1
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c381t-43b5325f02e7377b78a54ee69c71576a1f9286c6fed5103b5c38ad3af37a56ae3
IEDL.DBID .~1
ISSN 0142-1123
IngestDate Tue Jul 01 01:54:37 EDT 2025
Thu Apr 24 23:00:51 EDT 2025
Fri Feb 23 02:38:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Rolling contact fatigue
White etching areas (WEA)
Shear localization
Shear band (SB)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-43b5325f02e7377b78a54ee69c71576a1f9286c6fed5103b5c38ad3af37a56ae3
ParticipantIDs crossref_citationtrail_10_1016_j_ijfatigue_2020_105929
crossref_primary_10_1016_j_ijfatigue_2020_105929
elsevier_sciencedirect_doi_10_1016_j_ijfatigue_2020_105929
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationTitle International journal of fatigue
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Morsdorf, Mayweg, Li, Diederichs, Raabe, Herbig (b0130) 2020; 771
Sreeraj, Ramkumar (b0075) 2020; 144
Harada, Mikami, Shibata, Sokai, Yamamoto, Tsubakino (b0185) 2005; 45
Evans (b0085) 2016; 32
Laithy, Wang, Harvey, Vierneusel, Correns, Blass (b0005) 2019; 140
Li, Herbig, Goto, Raabe (b0090) 2017; 123
Manieri, Stadler, Morales-Espejel, Kadiric (b0110) 2019; 120
Solano-Alvarez, Pickering, Peet, Moore, Jaiswal, Bevan (b0040) 2016; 121
Frint, Wagner (b0325) 2019; 176
Gould, Greco (b0055) 2015; 60
Hansson, Melin (b0270) 2008; 75
Oezel, Schwedt, Janitzky, Kelley, Bouchet-Marquis, Pullan (b0015) 2018; 414–415
Holweger, Wolf, Merk, Blass, Goss, Loos (b0135) 2015; 58
Üçel, Kapan, Türkoğlu, Aydıner (b0330) 2019; 118
Sadeghi F, Jalalahmadi B, Slack TS, Raje N, Arakere NK. A review of rolling contact fatigue. J Tribol 2009; 131: 041403-1-041403-15.
Gould, Greco, Stadler, Xiao (b0060) 2017; 117
Šmeļova, Schwedt, Wang, Holweger, Mayer (b0045) 2017; 100
Grabulov, Petrov, Zandbergen (b0030) 2010; 32
Imai, Endo, Dong, Yamamoto (b0080) 2010; 53
Hsieh, Huang, Jang, Tsao (b0305) 2005; 24–25
Su, Li, Yang, Yu, Lu, Wang (b0170) 2020; 160
Wang, Urbassek (b0315) 2013; 61
Grabulov, Ziese, Zandbergen (b0275) 2007; 57
Hosseini, Klement, Yao, Ryttberg (b0295) 2015; 89
Curd, Burnett, Fellowes, Donoghue, Yan, Withers (b0020) 2019; 174
Rogers HC. Adiabatic plastic deformation. Mater Sci 1979; 9: 283-311.
Paladugu, Hyde (b0010) 2020; 134
Xue, Gray (b0230) 2006; 37
Rittel, Landau, Venkert (b0160) 2008; 101
Sakai, Belyakov, Kaibyshev, Miura, Jonas (b0240) 2014; 60
Li, Li, Huang, Suo, Wei (b0200) 2017; 141
Cao, Ni, Liao, Song, Zhu (b0245) 2018; 133
Zhou, Liu, Ma, Lu (b0290) 2008; 56
Li, Zhao, He, Yu (b0165) 2016; 662
Paladugu, Hyde (b0125) 2017; 130
Dorogoy, Rittel (b0180) 2017; 112
Ma (b0300) 2003; 49
Kadin, Sherif (b0120) 2017; 96
Solano-Alvarez, Duff, Smith, Bhadeshia (b0105) 2016; 33
Evans, Richardson, Wang, Wood, Anderson (b0035) 2014; 75
Luyckx (b0140) 2012
Antolovich, Armstrong (b0320) 2014; 59
Shawki, Clifton (b0215) 1989; 8
Li, Su, Shu, Chen (b0175) 2017; 380–381
Warhadpande, Sadeghi, Evans (b0280) 2014; 57
Janakiraman, West, Klit, Jensen (b0050) 2015; 77
Zheng, Dan, Zhang, Lv, Yan, Shan (b0070) 2014; 594
Lai, Stadler (b0115) 2016; 364–365
Kadin, Bertelli, Kirilyuk (b0100) 2017; 61
Li, Suo, Huang, Li, Wang, Liu (b0205) 2016; 105
Fu, Rivera-Díaz-del-Castillo (b0095) 2018; 155
Hahn, Bhargava, Chen (b0340) 1990; 21
McVeigh, Vernerey, Liu, Moran, Olson (b0250) 2007; 55
Landau, Osovski, Venkert, Gärtnerová, Rittel (b0155) 2016; 6
Solano-Alvarez, Bhadeshia (b0025) 2014; 45
Xu, Zhang, Bai, Meyers (b0235) 2008; 39
Kang, Hosseinkhani, Rivera-Díaz-del-Castillo (b0285) 2012; 28
Panin, Egorushkin, Surikova, Pochivalov (b0210) 2017; 703
Ivanisenko, MacLaren, Sauvage, Valiev, Fecht (b0310) 2006; 54
Bechle, Kyriakides (b0335) 2016; 82
Xue, Gray (b0225) 2006; 37
Veger, Slycke (b0065) 2010; 7
Gould, Greco (b0265) 2016; 62
Su, Li, Lu, Shu (b0190) 2017; 105
Ren, Xu, Zhao, Zhao (b0195) 2018; 719
Suresh (b0260) 1998
Xu, Bai, Xue, Shen (b0220) 1996; 44
Guo, Ruan, Zhu, Wei, Chen, Lu (b0150) 2019; 122
Zheng (10.1016/j.ijfatigue.2020.105929_b0070) 2014; 594
Frint (10.1016/j.ijfatigue.2020.105929_b0325) 2019; 176
Rittel (10.1016/j.ijfatigue.2020.105929_b0160) 2008; 101
Luyckx (10.1016/j.ijfatigue.2020.105929_b0140) 2012
Guo (10.1016/j.ijfatigue.2020.105929_b0150) 2019; 122
Holweger (10.1016/j.ijfatigue.2020.105929_b0135) 2015; 58
Kang (10.1016/j.ijfatigue.2020.105929_b0285) 2012; 28
Sreeraj (10.1016/j.ijfatigue.2020.105929_b0075) 2020; 144
Gould (10.1016/j.ijfatigue.2020.105929_b0060) 2017; 117
Xue (10.1016/j.ijfatigue.2020.105929_b0230) 2006; 37
10.1016/j.ijfatigue.2020.105929_b0255
Su (10.1016/j.ijfatigue.2020.105929_b0170) 2020; 160
Imai (10.1016/j.ijfatigue.2020.105929_b0080) 2010; 53
Hahn (10.1016/j.ijfatigue.2020.105929_b0340) 1990; 21
Solano-Alvarez (10.1016/j.ijfatigue.2020.105929_b0040) 2016; 121
Bechle (10.1016/j.ijfatigue.2020.105929_b0335) 2016; 82
Antolovich (10.1016/j.ijfatigue.2020.105929_b0320) 2014; 59
Li (10.1016/j.ijfatigue.2020.105929_b0205) 2016; 105
Landau (10.1016/j.ijfatigue.2020.105929_b0155) 2016; 6
Harada (10.1016/j.ijfatigue.2020.105929_b0185) 2005; 45
Xue (10.1016/j.ijfatigue.2020.105929_b0225) 2006; 37
Gould (10.1016/j.ijfatigue.2020.105929_b0265) 2016; 62
Janakiraman (10.1016/j.ijfatigue.2020.105929_b0050) 2015; 77
Li (10.1016/j.ijfatigue.2020.105929_b0200) 2017; 141
McVeigh (10.1016/j.ijfatigue.2020.105929_b0250) 2007; 55
Xu (10.1016/j.ijfatigue.2020.105929_b0235) 2008; 39
Li (10.1016/j.ijfatigue.2020.105929_b0090) 2017; 123
Ma (10.1016/j.ijfatigue.2020.105929_b0300) 2003; 49
Curd (10.1016/j.ijfatigue.2020.105929_b0020) 2019; 174
Warhadpande (10.1016/j.ijfatigue.2020.105929_b0280) 2014; 57
Dorogoy (10.1016/j.ijfatigue.2020.105929_b0180) 2017; 112
Ren (10.1016/j.ijfatigue.2020.105929_b0195) 2018; 719
Grabulov (10.1016/j.ijfatigue.2020.105929_b0275) 2007; 57
Shawki (10.1016/j.ijfatigue.2020.105929_b0215) 1989; 8
Hsieh (10.1016/j.ijfatigue.2020.105929_b0305) 2005; 24–25
Su (10.1016/j.ijfatigue.2020.105929_b0190) 2017; 105
Manieri (10.1016/j.ijfatigue.2020.105929_b0110) 2019; 120
Laithy (10.1016/j.ijfatigue.2020.105929_b0005) 2019; 140
Panin (10.1016/j.ijfatigue.2020.105929_b0210) 2017; 703
Hansson (10.1016/j.ijfatigue.2020.105929_b0270) 2008; 75
Üçel (10.1016/j.ijfatigue.2020.105929_b0330) 2019; 118
Cao (10.1016/j.ijfatigue.2020.105929_b0245) 2018; 133
Evans (10.1016/j.ijfatigue.2020.105929_b0035) 2014; 75
Solano-Alvarez (10.1016/j.ijfatigue.2020.105929_b0105) 2016; 33
Sakai (10.1016/j.ijfatigue.2020.105929_b0240) 2014; 60
Wang (10.1016/j.ijfatigue.2020.105929_b0315) 2013; 61
Veger (10.1016/j.ijfatigue.2020.105929_b0065) 2010; 7
Li (10.1016/j.ijfatigue.2020.105929_b0175) 2017; 380–381
Xu (10.1016/j.ijfatigue.2020.105929_b0220) 1996; 44
Fu (10.1016/j.ijfatigue.2020.105929_b0095) 2018; 155
Evans (10.1016/j.ijfatigue.2020.105929_b0085) 2016; 32
Oezel (10.1016/j.ijfatigue.2020.105929_b0015) 2018; 414–415
Li (10.1016/j.ijfatigue.2020.105929_b0165) 2016; 662
Zhou (10.1016/j.ijfatigue.2020.105929_b0290) 2008; 56
Hosseini (10.1016/j.ijfatigue.2020.105929_b0295) 2015; 89
Morsdorf (10.1016/j.ijfatigue.2020.105929_b0130) 2020; 771
Šmeļova (10.1016/j.ijfatigue.2020.105929_b0045) 2017; 100
Paladugu (10.1016/j.ijfatigue.2020.105929_b0125) 2017; 130
Lai (10.1016/j.ijfatigue.2020.105929_b0115) 2016; 364–365
Suresh (10.1016/j.ijfatigue.2020.105929_b0260) 1998
Kadin (10.1016/j.ijfatigue.2020.105929_b0100) 2017; 61
Ivanisenko (10.1016/j.ijfatigue.2020.105929_b0310) 2006; 54
Gould (10.1016/j.ijfatigue.2020.105929_b0055) 2015; 60
Kadin (10.1016/j.ijfatigue.2020.105929_b0120) 2017; 96
Paladugu (10.1016/j.ijfatigue.2020.105929_b0010) 2020; 134
Grabulov (10.1016/j.ijfatigue.2020.105929_b0030) 2010; 32
10.1016/j.ijfatigue.2020.105929_b0145
Solano-Alvarez (10.1016/j.ijfatigue.2020.105929_b0025) 2014; 45
References_xml – volume: 118
  start-page: 233
  year: 2019
  end-page: 251
  ident: b0330
  article-title: In situ investigation of strain heterogeneity and microstructural shear bands in rolled Magnesium AZ31
  publication-title: Int J Plasticity
– volume: 121
  start-page: 215
  year: 2016
  end-page: 226
  ident: b0040
  article-title: Soft novel form of white-etching matter and ductile failure of carbide-free bainitic steels under rolling contact stresses
  publication-title: Acta Mater
– volume: 123
  start-page: 349
  year: 2017
  end-page: 353
  ident: b0090
  article-title: Atomic scale characterization of white etching area and its adjacent matrix in a martensitic 100Cr6 bearing steel
  publication-title: Mater Charact
– volume: 105
  start-page: 160
  year: 2017
  end-page: 168
  ident: b0190
  article-title: Deformation-induced amorphization and austenitization in white etching area of a martensite bearing steel under rolling contact fatigue
  publication-title: Int J Fatigue
– volume: 39
  start-page: 811
  year: 2008
  end-page: 843
  ident: b0235
  article-title: Shear localization in dynamic deformation: microstructural evolution
  publication-title: Metall Mater Trans A
– volume: 62
  start-page: 1
  year: 2016
  end-page: 14
  ident: b0265
  article-title: Investigating the process of white etching crack initiation in bearing steel
  publication-title: Tribol Lett
– volume: 56
  start-page: 78
  year: 2008
  end-page: 87
  ident: b0290
  article-title: Strain-induced refinement in a steel with spheroidal cementite subjected to surface mechanical attrition treatment
  publication-title: Acta Mater
– volume: 49
  start-page: 941
  year: 2003
  end-page: 946
  ident: b0300
  article-title: Amorphization in mechanically driven material systems
  publication-title: Scripta Mater
– volume: 28
  start-page: 44
  year: 2012
  end-page: 49
  ident: b0285
  article-title: Rolling contact fatigue in bearings: multiscale overview
  publication-title: Mater Sci Technol
– volume: 75
  start-page: 87
  year: 2014
  end-page: 97
  ident: b0035
  article-title: Confirming subsurface initiation at non-metallic inclusions as one mechanism for white etching crack (WEC) formation
  publication-title: Tribol Int
– volume: 32
  start-page: 1
  year: 2016
  end-page: 37
  ident: b0085
  article-title: An updated review: White etching cracks (WECs) and axial cracks in wind turbine gearbox bearings
  publication-title: Mater Sci Technol
– volume: 7
  start-page: 1
  year: 2010
  end-page: 12
  ident: b0065
  article-title: The role of hydrogen on rolling contact fatigue response of rolling element bearings
  publication-title: J ASTM Int
– volume: 662
  start-page: 46
  year: 2016
  end-page: 53
  ident: b0165
  article-title: Microstructural evolution associated with shear location of AISI 52100 under high strain rate loading
  publication-title: Mater Sci Eng A
– volume: 140
  year: 2019
  ident: b0005
  article-title: Further understanding of rolling contact fatigue in rolling element bearings - A review
  publication-title: Tribol Int
– volume: 176
  start-page: 306
  year: 2019
  end-page: 317
  ident: b0325
  article-title: Strain partitioning by recurrent shear localization during equal-channel angular pressing of an AA6060 aluminum alloy
  publication-title: Acta Mater
– volume: 380–381
  start-page: 146
  year: 2017
  end-page: 153
  ident: b0175
  article-title: Microstructural evolution in bearing steel under rolling contact fatigue
  publication-title: Wear
– volume: 45
  start-page: 4916
  year: 2014
  end-page: 4931
  ident: b0025
  article-title: White-etching matter in bearing steels. Part II: distinguishing cause and effect in bearing steel failure
  publication-title: Metall Mater Trans A
– volume: 57
  start-page: 66
  year: 2014
  end-page: 76
  ident: b0280
  article-title: Microstructural alterations in bearing steels under rolling contact fatigue Part 2-Diffusion-based modeling approach
  publication-title: Tribol Trans
– volume: 364–365
  start-page: 244
  year: 2016
  end-page: 256
  ident: b0115
  article-title: Investigation on the mechanisms of white etching crack (WEC) formation in rolling contact fatigue and identification of a root cause for bearing premature failure
  publication-title: Wear
– volume: 60
  start-page: 130
  year: 2014
  end-page: 207
  ident: b0240
  article-title: Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions
  publication-title: Prog Mater Sci
– volume: 82
  start-page: 1
  year: 2016
  end-page: 31
  ident: b0335
  article-title: Evolution of localization in pseudoelastic NiTi tubes under biaxial stress states
  publication-title: Int J Plasticity
– volume: 155
  start-page: 43
  year: 2018
  end-page: 55
  ident: b0095
  article-title: A unified theory for microstructural alterations in bearing steels under rolling contact fatigue
  publication-title: Acta Mater
– volume: 96
  start-page: 114
  year: 2017
  end-page: 126
  ident: b0120
  article-title: Energy dissipation at rubbing crack faces in rolling contact fatigue as the mechanism of white etching area formation
  publication-title: Int J Fatigue
– volume: 771
  year: 2020
  ident: b0130
  article-title: Moving cracks form white etching areas during rolling contact fatigue in bearings
  publication-title: Mater Sci Eng A
– volume: 58
  start-page: 59
  year: 2015
  end-page: 69
  ident: b0135
  article-title: White etching crack root cause investigations
  publication-title: Tribol Trans
– volume: 141
  start-page: 163
  year: 2017
  end-page: 182
  ident: b0200
  article-title: On adiabatic shear localization in nanostructured face-centered cubic alloys with different stacking fault energies
  publication-title: Acta Mater
– volume: 61
  start-page: 705
  year: 2017
  end-page: 712
  ident: b0100
  article-title: Magnetooptical analysis of the subsurface region in a bearing ring subjected to rolling contact fatigue
  publication-title: Tribol Trans
– year: 1998
  ident: b0260
  article-title: Fatigue of materials
– volume: 112
  start-page: 143
  year: 2017
  end-page: 153
  ident: b0180
  article-title: Dynamic large strain characterization of tantalum using shear-compression and shear-tension testing
  publication-title: Mech Mater
– volume: 21
  start-page: 653
  year: 1990
  end-page: 665
  ident: b0340
  article-title: The cyclic stress-strain properties, hysteresis loop shape and kinematic hardening of two high-strength bearing steels
  publication-title: Metall Mater Trans A
– volume: 32
  start-page: 576
  year: 2010
  end-page: 583
  ident: b0030
  article-title: EBSD investigation of the crack initiation and TEM/FIB analyses of the microstructural changes around the cracks formed under Rolling Contact Fatigue (RCF)
  publication-title: Int J Fatigue
– reference: Sadeghi F, Jalalahmadi B, Slack TS, Raje N, Arakere NK. A review of rolling contact fatigue. J Tribol 2009; 131: 041403-1-041403-15.
– volume: 55
  start-page: 225
  year: 2007
  end-page: 244
  ident: b0250
  article-title: An interactive micro-void shear localization mechanism in high strength steels
  publication-title: J Mech Phys Solids
– volume: 24–25
  start-page: 351
  year: 2005
  end-page: 354
  ident: b0305
  article-title: Transformation between nanocrystalline and amorphous phases in Zr-X alloys during accumulative roll bonding
  publication-title: J Metastable Nanocryst Mater
– volume: 117
  start-page: 417
  year: 2017
  end-page: 429
  ident: b0060
  article-title: An analysis of premature cracking associated with microstructural alterations in an AISI 52100 failed wind turbine bearing using X-ray tomography
  publication-title: Mater Des
– volume: 101
  year: 2008
  ident: b0160
  article-title: Dynamic recrystallization as a potential cause for adiabatic shear failure
  publication-title: Phys Rev Lett
– volume: 77
  start-page: 128
  year: 2015
  end-page: 140
  ident: b0050
  article-title: Observations of the effect of varying Hoop stress on fatigue failure and the formation of white etching areas in hydrogen infused 100Cr6 steel rings
  publication-title: Int J Fatigue
– volume: 53
  start-page: 764
  year: 2010
  end-page: 770
  ident: b0080
  article-title: Study on rolling contact fatigue in hydrogen environment at a contact pressure below basic static load capacity
  publication-title: Tribol Trans
– volume: 45
  start-page: 1897
  year: 2005
  end-page: 1902
  ident: b0185
  article-title: Microstructural changes and crack initiation with white etching area formation under rolling/sliding contact in bearing steel
  publication-title: ISIJ Int
– volume: 37
  start-page: 2447
  year: 2006
  end-page: 2457
  ident: b0230
  article-title: Development of adiabatic shear bands in annealed 316L stainless steel Part II. TEM studies of the evolution of microstructure during deformation localization
  publication-title: Metall Mater Trans A
– volume: 719
  start-page: 178
  year: 2018
  end-page: 191
  ident: b0195
  article-title: Dynamic mechanical behaviors and failure thresholds of ultra-high strength low-alloy steel under strain rate 0.001/s to 106/s
  publication-title: Mater Sci Eng A
– reference: Rogers HC. Adiabatic plastic deformation. Mater Sci 1979; 9: 283-311.
– volume: 144
  year: 2020
  ident: b0075
  article-title: Comprehensive analysis of effects of dynamic load frequency and hydrogenation to instigate White Etching Areas (WEAs) formation under severe sliding condition of bearing steel
  publication-title: Tribol Int
– volume: 59
  start-page: 1
  year: 2014
  end-page: 160
  ident: b0320
  article-title: Plastic strain localization in metals: origins and consequences
  publication-title: Prog Mater Sci
– start-page: 1
  year: 2012
  end-page: 25
  ident: b0140
  article-title: White etching crack failure mode in roller bearings: from observation via analysis to understanding and an industrial solution
  publication-title: Rolling Element Bearings
– volume: 122
  year: 2019
  ident: b0150
  article-title: Temperature rise associated with adiabatic shear band: causality clarified
  publication-title: Phys Rev Lett
– volume: 6
  start-page: 37226
  year: 2016
  ident: b0155
  article-title: The genesis of adiabatic shear bands
  publication-title: Sci Rep
– volume: 133
  start-page: 1
  year: 2018
  end-page: 59
  ident: b0245
  article-title: Structural evolutions of metallic materials processed by severe plastic deformation
  publication-title: Mater Sci Eng R
– volume: 89
  start-page: 258
  year: 2015
  end-page: 267
  ident: b0295
  article-title: Formation mechanisms of white layers induced by hard turning of AISI 52100 steel
  publication-title: Acta Mater
– volume: 8
  start-page: 13
  year: 1989
  end-page: 43
  ident: b0215
  article-title: Shear band formation in thermal viscoplastic materials
  publication-title: Mech Mater
– volume: 54
  start-page: 1659
  year: 2006
  end-page: 1669
  ident: b0310
  article-title: Shear-induced α→γ transformation in nanoscale Fe–C composite
  publication-title: Acta Mater
– volume: 594
  start-page: 364
  year: 2014
  end-page: 371
  ident: b0070
  article-title: Effects of retained austenite and hydrogen on the rolling contact fatigue behaviours of carbide-free bainitic steel
  publication-title: Mater Sci Eng A
– volume: 160
  year: 2020
  ident: b0170
  article-title: Shear instability and considerably localized melting in quasi-static compression
  publication-title: Mater Charact
– volume: 60
  start-page: 1
  year: 2015
  end-page: 13
  ident: b0055
  article-title: The influence of sliding and contact severity on the generation of white etching cracks
  publication-title: Tribol Lett
– volume: 703
  start-page: 451
  year: 2017
  end-page: 460
  ident: b0210
  article-title: Shear bands as translation-rotation modes of plastic deformation in solids under alternate bending
  publication-title: Mater Sci Eng A
– volume: 33
  start-page: 307
  year: 2016
  end-page: 310
  ident: b0105
  article-title: Elucidating white-etching matter through high-strain rate tensile testing
  publication-title: Mater Sci Technol
– volume: 75
  start-page: 1400
  year: 2008
  end-page: 1411
  ident: b0270
  article-title: Simulation of simplified zigzag crack paths emerging during fatigue crack growth
  publication-title: Eng Fract Mech
– volume: 174
  start-page: 300
  year: 2019
  end-page: 309
  ident: b0020
  article-title: The heterogenous distribution of white etching matter (WEM) around subsurface cracks in bearing steels
  publication-title: Acta Mater
– volume: 61
  start-page: 5979
  year: 2013
  end-page: 5987
  ident: b0315
  article-title: Molecular dynamics study of the α–γ phase transition in Fe induced by shear deformation
  publication-title: Acta Mater
– volume: 134
  year: 2020
  ident: b0010
  article-title: Material composition and heat treatment related influences in resisting rolling contact fatigue under WEC damage conditions
  publication-title: Int J Fatigue
– volume: 414–415
  start-page: 352
  year: 2018
  end-page: 365
  ident: b0015
  article-title: Formation of white etching areas in SAE 52100 bearing steel under rolling contact fatigue – Influence of diffusible hydrogen
  publication-title: Wear
– volume: 44
  start-page: 1917
  year: 1996
  end-page: 1926
  ident: b0220
  article-title: Formation, microstructure and development of the localized shear deformation in low-carbon steels
  publication-title: Acta Mater
– volume: 120
  start-page: 107
  year: 2019
  end-page: 133
  ident: b0110
  article-title: The origins of white etching cracks and their significance to rolling bearing failures
  publication-title: Int J Fatigue
– volume: 37
  start-page: 2435
  year: 2006
  end-page: 2446
  ident: b0225
  article-title: Development of adiabatic shear bands in annealed 316L stainless steel: Part I. correlation between evolving microstructure and mechanical behavior
  publication-title: Metall Mater Trans A
– volume: 100
  start-page: 148
  year: 2017
  end-page: 158
  ident: b0045
  article-title: Microstructural changes in White Etching Cracks (WECs) and their relationship with those in Dark Etching Region (DER) and White Etching Bands (WEBs) due to Rolling Contact Fatigue (RCF)
  publication-title: Int J Fatigue
– volume: 57
  start-page: 635
  year: 2007
  end-page: 638
  ident: b0275
  article-title: TEM/SEM investigation of microstructural changes within the white etching area under rolling contact fatigue and 3-D crack reconstruction by focused ion beam
  publication-title: Scripta Mater
– volume: 105
  start-page: 262
  year: 2016
  end-page: 267
  ident: b0205
  article-title: Adiabatic shear localization in nanostructured face centered cubic metals under uniaxial compression
  publication-title: Mater Des
– volume: 130
  start-page: 219
  year: 2017
  end-page: 222
  ident: b0125
  article-title: White etching matter promoted by intergranular embrittlement
  publication-title: Scripta Mater
– volume: 703
  start-page: 451
  year: 2017
  ident: 10.1016/j.ijfatigue.2020.105929_b0210
  article-title: Shear bands as translation-rotation modes of plastic deformation in solids under alternate bending
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2017.07.063
– volume: 133
  start-page: 1
  year: 2018
  ident: 10.1016/j.ijfatigue.2020.105929_b0245
  article-title: Structural evolutions of metallic materials processed by severe plastic deformation
  publication-title: Mater Sci Eng R
  doi: 10.1016/j.mser.2018.06.001
– volume: 8
  start-page: 13
  year: 1989
  ident: 10.1016/j.ijfatigue.2020.105929_b0215
  article-title: Shear band formation in thermal viscoplastic materials
  publication-title: Mech Mater
  doi: 10.1016/0167-6636(89)90003-3
– volume: 61
  start-page: 705
  year: 2017
  ident: 10.1016/j.ijfatigue.2020.105929_b0100
  article-title: Magnetooptical analysis of the subsurface region in a bearing ring subjected to rolling contact fatigue
  publication-title: Tribol Trans
  doi: 10.1080/10402004.2017.1398848
– volume: 105
  start-page: 262
  year: 2016
  ident: 10.1016/j.ijfatigue.2020.105929_b0205
  article-title: Adiabatic shear localization in nanostructured face centered cubic metals under uniaxial compression
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2016.05.081
– volume: 120
  start-page: 107
  year: 2019
  ident: 10.1016/j.ijfatigue.2020.105929_b0110
  article-title: The origins of white etching cracks and their significance to rolling bearing failures
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2018.10.023
– volume: 364–365
  start-page: 244
  year: 2016
  ident: 10.1016/j.ijfatigue.2020.105929_b0115
  article-title: Investigation on the mechanisms of white etching crack (WEC) formation in rolling contact fatigue and identification of a root cause for bearing premature failure
  publication-title: Wear
  doi: 10.1016/j.wear.2016.08.001
– volume: 141
  start-page: 163
  year: 2017
  ident: 10.1016/j.ijfatigue.2020.105929_b0200
  article-title: On adiabatic shear localization in nanostructured face-centered cubic alloys with different stacking fault energies
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2017.09.022
– volume: 45
  start-page: 4916
  year: 2014
  ident: 10.1016/j.ijfatigue.2020.105929_b0025
  article-title: White-etching matter in bearing steels. Part II: distinguishing cause and effect in bearing steel failure
  publication-title: Metall Mater Trans A
  doi: 10.1007/s11661-014-2431-x
– volume: 380–381
  start-page: 146
  year: 2017
  ident: 10.1016/j.ijfatigue.2020.105929_b0175
  article-title: Microstructural evolution in bearing steel under rolling contact fatigue
  publication-title: Wear
  doi: 10.1016/j.wear.2017.03.018
– volume: 39
  start-page: 811
  year: 2008
  ident: 10.1016/j.ijfatigue.2020.105929_b0235
  article-title: Shear localization in dynamic deformation: microstructural evolution
  publication-title: Metall Mater Trans A
  doi: 10.1007/s11661-007-9431-z
– volume: 140
  year: 2019
  ident: 10.1016/j.ijfatigue.2020.105929_b0005
  article-title: Further understanding of rolling contact fatigue in rolling element bearings - A review
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2019.105849
– volume: 58
  start-page: 59
  year: 2015
  ident: 10.1016/j.ijfatigue.2020.105929_b0135
  article-title: White etching crack root cause investigations
  publication-title: Tribol Trans
  doi: 10.1080/10402004.2014.942938
– volume: 105
  start-page: 160
  year: 2017
  ident: 10.1016/j.ijfatigue.2020.105929_b0190
  article-title: Deformation-induced amorphization and austenitization in white etching area of a martensite bearing steel under rolling contact fatigue
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2017.08.022
– volume: 37
  start-page: 2447
  year: 2006
  ident: 10.1016/j.ijfatigue.2020.105929_b0230
  article-title: Development of adiabatic shear bands in annealed 316L stainless steel Part II. TEM studies of the evolution of microstructure during deformation localization
  publication-title: Metall Mater Trans A
  doi: 10.1007/BF02586218
– volume: 75
  start-page: 1400
  year: 2008
  ident: 10.1016/j.ijfatigue.2020.105929_b0270
  article-title: Simulation of simplified zigzag crack paths emerging during fatigue crack growth
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2007.07.002
– volume: 134
  year: 2020
  ident: 10.1016/j.ijfatigue.2020.105929_b0010
  article-title: Material composition and heat treatment related influences in resisting rolling contact fatigue under WEC damage conditions
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2020.105476
– volume: 112
  start-page: 143
  year: 2017
  ident: 10.1016/j.ijfatigue.2020.105929_b0180
  article-title: Dynamic large strain characterization of tantalum using shear-compression and shear-tension testing
  publication-title: Mech Mater
  doi: 10.1016/j.mechmat.2017.06.003
– volume: 82
  start-page: 1
  year: 2016
  ident: 10.1016/j.ijfatigue.2020.105929_b0335
  article-title: Evolution of localization in pseudoelastic NiTi tubes under biaxial stress states
  publication-title: Int J Plasticity
  doi: 10.1016/j.ijplas.2016.01.017
– volume: 61
  start-page: 5979
  year: 2013
  ident: 10.1016/j.ijfatigue.2020.105929_b0315
  article-title: Molecular dynamics study of the α–γ phase transition in Fe induced by shear deformation
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2013.05.045
– volume: 160
  year: 2020
  ident: 10.1016/j.ijfatigue.2020.105929_b0170
  article-title: Shear instability and considerably localized melting in quasi-static compression
  publication-title: Mater Charact
  doi: 10.1016/j.matchar.2019.110081
– volume: 121
  start-page: 215
  year: 2016
  ident: 10.1016/j.ijfatigue.2020.105929_b0040
  article-title: Soft novel form of white-etching matter and ductile failure of carbide-free bainitic steels under rolling contact stresses
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2016.09.012
– volume: 33
  start-page: 307
  year: 2016
  ident: 10.1016/j.ijfatigue.2020.105929_b0105
  article-title: Elucidating white-etching matter through high-strain rate tensile testing
  publication-title: Mater Sci Technol
  doi: 10.1080/02670836.2016.1195981
– volume: 101
  year: 2008
  ident: 10.1016/j.ijfatigue.2020.105929_b0160
  article-title: Dynamic recrystallization as a potential cause for adiabatic shear failure
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.101.165501
– volume: 44
  start-page: 1917
  year: 1996
  ident: 10.1016/j.ijfatigue.2020.105929_b0220
  article-title: Formation, microstructure and development of the localized shear deformation in low-carbon steels
  publication-title: Acta Mater
  doi: 10.1016/1359-6454(95)00306-1
– volume: 414–415
  start-page: 352
  year: 2018
  ident: 10.1016/j.ijfatigue.2020.105929_b0015
  article-title: Formation of white etching areas in SAE 52100 bearing steel under rolling contact fatigue – Influence of diffusible hydrogen
  publication-title: Wear
  doi: 10.1016/j.wear.2018.08.022
– volume: 49
  start-page: 941
  year: 2003
  ident: 10.1016/j.ijfatigue.2020.105929_b0300
  article-title: Amorphization in mechanically driven material systems
  publication-title: Scripta Mater
  doi: 10.1016/S1359-6462(03)00477-9
– start-page: 1
  year: 2012
  ident: 10.1016/j.ijfatigue.2020.105929_b0140
  article-title: White etching crack failure mode in roller bearings: from observation via analysis to understanding and an industrial solution
– volume: 60
  start-page: 1
  year: 2015
  ident: 10.1016/j.ijfatigue.2020.105929_b0055
  article-title: The influence of sliding and contact severity on the generation of white etching cracks
  publication-title: Tribol Lett
  doi: 10.1007/s11249-015-0602-6
– volume: 130
  start-page: 219
  year: 2017
  ident: 10.1016/j.ijfatigue.2020.105929_b0125
  article-title: White etching matter promoted by intergranular embrittlement
  publication-title: Scripta Mater
  doi: 10.1016/j.scriptamat.2016.11.030
– volume: 174
  start-page: 300
  year: 2019
  ident: 10.1016/j.ijfatigue.2020.105929_b0020
  article-title: The heterogenous distribution of white etching matter (WEM) around subsurface cracks in bearing steels
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2019.05.052
– ident: 10.1016/j.ijfatigue.2020.105929_b0255
  doi: 10.1115/1.3209132
– volume: 176
  start-page: 306
  year: 2019
  ident: 10.1016/j.ijfatigue.2020.105929_b0325
  article-title: Strain partitioning by recurrent shear localization during equal-channel angular pressing of an AA6060 aluminum alloy
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2019.07.009
– year: 1998
  ident: 10.1016/j.ijfatigue.2020.105929_b0260
– volume: 117
  start-page: 417
  year: 2017
  ident: 10.1016/j.ijfatigue.2020.105929_b0060
  article-title: An analysis of premature cracking associated with microstructural alterations in an AISI 52100 failed wind turbine bearing using X-ray tomography
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2016.12.089
– volume: 719
  start-page: 178
  year: 2018
  ident: 10.1016/j.ijfatigue.2020.105929_b0195
  article-title: Dynamic mechanical behaviors and failure thresholds of ultra-high strength low-alloy steel under strain rate 0.001/s to 106/s
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2018.02.019
– volume: 662
  start-page: 46
  year: 2016
  ident: 10.1016/j.ijfatigue.2020.105929_b0165
  article-title: Microstructural evolution associated with shear location of AISI 52100 under high strain rate loading
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2016.03.050
– volume: 57
  start-page: 635
  year: 2007
  ident: 10.1016/j.ijfatigue.2020.105929_b0275
  article-title: TEM/SEM investigation of microstructural changes within the white etching area under rolling contact fatigue and 3-D crack reconstruction by focused ion beam
  publication-title: Scripta Mater
  doi: 10.1016/j.scriptamat.2007.06.024
– volume: 77
  start-page: 128
  year: 2015
  ident: 10.1016/j.ijfatigue.2020.105929_b0050
  article-title: Observations of the effect of varying Hoop stress on fatigue failure and the formation of white etching areas in hydrogen infused 100Cr6 steel rings
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2015.03.011
– volume: 37
  start-page: 2435
  year: 2006
  ident: 10.1016/j.ijfatigue.2020.105929_b0225
  article-title: Development of adiabatic shear bands in annealed 316L stainless steel: Part I. correlation between evolving microstructure and mechanical behavior
  publication-title: Metall Mater Trans A
  doi: 10.1007/BF02586217
– volume: 594
  start-page: 364
  year: 2014
  ident: 10.1016/j.ijfatigue.2020.105929_b0070
  article-title: Effects of retained austenite and hydrogen on the rolling contact fatigue behaviours of carbide-free bainitic steel
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2013.11.072
– volume: 89
  start-page: 258
  year: 2015
  ident: 10.1016/j.ijfatigue.2020.105929_b0295
  article-title: Formation mechanisms of white layers induced by hard turning of AISI 52100 steel
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2015.01.075
– volume: 24–25
  start-page: 351
  year: 2005
  ident: 10.1016/j.ijfatigue.2020.105929_b0305
  article-title: Transformation between nanocrystalline and amorphous phases in Zr-X alloys during accumulative roll bonding
  publication-title: J Metastable Nanocryst Mater
– volume: 32
  start-page: 1
  year: 2016
  ident: 10.1016/j.ijfatigue.2020.105929_b0085
  article-title: An updated review: White etching cracks (WECs) and axial cracks in wind turbine gearbox bearings
  publication-title: Mater Sci Technol
  doi: 10.1080/02670836.2015.1133022
– volume: 53
  start-page: 764
  year: 2010
  ident: 10.1016/j.ijfatigue.2020.105929_b0080
  article-title: Study on rolling contact fatigue in hydrogen environment at a contact pressure below basic static load capacity
  publication-title: Tribol Trans
  doi: 10.1080/10402001003790186
– volume: 28
  start-page: 44
  year: 2012
  ident: 10.1016/j.ijfatigue.2020.105929_b0285
  article-title: Rolling contact fatigue in bearings: multiscale overview
  publication-title: Mater Sci Technol
  doi: 10.1179/174328413X13758854832157
– volume: 45
  start-page: 1897
  year: 2005
  ident: 10.1016/j.ijfatigue.2020.105929_b0185
  article-title: Microstructural changes and crack initiation with white etching area formation under rolling/sliding contact in bearing steel
  publication-title: ISIJ Int
  doi: 10.2355/isijinternational.45.1897
– volume: 57
  start-page: 66
  year: 2014
  ident: 10.1016/j.ijfatigue.2020.105929_b0280
  article-title: Microstructural alterations in bearing steels under rolling contact fatigue Part 2-Diffusion-based modeling approach
  publication-title: Tribol Trans
  doi: 10.1080/10402004.2013.847999
– volume: 59
  start-page: 1
  year: 2014
  ident: 10.1016/j.ijfatigue.2020.105929_b0320
  article-title: Plastic strain localization in metals: origins and consequences
  publication-title: Prog Mater Sci
  doi: 10.1016/j.pmatsci.2013.06.001
– volume: 7
  start-page: 1
  year: 2010
  ident: 10.1016/j.ijfatigue.2020.105929_b0065
  article-title: The role of hydrogen on rolling contact fatigue response of rolling element bearings
  publication-title: J ASTM Int
  doi: 10.1520/JAI102543
– volume: 771
  year: 2020
  ident: 10.1016/j.ijfatigue.2020.105929_b0130
  article-title: Moving cracks form white etching areas during rolling contact fatigue in bearings
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2019.138659
– volume: 118
  start-page: 233
  year: 2019
  ident: 10.1016/j.ijfatigue.2020.105929_b0330
  article-title: In situ investigation of strain heterogeneity and microstructural shear bands in rolled Magnesium AZ31
  publication-title: Int J Plasticity
  doi: 10.1016/j.ijplas.2019.02.008
– volume: 21
  start-page: 653
  year: 1990
  ident: 10.1016/j.ijfatigue.2020.105929_b0340
  article-title: The cyclic stress-strain properties, hysteresis loop shape and kinematic hardening of two high-strength bearing steels
  publication-title: Metall Mater Trans A
  doi: 10.1007/BF02671936
– volume: 60
  start-page: 130
  year: 2014
  ident: 10.1016/j.ijfatigue.2020.105929_b0240
  article-title: Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions
  publication-title: Prog Mater Sci
  doi: 10.1016/j.pmatsci.2013.09.002
– volume: 96
  start-page: 114
  year: 2017
  ident: 10.1016/j.ijfatigue.2020.105929_b0120
  article-title: Energy dissipation at rubbing crack faces in rolling contact fatigue as the mechanism of white etching area formation
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2016.11.006
– volume: 32
  start-page: 576
  year: 2010
  ident: 10.1016/j.ijfatigue.2020.105929_b0030
  article-title: EBSD investigation of the crack initiation and TEM/FIB analyses of the microstructural changes around the cracks formed under Rolling Contact Fatigue (RCF)
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2009.07.002
– volume: 100
  start-page: 148
  year: 2017
  ident: 10.1016/j.ijfatigue.2020.105929_b0045
  article-title: Microstructural changes in White Etching Cracks (WECs) and their relationship with those in Dark Etching Region (DER) and White Etching Bands (WEBs) due to Rolling Contact Fatigue (RCF)
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2017.03.027
– ident: 10.1016/j.ijfatigue.2020.105929_b0145
  doi: 10.1146/annurev.ms.09.080179.001435
– volume: 55
  start-page: 225
  year: 2007
  ident: 10.1016/j.ijfatigue.2020.105929_b0250
  article-title: An interactive micro-void shear localization mechanism in high strength steels
  publication-title: J Mech Phys Solids
  doi: 10.1016/j.jmps.2006.08.002
– volume: 123
  start-page: 349
  year: 2017
  ident: 10.1016/j.ijfatigue.2020.105929_b0090
  article-title: Atomic scale characterization of white etching area and its adjacent matrix in a martensitic 100Cr6 bearing steel
  publication-title: Mater Charact
  doi: 10.1016/j.matchar.2016.12.002
– volume: 155
  start-page: 43
  year: 2018
  ident: 10.1016/j.ijfatigue.2020.105929_b0095
  article-title: A unified theory for microstructural alterations in bearing steels under rolling contact fatigue
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2018.05.056
– volume: 56
  start-page: 78
  year: 2008
  ident: 10.1016/j.ijfatigue.2020.105929_b0290
  article-title: Strain-induced refinement in a steel with spheroidal cementite subjected to surface mechanical attrition treatment
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2007.09.003
– volume: 122
  year: 2019
  ident: 10.1016/j.ijfatigue.2020.105929_b0150
  article-title: Temperature rise associated with adiabatic shear band: causality clarified
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.122.015503
– volume: 75
  start-page: 87
  year: 2014
  ident: 10.1016/j.ijfatigue.2020.105929_b0035
  article-title: Confirming subsurface initiation at non-metallic inclusions as one mechanism for white etching crack (WEC) formation
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2014.03.012
– volume: 62
  start-page: 1
  year: 2016
  ident: 10.1016/j.ijfatigue.2020.105929_b0265
  article-title: Investigating the process of white etching crack initiation in bearing steel
  publication-title: Tribol Lett
  doi: 10.1007/s11249-016-0673-z
– volume: 54
  start-page: 1659
  year: 2006
  ident: 10.1016/j.ijfatigue.2020.105929_b0310
  article-title: Shear-induced α→γ transformation in nanoscale Fe–C composite
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2005.11.034
– volume: 144
  year: 2020
  ident: 10.1016/j.ijfatigue.2020.105929_b0075
  article-title: Comprehensive analysis of effects of dynamic load frequency and hydrogenation to instigate White Etching Areas (WEAs) formation under severe sliding condition of bearing steel
  publication-title: Tribol Int
  doi: 10.1016/j.triboint.2019.106131
– volume: 6
  start-page: 37226
  year: 2016
  ident: 10.1016/j.ijfatigue.2020.105929_b0155
  article-title: The genesis of adiabatic shear bands
  publication-title: Sci Rep
  doi: 10.1038/srep37226
SSID ssj0009075
Score 2.412888
Snippet •Shear band does not have to adiabatic as it can form under quasi static loading.•White etching area and shear band are suggested to be shear...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105929
SubjectTerms Rolling contact fatigue
Shear band (SB)
Shear localization
White etching areas (WEA)
Title Revealing the shear band origin of white etching area in rolling contact fatigue of bearing steel
URI https://dx.doi.org/10.1016/j.ijfatigue.2020.105929
Volume 142
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI6mcYED4inGY8qBa1nX5rFwmyamAWIHxKTdqjRNpE3TNo0CN347dtOOTULagVvV2FXqWPbnxLEJubWhMkyEMuBWioA5JQPFsCVgBuaSGyONwsvJL0MxGLGnMR_XSK-6C4NplaXt9za9sNblm1YpzdZyMmlhWhJEL4AI_Okelt1mTKKW333_pnkoX2wXiQOk3srxmkwd_D9ukUQAm7DnrSqw5h8easPr9I_IYQkXadfP6JjU7PyEHGwUETwl-tV-AtqDZwpgjr5ji2qa6nlGfdMrunD0Cw8LKK4QkmkAihQGVr4gN8V0dW1yWs4SGVL4CA6BDtjZGRn1H956g6BsnBAYcMB5wOKUxxF3YWRlLGUqO5oza4Uysg3xhW47FXWEEc5mWFAv5cCms1i7WGoutI3PSX2-mNsLQjkzXCuhRRpbCMWk1gJixgzcnuooJ2SDiEpYiSmrimNzi1lSpY9Nk7WUE5Ry4qXcIOGacekLa-xmua9WI9nSkQTM_y7my_8wX5H9CHNZiq2Xa1LPVx_2BsBInjYLbWuSve7j82D4Az213rY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb8IwDLYYHLYdpj019sxh1wpom4TshtAQjMdhAolblaapBJoKYt3292fTloE0icNuVRJXkRPZnxPnM8CTrSvji7p0uJXC8WMlHeVTScAIzSU3RhpFj5OHI9Gd-K9TPi1Bu3gLQ2mVue3PbPraWucttVybteVsVqO0JIxeEBFkt3viACrETsXLUGn1-t3RL_duxrdL4x0S2Enzms1jVAGdkriInKjsrVrDzT-c1Jbj6ZzCSY4YWSub1BmUbHIOx1s8gheg3-wXAj78Zojn2AdVqWahTiKW1b1ii5h9030Bo0WiYRqxIsOOVcbJzShjXZuU5bMkgRB_Ql24Dez7JUw6L-N218lrJzgGfXDq-F7IPZfHdddKT8pQNjX3rRXKyAaGGLoRK7cpjIhtRJx6IUcxHXk69qTmQlvvCsrJIrHXwLhvuFZCi9CzGI1JrQWGjRF6PtVUsZBVEIWyApMTi1N9i_egyCCbBxstB6TlINNyFeobwWXGrbFf5LlYjWBnmwToAfYJ3_xH-BEOu-PhIBj0Rv1bOHIptWV9EnMH5XT1ae8Rm6ThQ773fgDn7-Fn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revealing+the+shear+band+origin+of+white+etching+area+in+rolling+contact+fatigue+of+bearing+steel&rft.jtitle=International+journal+of+fatigue&rft.au=Su%2C+Yun-Shuai&rft.au=Li%2C+Shu-Xin&rft.au=Yu%2C+Feng&rft.au=Lu%2C+Si-Yuan&rft.date=2021-01-01&rft.pub=Elsevier+Ltd&rft.issn=0142-1123&rft.eissn=1879-3452&rft.volume=142&rft_id=info:doi/10.1016%2Fj.ijfatigue.2020.105929&rft.externalDocID=S0142112320304606
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-1123&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-1123&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-1123&client=summon