Effects of PGPR microbial inoculants on the growth and soil properties of Avena sativa, Medicago sativa, and Cucumis sativus seedlings
•We have established PGPR microbial inoculants containing four compatible PGPR strains.•PGPR microbial inoculants had abilities of fix nitrogen, solubilize phosphorus, secrete IAA, and act as biocontrol agents.•PGPR microbial inoculants promoted the growth of Avena sativa, Medicago sativa, and Cucum...
Saved in:
Published in | Soil & tillage research Vol. 199; p. 104577 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •We have established PGPR microbial inoculants containing four compatible PGPR strains.•PGPR microbial inoculants had abilities of fix nitrogen, solubilize phosphorus, secrete IAA, and act as biocontrol agents.•PGPR microbial inoculants promoted the growth of Avena sativa, Medicago sativa, and Cucumis sativus seedlings.•PGPR microbial inoculants increased enzyme activity and available nutrient content in the soil.
Plant growth promoting rhizobacteria (PGPR) are an important bacterial resource for microbial fertilizers, which can promote plant growth and increase crop yields. In this study, multifunctional PGPR microbial inoculants with the ability to fix nitrogen, solubilize phosphate, secrete indole-3-acetic acid (IAA) and exhibit biological control were generated. These PGPR microbial inoculants contained four compatible strains of Providencia rettgeri P2, Advenella incenata P4, Acinetobacter calcoaceticus P19, and Serratia plymuthica P35. All four strains had the ability to solubilize inorganic and organic phosphate, and fix nitrogen. In addition, strains P2 and P4 had the ability to secrete IAA, and strain P35 exhibited inhibition of Helminthosporium tritici-vulgaris, Alternaria solani, Fusarium oxysporum, and Sclerotinias clerotiorum. The effects of the PGPR microbial inoculants on the growth, physiology, and soil properties of oat (Avena sativa), alfalfa (Medicago sativa), and cucumber (Cucumis sativus) seedlings were verified by a pot experiment. The PGPR microbial inoculants increased the dry weight (DW), plant height (PH), root length (RL), root average diameter (RAD), root surface area (RSA), root volume (RV), and chlorophyll content (PCH) of A. sativa, M. sativa, and C. sativus seedlings, and enhanced the activity of peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD) in the seedlings. Furthermore, PGPR microbial inoculants increased soil urease (SURE), invertase (SIN), alkaline phosphatase (SAKP), catalase (SCAT) activity, available nitrogen (AN), available phosphorus (AP), available potassium (AK), and organic carbon (SOC) in the rhizosphere of A. sativa, M. sativa, and C. sativus. In summary, our results showed that the PGPR microbial inoculants had a promoting effect on A. sativa, M. sativa, and C. sativus seedlings by increasing soil enzyme activity and available nutrient content. These PGPR microbial inoculants can be used as an alternative method of environmentally friendly biocontrol of plant disease or to improve crop systems. |
---|---|
AbstractList | •We have established PGPR microbial inoculants containing four compatible PGPR strains.•PGPR microbial inoculants had abilities of fix nitrogen, solubilize phosphorus, secrete IAA, and act as biocontrol agents.•PGPR microbial inoculants promoted the growth of Avena sativa, Medicago sativa, and Cucumis sativus seedlings.•PGPR microbial inoculants increased enzyme activity and available nutrient content in the soil.
Plant growth promoting rhizobacteria (PGPR) are an important bacterial resource for microbial fertilizers, which can promote plant growth and increase crop yields. In this study, multifunctional PGPR microbial inoculants with the ability to fix nitrogen, solubilize phosphate, secrete indole-3-acetic acid (IAA) and exhibit biological control were generated. These PGPR microbial inoculants contained four compatible strains of Providencia rettgeri P2, Advenella incenata P4, Acinetobacter calcoaceticus P19, and Serratia plymuthica P35. All four strains had the ability to solubilize inorganic and organic phosphate, and fix nitrogen. In addition, strains P2 and P4 had the ability to secrete IAA, and strain P35 exhibited inhibition of Helminthosporium tritici-vulgaris, Alternaria solani, Fusarium oxysporum, and Sclerotinias clerotiorum. The effects of the PGPR microbial inoculants on the growth, physiology, and soil properties of oat (Avena sativa), alfalfa (Medicago sativa), and cucumber (Cucumis sativus) seedlings were verified by a pot experiment. The PGPR microbial inoculants increased the dry weight (DW), plant height (PH), root length (RL), root average diameter (RAD), root surface area (RSA), root volume (RV), and chlorophyll content (PCH) of A. sativa, M. sativa, and C. sativus seedlings, and enhanced the activity of peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD) in the seedlings. Furthermore, PGPR microbial inoculants increased soil urease (SURE), invertase (SIN), alkaline phosphatase (SAKP), catalase (SCAT) activity, available nitrogen (AN), available phosphorus (AP), available potassium (AK), and organic carbon (SOC) in the rhizosphere of A. sativa, M. sativa, and C. sativus. In summary, our results showed that the PGPR microbial inoculants had a promoting effect on A. sativa, M. sativa, and C. sativus seedlings by increasing soil enzyme activity and available nutrient content. These PGPR microbial inoculants can be used as an alternative method of environmentally friendly biocontrol of plant disease or to improve crop systems. Plant growth promoting rhizobacteria (PGPR) are an important bacterial resource for microbial fertilizers, which can promote plant growth and increase crop yields. In this study, multifunctional PGPR microbial inoculants with the ability to fix nitrogen, solubilize phosphate, secrete indole-3-acetic acid (IAA) and exhibit biological control were generated. These PGPR microbial inoculants contained four compatible strains of Providencia rettgeri P2, Advenella incenata P4, Acinetobacter calcoaceticus P19, and Serratia plymuthica P35. All four strains had the ability to solubilize inorganic and organic phosphate, and fix nitrogen. In addition, strains P2 and P4 had the ability to secrete IAA, and strain P35 exhibited inhibition of Helminthosporium tritici-vulgaris, Alternaria solani, Fusarium oxysporum, and Sclerotinias clerotiorum. The effects of the PGPR microbial inoculants on the growth, physiology, and soil properties of oat (Avena sativa), alfalfa (Medicago sativa), and cucumber (Cucumis sativus) seedlings were verified by a pot experiment. The PGPR microbial inoculants increased the dry weight (DW), plant height (PH), root length (RL), root average diameter (RAD), root surface area (RSA), root volume (RV), and chlorophyll content (PCH) of A. sativa, M. sativa, and C. sativus seedlings, and enhanced the activity of peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD) in the seedlings. Furthermore, PGPR microbial inoculants increased soil urease (SURE), invertase (SIN), alkaline phosphatase (SAKP), catalase (SCAT) activity, available nitrogen (AN), available phosphorus (AP), available potassium (AK), and organic carbon (SOC) in the rhizosphere of A. sativa, M. sativa, and C. sativus. In summary, our results showed that the PGPR microbial inoculants had a promoting effect on A. sativa, M. sativa, and C. sativus seedlings by increasing soil enzyme activity and available nutrient content. These PGPR microbial inoculants can be used as an alternative method of environmentally friendly biocontrol of plant disease or to improve crop systems. |
ArticleNumber | 104577 |
Author | Zhang, Huirong Yao, Tuo Ma, Yachun Li, Haiyun Qiu, Yizhi Yang, Xiaolei |
Author_xml | – sequence: 1 givenname: Haiyun surname: Li fullname: Li, Haiyun organization: College of Grassland Science, Gansu Agricultural University, Lanzhou, China – sequence: 2 givenname: Yizhi surname: Qiu fullname: Qiu, Yizhi organization: School of Life Science, Lanzhou University, Lanzhou, China – sequence: 3 givenname: Tuo surname: Yao fullname: Yao, Tuo email: yaotuo@gsau.edu.cn organization: College of Grassland Science, Gansu Agricultural University, Lanzhou, China – sequence: 4 givenname: Yachun surname: Ma fullname: Ma, Yachun organization: College of Grassland Science, Gansu Agricultural University, Lanzhou, China – sequence: 5 givenname: Huirong surname: Zhang fullname: Zhang, Huirong organization: College of Grassland Science, Gansu Agricultural University, Lanzhou, China – sequence: 6 givenname: Xiaolei surname: Yang fullname: Yang, Xiaolei organization: College of Grassland Science, Gansu Agricultural University, Lanzhou, China |
BookMark | eNqFkcFu3CAQQFGUSt2k_YJeOOYQb8HGBh9yiFZJWilVo6o9IwzjDSsWNoA36g_0u4vjqoce0tPAzLzR8DhDpz54QOgDJWtKaPdxt07ZOreuST1nWMv5CVpRwfuqYYydolXp4hXtBX-LzlLaEUJYU4sV-nUzjqBzwmHED3cP3_De6hgGqxy2PujJKT8XPc6PgLcxPOdHrLzBKViHDzEcIGYLL_j1EbzCSWV7VJf4Cxir1Tb8TczUZtLT3qYlN5UIYJz12_QOvRmVS_D-TzxHP25vvm8-Vfdf7z5vru8r3QiaK1abTnA-GEaHphzVAEIx3euu3EYtBk2hLvWadcooDURz6ERr6rYbB9M2zTm6WOaW1Z8mSFmWdTS48kwIU5J1IwTvBGn70tovrcVHShFGqW0uewefo7JOUiJn93InX9zL2b1c3Be2-Yc9RLtX8ed_qKuFgmLgaCHKpC14XUzG8kfSBPsq_xvCWaPY |
CitedBy_id | crossref_primary_10_1080_00207233_2023_2216606 crossref_primary_10_1007_s00344_022_10821_z crossref_primary_10_1093_jambio_lxaf041 crossref_primary_10_1016_j_scienta_2024_113131 crossref_primary_10_3390_horticulturae11030271 crossref_primary_10_1007_s42161_024_01808_8 crossref_primary_10_3390_agronomy12081741 crossref_primary_10_1016_j_chemosphere_2020_129097 crossref_primary_10_1007_s00253_023_12850_4 crossref_primary_10_3390_f12010060 crossref_primary_10_1038_s41598_021_88635_4 crossref_primary_10_1016_j_sajb_2023_08_037 crossref_primary_10_3390_horticulturae9101104 crossref_primary_10_1002_ldr_5074 crossref_primary_10_1371_journal_pone_0281505 crossref_primary_10_3389_fmicb_2024_1385734 crossref_primary_10_1038_s41396_023_01402_3 crossref_primary_10_3389_fpls_2024_1485362 crossref_primary_10_3390_life12101632 crossref_primary_10_1016_j_bcab_2023_102691 crossref_primary_10_1007_s00248_023_02250_6 crossref_primary_10_1007_s11104_022_05504_3 crossref_primary_10_3389_fmicb_2024_1324188 crossref_primary_10_1007_s11738_024_03690_4 crossref_primary_10_1016_j_jhazmat_2022_129232 crossref_primary_10_1016_j_heliyon_2022_e11674 crossref_primary_10_1016_j_jenvman_2024_122007 crossref_primary_10_4014_jmb_2105_05012 crossref_primary_10_1007_s00248_023_02340_5 crossref_primary_10_3389_fmicb_2023_1274346 crossref_primary_10_3390_agronomy14030551 crossref_primary_10_3390_agronomy14051016 crossref_primary_10_1016_j_ijbiomac_2022_04_017 crossref_primary_10_3390_nano14131164 crossref_primary_10_1016_j_rhisph_2022_100563 crossref_primary_10_1071_CP22263 crossref_primary_10_1016_j_scitotenv_2020_140682 crossref_primary_10_1016_j_envpol_2023_121559 crossref_primary_10_1002_jsfa_11382 crossref_primary_10_1016_j_micpath_2024_106750 crossref_primary_10_1016_j_apsoil_2021_104285 crossref_primary_10_1007_s42729_023_01214_6 crossref_primary_10_1016_j_btre_2023_e00781 crossref_primary_10_3389_fmicb_2021_747982 crossref_primary_10_3390_agronomy13122895 crossref_primary_10_1080_14735903_2024_2361578 crossref_primary_10_31047_1668_298x_v41_n1_41895 crossref_primary_10_3389_fmicb_2022_1019383 crossref_primary_10_1007_s00344_023_11056_2 crossref_primary_10_1007_s42729_023_01324_1 crossref_primary_10_3390_agronomy12071700 crossref_primary_10_3390_genes13111922 crossref_primary_10_1080_10826068_2024_2428322 crossref_primary_10_1186_s12870_024_05347_3 crossref_primary_10_3390_microorganisms12112227 crossref_primary_10_1016_j_chemosphere_2020_127952 crossref_primary_10_3390_biology13080611 crossref_primary_10_3389_fmicb_2022_994716 crossref_primary_10_3390_cells10061551 crossref_primary_10_1007_s42770_021_00618_9 crossref_primary_10_3389_fbioe_2022_866419 crossref_primary_10_1039_D3EN00236E crossref_primary_10_1016_j_scitotenv_2020_143215 crossref_primary_10_1016_j_cpb_2024_100372 crossref_primary_10_1007_s11356_021_15168_8 crossref_primary_10_3389_fmicb_2021_653556 crossref_primary_10_1002_ps_8429 crossref_primary_10_1111_jipb_13733 crossref_primary_10_3389_fpls_2025_1550026 crossref_primary_10_3390_microorganisms9102028 crossref_primary_10_1002_ldr_5393 crossref_primary_10_3390_ijms23031694 crossref_primary_10_1080_00103624_2022_2028818 crossref_primary_10_1590_s1413_415220210240 crossref_primary_10_3390_plants12030466 crossref_primary_10_3390_agronomy14030542 crossref_primary_10_3390_agronomy15030738 crossref_primary_10_1016_j_scienta_2022_111723 crossref_primary_10_1016_j_rhisph_2021_100334 crossref_primary_10_1111_sum_13140 crossref_primary_10_1007_s10653_022_01433_3 crossref_primary_10_1016_j_rcar_2024_09_004 crossref_primary_10_1094_MPMI_04_20_0106_R crossref_primary_10_1007_s11270_023_06061_w crossref_primary_10_1007_s42729_022_01079_1 crossref_primary_10_1016_j_apsoil_2020_103760 crossref_primary_10_1007_s00344_022_10633_1 crossref_primary_10_1016_j_rhisph_2023_100800 crossref_primary_10_1016_j_envexpbot_2021_104524 crossref_primary_10_3390_plants12040705 crossref_primary_10_3389_fpls_2024_1419764 crossref_primary_10_1016_j_micres_2025_128141 crossref_primary_10_1007_s00284_024_03893_5 crossref_primary_10_3390_horticulturae8100947 crossref_primary_10_1016_j_apsoil_2021_104369 crossref_primary_10_1155_2022_5115875 crossref_primary_10_3390_agronomy11050966 crossref_primary_10_3390_f16030539 crossref_primary_10_3389_fmicb_2023_1208743 crossref_primary_10_7717_peerj_15925 crossref_primary_10_1007_s11756_023_01376_9 crossref_primary_10_1007_s11368_022_03415_5 crossref_primary_10_1080_09583157_2024_2332314 crossref_primary_10_1016_j_agee_2022_108233 crossref_primary_10_1007_s11356_020_12203_y crossref_primary_10_1016_j_rhisph_2023_100782 crossref_primary_10_1515_opag_2022_0154 crossref_primary_10_3390_agriculture14111880 crossref_primary_10_1016_j_chemosphere_2021_133136 crossref_primary_10_3390_foods10020424 crossref_primary_10_1007_s00344_022_10787_y |
Cites_doi | 10.1890/10-0459.1 10.1104/pp.59.2.309 10.1016/j.jgeb.2018.09.001 10.1128/AEM.01303-08 10.1016/j.talanta.2013.03.023 10.1111/j.1574-6968.1999.tb13383.x 10.1007/s00374-010-0523-3 10.4067/S0718-58392013000300002 10.1007/s11120-017-0435-2 10.1016/j.ecoenv.2014.12.014 10.1007/s13213-014-1027-4 10.2136/sssaj1964.03615995002800020024x 10.3389/fmicb.2017.01511 10.4014/jmb.1609.09042 10.3389/fpls.2015.00815 10.1016/j.bbrc.2007.01.001 10.1007/s42770-019-00061-x 10.1139/cjm-2015-0358 10.3389/fpls.2017.02193 10.1016/j.jplph.2019.153010 10.1016/j.copbio.2011.05.434 10.1016/S0003-2670(00)88444-5 10.1038/srep22596 10.1111/plb.12693 10.1104/pp.43.8.1185 10.1104/pp.65.3.478 10.1007/s00374-019-01339-w 10.1186/s12866-016-0860-y 10.1071/AR03112 10.1626/pps.4.126 10.1080/11263504.2010.542318 10.1007/s11738-013-1385-8 10.1007/s10886-015-0549-y 10.1007/s00248-013-0196-1 10.1016/0038-0717(69)90012-1 10.4141/cjss10029 10.1007/s13213-011-0352-0 10.1007/s13205-017-0668-y 10.1007/BF02181348 10.1002/ece3.969 10.1016/j.micres.2013.09.009 10.1007/s11274-011-0979-9 10.1016/j.biotechadv.2013.12.005 10.1093/molbev/mst197 10.1016/j.bcab.2016.11.006 10.1007/s00248-014-0516-0 10.1007/s13213-011-0380-9 10.1016/S0076-6879(55)02300-8 10.1371/journal.pone.0187913 10.33584/jnzg.2009.71.2751 10.1155/2016/6284547 10.1016/j.syapm.2019.05.003 10.1007/s00344-012-9292-6 10.1038/ncomms1926 10.3390/microorganisms7100403 10.1007/s00374-015-1051-y 10.3389/fmicb.2017.01945 10.1016/j.apsoil.2011.04.007 10.1111/jam.12720 10.1007/s11104-013-1915-6 10.1038/s41598-019-40864-4 10.1016/j.plaphy.2016.07.023 10.1016/j.ecoenv.2018.10.016 10.1016/j.bjm.2016.12.001 10.1016/j.ejsobi.2010.11.004 10.1007/s12275-018-8120-5 10.1007/s11274-012-1163-6 10.2323/jgam.2016.04.007 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.still.2020.104577 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1879-3444 |
ExternalDocumentID | 10_1016_j_still_2020_104577 S0167198719306968 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM 9JN AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AATLK AAXUO ABFNM ABFRF ABGRD ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ADBBV ADEZE ADMUD ADQTV ADTZH AEBSH AECPX AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE JJJVA KOM LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SEN SES SEW SPC SPCBC SSA SSR SST SSZ T5K TWZ UNMZH WUQ Y6R ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c381t-42d6877bd41b3d68abe8a4c9c63d6fc8bc1e277b246adace0c7e685d256fbd533 |
IEDL.DBID | .~1 |
ISSN | 0167-1987 |
IngestDate | Fri Jul 11 09:54:36 EDT 2025 Tue Jul 01 00:57:02 EDT 2025 Thu Apr 24 23:10:30 EDT 2025 Fri Feb 23 02:47:59 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | RV DW SAKP Nitrogen fixation PGPR PGPR microbial inoculants EC RSA Soil enzyme activity POD SCAT SOC IAA SOD AK AN AP Phosphate solubilization RAD PCH SURA CAT PH Soil physiochemical properties SIN RL |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c381t-42d6877bd41b3d68abe8a4c9c63d6fc8bc1e277b246adace0c7e685d256fbd533 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://ir.lzu.edu.cn/handle/262010/417605 |
PQID | 2388768059 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2388768059 crossref_citationtrail_10_1016_j_still_2020_104577 crossref_primary_10_1016_j_still_2020_104577 elsevier_sciencedirect_doi_10_1016_j_still_2020_104577 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2020 2020-05-00 20200501 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: May 2020 |
PublicationDecade | 2020 |
PublicationTitle | Soil & tillage research |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Nautiyal (bib0260) 1999; 170 Nomura, Komori, Uemura, Kanda, Shimotani, Nakai, Furuichi, Takebayashi, Sugimoto, Sano, Suwastika, Fukusaki, Yoshioka, Nakahira, Shiina (bib0265) 2012; 3 Minaxi, Saxena (bib0220) 2011; 48 Galkiewicz, Kellogg (bib0115) 2008; 74 Ansari, Ahmad (bib0030) 2019; 9 Huang, Liu, Li, Xu (bib0165) 2016; 62 Shahid, Hameed, Zafar, Tahir, Ijaz, Tariq, Hussain, Ali (bib0295) 2019; 50 You, Wang, Huang, Tang, Liu, Sun (bib0375) 2014; 4 Baig, Arshad, Shaharoona, Khalid, Ahmed (bib0040) 2012; 62 UdDin, Bano, Masood (bib0340) 2015; 113 Moran, Porath (bib0240) 1980; 65 Wang, Tachibana, Murai, Li, Lau, Cao, Zhu, Hashimoto, Hashidoko (bib0350) 2016; 6 Damodharan, Palaniyandi, Le, Suh, Yang (bib0085) 2018; 56 Ahmad, Zahir, Asghar, Arshad (bib0015) 2012; 62 Egamberdieva, Kucharova, Davranov, Berg, Makarova, Azarova, Chebotar, Tikhonovich, Kamilova, Validov, Lugtenberg (bib0105) 2011; 47 Hardy, Holsten, Jackson, Burns (bib0155) 1968; 43 Johnson, Temple (bib0180) 1964; 28 Boominathan, Sivakumar (bib0055) 2012; 3 Gururani, Upadhyaya, Baskar, Venkatesh, Nookaraju, Park (bib0140) 2013; 32 Piromyou, Buranabanyat, Tantasawat, Tittabutr, Boonkerd, Teaumroong (bib0275) 2011; 47 Tamura, Stecher, Peterson, Filipski, Kumar (bib0325) 2013; 30 Mal, Mahapatra, Mohanty (bib0215) 2015; 1 Zhang, Wang, Liu, Li, Shen, Zhang (bib0385) 2014; 374 Hahm, Son, Hwang, Kwon, Ghim (bib0150) 2017; 27 Monk, Gerard, Young (bib0235) 2009 Chance, Maehly (bib0065) 1955; 2 Molina-Romero, Baez, Quintero-Hernández, Castañeda-Lucio, Fuentes-Ramírez, Bustillos-Cristales, Rodríguez-Andrade, Morales-García, Munive, Muñoz-Rojas (bib0230) 2017; 12 Brooke, Di Bonaventura, Berg, Martinez (bib0060) 2017; 8 Tagore, Namdeo, Sharma, Kumar (bib0320) 2014; 581627 Huang, Zhou, Guo, Manter (bib0160) 2015; 118 Defez, Andreozzi, Romano, Pocsfalvi, Fiume, Esposito, Angelini, Bianco (bib0090) 2019; 7 Yin, Shi, Jiang, Roberts, Chen, Fan (bib0370) 2015; 61 George, Gupta, Gopal, Thomas, Thomas (bib0120) 2013; 29 Bharti, Barnawal, Awasthi, Yadav, Kalra (bib0045) 2014; 36 Doebereiner (bib0100) 1994 Singh, Jha (bib0300) 2017; 8 Zhang, Mason, McNeill, McLaughlin (bib0380) 2013; 113 Chauhan, Guleria, Balgir, Walia, Mahajan, Mehta, Shirkot (bib0075) 2017; 48 Anand, Grayston, Chanway (bib0025) 2013; 66 Ju, Liu, Fang, Cui, Duan, Wu (bib0185) 2019; 167 Nadeem, Ahmad, Zahir, Javaid, Ashraf (bib0250) 2014; 32 Paredes-Páliz, Rodríguez-Vázquez, Duarte, Caviedes, Mateos-Naranjo, Redondo-Gómez, Caçador, Rodríguez-Llorente, Pajuelo (bib0270) 2018; 20 Selvakumar, Reetha, Thamizhiniyan (bib0290) 2012; 16 Xiong, Zhao, Zhao, Xun, Li, Zhang, Wu, Shen (bib0365) 2015; 70 Toyama, Nishibayashi, Saeki, Adachi, Matsushita (bib0330) 2007; 354 del Rosario Cappellari, Santoro, Reinoso, Travaglia, Giordano, Banchio (bib0095) 2015; 41 Murphy, Riley (bib0245) 1962; 27 Khan, Jilani, Akhtar, Naqvi, Rasheed (bib0195) 2009; 1 Frankeberger, Johanson (bib0110) 1983; 74 Nakano, Asada (bib0255) 1981; 22 Agarwal, Singh, Chaudhry, Shirke, Chakrabarty, Farooqui, Nautiyal, Sane, Sane (bib0010) 2019; 240 Glick (bib0130) 2014; 169 Weselowski, Nathoo, Eastman, MacDonald, Yuan (bib0355) 2016; 16 Verma, Yadav, Khannam, Panjiar, Kumar, Saxena, Suman (bib0345) 2015; 65 Khati, Chaudhary, Gangola, Bhatt, Sharma (bib0200) 2017; 7 Israr, Mustafa, Khan, Shahzad, Ahmad, Masood (bib0170) 2016; 108 Tabatabai (bib0310) 1994 Khadeejath, Gopal, Gupta, Bhat, Thomas (bib0190) 2017; 9 Bhattacharyya, Jha (bib0050) 2012; 28 Gómez-Godínez, Fernandez-Valverde, Martinez Romero, Martínez-Romero (bib0135) 2019; 42 Jha, Subramanian (bib0175) 2013; 73 Puri, Padda, Chanway (bib0280) 2016; 52 Mohite (bib0225) 2013; 13 Giannopolitis, Ries (bib0125) 1977; 59 Asghar, Zahir, Arshad (bib0035) 2004; 55 Su, Villaume, Rabenoelina, Crouzet, Clément, Vaillant-Gaveau, Dhondt-Cordelier (bib0305) 2017; 134 Tabatabai, Bremner (bib0315) 1969; 1 Habib, Kausar, Saud (bib0145) 2016 Turan, Gulluce, Karadayi, Sahin (bib0335) 2011; 22 Alam, Cui, Yamagishi, Ishii (bib0020) 2001; 4 Chandra, Askari, Kumari (bib0070) 2018; 16 Cusack, Silver, Torn, Burton, Firestone (bib0080) 2011; 92 Lally, Galbally, Moreira, Spink, Ryan, Germaine, Dowling (bib0205) 2017; 8 Abbasi, Sharif, Kazmi, Sultan, Aslam (bib0005) 2011; 145 Saia, Rappa, Ruisi, Abenavoli, Sunseri, Giambalvo, Frenda, Martinelli (bib0285) 2015; 6 Xie, Yang, Drury, Yang, Zhang (bib0360) 2011; 91 Li, Guo, Li, Sun, Xue, Lai (bib0210) 2019; 55 Hardy (10.1016/j.still.2020.104577_bib0155) 1968; 43 Ahmad (10.1016/j.still.2020.104577_bib0015) 2012; 62 Tamura (10.1016/j.still.2020.104577_bib0325) 2013; 30 Habib (10.1016/j.still.2020.104577_bib0145) 2016 Nautiyal (10.1016/j.still.2020.104577_bib0260) 1999; 170 Huang (10.1016/j.still.2020.104577_bib0160) 2015; 118 Khati (10.1016/j.still.2020.104577_bib0200) 2017; 7 You (10.1016/j.still.2020.104577_bib0375) 2014; 4 Anand (10.1016/j.still.2020.104577_bib0025) 2013; 66 Damodharan (10.1016/j.still.2020.104577_bib0085) 2018; 56 Wang (10.1016/j.still.2020.104577_bib0350) 2016; 6 Ju (10.1016/j.still.2020.104577_bib0185) 2019; 167 Su (10.1016/j.still.2020.104577_bib0305) 2017; 134 Baig (10.1016/j.still.2020.104577_bib0040) 2012; 62 Tagore (10.1016/j.still.2020.104577_bib0320) 2014; 581627 Paredes-Páliz (10.1016/j.still.2020.104577_bib0270) 2018; 20 UdDin (10.1016/j.still.2020.104577_bib0340) 2015; 113 Boominathan (10.1016/j.still.2020.104577_bib0055) 2012; 3 Weselowski (10.1016/j.still.2020.104577_bib0355) 2016; 16 Khan (10.1016/j.still.2020.104577_bib0195) 2009; 1 George (10.1016/j.still.2020.104577_bib0120) 2013; 29 Ansari (10.1016/j.still.2020.104577_bib0030) 2019; 9 Brooke (10.1016/j.still.2020.104577_bib0060) 2017; 8 Cusack (10.1016/j.still.2020.104577_bib0080) 2011; 92 Huang (10.1016/j.still.2020.104577_bib0165) 2016; 62 Abbasi (10.1016/j.still.2020.104577_bib0005) 2011; 145 Li (10.1016/j.still.2020.104577_bib0210) 2019; 55 Verma (10.1016/j.still.2020.104577_bib0345) 2015; 65 Chauhan (10.1016/j.still.2020.104577_bib0075) 2017; 48 Xiong (10.1016/j.still.2020.104577_bib0365) 2015; 70 Doebereiner (10.1016/j.still.2020.104577_bib0100) 1994 Gómez-Godínez (10.1016/j.still.2020.104577_bib0135) 2019; 42 Hahm (10.1016/j.still.2020.104577_bib0150) 2017; 27 Mal (10.1016/j.still.2020.104577_bib0215) 2015; 1 Nakano (10.1016/j.still.2020.104577_bib0255) 1981; 22 Gururani (10.1016/j.still.2020.104577_bib0140) 2013; 32 Nadeem (10.1016/j.still.2020.104577_bib0250) 2014; 32 Singh (10.1016/j.still.2020.104577_bib0300) 2017; 8 Johnson (10.1016/j.still.2020.104577_bib0180) 1964; 28 Yin (10.1016/j.still.2020.104577_bib0370) 2015; 61 Piromyou (10.1016/j.still.2020.104577_bib0275) 2011; 47 Nomura (10.1016/j.still.2020.104577_bib0265) 2012; 3 Bharti (10.1016/j.still.2020.104577_bib0045) 2014; 36 Zhang (10.1016/j.still.2020.104577_bib0380) 2013; 113 Glick (10.1016/j.still.2020.104577_bib0130) 2014; 169 Israr (10.1016/j.still.2020.104577_bib0170) 2016; 108 Moran (10.1016/j.still.2020.104577_bib0240) 1980; 65 Turan (10.1016/j.still.2020.104577_bib0335) 2011; 22 Zhang (10.1016/j.still.2020.104577_bib0385) 2014; 374 Saia (10.1016/j.still.2020.104577_bib0285) 2015; 6 Alam (10.1016/j.still.2020.104577_bib0020) 2001; 4 Shahid (10.1016/j.still.2020.104577_bib0295) 2019; 50 Agarwal (10.1016/j.still.2020.104577_bib0010) 2019; 240 Tabatabai (10.1016/j.still.2020.104577_bib0315) 1969; 1 del Rosario Cappellari (10.1016/j.still.2020.104577_bib0095) 2015; 41 Toyama (10.1016/j.still.2020.104577_bib0330) 2007; 354 Frankeberger (10.1016/j.still.2020.104577_bib0110) 1983; 74 Egamberdieva (10.1016/j.still.2020.104577_bib0105) 2011; 47 Lally (10.1016/j.still.2020.104577_bib0205) 2017; 8 Molina-Romero (10.1016/j.still.2020.104577_bib0230) 2017; 12 Defez (10.1016/j.still.2020.104577_bib0090) 2019; 7 Giannopolitis (10.1016/j.still.2020.104577_bib0125) 1977; 59 Mohite (10.1016/j.still.2020.104577_bib0225) 2013; 13 Tabatabai (10.1016/j.still.2020.104577_bib0310) 1994 Xie (10.1016/j.still.2020.104577_bib0360) 2011; 91 Selvakumar (10.1016/j.still.2020.104577_bib0290) 2012; 16 Chance (10.1016/j.still.2020.104577_bib0065) 1955; 2 Jha (10.1016/j.still.2020.104577_bib0175) 2013; 73 Murphy (10.1016/j.still.2020.104577_bib0245) 1962; 27 Puri (10.1016/j.still.2020.104577_bib0280) 2016; 52 Galkiewicz (10.1016/j.still.2020.104577_bib0115) 2008; 74 Asghar (10.1016/j.still.2020.104577_bib0035) 2004; 55 Khadeejath (10.1016/j.still.2020.104577_bib0190) 2017; 9 Minaxi (10.1016/j.still.2020.104577_bib0220) 2011; 48 Chandra (10.1016/j.still.2020.104577_bib0070) 2018; 16 Monk (10.1016/j.still.2020.104577_bib0235) 2009 Bhattacharyya (10.1016/j.still.2020.104577_bib0050) 2012; 28 |
References_xml | – volume: 7 start-page: 81 year: 2017 ident: bib0200 article-title: Nanochitosan supports growth of publication-title: 3 Biotech – volume: 118 start-page: 672 year: 2015 end-page: 684 ident: bib0160 article-title: spp. from rainforest soil promote plant growth under limited nitrogen conditions publication-title: J. Appl. Microbiol. – volume: 13 start-page: 638 year: 2013 end-page: 649 ident: bib0225 article-title: Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth publication-title: J. Soil Sci. Plant Nutr. – volume: 134 start-page: 201 year: 2017 end-page: 214 ident: bib0305 article-title: Different Arabidopsis thaliana photosynthetic and defense responses to hemibiotrophic pathogen induced by local or distal inoculation of publication-title: Photosynth. Res. – volume: 62 start-page: 1109 year: 2012 end-page: 1119 ident: bib0040 article-title: Comparative effectiveness of publication-title: Ann. Microbiol. – volume: 1 start-page: 48 year: 2009 end-page: 58 ident: bib0195 article-title: Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production publication-title: J. Agric. Biol. Sci. – volume: 12 start-page: e0187913 year: 2017 ident: bib0230 article-title: Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth publication-title: PLoS One – volume: 8 start-page: 2193 year: 2017 ident: bib0205 article-title: Application of endophytic publication-title: Front. Plant Sci. – volume: 61 start-page: 913 year: 2015 end-page: 923 ident: bib0370 article-title: Phosphate solubilization and promotion of maize growth by publication-title: Can. J. Microbiol. – volume: 29 start-page: 109 year: 2013 end-page: 117 ident: bib0120 article-title: Multifarious beneficial traits and plant growth promoting potential of publication-title: World J. Microbiol. Biotechnol. – volume: 55 year: 2004 ident: bib0035 article-title: Screening rhizobacteria for improving the growth, yield, and oil content of canola ( publication-title: Crop Pasture Sci. – volume: 65 start-page: 478 year: 1980 end-page: 479 ident: bib0240 article-title: Chlorophyll determination in intact tissues using N, N-dimethylformamide publication-title: Plant Physiol. – volume: 113 start-page: 271 year: 2015 end-page: 278 ident: bib0340 article-title: Chromium toxicity tolerance of publication-title: Ecotoxicol. Environ. Safe – volume: 52 start-page: 119 year: 2016 end-page: 125 ident: bib0280 article-title: Evidence of nitrogen fixation and growth promotion in canola ( publication-title: Bio. Fert. Soils – volume: 240 year: 2019 ident: bib0010 article-title: PGPR-induced OsASR6 improves plant growth and yield by altering root auxin sensitivity and the xylem structure in transgenic Arabidopsis thaliana publication-title: J. Plant Physiol. – volume: 48 start-page: 301 year: 2011 end-page: 308 ident: bib0220 article-title: Efficacy of rhizobacterial strains encapsulated in nontoxic biodegradable gel matrices to promote growth and yield of wheat plants publication-title: Appl. Soil Ecol. – volume: 65 start-page: 1885 year: 2015 end-page: 1899 ident: bib0345 article-title: Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat ( publication-title: Ann. Microbiol. – volume: 167 start-page: 218 year: 2019 end-page: 226 ident: bib0185 article-title: Impact of co-inoculation with plant-growth-promoting rhizobacteria and rhizobium on the biochemical responses of alfalfa-soil system in copper contaminated soil publication-title: Ecotoxicol. Environ. Saf. – volume: 6 start-page: 815 year: 2015 ident: bib0285 article-title: Soil inoculation with symbiotic microorganisms promotes plant growth and nutrient transporter genes expression in durum wheat publication-title: Front. Plant Sci. – volume: 20 start-page: 497 year: 2018 end-page: 506 ident: bib0270 article-title: Investigating the mechanisms underlying phytoprotection by plant growth-promoting rhizobacteria in Spartina densiflora under metal stress publication-title: Plant Biol. – volume: 70 start-page: 209 year: 2015 end-page: 218 ident: bib0365 article-title: Different continuous cropping spans significantly affect microbial community membership and structure in a vanilla-grown soil as revealed by deep pyrosequencing publication-title: Microb. Ecol. – volume: 74 start-page: 301 year: 1983 end-page: 311 ident: bib0110 article-title: Method of measuring invertase activity in soils publication-title: Plant Soil – volume: 62 start-page: 258 year: 2016 end-page: 265 ident: bib0165 article-title: Isolation and engineering of plant growth promoting rhizobacteria Pseudomonas aeruginosa for enhanced cadmium bioremediation publication-title: J. Gen. Appl. Microbiol. – volume: 1 start-page: 301 year: 1969 end-page: 307 ident: bib0315 article-title: Use of p-nitrophenyl phosphate for assay of soil phosphatase activity publication-title: Soil Biol. Bioch. – volume: 1 start-page: 168 year: 2015 end-page: 174 ident: bib0215 article-title: Effect of diazotrophs and chemical fertilizers on production and economics of okra ( publication-title: American J. Plant. Sci. – volume: 59 start-page: 309 year: 1977 end-page: 314 ident: bib0125 article-title: Superoxide dismutases: I. Occurrence in higher plants publication-title: Plant Physiol. – volume: 6 start-page: 22596 year: 2016 ident: bib0350 article-title: Indole-3-acetic acid produced by publication-title: Sci. Rep. – volume: 3 start-page: 372 year: 2012 end-page: 376 ident: bib0055 article-title: Effect of seed priming with native PGPR on its vital seedling and antioxidant enzyme activities in publication-title: Int. J. Pharm. Biol. Arch. – volume: 92 start-page: 621 year: 2011 end-page: 632 ident: bib0080 article-title: Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests publication-title: Ecology – volume: 145 start-page: 159 year: 2011 end-page: 168 ident: bib0005 article-title: Isolation of plant growth promoting rhizobacteria from wheat rhizosphere and their effect on improving growth, yield and nutrient uptake of plants publication-title: Plant Biosyst. – volume: 55 start-page: 149 year: 2019 end-page: 169 ident: bib0210 article-title: Act12 controls tomato yellow leaf curl virus disease and alters rhizosphere microbial communities publication-title: Bio. Fertil. Soils – volume: 4 start-page: 1 year: 2014 end-page: 15 ident: bib0375 article-title: Relating microbial community structure to functioning in forest soil organic carbon transformation and turnover publication-title: Ecol. Evol. – volume: 8 start-page: 1945 year: 2017 ident: bib0300 article-title: The PGPR publication-title: Front. Microbiol. – volume: 8 start-page: 1511 year: 2017 ident: bib0060 article-title: Editorial: a multidisciplinary look at publication-title: Front. Microbiol. – volume: 30 start-page: 2725 year: 2013 end-page: 2729 ident: bib0325 article-title: MEGA6: molecular evolutionary genetics analysis version 6.0 publication-title: Mol. Biol. Evol. – volume: 32 start-page: 245 year: 2013 end-page: 258 ident: bib0140 article-title: Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in publication-title: J. Plant Growth Regul. – volume: 27 start-page: 31 year: 1962 end-page: 36 ident: bib0245 article-title: A modified single solution method for the determination of phosphate in natural waters publication-title: Anal. Chem. Acta – volume: 22 start-page: 867 year: 1981 end-page: 880 ident: bib0255 article-title: Hydrogen peroxide is scavenged by ascorbatespecific peroxidase in spinach chloroplasts publication-title: Plant Cell Physiol. – volume: 354 start-page: 290 year: 2007 end-page: 295 ident: bib0330 article-title: Factors required for the catalytic reaction of PqqC/D which produces pyrroloquinoline quinone publication-title: Biochem. Bioph. Res. Commun. – volume: 22 start-page: 133 year: 2011 end-page: 140 ident: bib0335 article-title: Role of soil enzymes produced by PGPR strains in wheat growth and nutrient uptake parameters in the filed conditions publication-title: Curr. Opin Biotech. – volume: 66 start-page: 369 year: 2013 end-page: 374 ident: bib0025 article-title: N publication-title: Microb. Ecol. – start-page: 1 year: 2016 end-page: 10 ident: bib0145 article-title: Plant growth-promoting rhizobacteria enhance salinity stress tolerance in Okra through ROS-scavenging enzymes publication-title: Biomed Res. Int. – volume: 28 start-page: 207 year: 1964 end-page: 209 ident: bib0180 article-title: Some variables affecting the measurement of “catalase activity” in soil publication-title: Soil Sci. Soc. Am. J. – start-page: 775 year: 1994 end-page: 883 ident: bib0310 publication-title: Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties – volume: 7 start-page: E403 year: 2019 ident: bib0090 article-title: Bacterial IAA-delivery into medicago root nodules triggers a balanced stimulation of C and N metabolism leading to a biomass increase publication-title: Microorganisms – volume: 36 start-page: 45 year: 2014 end-page: 60 ident: bib0045 article-title: Plant growth promoting rhizobacteria alleviate salinity induced negative effects on growth, oil content and physiological status in publication-title: Acta Physiol. Plant. – volume: 16 start-page: 581 year: 2018 end-page: 586 ident: bib0070 article-title: Optimization of indole acetic acid production by isolated bacteria from Stevia rebaudiana rhizosphere and its effects on plant growth publication-title: J. Genet. Eng. Biotechnol. – start-page: 134 year: 1994 end-page: 141 ident: bib0100 article-title: Isolation and identification of aerobic nitrogen fixing bacteria publication-title: Methods in Applied Soil Microbiology and Biochemistry – volume: 27 start-page: 1790 year: 2017 end-page: 1797 ident: bib0150 article-title: Alleviation of salt stress in pepper ( publication-title: J. Microbiol. Biotechnol. – volume: 3 start-page: 926 year: 2012 ident: bib0265 article-title: Chloroplast-mediated activation of plant immune signalling in Arabidopsis publication-title: Nat. Commun. – volume: 169 start-page: 30 year: 2014 end-page: 39 ident: bib0130 article-title: Bacteria with ACC deaminase can promote plant growth and help to feed the world publication-title: Microbiol. Res. – volume: 32 start-page: 429 year: 2014 end-page: 448 ident: bib0250 article-title: The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments publication-title: Biotechnol. Adv. – volume: 62 start-page: 1321 year: 2012 end-page: 1330 ident: bib0015 article-title: The combined application of rhizobial strains and plant growth promoting rhizobacteria improves growth and productivity of mung bean ( publication-title: Ann. Microbiol. – volume: 47 start-page: 197 year: 2011 end-page: 205 ident: bib0105 article-title: Bacteria able to control foot and root rot and to promote growth of cucumber in salinated soils publication-title: Biol. Fertil. Soils – volume: 4 start-page: 126 year: 2001 end-page: 130 ident: bib0020 article-title: Grain yield and related physiological characteristics of rice plants ( publication-title: Plant Prod. Sci. – volume: 74 start-page: 7828 year: 2008 end-page: 7831 ident: bib0115 article-title: Cross-kingdom amplification using bacterial specific primers: complications for coral microbial ecology publication-title: Appl. Environ. Microbiol. – volume: 170 start-page: 265 year: 1999 end-page: 270 ident: bib0260 article-title: An efficient microbiological growth medium for screening phosphate solubilizing microorganisms publication-title: FEMS Microbiol. Lett. – start-page: 211 year: 2009 end-page: 216 ident: bib0235 article-title: Isolation and identification of plant growth-promoting bacteria associated with tall fescue publication-title: Proceedings New Zealand Grassland Association – volume: 50 start-page: 459 year: 2019 end-page: 469 ident: bib0295 article-title: sp. strain Fs-11 adapted to diverse ecological conditions and promoted sunflower achene yield, nutrient uptake and oil contents publication-title: Braz. J. Microbiol. – volume: 374 start-page: 689 year: 2014 end-page: 700 ident: bib0385 article-title: Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains publication-title: Plant Soil – volume: 42 start-page: 517 year: 2019 end-page: 525 ident: bib0135 article-title: Metatranscriptomics and nitrogen fixation from the rhizoplane of maize plantlets inoculated with a group of PGPRs publication-title: Syst. Appl. Microbiol. – volume: 2 start-page: 764 year: 1955 end-page: 775 ident: bib0065 article-title: Assay of catalase and peroxidases publication-title: Method Enzymol. – volume: 73 start-page: 213 year: 2013 end-page: 219 ident: bib0175 article-title: Paddy plants inoculated with PGPR show better growth physiology and nutrient content under saline condition publication-title: Chil. J. Agr. Res. – volume: 56 start-page: 753 year: 2018 end-page: 759 ident: bib0085 article-title: sp. strain SK68, isolated from peanut rhizosphere, promotes growth and alleviates salt stress in tomato ( publication-title: J. Microbiol. – volume: 9 start-page: 4547 year: 2019 ident: bib0030 article-title: -FAP2 and publication-title: Sci. Rep. – volume: 43 start-page: 1185 year: 1968 ident: bib0155 article-title: The acetylene-ethylene assay for N publication-title: Plant Physiol. – volume: 113 start-page: 123 year: 2013 end-page: 129 ident: bib0380 article-title: Optimization of the diffusive gradients in thin films (DGT) method for simultaneous assay of potassium and plant-available phosphorus in soils publication-title: Talanta – volume: 108 start-page: 304 year: 2016 end-page: 312 ident: bib0170 article-title: Interactive effects of phosphorus and Pseudomonas putida on chickpea ( publication-title: Plant Physiol. Biochem. – volume: 47 start-page: 44 year: 2011 end-page: 54 ident: bib0275 article-title: Effect of plant growth promoting rhizobacteria (PGPR) inoculation on microbial community structure in rhizosphere of forage corn cultivated in Thailand publication-title: Eur. J. Soil Biol. – volume: 16 start-page: 244 year: 2016 ident: bib0355 article-title: Isolation, identification and characterization of publication-title: BMC Microbiol. – volume: 91 start-page: 53 year: 2011 end-page: 63 ident: bib0360 article-title: Predicting soil organic carbon and total nitrogen using mid- and near-infrared spectra for brookston clay loam soil in Southwestern Ontario, Canada publication-title: Cana. J. Soil Sci. – volume: 48 start-page: 294 year: 2017 end-page: 304 ident: bib0075 article-title: Tricalcium phosphate solubilization and nitrogen fixation by newly isolated publication-title: Braz. J. Microbiol. – volume: 41 start-page: 149 year: 2015 end-page: 158 ident: bib0095 article-title: Anatomical, morphological, and phytochemical effects of inoculation with plant growth-promoting rhizobacteria on peppermint ( publication-title: J. Chem. Ecol. – volume: 28 start-page: 1327 year: 2012 end-page: 1350 ident: bib0050 article-title: Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture publication-title: World J. Mcrobiol. Biotechnol. – volume: 16 start-page: 1368 year: 2012 end-page: 1374 ident: bib0290 article-title: Response of biofertilizers on growth, yield attributes and associated protein profiling changes of blackgram ( publication-title: World Appl. Sci. J. – volume: 581627 start-page: 1 year: 2014 end-page: 8 ident: bib0320 article-title: Effect of publication-title: Int. J. Agron. – volume: 9 start-page: 67 year: 2017 end-page: 73 ident: bib0190 article-title: Cross-compatibility evaluation of plant growth promoting rhizobacteria of coconut and cocoa on yield and rhizosphere properties of vegetable crops publication-title: Biocatal. Agr. Biotech. – volume: 92 start-page: 621 year: 2011 ident: 10.1016/j.still.2020.104577_bib0080 article-title: Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests publication-title: Ecology doi: 10.1890/10-0459.1 – volume: 59 start-page: 309 year: 1977 ident: 10.1016/j.still.2020.104577_bib0125 article-title: Superoxide dismutases: I. Occurrence in higher plants publication-title: Plant Physiol. doi: 10.1104/pp.59.2.309 – volume: 16 start-page: 581 year: 2018 ident: 10.1016/j.still.2020.104577_bib0070 article-title: Optimization of indole acetic acid production by isolated bacteria from Stevia rebaudiana rhizosphere and its effects on plant growth publication-title: J. Genet. Eng. Biotechnol. doi: 10.1016/j.jgeb.2018.09.001 – volume: 74 start-page: 7828 year: 2008 ident: 10.1016/j.still.2020.104577_bib0115 article-title: Cross-kingdom amplification using bacterial specific primers: complications for coral microbial ecology publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01303-08 – volume: 113 start-page: 123 year: 2013 ident: 10.1016/j.still.2020.104577_bib0380 article-title: Optimization of the diffusive gradients in thin films (DGT) method for simultaneous assay of potassium and plant-available phosphorus in soils publication-title: Talanta doi: 10.1016/j.talanta.2013.03.023 – volume: 170 start-page: 265 year: 1999 ident: 10.1016/j.still.2020.104577_bib0260 article-title: An efficient microbiological growth medium for screening phosphate solubilizing microorganisms publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.1999.tb13383.x – volume: 47 start-page: 197 year: 2011 ident: 10.1016/j.still.2020.104577_bib0105 article-title: Bacteria able to control foot and root rot and to promote growth of cucumber in salinated soils publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-010-0523-3 – volume: 73 start-page: 213 year: 2013 ident: 10.1016/j.still.2020.104577_bib0175 article-title: Paddy plants inoculated with PGPR show better growth physiology and nutrient content under saline condition publication-title: Chil. J. Agr. Res. doi: 10.4067/S0718-58392013000300002 – volume: 134 start-page: 201 year: 2017 ident: 10.1016/j.still.2020.104577_bib0305 article-title: Different Arabidopsis thaliana photosynthetic and defense responses to hemibiotrophic pathogen induced by local or distal inoculation of Burkholderia phytofirmans publication-title: Photosynth. Res. doi: 10.1007/s11120-017-0435-2 – volume: 113 start-page: 271 year: 2015 ident: 10.1016/j.still.2020.104577_bib0340 article-title: Chromium toxicity tolerance of Solanum nigrum L. and Parthenium hysterophorus L. plants with reference to ion patter, antioxidation activity and root exudation publication-title: Ecotoxicol. Environ. Safe doi: 10.1016/j.ecoenv.2014.12.014 – volume: 65 start-page: 1885 year: 2015 ident: 10.1016/j.still.2020.104577_bib0345 article-title: Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India publication-title: Ann. Microbiol. doi: 10.1007/s13213-014-1027-4 – volume: 28 start-page: 207 year: 1964 ident: 10.1016/j.still.2020.104577_bib0180 article-title: Some variables affecting the measurement of “catalase activity” in soil publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1964.03615995002800020024x – volume: 8 start-page: 1511 year: 2017 ident: 10.1016/j.still.2020.104577_bib0060 article-title: Editorial: a multidisciplinary look at Stenotrophomonas maltophilia: an emerging multi-drug-resistant global opportunistic pathogen publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.01511 – volume: 27 start-page: 1790 year: 2017 ident: 10.1016/j.still.2020.104577_bib0150 article-title: Alleviation of salt stress in pepper (Capsicum annum L.) plants by plant growth-promoting rhizobacteria publication-title: J. Microbiol. Biotechnol. doi: 10.4014/jmb.1609.09042 – volume: 6 start-page: 815 year: 2015 ident: 10.1016/j.still.2020.104577_bib0285 article-title: Soil inoculation with symbiotic microorganisms promotes plant growth and nutrient transporter genes expression in durum wheat publication-title: Front. Plant Sci. doi: 10.3389/fpls.2015.00815 – volume: 354 start-page: 290 year: 2007 ident: 10.1016/j.still.2020.104577_bib0330 article-title: Factors required for the catalytic reaction of PqqC/D which produces pyrroloquinoline quinone publication-title: Biochem. Bioph. Res. Commun. doi: 10.1016/j.bbrc.2007.01.001 – volume: 50 start-page: 459 year: 2019 ident: 10.1016/j.still.2020.104577_bib0295 article-title: Enterobacter sp. strain Fs-11 adapted to diverse ecological conditions and promoted sunflower achene yield, nutrient uptake and oil contents publication-title: Braz. J. Microbiol. doi: 10.1007/s42770-019-00061-x – volume: 61 start-page: 913 year: 2015 ident: 10.1016/j.still.2020.104577_bib0370 article-title: Phosphate solubilization and promotion of maize growth by Penicillium oxalicum P4 and Aspergillus niger P85 in a calcareous soil publication-title: Can. J. Microbiol. doi: 10.1139/cjm-2015-0358 – volume: 1 start-page: 48 year: 2009 ident: 10.1016/j.still.2020.104577_bib0195 article-title: Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production publication-title: J. Agric. Biol. Sci. – volume: 8 start-page: 2193 year: 2017 ident: 10.1016/j.still.2020.104577_bib0205 article-title: Application of endophytic Pseudomonas fluorescens and a bacterial consortium to Brassica napus can increase plant height and biomass under greenhouse and field conditions publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.02193 – volume: 581627 start-page: 1 year: 2014 ident: 10.1016/j.still.2020.104577_bib0320 article-title: Effect of Rhizobium and phosphate solubilizing bacterial inoculants on symbiotic traits, nodule leghemoglobin, and yield of chickpea genotypes publication-title: Int. J. Agron. – volume: 240 year: 2019 ident: 10.1016/j.still.2020.104577_bib0010 article-title: PGPR-induced OsASR6 improves plant growth and yield by altering root auxin sensitivity and the xylem structure in transgenic Arabidopsis thaliana publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2019.153010 – volume: 22 start-page: 133 year: 2011 ident: 10.1016/j.still.2020.104577_bib0335 article-title: Role of soil enzymes produced by PGPR strains in wheat growth and nutrient uptake parameters in the filed conditions publication-title: Curr. Opin Biotech. doi: 10.1016/j.copbio.2011.05.434 – volume: 27 start-page: 31 year: 1962 ident: 10.1016/j.still.2020.104577_bib0245 article-title: A modified single solution method for the determination of phosphate in natural waters publication-title: Anal. Chem. Acta doi: 10.1016/S0003-2670(00)88444-5 – start-page: 775 year: 1994 ident: 10.1016/j.still.2020.104577_bib0310 – volume: 6 start-page: 22596 year: 2016 ident: 10.1016/j.still.2020.104577_bib0350 article-title: Indole-3-acetic acid produced by Burkholderia heleia acts as a phenylacetic acid antagonist to disrupt tropolone biosynthesis in Burkholderia plantarii publication-title: Sci. Rep. doi: 10.1038/srep22596 – volume: 13 start-page: 638 year: 2013 ident: 10.1016/j.still.2020.104577_bib0225 article-title: Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth publication-title: J. Soil Sci. Plant Nutr. – volume: 20 start-page: 497 year: 2018 ident: 10.1016/j.still.2020.104577_bib0270 article-title: Investigating the mechanisms underlying phytoprotection by plant growth-promoting rhizobacteria in Spartina densiflora under metal stress publication-title: Plant Biol. doi: 10.1111/plb.12693 – volume: 43 start-page: 1185 year: 1968 ident: 10.1016/j.still.2020.104577_bib0155 article-title: The acetylene-ethylene assay for N2 fixation-laboratory and field evaluation publication-title: Plant Physiol. doi: 10.1104/pp.43.8.1185 – volume: 65 start-page: 478 year: 1980 ident: 10.1016/j.still.2020.104577_bib0240 article-title: Chlorophyll determination in intact tissues using N, N-dimethylformamide publication-title: Plant Physiol. doi: 10.1104/pp.65.3.478 – volume: 55 start-page: 149 year: 2019 ident: 10.1016/j.still.2020.104577_bib0210 article-title: Streptomyces pactum Act12 controls tomato yellow leaf curl virus disease and alters rhizosphere microbial communities publication-title: Bio. Fertil. Soils doi: 10.1007/s00374-019-01339-w – volume: 16 start-page: 244 year: 2016 ident: 10.1016/j.still.2020.104577_bib0355 article-title: Isolation, identification and characterization of Paenibacillus polymyxa CR1 with potentials for biopesticide, biofertilization, biomass degradation and biofuel production publication-title: BMC Microbiol. doi: 10.1186/s12866-016-0860-y – volume: 55 year: 2004 ident: 10.1016/j.still.2020.104577_bib0035 article-title: Screening rhizobacteria for improving the growth, yield, and oil content of canola (Brassica napus L.) publication-title: Crop Pasture Sci. doi: 10.1071/AR03112 – volume: 4 start-page: 126 year: 2001 ident: 10.1016/j.still.2020.104577_bib0020 article-title: Grain yield and related physiological characteristics of rice plants (Oryza sativa L.) inoculated with free-living rhizobacteria publication-title: Plant Prod. Sci. doi: 10.1626/pps.4.126 – volume: 145 start-page: 159 year: 2011 ident: 10.1016/j.still.2020.104577_bib0005 article-title: Isolation of plant growth promoting rhizobacteria from wheat rhizosphere and their effect on improving growth, yield and nutrient uptake of plants publication-title: Plant Biosyst. doi: 10.1080/11263504.2010.542318 – volume: 36 start-page: 45 year: 2014 ident: 10.1016/j.still.2020.104577_bib0045 article-title: Plant growth promoting rhizobacteria alleviate salinity induced negative effects on growth, oil content and physiological status in Mentha arvensis publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-013-1385-8 – volume: 41 start-page: 149 year: 2015 ident: 10.1016/j.still.2020.104577_bib0095 article-title: Anatomical, morphological, and phytochemical effects of inoculation with plant growth-promoting rhizobacteria on peppermint (Mentha piperita) publication-title: J. Chem. Ecol. doi: 10.1007/s10886-015-0549-y – volume: 66 start-page: 369 year: 2013 ident: 10.1016/j.still.2020.104577_bib0025 article-title: N2-fixation and seedling growth promotion of lodgepole pine by endophytic Paenibacillus polymyxa publication-title: Microb. Ecol. doi: 10.1007/s00248-013-0196-1 – volume: 1 start-page: 301 year: 1969 ident: 10.1016/j.still.2020.104577_bib0315 article-title: Use of p-nitrophenyl phosphate for assay of soil phosphatase activity publication-title: Soil Biol. Bioch. doi: 10.1016/0038-0717(69)90012-1 – volume: 91 start-page: 53 year: 2011 ident: 10.1016/j.still.2020.104577_bib0360 article-title: Predicting soil organic carbon and total nitrogen using mid- and near-infrared spectra for brookston clay loam soil in Southwestern Ontario, Canada publication-title: Cana. J. Soil Sci. doi: 10.4141/cjss10029 – volume: 62 start-page: 1109 year: 2012 ident: 10.1016/j.still.2020.104577_bib0040 article-title: Comparative effectiveness of Bacillus spp. possessing either dual or single growth-promoting traits for improving phosphorus uptake, growth and yield of wheat (Triticum aestivum L.) publication-title: Ann. Microbiol. doi: 10.1007/s13213-011-0352-0 – volume: 7 start-page: 81 year: 2017 ident: 10.1016/j.still.2020.104577_bib0200 article-title: Nanochitosan supports growth of Zea mays and also maintains soil health following growth publication-title: 3 Biotech doi: 10.1007/s13205-017-0668-y – volume: 74 start-page: 301 year: 1983 ident: 10.1016/j.still.2020.104577_bib0110 article-title: Method of measuring invertase activity in soils publication-title: Plant Soil doi: 10.1007/BF02181348 – volume: 4 start-page: 1 year: 2014 ident: 10.1016/j.still.2020.104577_bib0375 article-title: Relating microbial community structure to functioning in forest soil organic carbon transformation and turnover publication-title: Ecol. Evol. doi: 10.1002/ece3.969 – volume: 22 start-page: 867 year: 1981 ident: 10.1016/j.still.2020.104577_bib0255 article-title: Hydrogen peroxide is scavenged by ascorbatespecific peroxidase in spinach chloroplasts publication-title: Plant Cell Physiol. – volume: 169 start-page: 30 year: 2014 ident: 10.1016/j.still.2020.104577_bib0130 article-title: Bacteria with ACC deaminase can promote plant growth and help to feed the world publication-title: Microbiol. Res. doi: 10.1016/j.micres.2013.09.009 – volume: 28 start-page: 1327 year: 2012 ident: 10.1016/j.still.2020.104577_bib0050 article-title: Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture publication-title: World J. Mcrobiol. Biotechnol. doi: 10.1007/s11274-011-0979-9 – volume: 32 start-page: 429 year: 2014 ident: 10.1016/j.still.2020.104577_bib0250 article-title: The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2013.12.005 – volume: 30 start-page: 2725 year: 2013 ident: 10.1016/j.still.2020.104577_bib0325 article-title: MEGA6: molecular evolutionary genetics analysis version 6.0 publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/mst197 – volume: 9 start-page: 67 year: 2017 ident: 10.1016/j.still.2020.104577_bib0190 article-title: Cross-compatibility evaluation of plant growth promoting rhizobacteria of coconut and cocoa on yield and rhizosphere properties of vegetable crops publication-title: Biocatal. Agr. Biotech. doi: 10.1016/j.bcab.2016.11.006 – volume: 70 start-page: 209 year: 2015 ident: 10.1016/j.still.2020.104577_bib0365 article-title: Different continuous cropping spans significantly affect microbial community membership and structure in a vanilla-grown soil as revealed by deep pyrosequencing publication-title: Microb. Ecol. doi: 10.1007/s00248-014-0516-0 – volume: 62 start-page: 1321 year: 2012 ident: 10.1016/j.still.2020.104577_bib0015 article-title: The combined application of rhizobial strains and plant growth promoting rhizobacteria improves growth and productivity of mung bean (Vigna radiata L.) under salt-stressed conditions publication-title: Ann. Microbiol. doi: 10.1007/s13213-011-0380-9 – volume: 2 start-page: 764 year: 1955 ident: 10.1016/j.still.2020.104577_bib0065 article-title: Assay of catalase and peroxidases publication-title: Method Enzymol. doi: 10.1016/S0076-6879(55)02300-8 – volume: 12 start-page: e0187913 year: 2017 ident: 10.1016/j.still.2020.104577_bib0230 article-title: Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth publication-title: PLoS One doi: 10.1371/journal.pone.0187913 – start-page: 211 year: 2009 ident: 10.1016/j.still.2020.104577_bib0235 article-title: Isolation and identification of plant growth-promoting bacteria associated with tall fescue publication-title: Proceedings New Zealand Grassland Association doi: 10.33584/jnzg.2009.71.2751 – start-page: 1 year: 2016 ident: 10.1016/j.still.2020.104577_bib0145 article-title: Plant growth-promoting rhizobacteria enhance salinity stress tolerance in Okra through ROS-scavenging enzymes publication-title: Biomed Res. Int. doi: 10.1155/2016/6284547 – volume: 42 start-page: 517 year: 2019 ident: 10.1016/j.still.2020.104577_bib0135 article-title: Metatranscriptomics and nitrogen fixation from the rhizoplane of maize plantlets inoculated with a group of PGPRs publication-title: Syst. Appl. Microbiol. doi: 10.1016/j.syapm.2019.05.003 – volume: 32 start-page: 245 year: 2013 ident: 10.1016/j.still.2020.104577_bib0140 article-title: Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-012-9292-6 – volume: 3 start-page: 926 year: 2012 ident: 10.1016/j.still.2020.104577_bib0265 article-title: Chloroplast-mediated activation of plant immune signalling in Arabidopsis publication-title: Nat. Commun. doi: 10.1038/ncomms1926 – volume: 7 start-page: E403 year: 2019 ident: 10.1016/j.still.2020.104577_bib0090 article-title: Bacterial IAA-delivery into medicago root nodules triggers a balanced stimulation of C and N metabolism leading to a biomass increase publication-title: Microorganisms doi: 10.3390/microorganisms7100403 – volume: 52 start-page: 119 year: 2016 ident: 10.1016/j.still.2020.104577_bib0280 article-title: Evidence of nitrogen fixation and growth promotion in canola (Brassica napus L.) by an endophytic diazotroph Paenibacillus polymyxa P2b-2R publication-title: Bio. Fert. Soils doi: 10.1007/s00374-015-1051-y – volume: 8 start-page: 1945 year: 2017 ident: 10.1016/j.still.2020.104577_bib0300 article-title: The PGPR Stenotrophomonas maltophilia SBP-9 augments resistance against biotic and abiotic stress in wheat plants publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.01945 – start-page: 134 year: 1994 ident: 10.1016/j.still.2020.104577_bib0100 article-title: Isolation and identification of aerobic nitrogen fixing bacteria – volume: 48 start-page: 301 year: 2011 ident: 10.1016/j.still.2020.104577_bib0220 article-title: Efficacy of rhizobacterial strains encapsulated in nontoxic biodegradable gel matrices to promote growth and yield of wheat plants publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2011.04.007 – volume: 118 start-page: 672 year: 2015 ident: 10.1016/j.still.2020.104577_bib0160 article-title: Bacillus spp. from rainforest soil promote plant growth under limited nitrogen conditions publication-title: J. Appl. Microbiol. doi: 10.1111/jam.12720 – volume: 374 start-page: 689 year: 2014 ident: 10.1016/j.still.2020.104577_bib0385 article-title: Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains publication-title: Plant Soil doi: 10.1007/s11104-013-1915-6 – volume: 9 start-page: 4547 year: 2019 ident: 10.1016/j.still.2020.104577_bib0030 article-title: Fluorescent Pseudomonas -FAP2 and Bacillus licheniformis interact positively in biofilm mode enhancing plant growth and photosynthetic attributes publication-title: Sci. Rep. doi: 10.1038/s41598-019-40864-4 – volume: 108 start-page: 304 year: 2016 ident: 10.1016/j.still.2020.104577_bib0170 article-title: Interactive effects of phosphorus and Pseudomonas putida on chickpea (Cicer arietinum L.) growth, nutrient uptake, antioxidant enzymes and organic acids exudation publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2016.07.023 – volume: 167 start-page: 218 year: 2019 ident: 10.1016/j.still.2020.104577_bib0185 article-title: Impact of co-inoculation with plant-growth-promoting rhizobacteria and rhizobium on the biochemical responses of alfalfa-soil system in copper contaminated soil publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2018.10.016 – volume: 48 start-page: 294 year: 2017 ident: 10.1016/j.still.2020.104577_bib0075 article-title: Tricalcium phosphate solubilization and nitrogen fixation by newly isolated Aneurinibacillus aneurinilyticus CKMV1 from rhizosphere of Valeriana jatamansi and its growth promotional effect publication-title: Braz. J. Microbiol. doi: 10.1016/j.bjm.2016.12.001 – volume: 16 start-page: 1368 year: 2012 ident: 10.1016/j.still.2020.104577_bib0290 article-title: Response of biofertilizers on growth, yield attributes and associated protein profiling changes of blackgram (Vigna mungo L. Hepper) publication-title: World Appl. Sci. J. – volume: 47 start-page: 44 year: 2011 ident: 10.1016/j.still.2020.104577_bib0275 article-title: Effect of plant growth promoting rhizobacteria (PGPR) inoculation on microbial community structure in rhizosphere of forage corn cultivated in Thailand publication-title: Eur. J. Soil Biol. doi: 10.1016/j.ejsobi.2010.11.004 – volume: 3 start-page: 372 year: 2012 ident: 10.1016/j.still.2020.104577_bib0055 article-title: Effect of seed priming with native PGPR on its vital seedling and antioxidant enzyme activities in Curcuma longa (L.) publication-title: Int. J. Pharm. Biol. Arch. – volume: 56 start-page: 753 year: 2018 ident: 10.1016/j.still.2020.104577_bib0085 article-title: Streptomyces sp. strain SK68, isolated from peanut rhizosphere, promotes growth and alleviates salt stress in tomato (Solanum lycopersicum cv. Micro-Tom) publication-title: J. Microbiol. doi: 10.1007/s12275-018-8120-5 – volume: 29 start-page: 109 year: 2013 ident: 10.1016/j.still.2020.104577_bib0120 article-title: Multifarious beneficial traits and plant growth promoting potential of Serratia marcescens KiSII and Enterobacter sp. RNF267 isolated from the rhizosphere of coconut palms (Cocosnucifera L.) publication-title: World J. Microbiol. Biotechnol. doi: 10.1007/s11274-012-1163-6 – volume: 1 start-page: 168 year: 2015 ident: 10.1016/j.still.2020.104577_bib0215 article-title: Effect of diazotrophs and chemical fertilizers on production and economics of okra (Abelmoschus esculentus, L.) cultivars publication-title: American J. Plant. Sci. – volume: 62 start-page: 258 year: 2016 ident: 10.1016/j.still.2020.104577_bib0165 article-title: Isolation and engineering of plant growth promoting rhizobacteria Pseudomonas aeruginosa for enhanced cadmium bioremediation publication-title: J. Gen. Appl. Microbiol. doi: 10.2323/jgam.2016.04.007 |
SSID | ssj0004328 |
Score | 2.6190486 |
Snippet | •We have established PGPR microbial inoculants containing four compatible PGPR strains.•PGPR microbial inoculants had abilities of fix nitrogen, solubilize... Plant growth promoting rhizobacteria (PGPR) are an important bacterial resource for microbial fertilizers, which can promote plant growth and increase crop... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 104577 |
SubjectTerms | Acinetobacter calcoaceticus alfalfa alkaline phosphatase Alternaria solani Avena sativa beta-fructofuranosidase biofertilizers biological control Bipolaris sorokiniana catalase chlorophyll crop yield cucumbers Cucumis sativus enzyme activity Fusarium oxysporum Helminthosporium indole acetic acid Medicago sativa nitrogen Nitrogen fixation nutrient content oats organic carbon peroxidase PGPR microbial inoculants Phosphate solubilization phosphates phosphorus plant growth plant growth-promoting rhizobacteria plant height potassium Providencia rettgeri rhizosphere seedlings Serratia plymuthica Soil enzyme activity soil enzymes Soil physiochemical properties soil properties superoxide dismutase surface area urease |
Title | Effects of PGPR microbial inoculants on the growth and soil properties of Avena sativa, Medicago sativa, and Cucumis sativus seedlings |
URI | https://dx.doi.org/10.1016/j.still.2020.104577 https://www.proquest.com/docview/2388768059 |
Volume | 199 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLcquMABbWNo7KMyEseGpokTm2NVUQpIFYJV4mY5_ugydUnVNDvuuL977zkJiElw4JTE9rMiP-e957yffybkNErsyLnQBOcusQFTggVq5JIgFsKFTggbKQ-QnaezBbt-SB56ZNLthUFYZWv7G5vurXVbMmxHc7jO8-E9AuhxyQwhSIgUL7iDnXGc5Wd_nmAeLPbnq3p-b2zdMQ95jBd8RSvMP0Q-15lw_pJ3-s9Oe-czfUcO2qiRjpsXe096tvhA9sfLTcucYQ_J34aHuKKlo7eXt3f0V-45lkAsL0pEmxZYWVCI-OgSFt_bH1QVhlZlvqJr_CW_QW5VFB-DAVQUYT6_1YA2qZxl-ViAUpNa1zBDmrIaruAEcWN79ZEsphffJ7OgPWQh0OCstwGLTCo4zwwbZTHcqswKxfS5TuHJaZHpkY2gPmKpMkrbUHObisRAqOQyA8HiEdkpysJ-IpSLMBNxZrQR0FuKOuExGAynLFciYsck6gZX6paBHA_CWMkOavZTeo1I1IhsNHJMBo9C64aA4_Xmaac1-WweSXARrwuedDqWMH6YNlGFLetKQlADLkNAHPr5rZ1_IXv41AAlv5Kd7aa23yCY2WZ9P1v7ZHd8dTOb_wMk4vZP |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYQPbQcqtJSQWmpK5Ub6WYdJzEHDiseXQpFiIfEzTh-bFMtyWqzKeqlx_4h_iAzTkLVSuWAxCmJnbGiGWdmnPnymZCPLLZ950ITbLrYBlwJHqi-i4NICBc6ISxTHiB7lAzP-ZeL-GKO3HT_wiCssvX9jU_33rpt6bXa7E3yvHeKAHpcMkMKEiLFS4usPLA_r2HdVm3t74CR1xnb2z3bHgbt1gKBhhA1CzgziUjTzPB-FsGpyqxQXG_qBK6cFpnuWwb9jCfKKG1DndpExAYSBJeZGL-Cgt9_wsFd4LYJn379wZXwyG_o6gnF8fE6qiMPKoPXdowFD-aLq3Ga_i8c_hMYfLTbe0Get2kqHTSaWCRztnhJFgajaUvVYV-R3w3xcUVLR48_H5_Qq9yTOoFYXpQIby2ws6CQYtIRrPZn36gqDK3KfEwnWAOYIpkrig_A4yqKuKIfaoM2taNRedeAUtu1rmFKNm01HCHq4p_01RI5fxTVvybzRVnYZUJTEWYiyow2AkZLcBKkEXgop2yqBOMrhHXKlbqlPMedN8ayw7Z9l94iEi0iG4uskI07oUnD-HH_7UlnNfnXxJUQk-4X_NDZWIL-sE6jClvWlYQsCmKUgMT3zUMHf0-eDs--HsrD_aODVfIMexqU5lsyP5vW9h1kUrNszc9cSi4f-1W5BZa5M7Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+PGPR+microbial+inoculants+on+the+growth+and+soil+properties+of+Avena+sativa%2C+Medicago+sativa%2C+and+Cucumis+sativus+seedlings&rft.jtitle=Soil+%26+tillage+research&rft.au=Li%2C+Haiyun&rft.au=Qiu%2C+Yizhi&rft.au=Yao%2C+Tuo&rft.au=Ma%2C+Yachun&rft.date=2020-05-01&rft.issn=0167-1987&rft.volume=199+p.104577-&rft_id=info:doi/10.1016%2Fj.still.2020.104577&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-1987&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-1987&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-1987&client=summon |