Differential Reversible and Irreversible Interactions between Benzbromarone and Human Cytochrome P450s 3A4 and 3A5
Mounting evidence has revealed that despite the high degree of sequence homology between cytochrome P450 3A isoforms (i.e., CYP3A4 and CYP3A5), they have the propensities to exhibit vastly different irreversible and reversible interactions with a single substrate. We have previously established that...
Saved in:
Published in | Molecular pharmacology Vol. 100; no. 3; pp. 224 - 236 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mounting evidence has revealed that despite the high degree of sequence homology between cytochrome P450 3A isoforms (i.e., CYP3A4 and CYP3A5), they have the propensities to exhibit vastly different irreversible and reversible interactions with a single substrate. We have previously established that benzbromarone (BBR), a potent uricosuric agent used in the management of gout, irreversibly inhibits CYP3A4 via mechanism-based inactivation (MBI). However, it remains unelucidated if CYP3A5—its highly homologous counterpart—is susceptible to inactivation by BBR. Using three structurally distinct probe substrates, we consistently demonstrated that MBI was not elicited in CYP3A5 by BBR. Our in silico covalent docking models and molecular dynamics simulations suggested that disparities in the susceptibilities toward MBI could be attributed to the specific effects of BBR covalent adducts on the F-F′ loop. Serendipitously, we also discovered that BBR reversibly activated CYP3A5-mediated rivaroxaban hydroxylation wherein apparent Vmax increased and Km decreased with increasing BBR concentration. Fitting data to the two-site model yielded interaction factors α and β of 0.44 and 5.88, respectively, thereby confirming heterotropic activation of CYP3A5 by BBR. Furthermore, heteroactivation was suppressed by the CYP3A inhibitor ketoconazole in a concentration-dependent manner and decreased with increasing preincubation time, implying that activation was incited via binding of parent BBR molecule within the enzymatic active site. Finally, noncovalent docking revealed that CYP3A5 can more favorably accommodate both BBR and rivaroxaban in concert as compared with CYP3A4, which further substantiated our experimental observations.
Although it has been previously demonstrated that benzbromarone (BBR) inactivates CYP3A4, it remains uninterrogated whether it also elicits mechanism-based inactivation in CYP3A5, which shares ∼85% sequence similarity with CYP3A4. This study reported that BBR exhibited differential irreversible and reversible interactions with both CYP3A isoforms and further unraveled the molecular determinants underpinning their diverging interactions. These data offer important insight into differential kinetic behavior of CYP3A4 and CYP3A5, which potentially contributes to interindividual variabilities in drug disposition. |
---|---|
AbstractList | Mounting evidence has revealed that despite the high degree of sequence homology between cytochrome P450 3A isoforms (i.e., CYP3A4 and CYP3A5), they have the propensities to exhibit vastly different irreversible and reversible interactions with a single substrate. We have previously established that benzbromarone (BBR), a potent uricosuric agent used in the management of gout, irreversibly inhibits CYP3A4 via mechanism-based inactivation (MBI). However, it remains unelucidated if CYP3A5—its highly homologous counterpart—is susceptible to inactivation by BBR. Using three structurally distinct probe substrates, we consistently demonstrated that MBI was not elicited in CYP3A5 by BBR. Our in silico covalent docking models and molecular dynamics simulations suggested that disparities in the susceptibilities toward MBI could be attributed to the specific effects of BBR covalent adducts on the F-F′ loop. Serendipitously, we also discovered that BBR reversibly activated CYP3A5-mediated rivaroxaban hydroxylation wherein apparent Vmax increased and Km decreased with increasing BBR concentration. Fitting data to the two-site model yielded interaction factors α and β of 0.44 and 5.88, respectively, thereby confirming heterotropic activation of CYP3A5 by BBR. Furthermore, heteroactivation was suppressed by the CYP3A inhibitor ketoconazole in a concentration-dependent manner and decreased with increasing preincubation time, implying that activation was incited via binding of parent BBR molecule within the enzymatic active site. Finally, noncovalent docking revealed that CYP3A5 can more favorably accommodate both BBR and rivaroxaban in concert as compared with CYP3A4, which further substantiated our experimental observations.
Although it has been previously demonstrated that benzbromarone (BBR) inactivates CYP3A4, it remains uninterrogated whether it also elicits mechanism-based inactivation in CYP3A5, which shares ∼85% sequence similarity with CYP3A4. This study reported that BBR exhibited differential irreversible and reversible interactions with both CYP3A isoforms and further unraveled the molecular determinants underpinning their diverging interactions. These data offer important insight into differential kinetic behavior of CYP3A4 and CYP3A5, which potentially contributes to interindividual variabilities in drug disposition. |
Author | Fan, Hao Tang, Lloyd Wei Tat Wang, Lili Lin, Qingsong Verma, Ravi Kumar Yong, Ren Ping Li, Xin Chan, Eric Chun Yong |
Author_xml | – sequence: 1 givenname: Lloyd Wei Tat surname: Tang fullname: Tang, Lloyd Wei Tat – sequence: 2 givenname: Ravi Kumar surname: Verma fullname: Verma, Ravi Kumar – sequence: 3 givenname: Ren Ping surname: Yong fullname: Yong, Ren Ping – sequence: 4 givenname: Xin surname: Li fullname: Li, Xin – sequence: 5 givenname: Lili surname: Wang fullname: Wang, Lili – sequence: 6 givenname: Qingsong surname: Lin fullname: Lin, Qingsong – sequence: 7 givenname: Hao surname: Fan fullname: Fan, Hao email: fanh@bii.a-star.edu.sg – sequence: 8 givenname: Eric Chun Yong surname: Chan fullname: Chan, Eric Chun Yong email: phaccye@nus.edu.sg |
BookMark | eNp9kM1LxDAQxYMouH78BV569NI1kzRtevCwrl8LgiIK3kKaTjDSJmvSXdG_3uoq3jwNvPd-w8zbI9s-eCTkCOgUgBUnfeiWzzr2U2AwpZQyUW6RCQgGOQWAbTIZtTKXtXjaJXspvVAKhZB0QuK5sxYj-sHpLrvHNcbkmg4z7dtsEeOfsPADRm0GF3zKGhzeEH12hv6jiaHXcTzom7le9dpn8_chmOfRwOyuEDRlfFZ823wmDsiO1V3Cw5-5Tx4vLx7m1_nN7dViPrvJDZcw5Jw2TV2wSrASuGysbrnltiyp1aKtNZd1y6WsKJeVLG0twaKtdFXVwAzDUvJ9crzZu4zhdYVpUL1LBrtOewyrpJgoZAHAmRijfBM1MaQU0apldONT7wqo-mpY_TasxobVpuGROt1QOH6xdhhVMg69wdZFNINqg_uX_wQBCYeH |
CitedBy_id | crossref_primary_10_1021_acs_jcim_3c01837 crossref_primary_10_1124_dmd_121_000804 crossref_primary_10_1021_acs_jafc_3c01272 crossref_primary_10_1093_toxres_tfac017 crossref_primary_10_1124_dmd_121_000508 crossref_primary_10_1016_j_bcp_2022_115336 crossref_primary_10_1124_jpet_122_001222 |
Cites_doi | 10.1016/j.softx.2015.06.001 10.1021/jm0306430 10.1103/PhysRevA.31.1695 10.1021/bi9715627 10.1080/00268978300102851 10.1093/nar/gky1033 10.1124/dmd.112.044958 10.1039/c2dt31833d 10.1016/j.abb.2004.09.010 10.1021/ci500118s 10.1007/BF02353474 10.1124/dmd.119.089813 10.1021/ct300400x 10.1016/S0169-409X(02)00066-2 10.1016/j.jmgm.2005.12.005 10.1074/jbc.C400293200 10.1002/jcc.20945 10.1021/tx700207u 10.1124/mol.117.109744 10.1124/dmd.108.024679 10.1093/nar/gku1214 10.1124/mol.115.100891 10.2165/00126839-200607060-00004 10.1016/j.ddtec.2012.09.011 10.1124/dmd.110.037853 10.1021/acs.chemrestox.9b00141 10.1007/BF02353475 10.1373/clinchem.2005.050047 10.1124/molpharm.120.000086 10.1124/dmd.114.057000 10.1124/dmd.119.087460 10.1124/dmd.115.066803 10.1124/mol.62.1.162 10.1038/aps.2010.218 10.1063/1.445869 10.1124/dmd.115.065037 10.1124/dmd.31.7.815 10.1074/jbc.RA119.007928 10.1073/pnas.1010693107 10.1016/j.toxlet.2016.11.012 10.1063/1.464397 10.1111/j.2042-7158.2010.01202.x |
ContentType | Journal Article |
Copyright | 2021 American Society for Pharmacology and Experimental Therapeutics |
Copyright_xml | – notice: 2021 American Society for Pharmacology and Experimental Therapeutics |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1124/molpharm.121.000256 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1521-0111 |
EndPage | 236 |
ExternalDocumentID | 10_1124_molpharm_121_000256 S0026895X24011532 |
GroupedDBID | --- -~X .55 .GJ 0R~ 123 18M 2WC 34G 39C 4.4 53G 5RE 5VS AAJMC ABCQX ABJNI ABSQV ACGFO ACGFS ADBBV ADCOW AENEX AERNN AFFNX AFHIN AFOSN ALMA_UNASSIGNED_HOLDINGS AYCSE BAWUL BTFSW CS3 DIK E3Z EBS EJD F5P F9R FDB GX1 H13 HH5 HZ~ IH2 INIJC K-O KQ8 L7B LSO MVM N9A O9- OK1 P2P R.V R0Z RHF RHI RPT TR2 UQL W8F WOQ X7M XOL YBU YHG ZGI ZXP AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c381t-30bb9427526138bfad3f3f660fa5d9a389d3887038786f981fef7a77912c2e683 |
ISSN | 0026-895X |
IngestDate | Fri Oct 25 03:42:14 EDT 2024 Fri Dec 06 02:24:38 EST 2024 Wed Dec 04 16:49:18 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | G6P OBS Km BF LC/MS/MS MS G6PDH RMSD MUT PDB BBR DBP MBI KB MD rCYP3A4 rCYP3A5 P450 SASA WT PBP |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c381t-30bb9427526138bfad3f3f660fa5d9a389d3887038786f981fef7a77912c2e683 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://molpharm.aspetjournals.org/content/molpharm/100/3/224.full.pdf |
PQID | 2548411325 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2548411325 crossref_primary_10_1124_molpharm_121_000256 elsevier_sciencedirect_doi_10_1124_molpharm_121_000256 |
PublicationCentury | 2000 |
PublicationDate | September 2021 2021-09-00 20210901 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: September 2021 |
PublicationDecade | 2020 |
PublicationTitle | Molecular pharmacology |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – sequence: 0 name: Elsevier Inc |
References | Lamba, Lin, Schuetz, Thummel (bib23) 2002; 54 Wang, Wang, Gong, Wang, Feng, Zhang, Wang, Peng, Zheng (bib35) 2019; 47 Hoover (bib12) 1985; 31 Houston, Galetin (bib13) 2005; 433 Sugiyama, Fujita, Murayama, Akiyama, Yamazaki, Sasaki (bib31) 2011; 39 Tracy (bib33) 2006; 7 Barr, Wang, Min, Wienkers, Rock, Rock, Wienkers (bib2) 2020; 48 Best, Zhu, Shim, Lopes, Mittal, Feig, Mackerell Jr (bib3) 2012; 8 Hong, Chia, Yeo, Venkatesan, Koh, Chai, Zhou, Kojodjojo, Chan (bib11) 2016 Tang, Verma, Fan, Chan (bib32) 2021 Rose, Prlić, Bi, Bluhm, Christie, Dutta, Green, Goodsell, Westbrook, Woo (bib28) 2015 Hsu, Savas, Johnson (bib15) 2018; 93 Kamdem, Streit, Zanger, Brockmöller, Oellerich, Armstrong, Wojnowski (bib18) 2005; 51 Kamel, Harriman (bib19) 2013 Yano, Wester, Schoch, Griffin, Stout, Johnson (bib41) 2004 Pearson, Wahlstrom, Dickmann, Kumar, Halpert, Wienkers, Foti, Rock (bib27) 2007; 20 Guo, Li, Li, Chen, Zhao, Peng, Zheng (bib10) 2019; 32 Jorgensen, Chandrasekhar, Madura, Impey, Klein (bib17) 1983; 79 Sevrioukova, Poulos (bib30) 2013; 42 Kim, Chen, Cheng, Gindulyte, He, He, Li, Shoemaker, Thiessen, Yu (bib20) 2019; 47 Greenblatt, Zhao, Venkatakrishnan, Duan, Harmatz, Parent, Court, von Moltke (bib9) 2011; 63 Jo, Kim, Iyer, Im (bib16) 2008; 29 Dong, Fang, Zhang, Ge, Mao, Zhu, Qu, Li, Wang, Liu (bib7) 2011 Wilkinson (bib39) 1996; 24 Darden, York, Pedersen (bib6) 1993; 98 Wang, Wang, Peng, Zheng (bib38) 2016; 44 Chan, New, Chua, Yap, Ho, Nelson (bib5) 2012; 40 Wrighton, VandenBranden, Ring (bib40) 1996; 24 Abraham, Murtola, Schulz, Páll, Smith, Hess, Lindah (bib1) 2015; 1–2 Zhu, Borrelli, Greenwood, Day, Abel, Farid, Harder (bib42) 2014 Kitagawara, Ohe, Tachibana, Takahashi, Nakamura, Mashino (bib21) 2015; 43 Korzekwa, Krishnamachary, Shou, Ogai, Parise, Rettie, Gonzalez, Tracy (bib22) 1998; 37 Okada, Murayama, Yanagida, Shimizu, Guengerich, Yamazaki (bib26) 2009; 37 Nosé, Klein (bib25) 1983; 50 Wang, Wang, Kollman, Case (bib36) 2006; 25 Bjornsson, Callaghan, Einolf, Fischer, Gan, Grimm, Kao, King, Miwa, Ni (bib4) 2003; 31 Lin, Dowling, Quigley, Farin, Zhang, Lamba, Schuetz, Thummel (bib24) 2002; 62 Sevrioukova, Poulos (bib29) 2010 Wang, Zhang, Fu, Zhang, Wang, Zhang, Chen, Lu, Chen, Xu (bib37) 2017; 265 Friesner, Banks, Murphy, Halgren, Klicic, Mainz, Repasky, Knoll, Shelley, Perry (bib8) 2004; 47 Hsu, Johnson (bib14) 2019; 294 Tseng, Walsky, Luzietti Jr, Harris, Kosa, Goosen, Zientek, Obach (bib34) 2014 2021090808151005000_100.3.224.25 2021090808151005000_100.3.224.26 2021090808151005000_100.3.224.23 2021090808151005000_100.3.224.24 2021090808151005000_100.3.224.29 2021090808151005000_100.3.224.27 2021090808151005000_100.3.224.28 2021090808151005000_100.3.224.7 2021090808151005000_100.3.224.32 2021090808151005000_100.3.224.8 2021090808151005000_100.3.224.11 2021090808151005000_100.3.224.33 2021090808151005000_100.3.224.9 2021090808151005000_100.3.224.30 2021090808151005000_100.3.224.31 2021090808151005000_100.3.224.3 2021090808151005000_100.3.224.4 2021090808151005000_100.3.224.5 2021090808151005000_100.3.224.6 2021090808151005000_100.3.224.2 2021090808151005000_100.3.224.14 2021090808151005000_100.3.224.36 Guo (2021090808151005000_100.3.224.10) 2019; 32 2021090808151005000_100.3.224.15 2021090808151005000_100.3.224.37 2021090808151005000_100.3.224.12 2021090808151005000_100.3.224.34 2021090808151005000_100.3.224.13 2021090808151005000_100.3.224.35 2021090808151005000_100.3.224.18 2021090808151005000_100.3.224.19 2021090808151005000_100.3.224.16 2021090808151005000_100.3.224.38 2021090808151005000_100.3.224.17 2021090808151005000_100.3.224.39 2021090808151005000_100.3.224.40 Abraham (2021090808151005000_100.3.224.1) 2015; 1–2 2021090808151005000_100.3.224.21 2021090808151005000_100.3.224.22 2021090808151005000_100.3.224.41 2021090808151005000_100.3.224.20 2021090808151005000_100.3.224.42 |
References_xml | – volume: 1–2 start-page: 19 year: 2015 end-page: 25 ident: bib1 article-title: GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers publication-title: SoftwareX contributor: fullname: Lindah – volume: 98 start-page: 10089 year: 1993 end-page: 10092 ident: bib6 article-title: Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems publication-title: J Chem Phys contributor: fullname: Pedersen – start-page: 38091 year: 2004 end-page: 38094 ident: bib41 article-title: The structure of human microsomal cytochrome P450 3A4 determined by X-ray crystallography to 2.05-A resolution publication-title: J Biol Chem contributor: fullname: Johnson – volume: 47 start-page: D1102 year: 2019 end-page: D1109 ident: bib20 article-title: PubChem 2019 update: improved access to chemical data publication-title: Nucleic Acids Res contributor: fullname: Yu – volume: 93 start-page: 14 year: 2018 end-page: 24 ident: bib15 article-title: The X-ray crystal structure of the human mono-oxygenase cytochrome P450 3A5-ritonavir complex reveals active site differences between P450s 3A4 and 3A5 publication-title: Mol Pharmacol contributor: fullname: Johnson – volume: 79 start-page: 926 year: 1983 end-page: 935 ident: bib17 article-title: Comparison of simple potential functions for simulating liquid water publication-title: J Chem Phys contributor: fullname: Klein – volume: 37 start-page: 18 year: 2009 end-page: 23 ident: bib26 article-title: Drug interactions of thalidomide with midazolam and cyclosporine A: heterotropic cooperativity of human cytochrome P450 3A5 publication-title: Drug Metab Dispos contributor: fullname: Yamazaki – volume: 29 start-page: 1859 year: 2008 end-page: 1865 ident: bib16 article-title: CHARMM-GUI: a web-based graphical user interface for CHARMM publication-title: J Comput Chem contributor: fullname: Im – volume: 43 start-page: 1303 year: 2015 end-page: 1306 ident: bib21 article-title: Novel bioactivation pathway of benzbromarone mediated by cytochrome P450 publication-title: Drug Metab Dispos contributor: fullname: Mashino – volume: 62 start-page: 162 year: 2002 end-page: 172 ident: bib24 article-title: Co-regulation of CYP3A4 and CYP3A5 and contribution to hepatic and intestinal midazolam metabolism publication-title: Mol Pharmacol contributor: fullname: Thummel – volume: 37 start-page: 4137 year: 1998 end-page: 4147 ident: bib22 article-title: Evaluation of atypical cytochrome P450 kinetics with two-substrate models: evidence that multiple substrates can simultaneously bind to cytochrome P450 active sites publication-title: Biochemistry contributor: fullname: Tracy – volume: 24 start-page: 461 year: 1996 end-page: 473 ident: bib40 article-title: The human drug metabolizing cytochromes P450 publication-title: J Pharmacokinet Biopharm contributor: fullname: Ring – volume: 24 start-page: 475 year: 1996 end-page: 490 ident: bib39 article-title: Cytochrome P4503A (CYP3A) metabolism: prediction of in vivo activity in humans publication-title: J Pharmacokinet Biopharm contributor: fullname: Wilkinson – volume: 32 start-page: 1791 year: 2019 end-page: 1800 ident: bib10 article-title: Tofacitinib is a mechanism-based inactivator of cytochrome P450 3A4 publication-title: Chem Res Toxicol contributor: fullname: Zheng – start-page: 1163 year: 2014 end-page: 1173 ident: bib34 article-title: Relative contributions of cytochrome CYP3A4 versus CYP3A5 for CYP3A-cleared drugs assessed in vitro using a CYP3A4-selective inactivator (CYP3cide) publication-title: Drug Metab Dispos contributor: fullname: Obach – volume: 47 start-page: 1281 year: 2019 end-page: 1290 ident: bib35 article-title: Glutathione conjugation and protein adduction derived from oxidative debromination of benzbromarone in mice publication-title: Drug Metab Dispos contributor: fullname: Zheng – start-page: D345 year: 2015 end-page: D356 ident: bib28 article-title: The RCSB Protein Data Bank: views of structural biology for basic and applied research and education publication-title: Nucleic Acids Res contributor: fullname: Woo – volume: 44 start-page: 607 year: 2016 end-page: 615 ident: bib38 article-title: Identification of epoxide-derived metabolite(s) of benzbromarone publication-title: Drug Metab Dispos contributor: fullname: Zheng – volume: 42 start-page: 3116 year: 2013 end-page: 3126 ident: bib30 article-title: Understanding the mechanism of cytochrome P450 3A4: recent advances and remaining problems publication-title: Dalton Trans contributor: fullname: Poulos – volume: 7 start-page: 349 year: 2006 end-page: 363 ident: bib33 article-title: Atypical cytochrome p450 kinetics: implications for drug discovery publication-title: Drugs R D contributor: fullname: Tracy – start-page: 266 year: 2021 end-page: 276 ident: bib32 article-title: Mechanism-based inactivation of cytochrome P450 3A4 by benzbromarone publication-title: Mol Pharmacol contributor: fullname: Chan – volume: 47 start-page: 1739 year: 2004 end-page: 1749 ident: bib8 article-title: Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy publication-title: J Med Chem contributor: fullname: Perry – volume: 294 start-page: 8015 year: 2019 end-page: 8022 ident: bib14 article-title: Active-site differences between substrate-free and ritonavir-bound cytochrome P450 (CYP) 3A5 reveal plasticity differences between CYP3A5 and CYP3A4 publication-title: J Biol Chem contributor: fullname: Johnson – volume: 20 start-page: 1778 year: 2007 end-page: 1786 ident: bib27 article-title: Differential time-dependent inactivation of P450 3A4 and P450 3A5 by raloxifene: a key role for C239 in quenching reactive intermediates publication-title: Chem Res Toxicol contributor: fullname: Rock – volume: 25 start-page: 247 year: 2006 end-page: 260 ident: bib36 article-title: Automatic atom type and bond type perception in molecular mechanical calculations publication-title: J Mol Graph Model contributor: fullname: Case – volume: 63 start-page: 214 year: 2011 end-page: 221 ident: bib9 article-title: Mechanism of cytochrome P450-3A inhibition by ketoconazole publication-title: J Pharm Pharmacol contributor: fullname: von Moltke – start-page: 1932 year: 2014 end-page: 1940 ident: bib42 article-title: Docking covalent inhibitors: a parameter free approach to pose prediction and scoring publication-title: J Chem Inf Model contributor: fullname: Harder – volume: 31 start-page: 815 year: 2003 end-page: 832 ident: bib4 article-title: The conduct of in vitro and in vivo drug-drug interaction studies: a Pharmaceutical Research and Manufacturers of America (PhRMA) perspective publication-title: Drug Metab Dispos contributor: fullname: Ni – volume: 433 start-page: 351 year: 2005 end-page: 360 ident: bib13 article-title: Modelling atypical CYP3A4 kinetics: principles and pragmatism publication-title: Arch Biochem Biophys contributor: fullname: Galetin – volume: 54 start-page: 1271 year: 2002 end-page: 1294 ident: bib23 article-title: Genetic contribution to variable human CYP3A-mediated metabolism publication-title: Adv Drug Deliv Rev contributor: fullname: Thummel – volume: 48 start-page: 508 year: 2020 end-page: 514 ident: bib2 article-title: Mechanistic studies of cytochrome P450 3A4 time-dependent inhibition using two cysteine-targeting electrophiles publication-title: Drug Metab Dispos contributor: fullname: Wienkers – volume: 51 start-page: 1374 year: 2005 end-page: 1381 ident: bib18 article-title: Contribution of CYP3A5 to the in vitro hepatic clearance of tacrolimus publication-title: Clin Chem contributor: fullname: Wojnowski – start-page: 18422 year: 2010 end-page: 18427 ident: bib29 article-title: Structure and mechanism of the complex between cytochrome P4503A4 and ritonavir publication-title: Proc Natl Acad Sci USA contributor: fullname: Poulos – volume: 40 start-page: 1414 year: 2012 end-page: 1422 ident: bib5 article-title: Interaction of lapatinib with cytochrome P450 3A5 publication-title: Drug Metab Dispos contributor: fullname: Nelson – start-page: e177 year: 2013 end-page: e189 ident: bib19 article-title: Inhibition of cytochrome P450 enzymes and biochemical aspects of mechanism-based inactivation (MBI) publication-title: Drug Discov Today Technol contributor: fullname: Harriman – volume: 265 start-page: 38 year: 2017 end-page: 46 ident: bib37 article-title: Protective effect of rosiglitazone against acetaminophen-induced acute liver injury is associated with down-regulation of hepatic NADPH oxidases publication-title: Toxicol Lett contributor: fullname: Xu – start-page: 1 year: 2016 end-page: 13 ident: bib11 article-title: Inactivation of human cytochrome P450 3A4 and 3A5 by dronedarone and n-desbutyl dronedarone publication-title: Mol Pharmacol contributor: fullname: Chan – volume: 50 start-page: 1055 year: 1983 end-page: 1076 ident: bib25 article-title: Constant pressure molecular dynamics for molecular systems publication-title: Mol Phys contributor: fullname: Klein – volume: 8 start-page: 3257 year: 2012 end-page: 3273 ident: bib3 article-title: Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles publication-title: J Chem Theory Comput contributor: fullname: Mackerell Jr – volume: 39 start-page: 757 year: 2011 end-page: 762 ident: bib31 article-title: Sorafenib and sunitinib, two anticancer drugs, inhibit CYP3A4-mediated and activate CY3A5-mediated midazolam 1′-hydroxylation publication-title: Drug Metab Dispos contributor: fullname: Sasaki – start-page: 399 year: 2011 end-page: 407 ident: bib7 article-title: Substrate-dependent modulation of the catalytic activity of CYP3A by erlotinib publication-title: Acta Pharmacol Sin contributor: fullname: Liu – volume: 31 start-page: 1695 year: 1985 end-page: 1697 ident: bib12 article-title: Canonical dynamics: equilibrium phase-space distributions publication-title: Phys Rev A Gen Phys contributor: fullname: Hoover – volume: 1–2 start-page: 19 year: 2015 ident: 2021090808151005000_100.3.224.1 article-title: GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers publication-title: SoftwareX doi: 10.1016/j.softx.2015.06.001 contributor: fullname: Abraham – ident: 2021090808151005000_100.3.224.8 doi: 10.1021/jm0306430 – ident: 2021090808151005000_100.3.224.12 doi: 10.1103/PhysRevA.31.1695 – ident: 2021090808151005000_100.3.224.22 doi: 10.1021/bi9715627 – ident: 2021090808151005000_100.3.224.25 doi: 10.1080/00268978300102851 – ident: 2021090808151005000_100.3.224.20 doi: 10.1093/nar/gky1033 – ident: 2021090808151005000_100.3.224.5 doi: 10.1124/dmd.112.044958 – ident: 2021090808151005000_100.3.224.30 doi: 10.1039/c2dt31833d – ident: 2021090808151005000_100.3.224.13 doi: 10.1016/j.abb.2004.09.010 – ident: 2021090808151005000_100.3.224.42 doi: 10.1021/ci500118s – ident: 2021090808151005000_100.3.224.40 doi: 10.1007/BF02353474 – ident: 2021090808151005000_100.3.224.2 doi: 10.1124/dmd.119.089813 – ident: 2021090808151005000_100.3.224.3 doi: 10.1021/ct300400x – ident: 2021090808151005000_100.3.224.23 doi: 10.1016/S0169-409X(02)00066-2 – ident: 2021090808151005000_100.3.224.36 doi: 10.1016/j.jmgm.2005.12.005 – ident: 2021090808151005000_100.3.224.41 doi: 10.1074/jbc.C400293200 – ident: 2021090808151005000_100.3.224.16 doi: 10.1002/jcc.20945 – ident: 2021090808151005000_100.3.224.27 doi: 10.1021/tx700207u – ident: 2021090808151005000_100.3.224.15 doi: 10.1124/mol.117.109744 – ident: 2021090808151005000_100.3.224.26 doi: 10.1124/dmd.108.024679 – ident: 2021090808151005000_100.3.224.28 doi: 10.1093/nar/gku1214 – ident: 2021090808151005000_100.3.224.11 doi: 10.1124/mol.115.100891 – ident: 2021090808151005000_100.3.224.33 doi: 10.2165/00126839-200607060-00004 – ident: 2021090808151005000_100.3.224.19 doi: 10.1016/j.ddtec.2012.09.011 – ident: 2021090808151005000_100.3.224.31 doi: 10.1124/dmd.110.037853 – volume: 32 start-page: 1791 year: 2019 ident: 2021090808151005000_100.3.224.10 article-title: Tofacitinib is a mechanism-based inactivator of cytochrome P450 3A4 publication-title: Chem Res Toxicol doi: 10.1021/acs.chemrestox.9b00141 contributor: fullname: Guo – ident: 2021090808151005000_100.3.224.39 doi: 10.1007/BF02353475 – ident: 2021090808151005000_100.3.224.18 doi: 10.1373/clinchem.2005.050047 – ident: 2021090808151005000_100.3.224.32 doi: 10.1124/molpharm.120.000086 – ident: 2021090808151005000_100.3.224.34 doi: 10.1124/dmd.114.057000 – ident: 2021090808151005000_100.3.224.35 doi: 10.1124/dmd.119.087460 – ident: 2021090808151005000_100.3.224.38 doi: 10.1124/dmd.115.066803 – ident: 2021090808151005000_100.3.224.24 doi: 10.1124/mol.62.1.162 – ident: 2021090808151005000_100.3.224.7 doi: 10.1038/aps.2010.218 – ident: 2021090808151005000_100.3.224.17 doi: 10.1063/1.445869 – ident: 2021090808151005000_100.3.224.21 doi: 10.1124/dmd.115.065037 – ident: 2021090808151005000_100.3.224.4 doi: 10.1124/dmd.31.7.815 – ident: 2021090808151005000_100.3.224.14 doi: 10.1074/jbc.RA119.007928 – ident: 2021090808151005000_100.3.224.29 doi: 10.1073/pnas.1010693107 – ident: 2021090808151005000_100.3.224.37 doi: 10.1016/j.toxlet.2016.11.012 – ident: 2021090808151005000_100.3.224.6 doi: 10.1063/1.464397 – ident: 2021090808151005000_100.3.224.9 doi: 10.1111/j.2042-7158.2010.01202.x |
SSID | ssj0014580 |
Score | 2.4455006 |
Snippet | Mounting evidence has revealed that despite the high degree of sequence homology between cytochrome P450 3A isoforms (i.e., CYP3A4 and CYP3A5), they have the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 224 |
Title | Differential Reversible and Irreversible Interactions between Benzbromarone and Human Cytochrome P450s 3A4 and 3A5 |
URI | https://dx.doi.org/10.1124/molpharm.121.000256 https://search.proquest.com/docview/2548411325 |
Volume | 100 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELaW8sIL4hSFgoyE-pINJD6S-HFpQeUoWqEU9i1yLrFSm1TZbKXtP-JfMj5yUJaK8hJFTmw5-b7MjCczY4ReFQzaU79wpRcJl2UhnOU8c1lKA1D3JBWhSk4-_hIcnbCPC76YTH6OopbWbfo6u9yaV_I_qEIb4KqyZG-AbD8oNMA54AtHQBiO_4Txod3dpF2aEvnK96UyoXSMb9MMDdrvZ1IYVn1o1tuiukyb-kw2dWX6GI_-waatsx-qjIEzZ9xbOXTG9GU642Nb9rjbWdc5H-pf9x762DqiP5_Wm9z5XiydWPYhNt-UPtDoyoulo8O8B_Fj-n2FGc47vaoihnTYwcIWCrd-CuL3gVhD3kDgRoIvjOax4lbd14nbTh573oh4dCxdTbq1VdTEVE75UwcQBsCd1af64VX5DFWkkvAtFbevaMI-PlGvjAhLukESGCQxg9xCt1XNRbVNw-GHT_0PK8Yjk-1kH9IWuIJB3myZyd-MoCvmgLZx4nvorl2c4Jlh2n00KaoHaH9u0N1McTwk662meB_PR7g_RM2YjnigIwbu4DEd8ZiO2NIR_0ZH3UfTEQ90xJqOGOioLwMdH6GT9-_igyPXbunhZmAati710lQwEnJYuNMoLWVOS1oGgVdKngsJ1nNOQe2pmIooKEXkl0UZyjAUPslIEUT0MdqpYBZPEM4Ey3MqvCKjKctLWOh7ooxghRyynAQy20XT7h0n56ZyS3INrrso6HBIrPFpjMoEeHV9x5cdagmIZvW_TVZFvV4lhLOI-T4l_OnN5vIM3Rm-oD200zbr4jnYvm36QrPuF5b7sUw |
link.rule.ids | 314,780,784,27924,27925 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+Reversible+and+Irreversible+Interactions+between+Benzbromarone+and+Human+Cytochrome+P450s+3A4+and+3A5&rft.jtitle=Molecular+pharmacology&rft.au=Tang%2C+Lloyd+Wei+Tat&rft.au=Verma%2C+Ravi+Kumar&rft.au=Yong%2C+Ren+Ping&rft.au=Li%2C+Xin&rft.date=2021-09-01&rft.issn=0026-895X&rft.eissn=1521-0111&rft.volume=100&rft.issue=3&rft.spage=224&rft.epage=236&rft_id=info:doi/10.1124%2Fmolpharm.121.000256&rft.externalDBID=n%2Fa&rft.externalDocID=10_1124_molpharm_121_000256 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-895X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-895X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-895X&client=summon |