Colloid-facilitated mobilization of cadmium: Comparison of spring freeze-thaw event and autumn freeze-thaw event

Freeze-thaw action has the potential to facilitate the mobilization of colloid-associated contaminants in soil. However, the differences in colloid-associated contaminants following autumn freeze-thaw (AFT) events and spring freeze-thaw (SFT) events remain unclear. In this study, the potential influ...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 852; p. 158467
Main Authors Hu, Nai-Wen, Yu, Hong-Wen, Wang, Qi-Rong, Zhu, Guo-Peng, Yang, Xiu-Tao, Wang, Tian-Ye, Wang, Yang, Wang, Quan-Ying
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.12.2022
Subjects
Online AccessGet full text
ISSN0048-9697
1879-1026
1879-1026
DOI10.1016/j.scitotenv.2022.158467

Cover

Loading…
Abstract Freeze-thaw action has the potential to facilitate the mobilization of colloid-associated contaminants in soil. However, the differences in colloid-associated contaminants following autumn freeze-thaw (AFT) events and spring freeze-thaw (SFT) events remain unclear. In this study, the potential influence mechanisms of AFT and SFT on both the generation and migration of colloids and colloid-associated cadmium (Cd) in soil were explored. Higher aggregate stabilities were found in soils after AFT compared with after SFT. After SFT, lower Cd concentrations were found in soil aggregates of 0.25–0.50 mm and <0.106 mm and higher concentrations were found in 0.106–0.25 mm aggregates. Moreover, SFT generated higher amounts of colloidal Cd than AFT, while AFT increased the total Cd concentration in leachates. Additionally, compared with SFT, AFT led to higher Cd concentrations in dissolved and colloid-associated forms in leachates. These findings demonstrate that higher amounts of colloid and fewer loadings of Cd in colloids in Cd contaminated soil can be found after SFT events. Thus, to better understand the environmental risk of contaminants in areas subject to seasonal freeze-thaw cycles, the differences between freeze-thaw processes in spring and autumn should be considered. [Display omitted] •Higher soil aggregate stability is found under freeze-thaw cycles in autumn.•Freeze-thaw cycles in spring enhance the generation of colloids in soil.•Autumn freeze-thaw leads to the increase of total Cd concentrations in leachates.•Concentration of dissolved Cd in leachates is higher for autumn freeze-thaw cycles.•Lower colloidal bound Cd concentration is found under freeze-thaw cycles in spring.
AbstractList Freeze-thaw action has the potential to facilitate the mobilization of colloid-associated contaminants in soil. However, the differences in colloid-associated contaminants following autumn freeze-thaw (AFT) events and spring freeze-thaw (SFT) events remain unclear. In this study, the potential influence mechanisms of AFT and SFT on both the generation and migration of colloids and colloid-associated cadmium (Cd) in soil were explored. Higher aggregate stabilities were found in soils after AFT compared with after SFT. After SFT, lower Cd concentrations were found in soil aggregates of 0.25–0.50 mm and <0.106 mm and higher concentrations were found in 0.106–0.25 mm aggregates. Moreover, SFT generated higher amounts of colloidal Cd than AFT, while AFT increased the total Cd concentration in leachates. Additionally, compared with SFT, AFT led to higher Cd concentrations in dissolved and colloid-associated forms in leachates. These findings demonstrate that higher amounts of colloid and fewer loadings of Cd in colloids in Cd contaminated soil can be found after SFT events. Thus, to better understand the environmental risk of contaminants in areas subject to seasonal freeze-thaw cycles, the differences between freeze-thaw processes in spring and autumn should be considered.
Freeze-thaw action has the potential to facilitate the mobilization of colloid-associated contaminants in soil. However, the differences in colloid-associated contaminants following autumn freeze-thaw (AFT) events and spring freeze-thaw (SFT) events remain unclear. In this study, the potential influence mechanisms of AFT and SFT on both the generation and migration of colloids and colloid-associated cadmium (Cd) in soil were explored. Higher aggregate stabilities were found in soils after AFT compared with after SFT. After SFT, lower Cd concentrations were found in soil aggregates of 0.25-0.50 mm and <0.106 mm and higher concentrations were found in 0.106-0.25 mm aggregates. Moreover, SFT generated higher amounts of colloidal Cd than AFT, while AFT increased the total Cd concentration in leachates. Additionally, compared with SFT, AFT led to higher Cd concentrations in dissolved and colloid-associated forms in leachates. These findings demonstrate that higher amounts of colloid and fewer loadings of Cd in colloids in Cd contaminated soil can be found after SFT events. Thus, to better understand the environmental risk of contaminants in areas subject to seasonal freeze-thaw cycles, the differences between freeze-thaw processes in spring and autumn should be considered.Freeze-thaw action has the potential to facilitate the mobilization of colloid-associated contaminants in soil. However, the differences in colloid-associated contaminants following autumn freeze-thaw (AFT) events and spring freeze-thaw (SFT) events remain unclear. In this study, the potential influence mechanisms of AFT and SFT on both the generation and migration of colloids and colloid-associated cadmium (Cd) in soil were explored. Higher aggregate stabilities were found in soils after AFT compared with after SFT. After SFT, lower Cd concentrations were found in soil aggregates of 0.25-0.50 mm and <0.106 mm and higher concentrations were found in 0.106-0.25 mm aggregates. Moreover, SFT generated higher amounts of colloidal Cd than AFT, while AFT increased the total Cd concentration in leachates. Additionally, compared with SFT, AFT led to higher Cd concentrations in dissolved and colloid-associated forms in leachates. These findings demonstrate that higher amounts of colloid and fewer loadings of Cd in colloids in Cd contaminated soil can be found after SFT events. Thus, to better understand the environmental risk of contaminants in areas subject to seasonal freeze-thaw cycles, the differences between freeze-thaw processes in spring and autumn should be considered.
Freeze-thaw action has the potential to facilitate the mobilization of colloid-associated contaminants in soil. However, the differences in colloid-associated contaminants following autumn freeze-thaw (AFT) events and spring freeze-thaw (SFT) events remain unclear. In this study, the potential influence mechanisms of AFT and SFT on both the generation and migration of colloids and colloid-associated cadmium (Cd) in soil were explored. Higher aggregate stabilities were found in soils after AFT compared with after SFT. After SFT, lower Cd concentrations were found in soil aggregates of 0.25–0.50 mm and <0.106 mm and higher concentrations were found in 0.106–0.25 mm aggregates. Moreover, SFT generated higher amounts of colloidal Cd than AFT, while AFT increased the total Cd concentration in leachates. Additionally, compared with SFT, AFT led to higher Cd concentrations in dissolved and colloid-associated forms in leachates. These findings demonstrate that higher amounts of colloid and fewer loadings of Cd in colloids in Cd contaminated soil can be found after SFT events. Thus, to better understand the environmental risk of contaminants in areas subject to seasonal freeze-thaw cycles, the differences between freeze-thaw processes in spring and autumn should be considered. [Display omitted] •Higher soil aggregate stability is found under freeze-thaw cycles in autumn.•Freeze-thaw cycles in spring enhance the generation of colloids in soil.•Autumn freeze-thaw leads to the increase of total Cd concentrations in leachates.•Concentration of dissolved Cd in leachates is higher for autumn freeze-thaw cycles.•Lower colloidal bound Cd concentration is found under freeze-thaw cycles in spring.
ArticleNumber 158467
Author Wang, Yang
Zhu, Guo-Peng
Wang, Tian-Ye
Wang, Qi-Rong
Yu, Hong-Wen
Yang, Xiu-Tao
Wang, Quan-Ying
Hu, Nai-Wen
Author_xml – sequence: 1
  givenname: Nai-Wen
  surname: Hu
  fullname: Hu, Nai-Wen
  email: hunaiwen20@mails.ucas.ac.cn
  organization: Key Laboratory of Wet Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
– sequence: 2
  givenname: Hong-Wen
  surname: Yu
  fullname: Yu, Hong-Wen
  email: yuhw@iga.ac.cn
  organization: Key Laboratory of Wet Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
– sequence: 3
  givenname: Qi-Rong
  surname: Wang
  fullname: Wang, Qi-Rong
  organization: Key Laboratory of Wet Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
– sequence: 4
  givenname: Guo-Peng
  surname: Zhu
  fullname: Zhu, Guo-Peng
  email: zhuguopeng@iga.ac.cn
  organization: Key Laboratory of Wet Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
– sequence: 5
  givenname: Xiu-Tao
  surname: Yang
  fullname: Yang, Xiu-Tao
  email: yangxiutao@iga.ac.cn
  organization: Key Laboratory of Wet Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
– sequence: 6
  givenname: Tian-Ye
  surname: Wang
  fullname: Wang, Tian-Ye
  email: wangtianye@iga.ac.cn
  organization: Key Laboratory of Wet Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
– sequence: 7
  givenname: Yang
  surname: Wang
  fullname: Wang, Yang
  email: wangyangw@iga.ac.cn
  organization: Key Laboratory of Wet Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
– sequence: 8
  givenname: Quan-Ying
  surname: Wang
  fullname: Wang, Quan-Ying
  email: qywang@iga.ac.cn
  organization: Key Laboratory of Wet Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
BookMark eNqNkUFv3CAQhVGVSNls8hviYy7eMmCDHamH1SppK0XqpTkjjMcpKxu2gLdKfn1ZOeqhPTRcYIb3jUbvXZIz5x0ScgN0AxTEx_0mGpt8QnfcMMrYBuqmEvIDWUEj2xIoE2dkRWnVlK1o5QW5jHFP85ENrMhh58fR274ctLGjTTphX0y-y-9Xnax3hR8Ko_vJztNdsfPTQQcbl3Y8BOueiyEgvmKZfuhfBR7RpUK7vtBzmif37-cVOR_0GPH67V6Tp4f777sv5eO3z19328fS8AZSySuoW8xLcSO07EC0rOsNx74yHeXAOJUADZiadrSTvOaZorVsGepca83X5HaZewj-54wxqclGg-OoHfo5KiYZB5CigndIaSsrKmqRpZ8WqQk-xoCDMifPsk8paDsqoOoUitqrP6GoUyhqCSXz8i8-ezjp8PIOcruQmE07WgwnHTqDvQ1okuq9_e-M3zjesA4
CitedBy_id crossref_primary_10_1016_j_eehl_2024_03_002
crossref_primary_10_1016_j_jhazmat_2025_137956
crossref_primary_10_1016_j_envres_2023_116976
crossref_primary_10_1016_j_jhydrol_2023_130365
crossref_primary_10_1016_j_geoderma_2024_116932
crossref_primary_10_1016_j_scitotenv_2024_174147
crossref_primary_10_1016_j_scitotenv_2023_166450
crossref_primary_10_1007_s11771_024_5603_x
crossref_primary_10_1016_j_jconhyd_2025_104509
Cites_doi 10.1016/S1002-0160(15)60033-9
10.1016/j.agwat.2007.12.001
10.1016/j.scitotenv.2013.03.059
10.1002/hyp.10939
10.1016/j.ecoenv.2020.110288
10.1021/es062147h
10.1007/s10040-012-0916-5
10.1016/j.chemosphere.2019.124987
10.1039/C5RA06920C
10.2136/sssaj2010.0287
10.1016/S0016-7061(96)00092-4
10.2136/vzj2011.0188
10.1029/95WR03397
10.1016/j.geoderma.2017.10.056
10.1016/j.jenvman.2016.08.043
10.1016/j.scitotenv.2021.149870
10.1016/j.envpol.2019.04.070
10.1002/hyp.13629
10.1016/j.scitotenv.2021.148894
10.1007/s12665-019-8323-z
10.1080/15324982.2011.565856
10.1016/S0269-7491(02)00219-1
10.4141/cjss90-060
10.2136/sssaj1991.03615995005500050033x
10.1016/j.soilbio.2006.11.017
10.1016/j.catena.2006.03.011
10.1016/j.ecoenv.2017.09.049
10.1016/j.scitotenv.2020.139261
10.1007/s11368-020-02706-z
10.1097/00010694-199801000-00009
10.1126/science.339.6126.1382-b
10.1007/s11356-019-07518-4
10.1007/BF02837484
10.1016/j.still.2020.104810
10.1016/j.geoderma.2015.10.008
10.1007/s11368-019-02526-w
10.1002/pld3.198
10.1016/S1002-0160(14)60015-1
10.1021/es403698u
10.1038/srep27302
10.1016/j.still.2008.03.001
10.1016/S0165-232X(01)00064-7
10.1021/es505738d
10.1016/j.jconhyd.2018.11.003
10.2136/vzj2008.0077
10.1021/acs.est.5b04767
10.1016/j.jhydrol.2012.02.003
10.1016/j.still.2004.03.008
10.1016/S0341-8162(02)00177-7
10.1016/j.envint.2020.106040
10.1016/S0165-232X(03)00006-5
10.1016/j.coldregions.2018.06.001
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright © 2022 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright © 2022 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.scitotenv.2022.158467
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
ExternalDocumentID 10_1016_j_scitotenv_2022_158467
S0048969722055668
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
AAQXK
AATTM
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SEN
SEW
SSH
WUQ
XPP
ZXP
ZY4
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c381t-34159efac3c6a7b1692bdc3ed4cb03123071181c50b0b735338105792ea0b7aa3
IEDL.DBID .~1
ISSN 0048-9697
1879-1026
IngestDate Tue Aug 05 11:11:43 EDT 2025
Fri Jul 11 06:04:07 EDT 2025
Thu Apr 24 22:57:32 EDT 2025
Tue Jul 01 02:54:25 EDT 2025
Sat Nov 16 16:00:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Spring freeze-thaw cycle
Autumn freeze-thaw cycle
Dissolved cadmium
Colloid-associated cadmium
Soil aggregates
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-34159efac3c6a7b1692bdc3ed4cb03123071181c50b0b735338105792ea0b7aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2709740656
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2723117641
proquest_miscellaneous_2709740656
crossref_citationtrail_10_1016_j_scitotenv_2022_158467
crossref_primary_10_1016_j_scitotenv_2022_158467
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2022_158467
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-15
PublicationDateYYYYMMDD 2022-12-15
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-15
  day: 15
PublicationDecade 2020
PublicationTitle The Science of the total environment
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Watanabe, Kugisaki (bb0260) 2017; 31
Xu, Zheng, Yang, Yu, Yu (bb0275) 2021; 795
Zhou, Tang (bb0305) 2018; 153
Sutherland (bb0235) 2003; 121
Du, Dyck, Shotyk, He, Lv, Cuss, Bie (bb0045) 2020; 192
Wang, Ouyang, Hao, Jiao, Shan, Lin (bb0255) 2016; 6
de Jonge, Kjaergaard, Moldrup (bb0035) 2004; 3
Zhang, Ma, Feng, Xiao, Hou (bb0285) 2016; 26
Pontoni, Race, van Hullebusch, Fabbricino, Esposito, Pirozzi (bb0200) 2019; 250
Ren, Wang, Liu, Li, Guo, Li (bb0210) 2019; 41
Jiang, Yi, Zhang, Yang, Chen (bb0090) 2020; 734
Dagesse (bb0030) 2011; 75
Oztas, Fayetorbay (bb0180) 2003; 52
Yao, Mi, He, Yin, Zhou, Zhang, Sun, Yang, Li, He (bb0280) 2020; 240
Zhao, Cheng, Ding (bb0290) 2004; 14
Piccolo, Pietramellara, Mbagwu (bb0190) 1997; 75
Gao, Li, Zhang, Zhang, Liu, Gao, Chen (bb0060) 2016; 35
Kozlowski (bb0100) 2003; 36
Liu, Ma, Fan (bb0140) 2021; 206
Lehrsch (bb0115) 1998; 163
Sahin, Angin, Kiziloglu (bb0225) 2008; 99
Tang, Li, Wu, Lin, Scholz (bb0240) 2016; 181
Ireson, Van Der Kamp, Ferguson, Nachshon, Weather (bb0085) 2013; 21
Cooper, Felix, Alcantara, Zaslavsky, Work, Watson, Pezzoli, Yu, Zhu, Scavo, Zarabi, Schroeder (bb0025) 2020; 4
Xiao, Yao, Li, Liu, Zhang (bb0270) 2020; 20
Tang, Yuan, Tawaraya, Tokida, Fukuoka, Yoshimoto, Sakai, Hasegawa, Xu, Cheng (bb0245) 2022; 802
Chen, Ouyang, Hao, Zhao (bb0020) 2013; 456–457
Hou, Wang, O'Connor, Tsang, Rinklebe, Hou (bb0080) 2020; 144
Ala, Liu, Wang, Niu (bb0005) 2016; 264
Feng, Li, Li, Xiao (bb0050) 2020; 20
McCauley, White, Lilly, Nyman (bb0160) 2002; 34
Gwo, Jardine, Wilson, Yeh (bb0065) 1996; 32
Lehrsch, Sojka, Carter, Jolley (bb0120) 1991; 55
Wang, Ouyang, Hao, Critto, Zhao, Lin (bb0250) 2015; 5
Richards, McCarthy, Steenhuis, Hay, Zevi, Dathe (bb0215) 2007; 62
Zheng, Ma, Bing (bb0300) 2015; 36
Safadoust, Mahboubi, Mosaddeghi, Gharabaghi, Unc, Voroney, Heydari (bb0220) 2012; 430–431
Luo, Yang, Wang, Ya, Deng, Zhang, Liu (bb0145) 2011; 25
Ma, Zhang, Jabro, Ren, Liu (bb0150) 2019; 78
Kushwaha, Hans, Kumar, Rani (bb0105) 2018; 147
Fu, Hou, Li (bb0055) 2016; 47
Liu, Wen, Liu (bb0135) 2013; 339
Pittman, Mohammed, Cey (bb0195) 2020; 34
Carminat, Flühler (bb0015) 2009; 8
De Kock, Boone, De Schryver, Van Stappen, Derluyn, Masschaele, Schutter, Cnudde (bb0040) 2015; 49
Li, Liu, Zhang, Li (bb0130) 2008; 95
Quinton, Catt (bb0205) 2007; 41
Kvaerno, Oygarden (bb0110) 2006; 67
Mohanty, Saiers, Ryan (bb0170) 2016; 50
Nielsen, van Genuchten, Biggar (bb0175) 1986; 122
Six, Bossuyt, Degryze, Denef (bb0230) 2004; 79
An, Zhang, Chen, Gao, Zhang, Hu, Li (bb0010) 2020; 27
Kim, Choi (bb0095) 2018; 318
Mohanty, Saiers, Ryan (bb0165) 2014; 48
Perfect, Vanloon, Kay, Groenevelt (bb0185) 1990; 70
Watanabe, Kito, Dun, Wu, Greer, Flury (bb0265) 2013; 12
Zhao, Liu, Xu, Liu (bb0295) 2015; 37
Henry (bb0070) 2007; 39
Holten, Norheim, Almvik, Katuwal, Stenr, Larsbo, Jarvis, Eklo (bb0075) 2018; 219
Li, Fan (bb0125) 2014; 24
McCarthy, Zachara (bb0155) 1989; 23
Lehrsch (10.1016/j.scitotenv.2022.158467_bb0120) 1991; 55
Six (10.1016/j.scitotenv.2022.158467_bb0230) 2004; 79
Tang (10.1016/j.scitotenv.2022.158467_bb0240) 2016; 181
Holten (10.1016/j.scitotenv.2022.158467_bb0075) 2018; 219
Lehrsch (10.1016/j.scitotenv.2022.158467_bb0115) 1998; 163
Gao (10.1016/j.scitotenv.2022.158467_bb0060) 2016; 35
Quinton (10.1016/j.scitotenv.2022.158467_bb0205) 2007; 41
Zheng (10.1016/j.scitotenv.2022.158467_bb0300) 2015; 36
Sutherland (10.1016/j.scitotenv.2022.158467_bb0235) 2003; 121
Ala (10.1016/j.scitotenv.2022.158467_bb0005) 2016; 264
Kozlowski (10.1016/j.scitotenv.2022.158467_bb0100) 2003; 36
Nielsen (10.1016/j.scitotenv.2022.158467_bb0175) 1986; 122
Dagesse (10.1016/j.scitotenv.2022.158467_bb0030) 2011; 75
Perfect (10.1016/j.scitotenv.2022.158467_bb0185) 1990; 70
Tang (10.1016/j.scitotenv.2022.158467_bb0245) 2022; 802
Jiang (10.1016/j.scitotenv.2022.158467_bb0090) 2020; 734
Kushwaha (10.1016/j.scitotenv.2022.158467_bb0105) 2018; 147
Chen (10.1016/j.scitotenv.2022.158467_bb0020) 2013; 456–457
Li (10.1016/j.scitotenv.2022.158467_bb0130) 2008; 95
Richards (10.1016/j.scitotenv.2022.158467_bb0215) 2007; 62
De Kock (10.1016/j.scitotenv.2022.158467_bb0040) 2015; 49
Wang (10.1016/j.scitotenv.2022.158467_bb0250) 2015; 5
Piccolo (10.1016/j.scitotenv.2022.158467_bb0190) 1997; 75
Carminat (10.1016/j.scitotenv.2022.158467_bb0015) 2009; 8
Mohanty (10.1016/j.scitotenv.2022.158467_bb0165) 2014; 48
Mohanty (10.1016/j.scitotenv.2022.158467_bb0170) 2016; 50
Cooper (10.1016/j.scitotenv.2022.158467_bb0025) 2020; 4
Safadoust (10.1016/j.scitotenv.2022.158467_bb0220) 2012; 430–431
Pontoni (10.1016/j.scitotenv.2022.158467_bb0200) 2019; 250
Ireson (10.1016/j.scitotenv.2022.158467_bb0085) 2013; 21
Li (10.1016/j.scitotenv.2022.158467_bb0125) 2014; 24
Pittman (10.1016/j.scitotenv.2022.158467_bb0195) 2020; 34
Watanabe (10.1016/j.scitotenv.2022.158467_bb0260) 2017; 31
Xiao (10.1016/j.scitotenv.2022.158467_bb0270) 2020; 20
Feng (10.1016/j.scitotenv.2022.158467_bb0050) 2020; 20
Gwo (10.1016/j.scitotenv.2022.158467_bb0065) 1996; 32
Du (10.1016/j.scitotenv.2022.158467_bb0045) 2020; 192
An (10.1016/j.scitotenv.2022.158467_bb0010) 2020; 27
de Jonge (10.1016/j.scitotenv.2022.158467_bb0035) 2004; 3
Zhao (10.1016/j.scitotenv.2022.158467_bb0290) 2004; 14
Oztas (10.1016/j.scitotenv.2022.158467_bb0180) 2003; 52
Zhao (10.1016/j.scitotenv.2022.158467_bb0295) 2015; 37
Sahin (10.1016/j.scitotenv.2022.158467_bb0225) 2008; 99
Zhou (10.1016/j.scitotenv.2022.158467_bb0305) 2018; 153
Kim (10.1016/j.scitotenv.2022.158467_bb0095) 2018; 318
Wang (10.1016/j.scitotenv.2022.158467_bb0255) 2016; 6
Kvaerno (10.1016/j.scitotenv.2022.158467_bb0110) 2006; 67
Zhang (10.1016/j.scitotenv.2022.158467_bb0285) 2016; 26
Luo (10.1016/j.scitotenv.2022.158467_bb0145) 2011; 25
Ma (10.1016/j.scitotenv.2022.158467_bb0150) 2019; 78
Xu (10.1016/j.scitotenv.2022.158467_bb0275) 2021; 795
McCauley (10.1016/j.scitotenv.2022.158467_bb0160) 2002; 34
Liu (10.1016/j.scitotenv.2022.158467_bb0140) 2021; 206
McCarthy (10.1016/j.scitotenv.2022.158467_bb0155) 1989; 23
Watanabe (10.1016/j.scitotenv.2022.158467_bb0265) 2013; 12
Yao (10.1016/j.scitotenv.2022.158467_bb0280) 2020; 240
Fu (10.1016/j.scitotenv.2022.158467_bb0055) 2016; 47
Hou (10.1016/j.scitotenv.2022.158467_bb0080) 2020; 144
Ren (10.1016/j.scitotenv.2022.158467_bb0210) 2019; 41
Liu (10.1016/j.scitotenv.2022.158467_bb0135) 2013; 339
Henry (10.1016/j.scitotenv.2022.158467_bb0070) 2007; 39
References_xml – volume: 47
  start-page: 99
  year: 2016
  end-page: 110
  ident: bb0055
  article-title: Soil moisture-heat transfer and its action mechanism of freezing and thawing soil
  publication-title: Trans. Chin. Soc. Agric. Mach.
– volume: 25
  start-page: 234
  year: 2011
  end-page: 256
  ident: bb0145
  article-title: Mechanism of soil sodification at the local scale in Songnen Plain, Northeast China, as affected by shallow groundwater table
  publication-title: Arid Land Res. Manag.
– volume: 12
  year: 2013
  ident: bb0265
  article-title: Water infiltration into a frozen soil with simultaneous melting of the frozen layer
  publication-title: Vadose Zone J.
– volume: 4
  start-page: 1
  year: 2020
  end-page: 12
  ident: bb0025
  article-title: Monitoring and mitigation of toxic heavy metals and arsenic accumulation in food crops: a case study of an urban community garden
  publication-title: Plant Direct
– volume: 20
  start-page: 4023
  year: 2020
  end-page: 4033
  ident: bb0050
  article-title: Effects of freeze-thaw cycles and soil moisture content on soil available micronutrients on aggregate scale in natural grassland and Chinese pine forestland on the Loess Plateau, China
  publication-title: J. Soil. Sediments
– volume: 206
  year: 2021
  ident: bb0140
  article-title: Evaluation of the impact of freeze-thaw cycles on pore structure characteristics of black soil using X–ray computed tomography
  publication-title: Soil Tillage Res.
– volume: 55
  start-page: 1401
  year: 1991
  end-page: 1406
  ident: bb0120
  article-title: Freezing effects on aggregate stability affected by texture, mineralogy, and organic-matter
  publication-title: Soil Sci. Soc. Am. J.
– volume: 79
  start-page: 7
  year: 2004
  end-page: 31
  ident: bb0230
  article-title: A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics
  publication-title: Soil Tillage Res.
– volume: 121
  start-page: 229
  year: 2003
  end-page: 237
  ident: bb0235
  article-title: Lead in grain size fractions of road-deposited sediment
  publication-title: Environ. Pollut.
– volume: 163
  start-page: 63
  year: 1998
  end-page: 70
  ident: bb0115
  article-title: Freeze-thaw cycles increase near-surface aggregate stability
  publication-title: Soil Sci.
– volume: 318
  start-page: 160
  year: 2018
  end-page: 166
  ident: bb0095
  article-title: Changes in the mineral element compositions of soil colloidal matter caused by a controlled freeze-thaw event
  publication-title: Geoderma
– volume: 39
  start-page: 977
  year: 2007
  end-page: 986
  ident: bb0070
  article-title: Soil freeze-thaw cycle experiments: trends, methodological weaknesses and suggested improvements
  publication-title: Soil Biol. Biochem.
– volume: 99
  start-page: 254
  year: 2008
  end-page: 260
  ident: bb0225
  article-title: Effect of freezing and thawing processes on some physical properties of saline-sodic soils mixed with sewage sludge or fly ash
  publication-title: Soil Tillage Res.
– volume: 26
  start-page: 167
  year: 2016
  end-page: 179
  ident: bb0285
  article-title: Reconstruction of soil particle composition during freeze-thaw cycling: a review
  publication-title: Pedosphere
– volume: 219
  start-page: 72
  year: 2018
  end-page: 85
  ident: bb0075
  article-title: The effect of freezing and thawing on water flow and MCPA leaching in partially frozen soil
  publication-title: J. Contam. Hydrol.
– volume: 49
  start-page: 2867
  year: 2015
  end-page: 2874
  ident: bb0040
  article-title: A pore-scale study of fracture dynamics in rock using X-ray micro-CT under ambient freeze-thaw cycling
  publication-title: Environ. Sci. Technol.
– volume: 264
  start-page: 132
  year: 2016
  end-page: 139
  ident: bb0005
  article-title: Characteristics of soil freeze-thaw cycles and their effects on water enrichment in the rhizosphere
  publication-title: Geoderma
– volume: 34
  start-page: 795
  year: 2020
  end-page: 809
  ident: bb0195
  article-title: Effects of antecedent moisture and macroporosity on infiltration and water flow in frozen soil
  publication-title: Hydrol. Process.
– volume: 430–431
  start-page: 80
  year: 2012
  end-page: 90
  ident: bb0220
  article-title: Effect of regenerated soil structure on unsaturated transport of Escherichia coli and bromide
  publication-title: J. Hydrol.
– volume: 144
  year: 2020
  ident: bb0080
  article-title: Effect of immobilizing reagents on soil Cd and Pb lability under freeze-thaw cycles: implications for sustainable agricultural management in seasonally frozen land
  publication-title: Environ. Int.
– volume: 23
  start-page: 496
  year: 1989
  end-page: 502
  ident: bb0155
  article-title: Subsurface transport of contaminants-mobile colloids in the subsurface environment may alter the transport of contaminants
  publication-title: Environ. Sci. Technol.
– volume: 734
  year: 2020
  ident: bb0090
  article-title: Sensitivity of soil freeze/thaw dynamics to environmental conditions at different spatial scales in the central Tibetan Plateau
  publication-title: Sci. Total Environ.
– volume: 34
  start-page: 117
  year: 2002
  end-page: 125
  ident: bb0160
  article-title: A comparison of hydraulic conductivities, permeabilities and infiltration rates in frozen and unfrozen soils
  publication-title: Cold Reg. Sci. Technol.
– volume: 95
  start-page: 498
  year: 2008
  end-page: 502
  ident: bb0130
  article-title: Infiltration of melting saline ice water in soil columns: consequences on soil moisture and salt content
  publication-title: Agric. Water Manag.
– volume: 32
  start-page: 561
  year: 1996
  end-page: 570
  ident: bb0065
  article-title: Using a multiregion model to study the effects of advective and diffusive mass transfer on local physical nonequilibrium and solute mobility in a structured soil
  publication-title: Water Resour. Res.
– volume: 250
  start-page: 839
  year: 2019
  end-page: 848
  ident: bb0200
  article-title: Effect of sodium concentration on mobilization and fate of trace metals in standard OECD soil
  publication-title: Environ. Pollut.
– volume: 48
  start-page: 977
  year: 2014
  end-page: 984
  ident: bb0165
  article-title: Colloid-facilitated mobilization of metals by freeze-thaw cycles
  publication-title: Environ. Sci. Technol.
– volume: 3
  start-page: 321
  year: 2004
  end-page: 325
  ident: bb0035
  article-title: Colloids and colloid-facilitated transport of contaminants in soils: an introduction
  publication-title: Vadose Zone J.
– volume: 52
  start-page: 1
  year: 2003
  end-page: 8
  ident: bb0180
  article-title: Effect of freezing and thawing processes on soil aggregate stability
  publication-title: Catena
– volume: 35
  start-page: 2269
  year: 2016
  end-page: 2274
  ident: bb0060
  article-title: Influence of freeze-thaw process on soil physical, chemical and biological properties: a review
  publication-title: J. Agro-Environ. Sci.
– volume: 6
  start-page: 27302
  year: 2016
  ident: bb0255
  article-title: Role of freeze-thaw cycles and chlorpyrifos insecticide use on diffuse cd loss and sediment
  publication-title: Sci. Rep.
– volume: 240
  year: 2020
  ident: bb0280
  article-title: Migration transport of arsenic loaded by ferric humate colloids in saturated porous media
  publication-title: Chemosphere
– volume: 153
  start-page: 181
  year: 2018
  end-page: 196
  ident: bb0305
  article-title: Experimental inference on dual-porosity aggravation of soft clay after freeze-thaw by fractal and probability analysis
  publication-title: Cold Reg. Sci. Technol.
– volume: 122
  start-page: 89S
  year: 1986
  end-page: 108S
  ident: bb0175
  article-title: Water flow and solute transport process in the unsaturated zone
  publication-title: Water Resour. Res.
– volume: 67
  start-page: 175
  year: 2006
  end-page: 182
  ident: bb0110
  article-title: The influence of freeze-thaw cycles and soil moisture on aggregate stability of three soils in Norway
  publication-title: Catena
– volume: 21
  start-page: 53
  year: 2013
  end-page: 66
  ident: bb0085
  article-title: Hydrogeological processes in seasonally frozen northern latitudes: understanding, gaps and challenges
  publication-title: Hydrogeol. J.
– volume: 5
  start-page: 41238
  year: 2015
  end-page: 41247
  ident: bb0250
  article-title: Multivariate interactions of natural and anthropogenic factors on cd behavior in arable soil
  publication-title: RSC Adv.
– volume: 8
  start-page: 150
  year: 2009
  end-page: 157
  ident: bb0015
  article-title: Water infiltration and redistribution in soil aggregate packings
  publication-title: Vadose Zone J.
– volume: 75
  start-page: 267
  year: 1997
  end-page: 277
  ident: bb0190
  article-title: Use of humic substances as soil conditioners to increase aggregate stability
  publication-title: Geoderma
– volume: 37
  start-page: 233
  year: 2015
  end-page: 240
  ident: bb0295
  article-title: Freeze-thaw process and soil moisture migration within the black soil plow layer in seasonally frozen ground regions
  publication-title: J. Glaciol. Geocryol.
– volume: 24
  start-page: 285
  year: 2014
  end-page: 290
  ident: bb0125
  article-title: Effect of freeze-thaw on water stability of aggregates in a black soil of Northeast China
  publication-title: Pedosphere
– volume: 456–457
  start-page: 24
  year: 2013
  end-page: 33
  ident: bb0020
  article-title: Combined impacts of freeze-thaw processes on paddy land and dry land in Northeast China
  publication-title: Sci. Total Environ.
– volume: 147
  start-page: 1035
  year: 2018
  end-page: 1045
  ident: bb0105
  article-title: A critical review on speciation, mobilization and toxicity of lead in soil microbe plant system and bioremediation strategies
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 36
  start-page: 81
  year: 2003
  end-page: 92
  ident: bb0100
  article-title: A comprehensive method of determining the soil unfrozen water curves 2. Stages of the phase change process in frozen soil-water system
  publication-title: Cold Reg. Sci. Technol.
– volume: 70
  start-page: 571
  year: 1990
  end-page: 581
  ident: bb0185
  article-title: Influence of ice segregation and solutes on soil structural stability
  publication-title: Can. J. Soil Sci.
– volume: 62
  start-page: 55A
  year: 2007
  end-page: 56A
  ident: bb0215
  article-title: Colloidal transport: the facilitated movement of contaminants into groundwater
  publication-title: J. Soil Water Conserv.
– volume: 41
  start-page: 324
  year: 2019
  end-page: 333
  ident: bb0210
  article-title: Daily variation of soil freeze-thaw and its relationship with air and soil temperature in Jilin Province
  publication-title: J. Glaciol. Geocryol.
– volume: 31
  start-page: 270
  year: 2017
  end-page: 278
  ident: bb0260
  article-title: Effect of macropores on soil freezing and thawing with infiltration
  publication-title: Hydrol. Process.
– volume: 795
  year: 2021
  ident: bb0275
  article-title: Freeze-thaw cycles promote vertical migration of metal nanoparticles in soils
  publication-title: Sci. Total Environ.
– volume: 339
  start-page: 1382
  year: 2013
  end-page: 1383
  ident: bb0135
  article-title: China's food security soiled by contamination
  publication-title: Science
– volume: 192
  year: 2020
  ident: bb0045
  article-title: Lead immobilization processes in soils subjected to freeze-thaw cycles
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 50
  start-page: 2310
  year: 2016
  end-page: 2317
  ident: bb0170
  article-title: Colloid mobilization in a fractured soil: effect of pore-water exchange between preferential flow paths and soil matrix
  publication-title: Environ. Sci. Technol.
– volume: 27
  start-page: 8082
  year: 2020
  end-page: 8090
  ident: bb0010
  article-title: Effects of freeze-thaw cycles on distribution and speciation of heavy metals in pig manure
  publication-title: Environ. Sci. Pollut. Res.
– volume: 78
  start-page: 321
  year: 2019
  ident: bb0150
  article-title: Freeze-thaw cycles effects on soil physical properties under different degraded conditions in Northeast China
  publication-title: Environ. Earth Sci.
– volume: 36
  start-page: 1282
  year: 2015
  end-page: 1287
  ident: bb0300
  article-title: Impact of freezing and thawing cycles on structure of soils and its mechanism analysis by laboratory testing
  publication-title: Rock Soil Mech.
– volume: 75
  start-page: 2111
  year: 2011
  end-page: 2121
  ident: bb0030
  article-title: Effect of freeze-drying on soil aggregate stability
  publication-title: Soil Sci. Soc. Am. J.
– volume: 802
  year: 2022
  ident: bb0245
  article-title: Winter nocturnal warming affects the freeze-thaw frequency, soil aggregate distribution, and the contents and decomposability of C and N in paddy fields
  publication-title: Sci. Total Environ.
– volume: 41
  start-page: 3495
  year: 2007
  end-page: 3500
  ident: bb0205
  article-title: Enrichment of heavy metals in sediment resulting from soil erosion on agricultural fields
  publication-title: Environ. Sci. Technol.
– volume: 181
  start-page: 646
  year: 2016
  end-page: 662
  ident: bb0240
  article-title: Review of remediation practices regarding cadmium-enriched farmland soil with particular reference to China
  publication-title: J. Environ. Manag.
– volume: 20
  start-page: 1222
  year: 2020
  end-page: 1230
  ident: bb0270
  article-title: Effects of freeze-thaw cycles and initial soil moisture content on soil aggregate stability in natural grassland and Chinese pine forest on the Loess Plateau of China
  publication-title: J. Soils Sediments
– volume: 14
  start-page: 411
  year: 2004
  end-page: 416
  ident: bb0290
  article-title: Studies on frozen ground of China
  publication-title: J. Geogr. Sci.
– volume: 26
  start-page: 167
  year: 2016
  ident: 10.1016/j.scitotenv.2022.158467_bb0285
  article-title: Reconstruction of soil particle composition during freeze-thaw cycling: a review
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(15)60033-9
– volume: 95
  start-page: 498
  year: 2008
  ident: 10.1016/j.scitotenv.2022.158467_bb0130
  article-title: Infiltration of melting saline ice water in soil columns: consequences on soil moisture and salt content
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2007.12.001
– volume: 456–457
  start-page: 24
  year: 2013
  ident: 10.1016/j.scitotenv.2022.158467_bb0020
  article-title: Combined impacts of freeze-thaw processes on paddy land and dry land in Northeast China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2013.03.059
– volume: 31
  start-page: 270
  year: 2017
  ident: 10.1016/j.scitotenv.2022.158467_bb0260
  article-title: Effect of macropores on soil freezing and thawing with infiltration
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.10939
– volume: 192
  year: 2020
  ident: 10.1016/j.scitotenv.2022.158467_bb0045
  article-title: Lead immobilization processes in soils subjected to freeze-thaw cycles
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2020.110288
– volume: 23
  start-page: 496
  year: 1989
  ident: 10.1016/j.scitotenv.2022.158467_bb0155
  article-title: Subsurface transport of contaminants-mobile colloids in the subsurface environment may alter the transport of contaminants
  publication-title: Environ. Sci. Technol.
– volume: 41
  start-page: 3495
  year: 2007
  ident: 10.1016/j.scitotenv.2022.158467_bb0205
  article-title: Enrichment of heavy metals in sediment resulting from soil erosion on agricultural fields
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es062147h
– volume: 21
  start-page: 53
  year: 2013
  ident: 10.1016/j.scitotenv.2022.158467_bb0085
  article-title: Hydrogeological processes in seasonally frozen northern latitudes: understanding, gaps and challenges
  publication-title: Hydrogeol. J.
  doi: 10.1007/s10040-012-0916-5
– volume: 240
  year: 2020
  ident: 10.1016/j.scitotenv.2022.158467_bb0280
  article-title: Migration transport of arsenic loaded by ferric humate colloids in saturated porous media
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.124987
– volume: 5
  start-page: 41238
  year: 2015
  ident: 10.1016/j.scitotenv.2022.158467_bb0250
  article-title: Multivariate interactions of natural and anthropogenic factors on cd behavior in arable soil
  publication-title: RSC Adv.
  doi: 10.1039/C5RA06920C
– volume: 75
  start-page: 2111
  issue: 6
  year: 2011
  ident: 10.1016/j.scitotenv.2022.158467_bb0030
  article-title: Effect of freeze-drying on soil aggregate stability
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2010.0287
– volume: 75
  start-page: 267
  year: 1997
  ident: 10.1016/j.scitotenv.2022.158467_bb0190
  article-title: Use of humic substances as soil conditioners to increase aggregate stability
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(96)00092-4
– volume: 12
  issue: 1
  year: 2013
  ident: 10.1016/j.scitotenv.2022.158467_bb0265
  article-title: Water infiltration into a frozen soil with simultaneous melting of the frozen layer
  publication-title: Vadose Zone J.
  doi: 10.2136/vzj2011.0188
– volume: 32
  start-page: 561
  issue: 3
  year: 1996
  ident: 10.1016/j.scitotenv.2022.158467_bb0065
  article-title: Using a multiregion model to study the effects of advective and diffusive mass transfer on local physical nonequilibrium and solute mobility in a structured soil
  publication-title: Water Resour. Res.
  doi: 10.1029/95WR03397
– volume: 318
  start-page: 160
  year: 2018
  ident: 10.1016/j.scitotenv.2022.158467_bb0095
  article-title: Changes in the mineral element compositions of soil colloidal matter caused by a controlled freeze-thaw event
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.10.056
– volume: 181
  start-page: 646
  year: 2016
  ident: 10.1016/j.scitotenv.2022.158467_bb0240
  article-title: Review of remediation practices regarding cadmium-enriched farmland soil with particular reference to China
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2016.08.043
– volume: 35
  start-page: 2269
  year: 2016
  ident: 10.1016/j.scitotenv.2022.158467_bb0060
  article-title: Influence of freeze-thaw process on soil physical, chemical and biological properties: a review
  publication-title: J. Agro-Environ. Sci.
– volume: 802
  year: 2022
  ident: 10.1016/j.scitotenv.2022.158467_bb0245
  article-title: Winter nocturnal warming affects the freeze-thaw frequency, soil aggregate distribution, and the contents and decomposability of C and N in paddy fields
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.149870
– volume: 250
  start-page: 839
  year: 2019
  ident: 10.1016/j.scitotenv.2022.158467_bb0200
  article-title: Effect of sodium concentration on mobilization and fate of trace metals in standard OECD soil
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.04.070
– volume: 122
  start-page: 89S
  year: 1986
  ident: 10.1016/j.scitotenv.2022.158467_bb0175
  article-title: Water flow and solute transport process in the unsaturated zone
  publication-title: Water Resour. Res.
– volume: 34
  start-page: 795
  year: 2020
  ident: 10.1016/j.scitotenv.2022.158467_bb0195
  article-title: Effects of antecedent moisture and macroporosity on infiltration and water flow in frozen soil
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.13629
– volume: 795
  year: 2021
  ident: 10.1016/j.scitotenv.2022.158467_bb0275
  article-title: Freeze-thaw cycles promote vertical migration of metal nanoparticles in soils
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.148894
– volume: 78
  start-page: 321
  year: 2019
  ident: 10.1016/j.scitotenv.2022.158467_bb0150
  article-title: Freeze-thaw cycles effects on soil physical properties under different degraded conditions in Northeast China
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-019-8323-z
– volume: 25
  start-page: 234
  year: 2011
  ident: 10.1016/j.scitotenv.2022.158467_bb0145
  article-title: Mechanism of soil sodification at the local scale in Songnen Plain, Northeast China, as affected by shallow groundwater table
  publication-title: Arid Land Res. Manag.
  doi: 10.1080/15324982.2011.565856
– volume: 121
  start-page: 229
  year: 2003
  ident: 10.1016/j.scitotenv.2022.158467_bb0235
  article-title: Lead in grain size fractions of road-deposited sediment
  publication-title: Environ. Pollut.
  doi: 10.1016/S0269-7491(02)00219-1
– volume: 70
  start-page: 571
  year: 1990
  ident: 10.1016/j.scitotenv.2022.158467_bb0185
  article-title: Influence of ice segregation and solutes on soil structural stability
  publication-title: Can. J. Soil Sci.
  doi: 10.4141/cjss90-060
– volume: 55
  start-page: 1401
  year: 1991
  ident: 10.1016/j.scitotenv.2022.158467_bb0120
  article-title: Freezing effects on aggregate stability affected by texture, mineralogy, and organic-matter
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1991.03615995005500050033x
– volume: 62
  start-page: 55A
  year: 2007
  ident: 10.1016/j.scitotenv.2022.158467_bb0215
  article-title: Colloidal transport: the facilitated movement of contaminants into groundwater
  publication-title: J. Soil Water Conserv.
– volume: 39
  start-page: 977
  year: 2007
  ident: 10.1016/j.scitotenv.2022.158467_bb0070
  article-title: Soil freeze-thaw cycle experiments: trends, methodological weaknesses and suggested improvements
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2006.11.017
– volume: 67
  start-page: 175
  issue: 3
  year: 2006
  ident: 10.1016/j.scitotenv.2022.158467_bb0110
  article-title: The influence of freeze-thaw cycles and soil moisture on aggregate stability of three soils in Norway
  publication-title: Catena
  doi: 10.1016/j.catena.2006.03.011
– volume: 47
  start-page: 99
  year: 2016
  ident: 10.1016/j.scitotenv.2022.158467_bb0055
  article-title: Soil moisture-heat transfer and its action mechanism of freezing and thawing soil
  publication-title: Trans. Chin. Soc. Agric. Mach.
– volume: 3
  start-page: 321
  issue: 2
  year: 2004
  ident: 10.1016/j.scitotenv.2022.158467_bb0035
  article-title: Colloids and colloid-facilitated transport of contaminants in soils: an introduction
  publication-title: Vadose Zone J.
– volume: 147
  start-page: 1035
  year: 2018
  ident: 10.1016/j.scitotenv.2022.158467_bb0105
  article-title: A critical review on speciation, mobilization and toxicity of lead in soil microbe plant system and bioremediation strategies
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2017.09.049
– volume: 734
  year: 2020
  ident: 10.1016/j.scitotenv.2022.158467_bb0090
  article-title: Sensitivity of soil freeze/thaw dynamics to environmental conditions at different spatial scales in the central Tibetan Plateau
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.139261
– volume: 20
  start-page: 4023
  year: 2020
  ident: 10.1016/j.scitotenv.2022.158467_bb0050
  article-title: Effects of freeze-thaw cycles and soil moisture content on soil available micronutrients on aggregate scale in natural grassland and Chinese pine forestland on the Loess Plateau, China
  publication-title: J. Soil. Sediments
  doi: 10.1007/s11368-020-02706-z
– volume: 163
  start-page: 63
  year: 1998
  ident: 10.1016/j.scitotenv.2022.158467_bb0115
  article-title: Freeze-thaw cycles increase near-surface aggregate stability
  publication-title: Soil Sci.
  doi: 10.1097/00010694-199801000-00009
– volume: 339
  start-page: 1382
  issue: 80
  year: 2013
  ident: 10.1016/j.scitotenv.2022.158467_bb0135
  article-title: China's food security soiled by contamination
  publication-title: Science
  doi: 10.1126/science.339.6126.1382-b
– volume: 27
  start-page: 8082
  year: 2020
  ident: 10.1016/j.scitotenv.2022.158467_bb0010
  article-title: Effects of freeze-thaw cycles on distribution and speciation of heavy metals in pig manure
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-019-07518-4
– volume: 37
  start-page: 233
  year: 2015
  ident: 10.1016/j.scitotenv.2022.158467_bb0295
  article-title: Freeze-thaw process and soil moisture migration within the black soil plow layer in seasonally frozen ground regions
  publication-title: J. Glaciol. Geocryol.
– volume: 14
  start-page: 411
  year: 2004
  ident: 10.1016/j.scitotenv.2022.158467_bb0290
  article-title: Studies on frozen ground of China
  publication-title: J. Geogr. Sci.
  doi: 10.1007/BF02837484
– volume: 206
  year: 2021
  ident: 10.1016/j.scitotenv.2022.158467_bb0140
  article-title: Evaluation of the impact of freeze-thaw cycles on pore structure characteristics of black soil using X–ray computed tomography
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2020.104810
– volume: 264
  start-page: 132
  year: 2016
  ident: 10.1016/j.scitotenv.2022.158467_bb0005
  article-title: Characteristics of soil freeze-thaw cycles and their effects on water enrichment in the rhizosphere
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.10.008
– volume: 20
  start-page: 1222
  year: 2020
  ident: 10.1016/j.scitotenv.2022.158467_bb0270
  article-title: Effects of freeze-thaw cycles and initial soil moisture content on soil aggregate stability in natural grassland and Chinese pine forest on the Loess Plateau of China
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-019-02526-w
– volume: 36
  start-page: 1282
  year: 2015
  ident: 10.1016/j.scitotenv.2022.158467_bb0300
  article-title: Impact of freezing and thawing cycles on structure of soils and its mechanism analysis by laboratory testing
  publication-title: Rock Soil Mech.
– volume: 4
  start-page: 1
  year: 2020
  ident: 10.1016/j.scitotenv.2022.158467_bb0025
  article-title: Monitoring and mitigation of toxic heavy metals and arsenic accumulation in food crops: a case study of an urban community garden
  publication-title: Plant Direct
  doi: 10.1002/pld3.198
– volume: 24
  start-page: 285
  year: 2014
  ident: 10.1016/j.scitotenv.2022.158467_bb0125
  article-title: Effect of freeze-thaw on water stability of aggregates in a black soil of Northeast China
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(14)60015-1
– volume: 48
  start-page: 977
  year: 2014
  ident: 10.1016/j.scitotenv.2022.158467_bb0165
  article-title: Colloid-facilitated mobilization of metals by freeze-thaw cycles
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es403698u
– volume: 6
  start-page: 27302
  year: 2016
  ident: 10.1016/j.scitotenv.2022.158467_bb0255
  article-title: Role of freeze-thaw cycles and chlorpyrifos insecticide use on diffuse cd loss and sediment
  publication-title: Sci. Rep.
  doi: 10.1038/srep27302
– volume: 41
  start-page: 324
  issue: 2
  year: 2019
  ident: 10.1016/j.scitotenv.2022.158467_bb0210
  article-title: Daily variation of soil freeze-thaw and its relationship with air and soil temperature in Jilin Province
  publication-title: J. Glaciol. Geocryol.
– volume: 99
  start-page: 254
  issue: 2
  year: 2008
  ident: 10.1016/j.scitotenv.2022.158467_bb0225
  article-title: Effect of freezing and thawing processes on some physical properties of saline-sodic soils mixed with sewage sludge or fly ash
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2008.03.001
– volume: 34
  start-page: 117
  issue: 2
  year: 2002
  ident: 10.1016/j.scitotenv.2022.158467_bb0160
  article-title: A comparison of hydraulic conductivities, permeabilities and infiltration rates in frozen and unfrozen soils
  publication-title: Cold Reg. Sci. Technol.
  doi: 10.1016/S0165-232X(01)00064-7
– volume: 49
  start-page: 2867
  issue: 5
  year: 2015
  ident: 10.1016/j.scitotenv.2022.158467_bb0040
  article-title: A pore-scale study of fracture dynamics in rock using X-ray micro-CT under ambient freeze-thaw cycling
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es505738d
– volume: 219
  start-page: 72
  year: 2018
  ident: 10.1016/j.scitotenv.2022.158467_bb0075
  article-title: The effect of freezing and thawing on water flow and MCPA leaching in partially frozen soil
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/j.jconhyd.2018.11.003
– volume: 8
  start-page: 150
  year: 2009
  ident: 10.1016/j.scitotenv.2022.158467_bb0015
  article-title: Water infiltration and redistribution in soil aggregate packings
  publication-title: Vadose Zone J.
  doi: 10.2136/vzj2008.0077
– volume: 50
  start-page: 2310
  year: 2016
  ident: 10.1016/j.scitotenv.2022.158467_bb0170
  article-title: Colloid mobilization in a fractured soil: effect of pore-water exchange between preferential flow paths and soil matrix
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b04767
– volume: 430–431
  start-page: 80
  year: 2012
  ident: 10.1016/j.scitotenv.2022.158467_bb0220
  article-title: Effect of regenerated soil structure on unsaturated transport of Escherichia coli and bromide
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.02.003
– volume: 79
  start-page: 7
  issue: 1
  year: 2004
  ident: 10.1016/j.scitotenv.2022.158467_bb0230
  article-title: A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2004.03.008
– volume: 52
  start-page: 1
  year: 2003
  ident: 10.1016/j.scitotenv.2022.158467_bb0180
  article-title: Effect of freezing and thawing processes on soil aggregate stability
  publication-title: Catena
  doi: 10.1016/S0341-8162(02)00177-7
– volume: 144
  year: 2020
  ident: 10.1016/j.scitotenv.2022.158467_bb0080
  article-title: Effect of immobilizing reagents on soil Cd and Pb lability under freeze-thaw cycles: implications for sustainable agricultural management in seasonally frozen land
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2020.106040
– volume: 36
  start-page: 81
  year: 2003
  ident: 10.1016/j.scitotenv.2022.158467_bb0100
  article-title: A comprehensive method of determining the soil unfrozen water curves 2. Stages of the phase change process in frozen soil-water system
  publication-title: Cold Reg. Sci. Technol.
  doi: 10.1016/S0165-232X(03)00006-5
– volume: 153
  start-page: 181
  year: 2018
  ident: 10.1016/j.scitotenv.2022.158467_bb0305
  article-title: Experimental inference on dual-porosity aggravation of soft clay after freeze-thaw by fractal and probability analysis
  publication-title: Cold Reg. Sci. Technol.
  doi: 10.1016/j.coldregions.2018.06.001
SSID ssj0000781
Score 2.4509866
Snippet Freeze-thaw action has the potential to facilitate the mobilization of colloid-associated contaminants in soil. However, the differences in colloid-associated...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 158467
SubjectTerms autumn
Autumn freeze-thaw cycle
cadmium
Colloid-associated cadmium
Dissolved cadmium
environment
freeze-thaw cycles
polluted soils
risk
Soil aggregates
soil pollution
spring
Spring freeze-thaw cycle
Title Colloid-facilitated mobilization of cadmium: Comparison of spring freeze-thaw event and autumn freeze-thaw event
URI https://dx.doi.org/10.1016/j.scitotenv.2022.158467
https://www.proquest.com/docview/2709740656
https://www.proquest.com/docview/2723117641
Volume 852
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS-QwEB5EORAOOfeUW--UHPha7Y803e7bsijrLfogJ_oWkjTl9nDbRVvFe_Bvd6ZpV7zD88GnkjYpIZPMfEnmmwHYH5ggwn1D7NkwTTyex7jmtDaeETYKMsOVbkhip2dicsF_XMVXKzDuuDDkVtnqfqfTG23dvjlsR_NwMZsRx5cPUpEmRBVFUEKEX4peh3P64PHZzYOC2bhbZlzYWPuFjxf-tyoRm97hRjEMD4LGGr9mof7S1Y0BOv4EGy1yZCPXuU1YsUUPPrhckg892D56pqxhtXbN3vbgozuZY45w9BkWdFZQzjIvV8aF6LYZm5fkJOsomazMmVHZfFbPh2y8zFNIr90tLstvrP1jveqXumdNBCimioypuqrnxb8ft-Di-OjneOK1eRc8g_a78tCwxanFTkRGqEQHIg11ZiKbcaNRB5DrONFVTexrXycRAsYBZQtOQ6uwrFS0DatFWdgvwFBdKEQAgnKaIHTIBqjUfG4TLrjORW76ILqxlqYNSk65Ma5l5332Wy6FJElI0gmpD_6y4cLF5Xi7ybATpnwxxSRaj7cbf-_EL3EB0q2KKmxZ38ow8XFPhkhO_K8OwuggETzYeU8nvsI6lcibJoi_wWp1U9tdxESV3msm_R6sjU6mkzN6Ts8vp0-4Cg98
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFD7qWqEhTRPrQMA2ZiReM3JxnIS3qgKVS_vUSn2zbMcRRTSpINm0_XqO46QVQxsPPMaxI8sn5zuf7XMBOImVF-C-IXS0n0QOzULUOSmVo5gOvFRRIesgsfGEjWb0ah7OOzBsY2GMW2WD_RbTa7RuWk6b1TxdLRYmxpfGCUsiEyqKpCR-Bz2TnYp2oTe4vB5NNoAcxbZwHkXdxgHP3Lzw02WB9PQn7hV9_4dXG-R_Gam_4Lq2QRc78LEhj2Rg5_cJOjrvw5YtJ_m7D3vnm6g17Nao7WMfPtjDOWJjjj7DyhwXFIvUyYSyWbp1SpaF8ZO1UZmkyIgS6XJRLc_IcF2q0DTbi1ySPWj9RzvlrfhF6iRQROQpEVVZLfOXL3dhdnE-HY6cpvSCo9CElw7atjDROIlAMRFJjyW-TFWgU6okwoDxHjcRqyp0pSujADljbAoGJ74W-CxEsAfdvMj1PhBEDIEkgJmyJsge0hhxzaU6oozKjGXqAFi71lw1eclNeYx73jqg3fG1kLgRErdCOgB3PXBlU3O8PuSsFSZ_9pdxNCCvDz5uxc9RB83Fish1UT1yP3JxW4Zkjv2vDzJpL2LUO3zLJL7D-9F0fMNvLifXX2DbvDHONV74FbrlQ6W_IUUq5VGjAk9x5BCK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Colloid-facilitated+mobilization+of+cadmium%3A+Comparison+of+spring+freeze-thaw+event+and+autumn+freeze-thaw+event&rft.jtitle=The+Science+of+the+total+environment&rft.au=Hu%2C+Nai-Wen&rft.au=Yu%2C+Hong-Wen&rft.au=Wang%2C+Qi-Rong&rft.au=Zhu%2C+Guo-Peng&rft.date=2022-12-15&rft.issn=0048-9697&rft.volume=852+p.158467-&rft_id=info:doi/10.1016%2Fj.scitotenv.2022.158467&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon