Effects of PGPR microbial inoculants on the growth and soil properties of Avena sativa, Medicago sativa, and Cucumis sativus seedlings

•We have established PGPR microbial inoculants containing four compatible PGPR strains.•PGPR microbial inoculants had abilities of fix nitrogen, solubilize phosphorus, secrete IAA, and act as biocontrol agents.•PGPR microbial inoculants promoted the growth of Avena sativa, Medicago sativa, and Cucum...

Full description

Saved in:
Bibliographic Details
Published inSoil & tillage research Vol. 199; p. 104577
Main Authors Li, Haiyun, Qiu, Yizhi, Yao, Tuo, Ma, Yachun, Zhang, Huirong, Yang, Xiaolei
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We have established PGPR microbial inoculants containing four compatible PGPR strains.•PGPR microbial inoculants had abilities of fix nitrogen, solubilize phosphorus, secrete IAA, and act as biocontrol agents.•PGPR microbial inoculants promoted the growth of Avena sativa, Medicago sativa, and Cucumis sativus seedlings.•PGPR microbial inoculants increased enzyme activity and available nutrient content in the soil. Plant growth promoting rhizobacteria (PGPR) are an important bacterial resource for microbial fertilizers, which can promote plant growth and increase crop yields. In this study, multifunctional PGPR microbial inoculants with the ability to fix nitrogen, solubilize phosphate, secrete indole-3-acetic acid (IAA) and exhibit biological control were generated. These PGPR microbial inoculants contained four compatible strains of Providencia rettgeri P2, Advenella incenata P4, Acinetobacter calcoaceticus P19, and Serratia plymuthica P35. All four strains had the ability to solubilize inorganic and organic phosphate, and fix nitrogen. In addition, strains P2 and P4 had the ability to secrete IAA, and strain P35 exhibited inhibition of Helminthosporium tritici-vulgaris, Alternaria solani, Fusarium oxysporum, and Sclerotinias clerotiorum. The effects of the PGPR microbial inoculants on the growth, physiology, and soil properties of oat (Avena sativa), alfalfa (Medicago sativa), and cucumber (Cucumis sativus) seedlings were verified by a pot experiment. The PGPR microbial inoculants increased the dry weight (DW), plant height (PH), root length (RL), root average diameter (RAD), root surface area (RSA), root volume (RV), and chlorophyll content (PCH) of A. sativa, M. sativa, and C. sativus seedlings, and enhanced the activity of peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD) in the seedlings. Furthermore, PGPR microbial inoculants increased soil urease (SURE), invertase (SIN), alkaline phosphatase (SAKP), catalase (SCAT) activity, available nitrogen (AN), available phosphorus (AP), available potassium (AK), and organic carbon (SOC) in the rhizosphere of A. sativa, M. sativa, and C. sativus. In summary, our results showed that the PGPR microbial inoculants had a promoting effect on A. sativa, M. sativa, and C. sativus seedlings by increasing soil enzyme activity and available nutrient content. These PGPR microbial inoculants can be used as an alternative method of environmentally friendly biocontrol of plant disease or to improve crop systems.
AbstractList •We have established PGPR microbial inoculants containing four compatible PGPR strains.•PGPR microbial inoculants had abilities of fix nitrogen, solubilize phosphorus, secrete IAA, and act as biocontrol agents.•PGPR microbial inoculants promoted the growth of Avena sativa, Medicago sativa, and Cucumis sativus seedlings.•PGPR microbial inoculants increased enzyme activity and available nutrient content in the soil. Plant growth promoting rhizobacteria (PGPR) are an important bacterial resource for microbial fertilizers, which can promote plant growth and increase crop yields. In this study, multifunctional PGPR microbial inoculants with the ability to fix nitrogen, solubilize phosphate, secrete indole-3-acetic acid (IAA) and exhibit biological control were generated. These PGPR microbial inoculants contained four compatible strains of Providencia rettgeri P2, Advenella incenata P4, Acinetobacter calcoaceticus P19, and Serratia plymuthica P35. All four strains had the ability to solubilize inorganic and organic phosphate, and fix nitrogen. In addition, strains P2 and P4 had the ability to secrete IAA, and strain P35 exhibited inhibition of Helminthosporium tritici-vulgaris, Alternaria solani, Fusarium oxysporum, and Sclerotinias clerotiorum. The effects of the PGPR microbial inoculants on the growth, physiology, and soil properties of oat (Avena sativa), alfalfa (Medicago sativa), and cucumber (Cucumis sativus) seedlings were verified by a pot experiment. The PGPR microbial inoculants increased the dry weight (DW), plant height (PH), root length (RL), root average diameter (RAD), root surface area (RSA), root volume (RV), and chlorophyll content (PCH) of A. sativa, M. sativa, and C. sativus seedlings, and enhanced the activity of peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD) in the seedlings. Furthermore, PGPR microbial inoculants increased soil urease (SURE), invertase (SIN), alkaline phosphatase (SAKP), catalase (SCAT) activity, available nitrogen (AN), available phosphorus (AP), available potassium (AK), and organic carbon (SOC) in the rhizosphere of A. sativa, M. sativa, and C. sativus. In summary, our results showed that the PGPR microbial inoculants had a promoting effect on A. sativa, M. sativa, and C. sativus seedlings by increasing soil enzyme activity and available nutrient content. These PGPR microbial inoculants can be used as an alternative method of environmentally friendly biocontrol of plant disease or to improve crop systems.
Plant growth promoting rhizobacteria (PGPR) are an important bacterial resource for microbial fertilizers, which can promote plant growth and increase crop yields. In this study, multifunctional PGPR microbial inoculants with the ability to fix nitrogen, solubilize phosphate, secrete indole-3-acetic acid (IAA) and exhibit biological control were generated. These PGPR microbial inoculants contained four compatible strains of Providencia rettgeri P2, Advenella incenata P4, Acinetobacter calcoaceticus P19, and Serratia plymuthica P35. All four strains had the ability to solubilize inorganic and organic phosphate, and fix nitrogen. In addition, strains P2 and P4 had the ability to secrete IAA, and strain P35 exhibited inhibition of Helminthosporium tritici-vulgaris, Alternaria solani, Fusarium oxysporum, and Sclerotinias clerotiorum. The effects of the PGPR microbial inoculants on the growth, physiology, and soil properties of oat (Avena sativa), alfalfa (Medicago sativa), and cucumber (Cucumis sativus) seedlings were verified by a pot experiment. The PGPR microbial inoculants increased the dry weight (DW), plant height (PH), root length (RL), root average diameter (RAD), root surface area (RSA), root volume (RV), and chlorophyll content (PCH) of A. sativa, M. sativa, and C. sativus seedlings, and enhanced the activity of peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD) in the seedlings. Furthermore, PGPR microbial inoculants increased soil urease (SURE), invertase (SIN), alkaline phosphatase (SAKP), catalase (SCAT) activity, available nitrogen (AN), available phosphorus (AP), available potassium (AK), and organic carbon (SOC) in the rhizosphere of A. sativa, M. sativa, and C. sativus. In summary, our results showed that the PGPR microbial inoculants had a promoting effect on A. sativa, M. sativa, and C. sativus seedlings by increasing soil enzyme activity and available nutrient content. These PGPR microbial inoculants can be used as an alternative method of environmentally friendly biocontrol of plant disease or to improve crop systems.
ArticleNumber 104577
Author Zhang, Huirong
Yao, Tuo
Ma, Yachun
Li, Haiyun
Qiu, Yizhi
Yang, Xiaolei
Author_xml – sequence: 1
  givenname: Haiyun
  surname: Li
  fullname: Li, Haiyun
  organization: College of Grassland Science, Gansu Agricultural University, Lanzhou, China
– sequence: 2
  givenname: Yizhi
  surname: Qiu
  fullname: Qiu, Yizhi
  organization: School of Life Science, Lanzhou University, Lanzhou, China
– sequence: 3
  givenname: Tuo
  surname: Yao
  fullname: Yao, Tuo
  email: yaotuo@gsau.edu.cn
  organization: College of Grassland Science, Gansu Agricultural University, Lanzhou, China
– sequence: 4
  givenname: Yachun
  surname: Ma
  fullname: Ma, Yachun
  organization: College of Grassland Science, Gansu Agricultural University, Lanzhou, China
– sequence: 5
  givenname: Huirong
  surname: Zhang
  fullname: Zhang, Huirong
  organization: College of Grassland Science, Gansu Agricultural University, Lanzhou, China
– sequence: 6
  givenname: Xiaolei
  surname: Yang
  fullname: Yang, Xiaolei
  organization: College of Grassland Science, Gansu Agricultural University, Lanzhou, China
BookMark eNqFkcFu3CAQQFGUSt2k_YJeOOYQb8HGBh9yiFZJWilVo6o9IwzjDSsWNoA36g_0u4vjqoce0tPAzLzR8DhDpz54QOgDJWtKaPdxt07ZOreuST1nWMv5CVpRwfuqYYydolXp4hXtBX-LzlLaEUJYU4sV-nUzjqBzwmHED3cP3_De6hgGqxy2PujJKT8XPc6PgLcxPOdHrLzBKViHDzEcIGYLL_j1EbzCSWV7VJf4Cxir1Tb8TczUZtLT3qYlN5UIYJz12_QOvRmVS_D-TzxHP25vvm8-Vfdf7z5vru8r3QiaK1abTnA-GEaHphzVAEIx3euu3EYtBk2hLvWadcooDURz6ERr6rYbB9M2zTm6WOaW1Z8mSFmWdTS48kwIU5J1IwTvBGn70tovrcVHShFGqW0uewefo7JOUiJn93InX9zL2b1c3Be2-Yc9RLtX8ed_qKuFgmLgaCHKpC14XUzG8kfSBPsq_xvCWaPY
CitedBy_id crossref_primary_10_1080_00207233_2023_2216606
crossref_primary_10_1007_s00344_022_10821_z
crossref_primary_10_1093_jambio_lxaf041
crossref_primary_10_1016_j_scienta_2024_113131
crossref_primary_10_3390_horticulturae11030271
crossref_primary_10_1007_s42161_024_01808_8
crossref_primary_10_3390_agronomy12081741
crossref_primary_10_1016_j_chemosphere_2020_129097
crossref_primary_10_1007_s00253_023_12850_4
crossref_primary_10_3390_f12010060
crossref_primary_10_1038_s41598_021_88635_4
crossref_primary_10_1016_j_sajb_2023_08_037
crossref_primary_10_3390_horticulturae9101104
crossref_primary_10_1002_ldr_5074
crossref_primary_10_1371_journal_pone_0281505
crossref_primary_10_3389_fmicb_2024_1385734
crossref_primary_10_1038_s41396_023_01402_3
crossref_primary_10_3389_fpls_2024_1485362
crossref_primary_10_3390_life12101632
crossref_primary_10_1016_j_bcab_2023_102691
crossref_primary_10_1007_s00248_023_02250_6
crossref_primary_10_1007_s11104_022_05504_3
crossref_primary_10_3389_fmicb_2024_1324188
crossref_primary_10_1007_s11738_024_03690_4
crossref_primary_10_1016_j_jhazmat_2022_129232
crossref_primary_10_1016_j_heliyon_2022_e11674
crossref_primary_10_1016_j_jenvman_2024_122007
crossref_primary_10_4014_jmb_2105_05012
crossref_primary_10_1007_s00248_023_02340_5
crossref_primary_10_3389_fmicb_2023_1274346
crossref_primary_10_3390_agronomy14030551
crossref_primary_10_3390_agronomy14051016
crossref_primary_10_1016_j_ijbiomac_2022_04_017
crossref_primary_10_3390_nano14131164
crossref_primary_10_1016_j_rhisph_2022_100563
crossref_primary_10_1071_CP22263
crossref_primary_10_1016_j_scitotenv_2020_140682
crossref_primary_10_1016_j_envpol_2023_121559
crossref_primary_10_1002_jsfa_11382
crossref_primary_10_1016_j_micpath_2024_106750
crossref_primary_10_1016_j_apsoil_2021_104285
crossref_primary_10_1007_s42729_023_01214_6
crossref_primary_10_1016_j_btre_2023_e00781
crossref_primary_10_3389_fmicb_2021_747982
crossref_primary_10_3390_agronomy13122895
crossref_primary_10_1080_14735903_2024_2361578
crossref_primary_10_31047_1668_298x_v41_n1_41895
crossref_primary_10_3389_fmicb_2022_1019383
crossref_primary_10_1007_s00344_023_11056_2
crossref_primary_10_1007_s42729_023_01324_1
crossref_primary_10_3390_agronomy12071700
crossref_primary_10_3390_genes13111922
crossref_primary_10_1080_10826068_2024_2428322
crossref_primary_10_1186_s12870_024_05347_3
crossref_primary_10_3390_microorganisms12112227
crossref_primary_10_1016_j_chemosphere_2020_127952
crossref_primary_10_3390_biology13080611
crossref_primary_10_3389_fmicb_2022_994716
crossref_primary_10_3390_cells10061551
crossref_primary_10_1007_s42770_021_00618_9
crossref_primary_10_3389_fbioe_2022_866419
crossref_primary_10_1039_D3EN00236E
crossref_primary_10_1016_j_scitotenv_2020_143215
crossref_primary_10_1016_j_cpb_2024_100372
crossref_primary_10_1007_s11356_021_15168_8
crossref_primary_10_3389_fmicb_2021_653556
crossref_primary_10_1002_ps_8429
crossref_primary_10_1111_jipb_13733
crossref_primary_10_3389_fpls_2025_1550026
crossref_primary_10_3390_microorganisms9102028
crossref_primary_10_1002_ldr_5393
crossref_primary_10_3390_ijms23031694
crossref_primary_10_1080_00103624_2022_2028818
crossref_primary_10_1590_s1413_415220210240
crossref_primary_10_3390_plants12030466
crossref_primary_10_3390_agronomy14030542
crossref_primary_10_3390_agronomy15030738
crossref_primary_10_1016_j_scienta_2022_111723
crossref_primary_10_1016_j_rhisph_2021_100334
crossref_primary_10_1111_sum_13140
crossref_primary_10_1007_s10653_022_01433_3
crossref_primary_10_1016_j_rcar_2024_09_004
crossref_primary_10_1094_MPMI_04_20_0106_R
crossref_primary_10_1007_s11270_023_06061_w
crossref_primary_10_1007_s42729_022_01079_1
crossref_primary_10_1016_j_apsoil_2020_103760
crossref_primary_10_1007_s00344_022_10633_1
crossref_primary_10_1016_j_rhisph_2023_100800
crossref_primary_10_1016_j_envexpbot_2021_104524
crossref_primary_10_3390_plants12040705
crossref_primary_10_3389_fpls_2024_1419764
crossref_primary_10_1016_j_micres_2025_128141
crossref_primary_10_1007_s00284_024_03893_5
crossref_primary_10_3390_horticulturae8100947
crossref_primary_10_1016_j_apsoil_2021_104369
crossref_primary_10_1155_2022_5115875
crossref_primary_10_3390_agronomy11050966
crossref_primary_10_3390_f16030539
crossref_primary_10_3389_fmicb_2023_1208743
crossref_primary_10_7717_peerj_15925
crossref_primary_10_1007_s11756_023_01376_9
crossref_primary_10_1007_s11368_022_03415_5
crossref_primary_10_1080_09583157_2024_2332314
crossref_primary_10_1016_j_agee_2022_108233
crossref_primary_10_1007_s11356_020_12203_y
crossref_primary_10_1016_j_rhisph_2023_100782
crossref_primary_10_1515_opag_2022_0154
crossref_primary_10_3390_agriculture14111880
crossref_primary_10_1016_j_chemosphere_2021_133136
crossref_primary_10_3390_foods10020424
crossref_primary_10_1007_s00344_022_10787_y
Cites_doi 10.1890/10-0459.1
10.1104/pp.59.2.309
10.1016/j.jgeb.2018.09.001
10.1128/AEM.01303-08
10.1016/j.talanta.2013.03.023
10.1111/j.1574-6968.1999.tb13383.x
10.1007/s00374-010-0523-3
10.4067/S0718-58392013000300002
10.1007/s11120-017-0435-2
10.1016/j.ecoenv.2014.12.014
10.1007/s13213-014-1027-4
10.2136/sssaj1964.03615995002800020024x
10.3389/fmicb.2017.01511
10.4014/jmb.1609.09042
10.3389/fpls.2015.00815
10.1016/j.bbrc.2007.01.001
10.1007/s42770-019-00061-x
10.1139/cjm-2015-0358
10.3389/fpls.2017.02193
10.1016/j.jplph.2019.153010
10.1016/j.copbio.2011.05.434
10.1016/S0003-2670(00)88444-5
10.1038/srep22596
10.1111/plb.12693
10.1104/pp.43.8.1185
10.1104/pp.65.3.478
10.1007/s00374-019-01339-w
10.1186/s12866-016-0860-y
10.1071/AR03112
10.1626/pps.4.126
10.1080/11263504.2010.542318
10.1007/s11738-013-1385-8
10.1007/s10886-015-0549-y
10.1007/s00248-013-0196-1
10.1016/0038-0717(69)90012-1
10.4141/cjss10029
10.1007/s13213-011-0352-0
10.1007/s13205-017-0668-y
10.1007/BF02181348
10.1002/ece3.969
10.1016/j.micres.2013.09.009
10.1007/s11274-011-0979-9
10.1016/j.biotechadv.2013.12.005
10.1093/molbev/mst197
10.1016/j.bcab.2016.11.006
10.1007/s00248-014-0516-0
10.1007/s13213-011-0380-9
10.1016/S0076-6879(55)02300-8
10.1371/journal.pone.0187913
10.33584/jnzg.2009.71.2751
10.1155/2016/6284547
10.1016/j.syapm.2019.05.003
10.1007/s00344-012-9292-6
10.1038/ncomms1926
10.3390/microorganisms7100403
10.1007/s00374-015-1051-y
10.3389/fmicb.2017.01945
10.1016/j.apsoil.2011.04.007
10.1111/jam.12720
10.1007/s11104-013-1915-6
10.1038/s41598-019-40864-4
10.1016/j.plaphy.2016.07.023
10.1016/j.ecoenv.2018.10.016
10.1016/j.bjm.2016.12.001
10.1016/j.ejsobi.2010.11.004
10.1007/s12275-018-8120-5
10.1007/s11274-012-1163-6
10.2323/jgam.2016.04.007
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.still.2020.104577
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1879-3444
ExternalDocumentID 10_1016_j_still_2020_104577
S0167198719306968
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
9JN
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
KOM
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SEN
SES
SEW
SPC
SPCBC
SSA
SSR
SST
SSZ
T5K
TWZ
UNMZH
WUQ
Y6R
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c381t-42d6877bd41b3d68abe8a4c9c63d6fc8bc1e277b246adace0c7e685d256fbd533
IEDL.DBID .~1
ISSN 0167-1987
IngestDate Fri Jul 11 09:54:36 EDT 2025
Tue Jul 01 00:57:02 EDT 2025
Thu Apr 24 23:10:30 EDT 2025
Fri Feb 23 02:47:59 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords RV
DW
SAKP
Nitrogen fixation
PGPR
PGPR microbial inoculants
EC
RSA
Soil enzyme activity
POD
SCAT
SOC
IAA
SOD
AK
AN
AP
Phosphate solubilization
RAD
PCH
SURA
CAT
PH
Soil physiochemical properties
SIN
RL
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-42d6877bd41b3d68abe8a4c9c63d6fc8bc1e277b246adace0c7e685d256fbd533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://ir.lzu.edu.cn/handle/262010/417605
PQID 2388768059
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2388768059
crossref_citationtrail_10_1016_j_still_2020_104577
crossref_primary_10_1016_j_still_2020_104577
elsevier_sciencedirect_doi_10_1016_j_still_2020_104577
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2020
2020-05-00
20200501
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: May 2020
PublicationDecade 2020
PublicationTitle Soil & tillage research
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Nautiyal (bib0260) 1999; 170
Nomura, Komori, Uemura, Kanda, Shimotani, Nakai, Furuichi, Takebayashi, Sugimoto, Sano, Suwastika, Fukusaki, Yoshioka, Nakahira, Shiina (bib0265) 2012; 3
Minaxi, Saxena (bib0220) 2011; 48
Galkiewicz, Kellogg (bib0115) 2008; 74
Ansari, Ahmad (bib0030) 2019; 9
Huang, Liu, Li, Xu (bib0165) 2016; 62
Shahid, Hameed, Zafar, Tahir, Ijaz, Tariq, Hussain, Ali (bib0295) 2019; 50
You, Wang, Huang, Tang, Liu, Sun (bib0375) 2014; 4
Baig, Arshad, Shaharoona, Khalid, Ahmed (bib0040) 2012; 62
UdDin, Bano, Masood (bib0340) 2015; 113
Moran, Porath (bib0240) 1980; 65
Wang, Tachibana, Murai, Li, Lau, Cao, Zhu, Hashimoto, Hashidoko (bib0350) 2016; 6
Damodharan, Palaniyandi, Le, Suh, Yang (bib0085) 2018; 56
Ahmad, Zahir, Asghar, Arshad (bib0015) 2012; 62
Egamberdieva, Kucharova, Davranov, Berg, Makarova, Azarova, Chebotar, Tikhonovich, Kamilova, Validov, Lugtenberg (bib0105) 2011; 47
Hardy, Holsten, Jackson, Burns (bib0155) 1968; 43
Johnson, Temple (bib0180) 1964; 28
Boominathan, Sivakumar (bib0055) 2012; 3
Gururani, Upadhyaya, Baskar, Venkatesh, Nookaraju, Park (bib0140) 2013; 32
Piromyou, Buranabanyat, Tantasawat, Tittabutr, Boonkerd, Teaumroong (bib0275) 2011; 47
Tamura, Stecher, Peterson, Filipski, Kumar (bib0325) 2013; 30
Mal, Mahapatra, Mohanty (bib0215) 2015; 1
Zhang, Wang, Liu, Li, Shen, Zhang (bib0385) 2014; 374
Hahm, Son, Hwang, Kwon, Ghim (bib0150) 2017; 27
Monk, Gerard, Young (bib0235) 2009
Chance, Maehly (bib0065) 1955; 2
Molina-Romero, Baez, Quintero-Hernández, Castañeda-Lucio, Fuentes-Ramírez, Bustillos-Cristales, Rodríguez-Andrade, Morales-García, Munive, Muñoz-Rojas (bib0230) 2017; 12
Brooke, Di Bonaventura, Berg, Martinez (bib0060) 2017; 8
Tagore, Namdeo, Sharma, Kumar (bib0320) 2014; 581627
Huang, Zhou, Guo, Manter (bib0160) 2015; 118
Defez, Andreozzi, Romano, Pocsfalvi, Fiume, Esposito, Angelini, Bianco (bib0090) 2019; 7
Yin, Shi, Jiang, Roberts, Chen, Fan (bib0370) 2015; 61
George, Gupta, Gopal, Thomas, Thomas (bib0120) 2013; 29
Bharti, Barnawal, Awasthi, Yadav, Kalra (bib0045) 2014; 36
Doebereiner (bib0100) 1994
Singh, Jha (bib0300) 2017; 8
Zhang, Mason, McNeill, McLaughlin (bib0380) 2013; 113
Chauhan, Guleria, Balgir, Walia, Mahajan, Mehta, Shirkot (bib0075) 2017; 48
Anand, Grayston, Chanway (bib0025) 2013; 66
Ju, Liu, Fang, Cui, Duan, Wu (bib0185) 2019; 167
Nadeem, Ahmad, Zahir, Javaid, Ashraf (bib0250) 2014; 32
Paredes-Páliz, Rodríguez-Vázquez, Duarte, Caviedes, Mateos-Naranjo, Redondo-Gómez, Caçador, Rodríguez-Llorente, Pajuelo (bib0270) 2018; 20
Selvakumar, Reetha, Thamizhiniyan (bib0290) 2012; 16
Xiong, Zhao, Zhao, Xun, Li, Zhang, Wu, Shen (bib0365) 2015; 70
Toyama, Nishibayashi, Saeki, Adachi, Matsushita (bib0330) 2007; 354
del Rosario Cappellari, Santoro, Reinoso, Travaglia, Giordano, Banchio (bib0095) 2015; 41
Murphy, Riley (bib0245) 1962; 27
Khan, Jilani, Akhtar, Naqvi, Rasheed (bib0195) 2009; 1
Frankeberger, Johanson (bib0110) 1983; 74
Nakano, Asada (bib0255) 1981; 22
Agarwal, Singh, Chaudhry, Shirke, Chakrabarty, Farooqui, Nautiyal, Sane, Sane (bib0010) 2019; 240
Glick (bib0130) 2014; 169
Weselowski, Nathoo, Eastman, MacDonald, Yuan (bib0355) 2016; 16
Verma, Yadav, Khannam, Panjiar, Kumar, Saxena, Suman (bib0345) 2015; 65
Khati, Chaudhary, Gangola, Bhatt, Sharma (bib0200) 2017; 7
Israr, Mustafa, Khan, Shahzad, Ahmad, Masood (bib0170) 2016; 108
Tabatabai (bib0310) 1994
Khadeejath, Gopal, Gupta, Bhat, Thomas (bib0190) 2017; 9
Bhattacharyya, Jha (bib0050) 2012; 28
Gómez-Godínez, Fernandez-Valverde, Martinez Romero, Martínez-Romero (bib0135) 2019; 42
Jha, Subramanian (bib0175) 2013; 73
Puri, Padda, Chanway (bib0280) 2016; 52
Mohite (bib0225) 2013; 13
Giannopolitis, Ries (bib0125) 1977; 59
Asghar, Zahir, Arshad (bib0035) 2004; 55
Su, Villaume, Rabenoelina, Crouzet, Clément, Vaillant-Gaveau, Dhondt-Cordelier (bib0305) 2017; 134
Tabatabai, Bremner (bib0315) 1969; 1
Habib, Kausar, Saud (bib0145) 2016
Turan, Gulluce, Karadayi, Sahin (bib0335) 2011; 22
Alam, Cui, Yamagishi, Ishii (bib0020) 2001; 4
Chandra, Askari, Kumari (bib0070) 2018; 16
Cusack, Silver, Torn, Burton, Firestone (bib0080) 2011; 92
Lally, Galbally, Moreira, Spink, Ryan, Germaine, Dowling (bib0205) 2017; 8
Abbasi, Sharif, Kazmi, Sultan, Aslam (bib0005) 2011; 145
Saia, Rappa, Ruisi, Abenavoli, Sunseri, Giambalvo, Frenda, Martinelli (bib0285) 2015; 6
Xie, Yang, Drury, Yang, Zhang (bib0360) 2011; 91
Li, Guo, Li, Sun, Xue, Lai (bib0210) 2019; 55
Hardy (10.1016/j.still.2020.104577_bib0155) 1968; 43
Ahmad (10.1016/j.still.2020.104577_bib0015) 2012; 62
Tamura (10.1016/j.still.2020.104577_bib0325) 2013; 30
Habib (10.1016/j.still.2020.104577_bib0145) 2016
Nautiyal (10.1016/j.still.2020.104577_bib0260) 1999; 170
Huang (10.1016/j.still.2020.104577_bib0160) 2015; 118
Khati (10.1016/j.still.2020.104577_bib0200) 2017; 7
You (10.1016/j.still.2020.104577_bib0375) 2014; 4
Anand (10.1016/j.still.2020.104577_bib0025) 2013; 66
Damodharan (10.1016/j.still.2020.104577_bib0085) 2018; 56
Wang (10.1016/j.still.2020.104577_bib0350) 2016; 6
Ju (10.1016/j.still.2020.104577_bib0185) 2019; 167
Su (10.1016/j.still.2020.104577_bib0305) 2017; 134
Baig (10.1016/j.still.2020.104577_bib0040) 2012; 62
Tagore (10.1016/j.still.2020.104577_bib0320) 2014; 581627
Paredes-Páliz (10.1016/j.still.2020.104577_bib0270) 2018; 20
UdDin (10.1016/j.still.2020.104577_bib0340) 2015; 113
Boominathan (10.1016/j.still.2020.104577_bib0055) 2012; 3
Weselowski (10.1016/j.still.2020.104577_bib0355) 2016; 16
Khan (10.1016/j.still.2020.104577_bib0195) 2009; 1
George (10.1016/j.still.2020.104577_bib0120) 2013; 29
Ansari (10.1016/j.still.2020.104577_bib0030) 2019; 9
Brooke (10.1016/j.still.2020.104577_bib0060) 2017; 8
Cusack (10.1016/j.still.2020.104577_bib0080) 2011; 92
Huang (10.1016/j.still.2020.104577_bib0165) 2016; 62
Abbasi (10.1016/j.still.2020.104577_bib0005) 2011; 145
Li (10.1016/j.still.2020.104577_bib0210) 2019; 55
Verma (10.1016/j.still.2020.104577_bib0345) 2015; 65
Chauhan (10.1016/j.still.2020.104577_bib0075) 2017; 48
Xiong (10.1016/j.still.2020.104577_bib0365) 2015; 70
Doebereiner (10.1016/j.still.2020.104577_bib0100) 1994
Gómez-Godínez (10.1016/j.still.2020.104577_bib0135) 2019; 42
Hahm (10.1016/j.still.2020.104577_bib0150) 2017; 27
Mal (10.1016/j.still.2020.104577_bib0215) 2015; 1
Nakano (10.1016/j.still.2020.104577_bib0255) 1981; 22
Gururani (10.1016/j.still.2020.104577_bib0140) 2013; 32
Nadeem (10.1016/j.still.2020.104577_bib0250) 2014; 32
Singh (10.1016/j.still.2020.104577_bib0300) 2017; 8
Johnson (10.1016/j.still.2020.104577_bib0180) 1964; 28
Yin (10.1016/j.still.2020.104577_bib0370) 2015; 61
Piromyou (10.1016/j.still.2020.104577_bib0275) 2011; 47
Nomura (10.1016/j.still.2020.104577_bib0265) 2012; 3
Bharti (10.1016/j.still.2020.104577_bib0045) 2014; 36
Zhang (10.1016/j.still.2020.104577_bib0380) 2013; 113
Glick (10.1016/j.still.2020.104577_bib0130) 2014; 169
Israr (10.1016/j.still.2020.104577_bib0170) 2016; 108
Moran (10.1016/j.still.2020.104577_bib0240) 1980; 65
Turan (10.1016/j.still.2020.104577_bib0335) 2011; 22
Zhang (10.1016/j.still.2020.104577_bib0385) 2014; 374
Saia (10.1016/j.still.2020.104577_bib0285) 2015; 6
Alam (10.1016/j.still.2020.104577_bib0020) 2001; 4
Shahid (10.1016/j.still.2020.104577_bib0295) 2019; 50
Agarwal (10.1016/j.still.2020.104577_bib0010) 2019; 240
Tabatabai (10.1016/j.still.2020.104577_bib0315) 1969; 1
del Rosario Cappellari (10.1016/j.still.2020.104577_bib0095) 2015; 41
Toyama (10.1016/j.still.2020.104577_bib0330) 2007; 354
Frankeberger (10.1016/j.still.2020.104577_bib0110) 1983; 74
Egamberdieva (10.1016/j.still.2020.104577_bib0105) 2011; 47
Lally (10.1016/j.still.2020.104577_bib0205) 2017; 8
Molina-Romero (10.1016/j.still.2020.104577_bib0230) 2017; 12
Defez (10.1016/j.still.2020.104577_bib0090) 2019; 7
Giannopolitis (10.1016/j.still.2020.104577_bib0125) 1977; 59
Mohite (10.1016/j.still.2020.104577_bib0225) 2013; 13
Tabatabai (10.1016/j.still.2020.104577_bib0310) 1994
Xie (10.1016/j.still.2020.104577_bib0360) 2011; 91
Selvakumar (10.1016/j.still.2020.104577_bib0290) 2012; 16
Chance (10.1016/j.still.2020.104577_bib0065) 1955; 2
Jha (10.1016/j.still.2020.104577_bib0175) 2013; 73
Murphy (10.1016/j.still.2020.104577_bib0245) 1962; 27
Puri (10.1016/j.still.2020.104577_bib0280) 2016; 52
Galkiewicz (10.1016/j.still.2020.104577_bib0115) 2008; 74
Asghar (10.1016/j.still.2020.104577_bib0035) 2004; 55
Khadeejath (10.1016/j.still.2020.104577_bib0190) 2017; 9
Minaxi (10.1016/j.still.2020.104577_bib0220) 2011; 48
Chandra (10.1016/j.still.2020.104577_bib0070) 2018; 16
Monk (10.1016/j.still.2020.104577_bib0235) 2009
Bhattacharyya (10.1016/j.still.2020.104577_bib0050) 2012; 28
References_xml – volume: 7
  start-page: 81
  year: 2017
  ident: bib0200
  article-title: Nanochitosan supports growth of
  publication-title: 3 Biotech
– volume: 118
  start-page: 672
  year: 2015
  end-page: 684
  ident: bib0160
  article-title: spp. from rainforest soil promote plant growth under limited nitrogen conditions
  publication-title: J. Appl. Microbiol.
– volume: 13
  start-page: 638
  year: 2013
  end-page: 649
  ident: bib0225
  article-title: Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth
  publication-title: J. Soil Sci. Plant Nutr.
– volume: 134
  start-page: 201
  year: 2017
  end-page: 214
  ident: bib0305
  article-title: Different Arabidopsis thaliana photosynthetic and defense responses to hemibiotrophic pathogen induced by local or distal inoculation of
  publication-title: Photosynth. Res.
– volume: 62
  start-page: 1109
  year: 2012
  end-page: 1119
  ident: bib0040
  article-title: Comparative effectiveness of
  publication-title: Ann. Microbiol.
– volume: 1
  start-page: 48
  year: 2009
  end-page: 58
  ident: bib0195
  article-title: Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production
  publication-title: J. Agric. Biol. Sci.
– volume: 12
  start-page: e0187913
  year: 2017
  ident: bib0230
  article-title: Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth
  publication-title: PLoS One
– volume: 8
  start-page: 2193
  year: 2017
  ident: bib0205
  article-title: Application of endophytic
  publication-title: Front. Plant Sci.
– volume: 61
  start-page: 913
  year: 2015
  end-page: 923
  ident: bib0370
  article-title: Phosphate solubilization and promotion of maize growth by
  publication-title: Can. J. Microbiol.
– volume: 29
  start-page: 109
  year: 2013
  end-page: 117
  ident: bib0120
  article-title: Multifarious beneficial traits and plant growth promoting potential of
  publication-title: World J. Microbiol. Biotechnol.
– volume: 55
  year: 2004
  ident: bib0035
  article-title: Screening rhizobacteria for improving the growth, yield, and oil content of canola (
  publication-title: Crop Pasture Sci.
– volume: 65
  start-page: 478
  year: 1980
  end-page: 479
  ident: bib0240
  article-title: Chlorophyll determination in intact tissues using N, N-dimethylformamide
  publication-title: Plant Physiol.
– volume: 113
  start-page: 271
  year: 2015
  end-page: 278
  ident: bib0340
  article-title: Chromium toxicity tolerance of
  publication-title: Ecotoxicol. Environ. Safe
– volume: 52
  start-page: 119
  year: 2016
  end-page: 125
  ident: bib0280
  article-title: Evidence of nitrogen fixation and growth promotion in canola (
  publication-title: Bio. Fert. Soils
– volume: 240
  year: 2019
  ident: bib0010
  article-title: PGPR-induced OsASR6 improves plant growth and yield by altering root auxin sensitivity and the xylem structure in transgenic Arabidopsis thaliana
  publication-title: J. Plant Physiol.
– volume: 48
  start-page: 301
  year: 2011
  end-page: 308
  ident: bib0220
  article-title: Efficacy of rhizobacterial strains encapsulated in nontoxic biodegradable gel matrices to promote growth and yield of wheat plants
  publication-title: Appl. Soil Ecol.
– volume: 65
  start-page: 1885
  year: 2015
  end-page: 1899
  ident: bib0345
  article-title: Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (
  publication-title: Ann. Microbiol.
– volume: 167
  start-page: 218
  year: 2019
  end-page: 226
  ident: bib0185
  article-title: Impact of co-inoculation with plant-growth-promoting rhizobacteria and rhizobium on the biochemical responses of alfalfa-soil system in copper contaminated soil
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 6
  start-page: 815
  year: 2015
  ident: bib0285
  article-title: Soil inoculation with symbiotic microorganisms promotes plant growth and nutrient transporter genes expression in durum wheat
  publication-title: Front. Plant Sci.
– volume: 20
  start-page: 497
  year: 2018
  end-page: 506
  ident: bib0270
  article-title: Investigating the mechanisms underlying phytoprotection by plant growth-promoting rhizobacteria in Spartina densiflora under metal stress
  publication-title: Plant Biol.
– volume: 70
  start-page: 209
  year: 2015
  end-page: 218
  ident: bib0365
  article-title: Different continuous cropping spans significantly affect microbial community membership and structure in a vanilla-grown soil as revealed by deep pyrosequencing
  publication-title: Microb. Ecol.
– volume: 74
  start-page: 301
  year: 1983
  end-page: 311
  ident: bib0110
  article-title: Method of measuring invertase activity in soils
  publication-title: Plant Soil
– volume: 62
  start-page: 258
  year: 2016
  end-page: 265
  ident: bib0165
  article-title: Isolation and engineering of plant growth promoting rhizobacteria Pseudomonas aeruginosa for enhanced cadmium bioremediation
  publication-title: J. Gen. Appl. Microbiol.
– volume: 1
  start-page: 301
  year: 1969
  end-page: 307
  ident: bib0315
  article-title: Use of p-nitrophenyl phosphate for assay of soil phosphatase activity
  publication-title: Soil Biol. Bioch.
– volume: 1
  start-page: 168
  year: 2015
  end-page: 174
  ident: bib0215
  article-title: Effect of diazotrophs and chemical fertilizers on production and economics of okra (
  publication-title: American J. Plant. Sci.
– volume: 59
  start-page: 309
  year: 1977
  end-page: 314
  ident: bib0125
  article-title: Superoxide dismutases: I. Occurrence in higher plants
  publication-title: Plant Physiol.
– volume: 6
  start-page: 22596
  year: 2016
  ident: bib0350
  article-title: Indole-3-acetic acid produced by
  publication-title: Sci. Rep.
– volume: 3
  start-page: 372
  year: 2012
  end-page: 376
  ident: bib0055
  article-title: Effect of seed priming with native PGPR on its vital seedling and antioxidant enzyme activities in
  publication-title: Int. J. Pharm. Biol. Arch.
– volume: 92
  start-page: 621
  year: 2011
  end-page: 632
  ident: bib0080
  article-title: Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests
  publication-title: Ecology
– volume: 145
  start-page: 159
  year: 2011
  end-page: 168
  ident: bib0005
  article-title: Isolation of plant growth promoting rhizobacteria from wheat rhizosphere and their effect on improving growth, yield and nutrient uptake of plants
  publication-title: Plant Biosyst.
– volume: 55
  start-page: 149
  year: 2019
  end-page: 169
  ident: bib0210
  article-title: Act12 controls tomato yellow leaf curl virus disease and alters rhizosphere microbial communities
  publication-title: Bio. Fertil. Soils
– volume: 4
  start-page: 1
  year: 2014
  end-page: 15
  ident: bib0375
  article-title: Relating microbial community structure to functioning in forest soil organic carbon transformation and turnover
  publication-title: Ecol. Evol.
– volume: 8
  start-page: 1945
  year: 2017
  ident: bib0300
  article-title: The PGPR
  publication-title: Front. Microbiol.
– volume: 8
  start-page: 1511
  year: 2017
  ident: bib0060
  article-title: Editorial: a multidisciplinary look at
  publication-title: Front. Microbiol.
– volume: 30
  start-page: 2725
  year: 2013
  end-page: 2729
  ident: bib0325
  article-title: MEGA6: molecular evolutionary genetics analysis version 6.0
  publication-title: Mol. Biol. Evol.
– volume: 32
  start-page: 245
  year: 2013
  end-page: 258
  ident: bib0140
  article-title: Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in
  publication-title: J. Plant Growth Regul.
– volume: 27
  start-page: 31
  year: 1962
  end-page: 36
  ident: bib0245
  article-title: A modified single solution method for the determination of phosphate in natural waters
  publication-title: Anal. Chem. Acta
– volume: 22
  start-page: 867
  year: 1981
  end-page: 880
  ident: bib0255
  article-title: Hydrogen peroxide is scavenged by ascorbatespecific peroxidase in spinach chloroplasts
  publication-title: Plant Cell Physiol.
– volume: 354
  start-page: 290
  year: 2007
  end-page: 295
  ident: bib0330
  article-title: Factors required for the catalytic reaction of PqqC/D which produces pyrroloquinoline quinone
  publication-title: Biochem. Bioph. Res. Commun.
– volume: 22
  start-page: 133
  year: 2011
  end-page: 140
  ident: bib0335
  article-title: Role of soil enzymes produced by PGPR strains in wheat growth and nutrient uptake parameters in the filed conditions
  publication-title: Curr. Opin Biotech.
– volume: 66
  start-page: 369
  year: 2013
  end-page: 374
  ident: bib0025
  article-title: N
  publication-title: Microb. Ecol.
– start-page: 1
  year: 2016
  end-page: 10
  ident: bib0145
  article-title: Plant growth-promoting rhizobacteria enhance salinity stress tolerance in Okra through ROS-scavenging enzymes
  publication-title: Biomed Res. Int.
– volume: 28
  start-page: 207
  year: 1964
  end-page: 209
  ident: bib0180
  article-title: Some variables affecting the measurement of “catalase activity” in soil
  publication-title: Soil Sci. Soc. Am. J.
– start-page: 775
  year: 1994
  end-page: 883
  ident: bib0310
  publication-title: Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties
– volume: 7
  start-page: E403
  year: 2019
  ident: bib0090
  article-title: Bacterial IAA-delivery into medicago root nodules triggers a balanced stimulation of C and N metabolism leading to a biomass increase
  publication-title: Microorganisms
– volume: 36
  start-page: 45
  year: 2014
  end-page: 60
  ident: bib0045
  article-title: Plant growth promoting rhizobacteria alleviate salinity induced negative effects on growth, oil content and physiological status in
  publication-title: Acta Physiol. Plant.
– volume: 16
  start-page: 581
  year: 2018
  end-page: 586
  ident: bib0070
  article-title: Optimization of indole acetic acid production by isolated bacteria from Stevia rebaudiana rhizosphere and its effects on plant growth
  publication-title: J. Genet. Eng. Biotechnol.
– start-page: 134
  year: 1994
  end-page: 141
  ident: bib0100
  article-title: Isolation and identification of aerobic nitrogen fixing bacteria
  publication-title: Methods in Applied Soil Microbiology and Biochemistry
– volume: 27
  start-page: 1790
  year: 2017
  end-page: 1797
  ident: bib0150
  article-title: Alleviation of salt stress in pepper (
  publication-title: J. Microbiol. Biotechnol.
– volume: 3
  start-page: 926
  year: 2012
  ident: bib0265
  article-title: Chloroplast-mediated activation of plant immune signalling in Arabidopsis
  publication-title: Nat. Commun.
– volume: 169
  start-page: 30
  year: 2014
  end-page: 39
  ident: bib0130
  article-title: Bacteria with ACC deaminase can promote plant growth and help to feed the world
  publication-title: Microbiol. Res.
– volume: 32
  start-page: 429
  year: 2014
  end-page: 448
  ident: bib0250
  article-title: The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments
  publication-title: Biotechnol. Adv.
– volume: 62
  start-page: 1321
  year: 2012
  end-page: 1330
  ident: bib0015
  article-title: The combined application of rhizobial strains and plant growth promoting rhizobacteria improves growth and productivity of mung bean (
  publication-title: Ann. Microbiol.
– volume: 47
  start-page: 197
  year: 2011
  end-page: 205
  ident: bib0105
  article-title: Bacteria able to control foot and root rot and to promote growth of cucumber in salinated soils
  publication-title: Biol. Fertil. Soils
– volume: 4
  start-page: 126
  year: 2001
  end-page: 130
  ident: bib0020
  article-title: Grain yield and related physiological characteristics of rice plants (
  publication-title: Plant Prod. Sci.
– volume: 74
  start-page: 7828
  year: 2008
  end-page: 7831
  ident: bib0115
  article-title: Cross-kingdom amplification using bacterial specific primers: complications for coral microbial ecology
  publication-title: Appl. Environ. Microbiol.
– volume: 170
  start-page: 265
  year: 1999
  end-page: 270
  ident: bib0260
  article-title: An efficient microbiological growth medium for screening phosphate solubilizing microorganisms
  publication-title: FEMS Microbiol. Lett.
– start-page: 211
  year: 2009
  end-page: 216
  ident: bib0235
  article-title: Isolation and identification of plant growth-promoting bacteria associated with tall fescue
  publication-title: Proceedings New Zealand Grassland Association
– volume: 50
  start-page: 459
  year: 2019
  end-page: 469
  ident: bib0295
  article-title: sp. strain Fs-11 adapted to diverse ecological conditions and promoted sunflower achene yield, nutrient uptake and oil contents
  publication-title: Braz. J. Microbiol.
– volume: 374
  start-page: 689
  year: 2014
  end-page: 700
  ident: bib0385
  article-title: Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains
  publication-title: Plant Soil
– volume: 42
  start-page: 517
  year: 2019
  end-page: 525
  ident: bib0135
  article-title: Metatranscriptomics and nitrogen fixation from the rhizoplane of maize plantlets inoculated with a group of PGPRs
  publication-title: Syst. Appl. Microbiol.
– volume: 2
  start-page: 764
  year: 1955
  end-page: 775
  ident: bib0065
  article-title: Assay of catalase and peroxidases
  publication-title: Method Enzymol.
– volume: 73
  start-page: 213
  year: 2013
  end-page: 219
  ident: bib0175
  article-title: Paddy plants inoculated with PGPR show better growth physiology and nutrient content under saline condition
  publication-title: Chil. J. Agr. Res.
– volume: 56
  start-page: 753
  year: 2018
  end-page: 759
  ident: bib0085
  article-title: sp. strain SK68, isolated from peanut rhizosphere, promotes growth and alleviates salt stress in tomato (
  publication-title: J. Microbiol.
– volume: 9
  start-page: 4547
  year: 2019
  ident: bib0030
  article-title: -FAP2 and
  publication-title: Sci. Rep.
– volume: 43
  start-page: 1185
  year: 1968
  ident: bib0155
  article-title: The acetylene-ethylene assay for N
  publication-title: Plant Physiol.
– volume: 113
  start-page: 123
  year: 2013
  end-page: 129
  ident: bib0380
  article-title: Optimization of the diffusive gradients in thin films (DGT) method for simultaneous assay of potassium and plant-available phosphorus in soils
  publication-title: Talanta
– volume: 108
  start-page: 304
  year: 2016
  end-page: 312
  ident: bib0170
  article-title: Interactive effects of phosphorus and Pseudomonas putida on chickpea (
  publication-title: Plant Physiol. Biochem.
– volume: 47
  start-page: 44
  year: 2011
  end-page: 54
  ident: bib0275
  article-title: Effect of plant growth promoting rhizobacteria (PGPR) inoculation on microbial community structure in rhizosphere of forage corn cultivated in Thailand
  publication-title: Eur. J. Soil Biol.
– volume: 16
  start-page: 244
  year: 2016
  ident: bib0355
  article-title: Isolation, identification and characterization of
  publication-title: BMC Microbiol.
– volume: 91
  start-page: 53
  year: 2011
  end-page: 63
  ident: bib0360
  article-title: Predicting soil organic carbon and total nitrogen using mid- and near-infrared spectra for brookston clay loam soil in Southwestern Ontario, Canada
  publication-title: Cana. J. Soil Sci.
– volume: 48
  start-page: 294
  year: 2017
  end-page: 304
  ident: bib0075
  article-title: Tricalcium phosphate solubilization and nitrogen fixation by newly isolated
  publication-title: Braz. J. Microbiol.
– volume: 41
  start-page: 149
  year: 2015
  end-page: 158
  ident: bib0095
  article-title: Anatomical, morphological, and phytochemical effects of inoculation with plant growth-promoting rhizobacteria on peppermint (
  publication-title: J. Chem. Ecol.
– volume: 28
  start-page: 1327
  year: 2012
  end-page: 1350
  ident: bib0050
  article-title: Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture
  publication-title: World J. Mcrobiol. Biotechnol.
– volume: 16
  start-page: 1368
  year: 2012
  end-page: 1374
  ident: bib0290
  article-title: Response of biofertilizers on growth, yield attributes and associated protein profiling changes of blackgram (
  publication-title: World Appl. Sci. J.
– volume: 581627
  start-page: 1
  year: 2014
  end-page: 8
  ident: bib0320
  article-title: Effect of
  publication-title: Int. J. Agron.
– volume: 9
  start-page: 67
  year: 2017
  end-page: 73
  ident: bib0190
  article-title: Cross-compatibility evaluation of plant growth promoting rhizobacteria of coconut and cocoa on yield and rhizosphere properties of vegetable crops
  publication-title: Biocatal. Agr. Biotech.
– volume: 92
  start-page: 621
  year: 2011
  ident: 10.1016/j.still.2020.104577_bib0080
  article-title: Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests
  publication-title: Ecology
  doi: 10.1890/10-0459.1
– volume: 59
  start-page: 309
  year: 1977
  ident: 10.1016/j.still.2020.104577_bib0125
  article-title: Superoxide dismutases: I. Occurrence in higher plants
  publication-title: Plant Physiol.
  doi: 10.1104/pp.59.2.309
– volume: 16
  start-page: 581
  year: 2018
  ident: 10.1016/j.still.2020.104577_bib0070
  article-title: Optimization of indole acetic acid production by isolated bacteria from Stevia rebaudiana rhizosphere and its effects on plant growth
  publication-title: J. Genet. Eng. Biotechnol.
  doi: 10.1016/j.jgeb.2018.09.001
– volume: 74
  start-page: 7828
  year: 2008
  ident: 10.1016/j.still.2020.104577_bib0115
  article-title: Cross-kingdom amplification using bacterial specific primers: complications for coral microbial ecology
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01303-08
– volume: 113
  start-page: 123
  year: 2013
  ident: 10.1016/j.still.2020.104577_bib0380
  article-title: Optimization of the diffusive gradients in thin films (DGT) method for simultaneous assay of potassium and plant-available phosphorus in soils
  publication-title: Talanta
  doi: 10.1016/j.talanta.2013.03.023
– volume: 170
  start-page: 265
  year: 1999
  ident: 10.1016/j.still.2020.104577_bib0260
  article-title: An efficient microbiological growth medium for screening phosphate solubilizing microorganisms
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.1999.tb13383.x
– volume: 47
  start-page: 197
  year: 2011
  ident: 10.1016/j.still.2020.104577_bib0105
  article-title: Bacteria able to control foot and root rot and to promote growth of cucumber in salinated soils
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-010-0523-3
– volume: 73
  start-page: 213
  year: 2013
  ident: 10.1016/j.still.2020.104577_bib0175
  article-title: Paddy plants inoculated with PGPR show better growth physiology and nutrient content under saline condition
  publication-title: Chil. J. Agr. Res.
  doi: 10.4067/S0718-58392013000300002
– volume: 134
  start-page: 201
  year: 2017
  ident: 10.1016/j.still.2020.104577_bib0305
  article-title: Different Arabidopsis thaliana photosynthetic and defense responses to hemibiotrophic pathogen induced by local or distal inoculation of Burkholderia phytofirmans
  publication-title: Photosynth. Res.
  doi: 10.1007/s11120-017-0435-2
– volume: 113
  start-page: 271
  year: 2015
  ident: 10.1016/j.still.2020.104577_bib0340
  article-title: Chromium toxicity tolerance of Solanum nigrum L. and Parthenium hysterophorus L. plants with reference to ion patter, antioxidation activity and root exudation
  publication-title: Ecotoxicol. Environ. Safe
  doi: 10.1016/j.ecoenv.2014.12.014
– volume: 65
  start-page: 1885
  year: 2015
  ident: 10.1016/j.still.2020.104577_bib0345
  article-title: Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India
  publication-title: Ann. Microbiol.
  doi: 10.1007/s13213-014-1027-4
– volume: 28
  start-page: 207
  year: 1964
  ident: 10.1016/j.still.2020.104577_bib0180
  article-title: Some variables affecting the measurement of “catalase activity” in soil
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1964.03615995002800020024x
– volume: 8
  start-page: 1511
  year: 2017
  ident: 10.1016/j.still.2020.104577_bib0060
  article-title: Editorial: a multidisciplinary look at Stenotrophomonas maltophilia: an emerging multi-drug-resistant global opportunistic pathogen
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.01511
– volume: 27
  start-page: 1790
  year: 2017
  ident: 10.1016/j.still.2020.104577_bib0150
  article-title: Alleviation of salt stress in pepper (Capsicum annum L.) plants by plant growth-promoting rhizobacteria
  publication-title: J. Microbiol. Biotechnol.
  doi: 10.4014/jmb.1609.09042
– volume: 6
  start-page: 815
  year: 2015
  ident: 10.1016/j.still.2020.104577_bib0285
  article-title: Soil inoculation with symbiotic microorganisms promotes plant growth and nutrient transporter genes expression in durum wheat
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2015.00815
– volume: 354
  start-page: 290
  year: 2007
  ident: 10.1016/j.still.2020.104577_bib0330
  article-title: Factors required for the catalytic reaction of PqqC/D which produces pyrroloquinoline quinone
  publication-title: Biochem. Bioph. Res. Commun.
  doi: 10.1016/j.bbrc.2007.01.001
– volume: 50
  start-page: 459
  year: 2019
  ident: 10.1016/j.still.2020.104577_bib0295
  article-title: Enterobacter sp. strain Fs-11 adapted to diverse ecological conditions and promoted sunflower achene yield, nutrient uptake and oil contents
  publication-title: Braz. J. Microbiol.
  doi: 10.1007/s42770-019-00061-x
– volume: 61
  start-page: 913
  year: 2015
  ident: 10.1016/j.still.2020.104577_bib0370
  article-title: Phosphate solubilization and promotion of maize growth by Penicillium oxalicum P4 and Aspergillus niger P85 in a calcareous soil
  publication-title: Can. J. Microbiol.
  doi: 10.1139/cjm-2015-0358
– volume: 1
  start-page: 48
  year: 2009
  ident: 10.1016/j.still.2020.104577_bib0195
  article-title: Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production
  publication-title: J. Agric. Biol. Sci.
– volume: 8
  start-page: 2193
  year: 2017
  ident: 10.1016/j.still.2020.104577_bib0205
  article-title: Application of endophytic Pseudomonas fluorescens and a bacterial consortium to Brassica napus can increase plant height and biomass under greenhouse and field conditions
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.02193
– volume: 581627
  start-page: 1
  year: 2014
  ident: 10.1016/j.still.2020.104577_bib0320
  article-title: Effect of Rhizobium and phosphate solubilizing bacterial inoculants on symbiotic traits, nodule leghemoglobin, and yield of chickpea genotypes
  publication-title: Int. J. Agron.
– volume: 240
  year: 2019
  ident: 10.1016/j.still.2020.104577_bib0010
  article-title: PGPR-induced OsASR6 improves plant growth and yield by altering root auxin sensitivity and the xylem structure in transgenic Arabidopsis thaliana
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2019.153010
– volume: 22
  start-page: 133
  year: 2011
  ident: 10.1016/j.still.2020.104577_bib0335
  article-title: Role of soil enzymes produced by PGPR strains in wheat growth and nutrient uptake parameters in the filed conditions
  publication-title: Curr. Opin Biotech.
  doi: 10.1016/j.copbio.2011.05.434
– volume: 27
  start-page: 31
  year: 1962
  ident: 10.1016/j.still.2020.104577_bib0245
  article-title: A modified single solution method for the determination of phosphate in natural waters
  publication-title: Anal. Chem. Acta
  doi: 10.1016/S0003-2670(00)88444-5
– start-page: 775
  year: 1994
  ident: 10.1016/j.still.2020.104577_bib0310
– volume: 6
  start-page: 22596
  year: 2016
  ident: 10.1016/j.still.2020.104577_bib0350
  article-title: Indole-3-acetic acid produced by Burkholderia heleia acts as a phenylacetic acid antagonist to disrupt tropolone biosynthesis in Burkholderia plantarii
  publication-title: Sci. Rep.
  doi: 10.1038/srep22596
– volume: 13
  start-page: 638
  year: 2013
  ident: 10.1016/j.still.2020.104577_bib0225
  article-title: Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth
  publication-title: J. Soil Sci. Plant Nutr.
– volume: 20
  start-page: 497
  year: 2018
  ident: 10.1016/j.still.2020.104577_bib0270
  article-title: Investigating the mechanisms underlying phytoprotection by plant growth-promoting rhizobacteria in Spartina densiflora under metal stress
  publication-title: Plant Biol.
  doi: 10.1111/plb.12693
– volume: 43
  start-page: 1185
  year: 1968
  ident: 10.1016/j.still.2020.104577_bib0155
  article-title: The acetylene-ethylene assay for N2 fixation-laboratory and field evaluation
  publication-title: Plant Physiol.
  doi: 10.1104/pp.43.8.1185
– volume: 65
  start-page: 478
  year: 1980
  ident: 10.1016/j.still.2020.104577_bib0240
  article-title: Chlorophyll determination in intact tissues using N, N-dimethylformamide
  publication-title: Plant Physiol.
  doi: 10.1104/pp.65.3.478
– volume: 55
  start-page: 149
  year: 2019
  ident: 10.1016/j.still.2020.104577_bib0210
  article-title: Streptomyces pactum Act12 controls tomato yellow leaf curl virus disease and alters rhizosphere microbial communities
  publication-title: Bio. Fertil. Soils
  doi: 10.1007/s00374-019-01339-w
– volume: 16
  start-page: 244
  year: 2016
  ident: 10.1016/j.still.2020.104577_bib0355
  article-title: Isolation, identification and characterization of Paenibacillus polymyxa CR1 with potentials for biopesticide, biofertilization, biomass degradation and biofuel production
  publication-title: BMC Microbiol.
  doi: 10.1186/s12866-016-0860-y
– volume: 55
  year: 2004
  ident: 10.1016/j.still.2020.104577_bib0035
  article-title: Screening rhizobacteria for improving the growth, yield, and oil content of canola (Brassica napus L.)
  publication-title: Crop Pasture Sci.
  doi: 10.1071/AR03112
– volume: 4
  start-page: 126
  year: 2001
  ident: 10.1016/j.still.2020.104577_bib0020
  article-title: Grain yield and related physiological characteristics of rice plants (Oryza sativa L.) inoculated with free-living rhizobacteria
  publication-title: Plant Prod. Sci.
  doi: 10.1626/pps.4.126
– volume: 145
  start-page: 159
  year: 2011
  ident: 10.1016/j.still.2020.104577_bib0005
  article-title: Isolation of plant growth promoting rhizobacteria from wheat rhizosphere and their effect on improving growth, yield and nutrient uptake of plants
  publication-title: Plant Biosyst.
  doi: 10.1080/11263504.2010.542318
– volume: 36
  start-page: 45
  year: 2014
  ident: 10.1016/j.still.2020.104577_bib0045
  article-title: Plant growth promoting rhizobacteria alleviate salinity induced negative effects on growth, oil content and physiological status in Mentha arvensis
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-013-1385-8
– volume: 41
  start-page: 149
  year: 2015
  ident: 10.1016/j.still.2020.104577_bib0095
  article-title: Anatomical, morphological, and phytochemical effects of inoculation with plant growth-promoting rhizobacteria on peppermint (Mentha piperita)
  publication-title: J. Chem. Ecol.
  doi: 10.1007/s10886-015-0549-y
– volume: 66
  start-page: 369
  year: 2013
  ident: 10.1016/j.still.2020.104577_bib0025
  article-title: N2-fixation and seedling growth promotion of lodgepole pine by endophytic Paenibacillus polymyxa
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-013-0196-1
– volume: 1
  start-page: 301
  year: 1969
  ident: 10.1016/j.still.2020.104577_bib0315
  article-title: Use of p-nitrophenyl phosphate for assay of soil phosphatase activity
  publication-title: Soil Biol. Bioch.
  doi: 10.1016/0038-0717(69)90012-1
– volume: 91
  start-page: 53
  year: 2011
  ident: 10.1016/j.still.2020.104577_bib0360
  article-title: Predicting soil organic carbon and total nitrogen using mid- and near-infrared spectra for brookston clay loam soil in Southwestern Ontario, Canada
  publication-title: Cana. J. Soil Sci.
  doi: 10.4141/cjss10029
– volume: 62
  start-page: 1109
  year: 2012
  ident: 10.1016/j.still.2020.104577_bib0040
  article-title: Comparative effectiveness of Bacillus spp. possessing either dual or single growth-promoting traits for improving phosphorus uptake, growth and yield of wheat (Triticum aestivum L.)
  publication-title: Ann. Microbiol.
  doi: 10.1007/s13213-011-0352-0
– volume: 7
  start-page: 81
  year: 2017
  ident: 10.1016/j.still.2020.104577_bib0200
  article-title: Nanochitosan supports growth of Zea mays and also maintains soil health following growth
  publication-title: 3 Biotech
  doi: 10.1007/s13205-017-0668-y
– volume: 74
  start-page: 301
  year: 1983
  ident: 10.1016/j.still.2020.104577_bib0110
  article-title: Method of measuring invertase activity in soils
  publication-title: Plant Soil
  doi: 10.1007/BF02181348
– volume: 4
  start-page: 1
  year: 2014
  ident: 10.1016/j.still.2020.104577_bib0375
  article-title: Relating microbial community structure to functioning in forest soil organic carbon transformation and turnover
  publication-title: Ecol. Evol.
  doi: 10.1002/ece3.969
– volume: 22
  start-page: 867
  year: 1981
  ident: 10.1016/j.still.2020.104577_bib0255
  article-title: Hydrogen peroxide is scavenged by ascorbatespecific peroxidase in spinach chloroplasts
  publication-title: Plant Cell Physiol.
– volume: 169
  start-page: 30
  year: 2014
  ident: 10.1016/j.still.2020.104577_bib0130
  article-title: Bacteria with ACC deaminase can promote plant growth and help to feed the world
  publication-title: Microbiol. Res.
  doi: 10.1016/j.micres.2013.09.009
– volume: 28
  start-page: 1327
  year: 2012
  ident: 10.1016/j.still.2020.104577_bib0050
  article-title: Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture
  publication-title: World J. Mcrobiol. Biotechnol.
  doi: 10.1007/s11274-011-0979-9
– volume: 32
  start-page: 429
  year: 2014
  ident: 10.1016/j.still.2020.104577_bib0250
  article-title: The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2013.12.005
– volume: 30
  start-page: 2725
  year: 2013
  ident: 10.1016/j.still.2020.104577_bib0325
  article-title: MEGA6: molecular evolutionary genetics analysis version 6.0
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/mst197
– volume: 9
  start-page: 67
  year: 2017
  ident: 10.1016/j.still.2020.104577_bib0190
  article-title: Cross-compatibility evaluation of plant growth promoting rhizobacteria of coconut and cocoa on yield and rhizosphere properties of vegetable crops
  publication-title: Biocatal. Agr. Biotech.
  doi: 10.1016/j.bcab.2016.11.006
– volume: 70
  start-page: 209
  year: 2015
  ident: 10.1016/j.still.2020.104577_bib0365
  article-title: Different continuous cropping spans significantly affect microbial community membership and structure in a vanilla-grown soil as revealed by deep pyrosequencing
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-014-0516-0
– volume: 62
  start-page: 1321
  year: 2012
  ident: 10.1016/j.still.2020.104577_bib0015
  article-title: The combined application of rhizobial strains and plant growth promoting rhizobacteria improves growth and productivity of mung bean (Vigna radiata L.) under salt-stressed conditions
  publication-title: Ann. Microbiol.
  doi: 10.1007/s13213-011-0380-9
– volume: 2
  start-page: 764
  year: 1955
  ident: 10.1016/j.still.2020.104577_bib0065
  article-title: Assay of catalase and peroxidases
  publication-title: Method Enzymol.
  doi: 10.1016/S0076-6879(55)02300-8
– volume: 12
  start-page: e0187913
  year: 2017
  ident: 10.1016/j.still.2020.104577_bib0230
  article-title: Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0187913
– start-page: 211
  year: 2009
  ident: 10.1016/j.still.2020.104577_bib0235
  article-title: Isolation and identification of plant growth-promoting bacteria associated with tall fescue
  publication-title: Proceedings New Zealand Grassland Association
  doi: 10.33584/jnzg.2009.71.2751
– start-page: 1
  year: 2016
  ident: 10.1016/j.still.2020.104577_bib0145
  article-title: Plant growth-promoting rhizobacteria enhance salinity stress tolerance in Okra through ROS-scavenging enzymes
  publication-title: Biomed Res. Int.
  doi: 10.1155/2016/6284547
– volume: 42
  start-page: 517
  year: 2019
  ident: 10.1016/j.still.2020.104577_bib0135
  article-title: Metatranscriptomics and nitrogen fixation from the rhizoplane of maize plantlets inoculated with a group of PGPRs
  publication-title: Syst. Appl. Microbiol.
  doi: 10.1016/j.syapm.2019.05.003
– volume: 32
  start-page: 245
  year: 2013
  ident: 10.1016/j.still.2020.104577_bib0140
  article-title: Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance
  publication-title: J. Plant Growth Regul.
  doi: 10.1007/s00344-012-9292-6
– volume: 3
  start-page: 926
  year: 2012
  ident: 10.1016/j.still.2020.104577_bib0265
  article-title: Chloroplast-mediated activation of plant immune signalling in Arabidopsis
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1926
– volume: 7
  start-page: E403
  year: 2019
  ident: 10.1016/j.still.2020.104577_bib0090
  article-title: Bacterial IAA-delivery into medicago root nodules triggers a balanced stimulation of C and N metabolism leading to a biomass increase
  publication-title: Microorganisms
  doi: 10.3390/microorganisms7100403
– volume: 52
  start-page: 119
  year: 2016
  ident: 10.1016/j.still.2020.104577_bib0280
  article-title: Evidence of nitrogen fixation and growth promotion in canola (Brassica napus L.) by an endophytic diazotroph Paenibacillus polymyxa P2b-2R
  publication-title: Bio. Fert. Soils
  doi: 10.1007/s00374-015-1051-y
– volume: 8
  start-page: 1945
  year: 2017
  ident: 10.1016/j.still.2020.104577_bib0300
  article-title: The PGPR Stenotrophomonas maltophilia SBP-9 augments resistance against biotic and abiotic stress in wheat plants
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.01945
– start-page: 134
  year: 1994
  ident: 10.1016/j.still.2020.104577_bib0100
  article-title: Isolation and identification of aerobic nitrogen fixing bacteria
– volume: 48
  start-page: 301
  year: 2011
  ident: 10.1016/j.still.2020.104577_bib0220
  article-title: Efficacy of rhizobacterial strains encapsulated in nontoxic biodegradable gel matrices to promote growth and yield of wheat plants
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2011.04.007
– volume: 118
  start-page: 672
  year: 2015
  ident: 10.1016/j.still.2020.104577_bib0160
  article-title: Bacillus spp. from rainforest soil promote plant growth under limited nitrogen conditions
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/jam.12720
– volume: 374
  start-page: 689
  year: 2014
  ident: 10.1016/j.still.2020.104577_bib0385
  article-title: Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains
  publication-title: Plant Soil
  doi: 10.1007/s11104-013-1915-6
– volume: 9
  start-page: 4547
  year: 2019
  ident: 10.1016/j.still.2020.104577_bib0030
  article-title: Fluorescent Pseudomonas -FAP2 and Bacillus licheniformis interact positively in biofilm mode enhancing plant growth and photosynthetic attributes
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-40864-4
– volume: 108
  start-page: 304
  year: 2016
  ident: 10.1016/j.still.2020.104577_bib0170
  article-title: Interactive effects of phosphorus and Pseudomonas putida on chickpea (Cicer arietinum L.) growth, nutrient uptake, antioxidant enzymes and organic acids exudation
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2016.07.023
– volume: 167
  start-page: 218
  year: 2019
  ident: 10.1016/j.still.2020.104577_bib0185
  article-title: Impact of co-inoculation with plant-growth-promoting rhizobacteria and rhizobium on the biochemical responses of alfalfa-soil system in copper contaminated soil
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2018.10.016
– volume: 48
  start-page: 294
  year: 2017
  ident: 10.1016/j.still.2020.104577_bib0075
  article-title: Tricalcium phosphate solubilization and nitrogen fixation by newly isolated Aneurinibacillus aneurinilyticus CKMV1 from rhizosphere of Valeriana jatamansi and its growth promotional effect
  publication-title: Braz. J. Microbiol.
  doi: 10.1016/j.bjm.2016.12.001
– volume: 16
  start-page: 1368
  year: 2012
  ident: 10.1016/j.still.2020.104577_bib0290
  article-title: Response of biofertilizers on growth, yield attributes and associated protein profiling changes of blackgram (Vigna mungo L. Hepper)
  publication-title: World Appl. Sci. J.
– volume: 47
  start-page: 44
  year: 2011
  ident: 10.1016/j.still.2020.104577_bib0275
  article-title: Effect of plant growth promoting rhizobacteria (PGPR) inoculation on microbial community structure in rhizosphere of forage corn cultivated in Thailand
  publication-title: Eur. J. Soil Biol.
  doi: 10.1016/j.ejsobi.2010.11.004
– volume: 3
  start-page: 372
  year: 2012
  ident: 10.1016/j.still.2020.104577_bib0055
  article-title: Effect of seed priming with native PGPR on its vital seedling and antioxidant enzyme activities in Curcuma longa (L.)
  publication-title: Int. J. Pharm. Biol. Arch.
– volume: 56
  start-page: 753
  year: 2018
  ident: 10.1016/j.still.2020.104577_bib0085
  article-title: Streptomyces sp. strain SK68, isolated from peanut rhizosphere, promotes growth and alleviates salt stress in tomato (Solanum lycopersicum cv. Micro-Tom)
  publication-title: J. Microbiol.
  doi: 10.1007/s12275-018-8120-5
– volume: 29
  start-page: 109
  year: 2013
  ident: 10.1016/j.still.2020.104577_bib0120
  article-title: Multifarious beneficial traits and plant growth promoting potential of Serratia marcescens KiSII and Enterobacter sp. RNF267 isolated from the rhizosphere of coconut palms (Cocosnucifera L.)
  publication-title: World J. Microbiol. Biotechnol.
  doi: 10.1007/s11274-012-1163-6
– volume: 1
  start-page: 168
  year: 2015
  ident: 10.1016/j.still.2020.104577_bib0215
  article-title: Effect of diazotrophs and chemical fertilizers on production and economics of okra (Abelmoschus esculentus, L.) cultivars
  publication-title: American J. Plant. Sci.
– volume: 62
  start-page: 258
  year: 2016
  ident: 10.1016/j.still.2020.104577_bib0165
  article-title: Isolation and engineering of plant growth promoting rhizobacteria Pseudomonas aeruginosa for enhanced cadmium bioremediation
  publication-title: J. Gen. Appl. Microbiol.
  doi: 10.2323/jgam.2016.04.007
SSID ssj0004328
Score 2.6190486
Snippet •We have established PGPR microbial inoculants containing four compatible PGPR strains.•PGPR microbial inoculants had abilities of fix nitrogen, solubilize...
Plant growth promoting rhizobacteria (PGPR) are an important bacterial resource for microbial fertilizers, which can promote plant growth and increase crop...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104577
SubjectTerms Acinetobacter calcoaceticus
alfalfa
alkaline phosphatase
Alternaria solani
Avena sativa
beta-fructofuranosidase
biofertilizers
biological control
Bipolaris sorokiniana
catalase
chlorophyll
crop yield
cucumbers
Cucumis sativus
enzyme activity
Fusarium oxysporum
Helminthosporium
indole acetic acid
Medicago sativa
nitrogen
Nitrogen fixation
nutrient content
oats
organic carbon
peroxidase
PGPR microbial inoculants
Phosphate solubilization
phosphates
phosphorus
plant growth
plant growth-promoting rhizobacteria
plant height
potassium
Providencia rettgeri
rhizosphere
seedlings
Serratia plymuthica
Soil enzyme activity
soil enzymes
Soil physiochemical properties
soil properties
superoxide dismutase
surface area
urease
Title Effects of PGPR microbial inoculants on the growth and soil properties of Avena sativa, Medicago sativa, and Cucumis sativus seedlings
URI https://dx.doi.org/10.1016/j.still.2020.104577
https://www.proquest.com/docview/2388768059
Volume 199
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLcquMABbWNo7KMyEseGpokTm2NVUQpIFYJV4mY5_ugydUnVNDvuuL977zkJiElw4JTE9rMiP-e957yffybkNErsyLnQBOcusQFTggVq5JIgFsKFTggbKQ-QnaezBbt-SB56ZNLthUFYZWv7G5vurXVbMmxHc7jO8-E9AuhxyQwhSIgUL7iDnXGc5Wd_nmAeLPbnq3p-b2zdMQ95jBd8RSvMP0Q-15lw_pJ3-s9Oe-czfUcO2qiRjpsXe096tvhA9sfLTcucYQ_J34aHuKKlo7eXt3f0V-45lkAsL0pEmxZYWVCI-OgSFt_bH1QVhlZlvqJr_CW_QW5VFB-DAVQUYT6_1YA2qZxl-ViAUpNa1zBDmrIaruAEcWN79ZEsphffJ7OgPWQh0OCstwGLTCo4zwwbZTHcqswKxfS5TuHJaZHpkY2gPmKpMkrbUHObisRAqOQyA8HiEdkpysJ-IpSLMBNxZrQR0FuKOuExGAynLFciYsck6gZX6paBHA_CWMkOavZTeo1I1IhsNHJMBo9C64aA4_Xmaac1-WweSXARrwuedDqWMH6YNlGFLetKQlADLkNAHPr5rZ1_IXv41AAlv5Kd7aa23yCY2WZ9P1v7ZHd8dTOb_wMk4vZP
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYQPbQcqtJSQWmpK5Ub6WYdJzEHDiseXQpFiIfEzTh-bFMtyWqzKeqlx_4h_iAzTkLVSuWAxCmJnbGiGWdmnPnymZCPLLZ950ITbLrYBlwJHqi-i4NICBc6ISxTHiB7lAzP-ZeL-GKO3HT_wiCssvX9jU_33rpt6bXa7E3yvHeKAHpcMkMKEiLFS4usPLA_r2HdVm3t74CR1xnb2z3bHgbt1gKBhhA1CzgziUjTzPB-FsGpyqxQXG_qBK6cFpnuWwb9jCfKKG1DndpExAYSBJeZGL-Cgt9_wsFd4LYJn379wZXwyG_o6gnF8fE6qiMPKoPXdowFD-aLq3Ga_i8c_hMYfLTbe0Get2kqHTSaWCRztnhJFgajaUvVYV-R3w3xcUVLR48_H5_Qq9yTOoFYXpQIby2ws6CQYtIRrPZn36gqDK3KfEwnWAOYIpkrig_A4yqKuKIfaoM2taNRedeAUtu1rmFKNm01HCHq4p_01RI5fxTVvybzRVnYZUJTEWYiyow2AkZLcBKkEXgop2yqBOMrhHXKlbqlPMedN8ayw7Z9l94iEi0iG4uskI07oUnD-HH_7UlnNfnXxJUQk-4X_NDZWIL-sE6jClvWlYQsCmKUgMT3zUMHf0-eDs--HsrD_aODVfIMexqU5lsyP5vW9h1kUrNszc9cSi4f-1W5BZa5M7Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+PGPR+microbial+inoculants+on+the+growth+and+soil+properties+of+Avena+sativa%2C+Medicago+sativa%2C+and+Cucumis+sativus+seedlings&rft.jtitle=Soil+%26+tillage+research&rft.au=Li%2C+Haiyun&rft.au=Qiu%2C+Yizhi&rft.au=Yao%2C+Tuo&rft.au=Ma%2C+Yachun&rft.date=2020-05-01&rft.issn=0167-1987&rft.volume=199+p.104577-&rft_id=info:doi/10.1016%2Fj.still.2020.104577&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-1987&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-1987&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-1987&client=summon