Interprovincial food trade and water resources conservation in China

A spatial mismatch in water and arable land availability results in large virtual water transfers through interprovincial food trade in China. Accurately identifying and measuring water-saving links in interprovincial food trade can help to relieve water resources pressure in main grain-producing ar...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 737; p. 139651
Main Authors Deng, Chuxiong, Zhang, Guangjie, Li, Zhongwu, Li, Ke
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A spatial mismatch in water and arable land availability results in large virtual water transfers through interprovincial food trade in China. Accurately identifying and measuring water-saving links in interprovincial food trade can help to relieve water resources pressure in main grain-producing areas. We use a multiregional input-output table combined with the CROPWAT model to build China's interprovincial virtual water transfer network embedded in food trade in 2012. Then, water saving and scarce water saving are measured. Both consider the difference in water productivity among provinces, but the latter also pays attention to the scarcity of water resources. Finally, we adopt a water footprint to recalculate the scarce water savings without precipitation (green water). Our results indicate that the amount of virtual water transfer embedded in food trade is 74.9 billion m3, which is equivalent to 12.22% of the total water use in 2012. We observe large variations in the relationship between water resources abundance and agricultural water-use efficiency across provinces. Especially, there is a virtual water transfer from provinces with high water productivity but a lack of water to provinces with low water productivity but an abundance of water. The scarce water saving can identify sustainable food trade links, which can alleviate water scarcity in consuming provinces without exacerbating water shortage in producing provinces. In addition, interprovincial food trade results in 15 billion m3 of scarce gray water saving, which is equivalent to 59.76% of the scarce blue water saving. Scarce water saving based on blue water and gray water provides a basis for establishing an interprovincial compensation mechanism to balance the cost of water redistribution caused by food trade. [Display omitted] •The interprovincial food virtual water trade network is constructed in China.•Water endowments is added to improve the calculation method of water saving.•The difference between water saving and scarce water saving is compared.•Water footprint is used to distinguish the saving of different types of water.•Important insights about coordinating food trade with sustainable water use.
AbstractList A spatial mismatch in water and arable land availability results in large virtual water transfers through interprovincial food trade in China. Accurately identifying and measuring water-saving links in interprovincial food trade can help to relieve water resources pressure in main grain-producing areas. We use a multiregional input-output table combined with the CROPWAT model to build China's interprovincial virtual water transfer network embedded in food trade in 2012. Then, water saving and scarce water saving are measured. Both consider the difference in water productivity among provinces, but the latter also pays attention to the scarcity of water resources. Finally, we adopt a water footprint to recalculate the scarce water savings without precipitation (green water). Our results indicate that the amount of virtual water transfer embedded in food trade is 74.9 billion m3, which is equivalent to 12.22% of the total water use in 2012. We observe large variations in the relationship between water resources abundance and agricultural water-use efficiency across provinces. Especially, there is a virtual water transfer from provinces with high water productivity but a lack of water to provinces with low water productivity but an abundance of water. The scarce water saving can identify sustainable food trade links, which can alleviate water scarcity in consuming provinces without exacerbating water shortage in producing provinces. In addition, interprovincial food trade results in 15 billion m3 of scarce gray water saving, which is equivalent to 59.76% of the scarce blue water saving. Scarce water saving based on blue water and gray water provides a basis for establishing an interprovincial compensation mechanism to balance the cost of water redistribution caused by food trade. [Display omitted] •The interprovincial food virtual water trade network is constructed in China.•Water endowments is added to improve the calculation method of water saving.•The difference between water saving and scarce water saving is compared.•Water footprint is used to distinguish the saving of different types of water.•Important insights about coordinating food trade with sustainable water use.
A spatial mismatch in water and arable land availability results in large virtual water transfers through interprovincial food trade in China. Accurately identifying and measuring water-saving links in interprovincial food trade can help to relieve water resources pressure in main grain-producing areas. We use a multiregional input-output table combined with the CROPWAT model to build China's interprovincial virtual water transfer network embedded in food trade in 2012. Then, water saving and scarce water saving are measured. Both consider the difference in water productivity among provinces, but the latter also pays attention to the scarcity of water resources. Finally, we adopt a water footprint to recalculate the scarce water savings without precipitation (green water). Our results indicate that the amount of virtual water transfer embedded in food trade is 74.9 billion m³, which is equivalent to 12.22% of the total water use in 2012. We observe large variations in the relationship between water resources abundance and agricultural water-use efficiency across provinces. Especially, there is a virtual water transfer from provinces with high water productivity but a lack of water to provinces with low water productivity but an abundance of water. The scarce water saving can identify sustainable food trade links, which can alleviate water scarcity in consuming provinces without exacerbating water shortage in producing provinces. In addition, interprovincial food trade results in 15 billion m³ of scarce gray water saving, which is equivalent to 59.76% of the scarce blue water saving. Scarce water saving based on blue water and gray water provides a basis for establishing an interprovincial compensation mechanism to balance the cost of water redistribution caused by food trade.
A spatial mismatch in water and arable land availability results in large virtual water transfers through interprovincial food trade in China. Accurately identifying and measuring water-saving links in interprovincial food trade can help to relieve water resources pressure in main grain-producing areas. We use a multiregional input-output table combined with the CROPWAT model to build China's interprovincial virtual water transfer network embedded in food trade in 2012. Then, water saving and scarce water saving are measured. Both consider the difference in water productivity among provinces, but the latter also pays attention to the scarcity of water resources. Finally, we adopt a water footprint to recalculate the scarce water savings without precipitation (green water). Our results indicate that the amount of virtual water transfer embedded in food trade is 74.9 billion m3, which is equivalent to 12.22% of the total water use in 2012. We observe large variations in the relationship between water resources abundance and agricultural water-use efficiency across provinces. Especially, there is a virtual water transfer from provinces with high water productivity but a lack of water to provinces with low water productivity but an abundance of water. The scarce water saving can identify sustainable food trade links, which can alleviate water scarcity in consuming provinces without exacerbating water shortage in producing provinces. In addition, interprovincial food trade results in 15 billion m3 of scarce gray water saving, which is equivalent to 59.76% of the scarce blue water saving. Scarce water saving based on blue water and gray water provides a basis for establishing an interprovincial compensation mechanism to balance the cost of water redistribution caused by food trade.A spatial mismatch in water and arable land availability results in large virtual water transfers through interprovincial food trade in China. Accurately identifying and measuring water-saving links in interprovincial food trade can help to relieve water resources pressure in main grain-producing areas. We use a multiregional input-output table combined with the CROPWAT model to build China's interprovincial virtual water transfer network embedded in food trade in 2012. Then, water saving and scarce water saving are measured. Both consider the difference in water productivity among provinces, but the latter also pays attention to the scarcity of water resources. Finally, we adopt a water footprint to recalculate the scarce water savings without precipitation (green water). Our results indicate that the amount of virtual water transfer embedded in food trade is 74.9 billion m3, which is equivalent to 12.22% of the total water use in 2012. We observe large variations in the relationship between water resources abundance and agricultural water-use efficiency across provinces. Especially, there is a virtual water transfer from provinces with high water productivity but a lack of water to provinces with low water productivity but an abundance of water. The scarce water saving can identify sustainable food trade links, which can alleviate water scarcity in consuming provinces without exacerbating water shortage in producing provinces. In addition, interprovincial food trade results in 15 billion m3 of scarce gray water saving, which is equivalent to 59.76% of the scarce blue water saving. Scarce water saving based on blue water and gray water provides a basis for establishing an interprovincial compensation mechanism to balance the cost of water redistribution caused by food trade.
ArticleNumber 139651
Author Zhang, Guangjie
Li, Zhongwu
Deng, Chuxiong
Li, Ke
Author_xml – sequence: 1
  givenname: Chuxiong
  surname: Deng
  fullname: Deng, Chuxiong
  organization: College of Resource and Environment Sciences, Hunan Normal University, Changsha, Hunan 410081, PR China
– sequence: 2
  givenname: Guangjie
  surname: Zhang
  fullname: Zhang, Guangjie
  organization: College of Resource and Environment Sciences, Hunan Normal University, Changsha, Hunan 410081, PR China
– sequence: 3
  givenname: Zhongwu
  surname: Li
  fullname: Li, Zhongwu
  organization: College of Resource and Environment Sciences, Hunan Normal University, Changsha, Hunan 410081, PR China
– sequence: 4
  givenname: Ke
  surname: Li
  fullname: Li, Ke
  email: likekent1208@163.com
  organization: Key Laboratory of Applied Statistics and Data Science, School of Mathematics & Statistics, Hunan Normal University, Changsha, Hunan 410081, PR China
BookMark eNqNkD1PwzAQhi1UJFrgN5CRJcXnJLYzMFTlq1IlFpgtx7kKV6ld7DSIf49LEQNL8WL5_Lx3p2dCRs47JOQK6BQo8Jv1NBrb-x7dMGWUpWpR8wpOyBikqHOgjI_ImNJS5jWvxRmZxLim6QgJY3K3cD2GbfCDdcbqLlt532Z90C1m2rXZh07fWcDod8FgzIx3EcOge-tdZl02f7NOX5DTle4iXv7c5-T14f5l_pQvnx8X89kyN4WEPmcNaNZQarCqpEHNoRVtwQwzdaqniaKRsk3PooDCSBQggHPGAWlVQyOKc3J96Jv2fd9h7NXGRoNdpx36XVSsllzQAsryOFomitYlVAkVB9QEH2PAldoGu9HhUwFVe8VqrX4Vq71idVCckrd_kgn7VpME2u4f-dkhj0naYDHsOXQGWxvQ9Kr19miPL4hloBM
CitedBy_id crossref_primary_10_3389_fevo_2022_901873
crossref_primary_10_1016_j_resconrec_2024_107433
crossref_primary_10_3390_agriculture13122220
crossref_primary_10_1007_s10640_023_00763_9
crossref_primary_10_3390_w15061096
crossref_primary_10_1016_j_rser_2023_113850
crossref_primary_10_1061_JIDEDH_IRENG_10103
crossref_primary_10_3390_ijerph17218171
crossref_primary_10_1029_2023EF004052
crossref_primary_10_1016_j_scitotenv_2021_147085
crossref_primary_10_1016_j_scitotenv_2021_148110
crossref_primary_10_1016_j_scitotenv_2024_175996
crossref_primary_10_1016_j_scitotenv_2024_174863
crossref_primary_10_1016_j_jhydrol_2025_132831
crossref_primary_10_1016_j_energy_2023_127893
crossref_primary_10_1007_s00477_021_02096_9
crossref_primary_10_3390_w16111518
crossref_primary_10_1016_j_landusepol_2024_107290
crossref_primary_10_1088_1748_9326_abe9ec
crossref_primary_10_3390_agriculture15050549
crossref_primary_10_3390_w13212994
crossref_primary_10_1007_s11356_023_31708_w
crossref_primary_10_1016_j_crsust_2024_100261
crossref_primary_10_1016_j_jclepro_2021_128190
crossref_primary_10_1016_j_eiar_2024_107737
crossref_primary_10_1007_s00477_024_02829_6
crossref_primary_10_1016_j_agwat_2021_107127
crossref_primary_10_2166_wp_2021_045
crossref_primary_10_1016_j_resconrec_2024_107662
crossref_primary_10_1016_j_resconrec_2022_106573
crossref_primary_10_3390_su16093666
Cites_doi 10.1016/j.jclepro.2019.04.298
10.1029/2018WR023379
10.1016/j.aqpro.2013.07.006
10.1016/j.ecolecon.2017.12.016
10.1021/es500502q
10.1016/j.ecolind.2014.12.013
10.1016/j.jclepro.2019.03.151
10.1016/j.gloenvcha.2013.02.002
10.1016/j.jhydrol.2010.08.017
10.1002/2013WR014707
10.1016/j.gloenvcha.2009.08.003
10.1088/1748-9326/aaba49
10.1038/nature09364
10.1016/j.enpol.2014.02.033
10.1016/S0301-4215(00)00021-5
10.1073/pnas.1404749111
10.1016/j.watres.2019.01.025
10.5194/hess-15-1641-2011
10.1016/j.foodpol.2008.09.001
10.1038/s41467-017-01820-w
10.1038/sdata.2018.155
10.2166/wst.2004.0407
10.1016/j.foodpol.2006.11.004
10.1073/pnas.1404130112
10.1016/j.scitotenv.2015.05.050
10.1088/1748-9326/11/3/035012
10.1016/j.scitotenv.2018.12.433
10.1038/ngeo1617
10.1021/acs.est.9b01208
10.5194/hess-10-443-2006
10.1098/rstb.2003.1400
10.1029/2018GL077915
10.1016/j.envsci.2012.07.015
10.1016/j.jclepro.2019.05.053
10.1016/j.apenergy.2016.11.052
10.1126/science.1128845
10.1016/j.resconrec.2018.01.018
10.1029/2010WR010307
10.1111/j.1574-0862.2003.tb00136.x
10.1016/j.ecolmodel.2012.07.011
10.1021/es0263689
10.1016/j.agwat.2003.09.006
10.1007/s11113-019-09519-0
10.1021/es802423e
10.1016/j.ecolecon.2006.02.022
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.scitotenv.2020.139651
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
ExternalDocumentID 10_1016_j_scitotenv_2020_139651
S0048969720331715
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
RIG
SEN
SEW
SSH
WUQ
XPP
ZXP
ZY4
7X8
7S9
L.6
ID FETCH-LOGICAL-c381t-2b1a2b00ce558cea61d7d32c2c9a2bade7b88dc2c3313c8e717166261e0591b73
IEDL.DBID .~1
ISSN 0048-9697
1879-1026
IngestDate Thu Jul 10 22:19:18 EDT 2025
Fri Jul 11 06:54:44 EDT 2025
Tue Jul 01 03:35:45 EDT 2025
Thu Apr 24 22:57:20 EDT 2025
Fri Feb 23 02:43:46 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multiregional input-output analysis
Water stress index
Water saving
Virtual water
China
Food trade
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-2b1a2b00ce558cea61d7d32c2c9a2bade7b88dc2c3313c8e717166261e0591b73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2414409415
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2986703144
proquest_miscellaneous_2414409415
crossref_primary_10_1016_j_scitotenv_2020_139651
crossref_citationtrail_10_1016_j_scitotenv_2020_139651
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2020_139651
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
2020-10-00
20201001
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationTitle The Science of the total environment
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Salmoral, Yan (bb0170) 2018; 133
Oki, Kanae (bb0135) 2006; 313
Song, Guo, Wu, Sun (bb0175) 2018; 146
Dumont, Mayor, López-Gunn (bb0035) 2013; 1
Zhai, Huang, Liu, Xu, Li (bb0250) 2019; 659
Allan (bb0010) 1993
Özerol, Bressers, Coenen (bb0140) 2012; 23
Zhang, Zhong, Liang, Sanders, Wang, Xu (bb0255) 2017; 187
Galvin (bb0060) 2014; 73
Liu, Antonelli, Kummu, Zhao, Wu, Liu (bb0110) 2018
Liu, Zang, Tian, Liu, Yang, Jia (bb0105) 2013; 23
Wang, Wu, Engel, Sun (bb0195) 2014; 497–498
Hoekstra, Chapagain, Mekonnen, Aldaya (bb0080) 2011
Mi, Meng, Zheng, Shan, Wei, Guan (bb0125) 2018; 5
Yang, Wang, Zehnder (bb0245) 2007; 32
Wang, Zhang, Ding, Mi (bb0205) 2019; 223
Fader, Gerten, Thammer, Heinke, Lotze-Campen, Lucht (bb0040) 2011; 15
Ramirez, Rogers (bb0155) 2004; 49
Rockström (bb0165) 2003; 358
Yang, Reichert, Abbaspour, Zehnder (bb0235) 2003; 37
Piao, Ciais, Huang, Shen, Peng, Li (bb0150) 2010; 467
Xie, Liu (bb0225) 2015; 70
Fang, Sun, You, Daniel (bb0045) 2019; 13
Wichelns (bb0210) 2004; 66
Tamea, Carr, Laio, Ridolfi (bb0185) 2014; 50
He, Zhao, Wang, Jiang, Zhu (bb0075) 2019; 229
Ridoutt, Pfister (bb0160) 2010; 20
Wichelns (bb0215) 2015; 52
Zhang, Guo, Zhai (bb0260) 2019; 38
Pfister, Koehler, Hellweg (bb0145) 2009; 43
Hu, Moiwo, Yang, Han, Yang (bb0090) 2010; 393
Zhang, Taiebat, Liu, Qu, Liang, Xu (bb0265) 2019; 228
Wiebe, Harsdorff, Montt, Simas, Wood (bb0220) 2019; 53
Cao, Wang, Wu, Zhao, Wang (bb0020) 2015; 529
Felloni, Gilbert, Wahl, Wandschneider (bb0050) 2003; 28
Dalin, Rodríguez (bb0025) 2016; 11
National Bureau of Statistics (bb0130) 2018
Konar, Dalin, Suweis, Hanasaki, Rinaldo, Rodriguez (bb0100) 2011; 47
Khan, Hanjra (bb0095) 2009; 34
Zhao, Hubacek, Feng, Sun, Liu (bb0280) 2019; 153
Greening, Greene, Difiglio (bb0065) 2000; 28
The Central People's Government of the People's Republic of China (bb0190) 2017
Wang, Zhong, Long (bb0200) 2016
Dalin, Hanasaki, Qiu, Mauzerall, Rodriguez (bb0030) 2014; 111
Feng, Hubacek, Pfister, Yu, Sun (bb0055) 2014; 48
Zhao, Liu, Liu, Tillotson, Guan, Hubacek (bb0270) 2015; 112
Guan, Hubacek (bb0070) 2007; 61
Yang, Wang, Abbaspour, Zehnder (bb0240) 2006; 10
Aeschbach, Gleeson (bb0005) 2012; 5
Mi, Meng, Green, Coffman, Guan (bb0120) 2018; 45
Yang, Chen (bb0230) 2013; 252
Ayres, Kneese (bb0015) 2014; 59
Sun, Yin, Wu, Wang, Luan, Li (bb0180) 2019; 55
Zhao, Li, Yang, Liu, Tillotson, Guan (bb0275) 2018; 13
Mi, Meng, Guan, Shan, Song, Wei (bb0115) 2017; 8
Howell (bb0085) 2006
Fader (10.1016/j.scitotenv.2020.139651_bb0040) 2011; 15
Ridoutt (10.1016/j.scitotenv.2020.139651_bb0160) 2010; 20
Wiebe (10.1016/j.scitotenv.2020.139651_bb0220) 2019; 53
Wichelns (10.1016/j.scitotenv.2020.139651_bb0210) 2004; 66
Galvin (10.1016/j.scitotenv.2020.139651_bb0060) 2014; 73
Wichelns (10.1016/j.scitotenv.2020.139651_bb0215) 2015; 52
Hu (10.1016/j.scitotenv.2020.139651_bb0090) 2010; 393
Zhao (10.1016/j.scitotenv.2020.139651_bb0275) 2018; 13
Yang (10.1016/j.scitotenv.2020.139651_bb0240) 2006; 10
Mi (10.1016/j.scitotenv.2020.139651_bb0115) 2017; 8
Yang (10.1016/j.scitotenv.2020.139651_bb0245) 2007; 32
Zhao (10.1016/j.scitotenv.2020.139651_bb0270) 2015; 112
Zhao (10.1016/j.scitotenv.2020.139651_bb0280) 2019; 153
Wang (10.1016/j.scitotenv.2020.139651_bb0200) 2016
Xie (10.1016/j.scitotenv.2020.139651_bb0225) 2015; 70
Konar (10.1016/j.scitotenv.2020.139651_bb0100) 2011; 47
Sun (10.1016/j.scitotenv.2020.139651_bb0180) 2019; 55
Yang (10.1016/j.scitotenv.2020.139651_bb0235) 2003; 37
Zhang (10.1016/j.scitotenv.2020.139651_bb0260) 2019; 38
Pfister (10.1016/j.scitotenv.2020.139651_bb0145) 2009; 43
Wang (10.1016/j.scitotenv.2020.139651_bb0195) 2014; 497–498
Zhang (10.1016/j.scitotenv.2020.139651_bb0265) 2019; 228
Rockström (10.1016/j.scitotenv.2020.139651_bb0165) 2003; 358
Wang (10.1016/j.scitotenv.2020.139651_bb0205) 2019; 223
Dalin (10.1016/j.scitotenv.2020.139651_bb0030) 2014; 111
Allan (10.1016/j.scitotenv.2020.139651_bb0010) 1993
Felloni (10.1016/j.scitotenv.2020.139651_bb0050) 2003; 28
Greening (10.1016/j.scitotenv.2020.139651_bb0065) 2000; 28
Fang (10.1016/j.scitotenv.2020.139651_bb0045) 2019; 13
Howell (10.1016/j.scitotenv.2020.139651_bb0085) 2006
Liu (10.1016/j.scitotenv.2020.139651_bb0110) 2018
Zhai (10.1016/j.scitotenv.2020.139651_bb0250) 2019; 659
Dumont (10.1016/j.scitotenv.2020.139651_bb0035) 2013; 1
Yang (10.1016/j.scitotenv.2020.139651_bb0230) 2013; 252
Khan (10.1016/j.scitotenv.2020.139651_bb0095) 2009; 34
Piao (10.1016/j.scitotenv.2020.139651_bb0150) 2010; 467
Mi (10.1016/j.scitotenv.2020.139651_bb0125) 2018; 5
Feng (10.1016/j.scitotenv.2020.139651_bb0055) 2014; 48
Song (10.1016/j.scitotenv.2020.139651_bb0175) 2018; 146
Ramirez (10.1016/j.scitotenv.2020.139651_bb0155) 2004; 49
Dalin (10.1016/j.scitotenv.2020.139651_bb0025) 2016; 11
Oki (10.1016/j.scitotenv.2020.139651_bb0135) 2006; 313
He (10.1016/j.scitotenv.2020.139651_bb0075) 2019; 229
The Central People's Government of the People's Republic of China (10.1016/j.scitotenv.2020.139651_bb0190)
Mi (10.1016/j.scitotenv.2020.139651_bb0120) 2018; 45
Ayres (10.1016/j.scitotenv.2020.139651_bb0015) 2014; 59
Hoekstra (10.1016/j.scitotenv.2020.139651_bb0080) 2011
Tamea (10.1016/j.scitotenv.2020.139651_bb0185) 2014; 50
Guan (10.1016/j.scitotenv.2020.139651_bb0070) 2007; 61
National Bureau of Statistics (10.1016/j.scitotenv.2020.139651_bb0130)
Aeschbach (10.1016/j.scitotenv.2020.139651_bb0005) 2012; 5
Liu (10.1016/j.scitotenv.2020.139651_bb0105) 2013; 23
Özerol (10.1016/j.scitotenv.2020.139651_bb0140) 2012; 23
Cao (10.1016/j.scitotenv.2020.139651_bb0020) 2015; 529
Salmoral (10.1016/j.scitotenv.2020.139651_bb0170) 2018; 133
Zhang (10.1016/j.scitotenv.2020.139651_bb0255) 2017; 187
References_xml – volume: 47
  start-page: W05520
  year: 2011
  ident: bb0100
  article-title: Water for food: the global virtual water trade network
  publication-title: Water Resour. Res.
– volume: 43
  start-page: 4098
  year: 2009
  end-page: 4104
  ident: bb0145
  article-title: Assessing the environmental impacts of freshwater consumption in LCA
  publication-title: Environ. Sci. Technol.
– volume: 467
  start-page: 43
  year: 2010
  end-page: 51
  ident: bb0150
  article-title: The impacts of climate change on water resources and agriculture in China
  publication-title: Nature
– volume: 61
  start-page: 159
  year: 2007
  end-page: 170
  ident: bb0070
  article-title: Assessment of regional trade and virtual water flows in China
  publication-title: Ecol. Econ.
– volume: 111
  start-page: 9774
  year: 2014
  end-page: 9779
  ident: bb0030
  article-title: Water resources transfers through Chinese interprovincial and foreign food trade
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 70
  start-page: 604
  year: 2015
  end-page: 614
  ident: bb0225
  article-title: Spatiotemporal difference and determinants of multiple cropping index in China during 1998-2012
  publication-title: Acta Geograph. Sin.
– volume: 223
  start-page: 445
  year: 2019
  end-page: 455
  ident: bb0205
  article-title: Virtual water flow pattern of grain trade and its benefits in China
  publication-title: J. Clean. Prod.
– volume: 313
  start-page: 1068
  year: 2006
  end-page: 1072
  ident: bb0135
  article-title: Global hydrological cycles and world water resources
  publication-title: Science
– volume: 1
  start-page: 64
  year: 2013
  end-page: 76
  ident: bb0035
  article-title: Is the rebound effect or Jevons paradox a useful concept for better Management of Water Resources? Insights from the irrigation modernisation process in Spain
  publication-title: Aquatic Procedia
– volume: 50
  start-page: 17
  year: 2014
  end-page: 28
  ident: bb0185
  article-title: Drivers of the virtual water trade
  publication-title: Water Resour. Res.
– volume: 52
  start-page: 277
  year: 2015
  end-page: 283
  ident: bb0215
  article-title: Virtual water and water footprints do not provide helpful insight regarding international trade or water scarcity
  publication-title: Ecol. Indic.
– volume: 20
  start-page: 113
  year: 2010
  end-page: 120
  ident: bb0160
  article-title: A revised approach to water footprinting to make transparent the impacts of consumption and production on global freshwater scarcity
  publication-title: Global. Environ. Chang.
– volume: 49
  start-page: 25
  year: 2004
  end-page: 32
  ident: bb0155
  article-title: Virtual water flows and trade liberalization
  publication-title: Water Sci. Technol.
– volume: 229
  start-page: 379
  year: 2019
  end-page: 750
  ident: bb0075
  article-title: China’s food security challenge: effects of food habit changes on requirements for arable land and water
  publication-title: J. Clean. Prod.
– volume: 659
  start-page: 872
  year: 2019
  end-page: 883
  ident: bb0250
  article-title: Transfer of virtual water embodied in food: a new perspective
  publication-title: Sci. Total Environ.
– volume: 45
  start-page: 4309
  year: 2018
  end-page: 4318
  ident: bb0120
  article-title: China's “exported carbon” peak: patterns, drivers, and implications
  publication-title: Geophys. Res. Lett.
– volume: 153
  start-page: 304
  year: 2019
  end-page: 314
  ident: bb0280
  article-title: Explaining virtual water trade: a spatial-temporal analysis of the comparative advantage of land, labor and water in China
  publication-title: Water Res.
– volume: 529
  start-page: 10
  year: 2015
  end-page: 20
  ident: bb0020
  article-title: An evaluation of the water utilization and grain production of irrigated and rain-fed croplands in China
  publication-title: Sci. Total Environ.
– volume: 13
  year: 2018
  ident: bb0275
  article-title: Measuring scarce water saving from interregional virtual water flows in China
  publication-title: Environ. Res. Lett.
– volume: 228
  start-page: 1401
  year: 2019
  end-page: 1412
  ident: bb0265
  article-title: Regional water footprints and interregional virtual water transfers in China
  publication-title: J. Clean. Prod.
– volume: 15
  year: 2011
  ident: bb0040
  article-title: Internal and external green-blue agricultural water footprints of nations, and related water and land savings through trade
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 8
  start-page: 1712
  year: 2017
  ident: bb0115
  article-title: Chinese CO2 emission flows have reversed since the global financial crisis
  publication-title: Nat. Commun.
– volume: 187
  start-page: 438
  year: 2017
  end-page: 448
  ident: bb0255
  article-title: Virtual scarce water embodied in inter-provincial electricity transmission in China
  publication-title: Appl. Energy
– volume: 59
  start-page: 282
  year: 2014
  end-page: 297
  ident: bb0015
  article-title: Production, consumption, and externalities
  publication-title: Am. Econ. Rev.
– volume: 73
  start-page: 323
  year: 2014
  end-page: 332
  ident: bb0060
  article-title: Estimating broad-brush rebound effects for household energy consumption in the EU 28 countries and Norway: some policy implications of Odyssee data
  publication-title: Energ Policy
– volume: 133
  start-page: 320
  year: 2018
  end-page: 330
  ident: bb0170
  article-title: Food-energy-water nexus: a life cycle analysis on virtual water and embodied energy in food consumption in the Tamar catchment, UK
  publication-title: Resour. Conserv. Recy.
– volume: 32
  start-page: 585
  year: 2007
  end-page: 605
  ident: bb0245
  article-title: Water scarcity and food trade in the southern and eastern Mediterranean countries
  publication-title: Food Policy
– volume: 34
  start-page: 130
  year: 2009
  end-page: 140
  ident: bb0095
  article-title: Footprints of water and energy inputs in food production – global perspectives
  publication-title: Food Policy
– volume: 112
  start-page: 1031
  year: 2015
  end-page: 1035
  ident: bb0270
  article-title: Physical and virtual water transfers for regional water stress alleviation in China
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 5
  start-page: 853
  year: 2012
  end-page: 861
  ident: bb0005
  article-title: Regional strategies for the accelerating global problem of groundwater depletion
  publication-title: Nat. Geosci.
– volume: 55
  start-page: 4014
  year: 2019
  end-page: 4029
  ident: bb0180
  article-title: Geographical evolution of agricultural production in China and its effects on water stress, economy, and the environment: the virtual water perspective
  publication-title: Water Resour. Res.
– year: 2011
  ident: bb0080
  article-title: The Water Footprint Assessment Manual: Setting the Global Standard
– volume: 146
  start-page: 497
  year: 2018
  end-page: 506
  ident: bb0175
  article-title: The agricultural water rebound effect in China
  publication-title: Ecol. Econ.
– volume: 23
  start-page: 57
  year: 2012
  end-page: 67
  ident: bb0140
  article-title: Irrigated agriculture and environmental sustainability: an alignment perspective
  publication-title: Environ. Sci. & Policy.
– volume: 28
  start-page: 389
  year: 2000
  end-page: 401
  ident: bb0065
  article-title: Energy efficiency and consumption - the rebound effect - a survey
  publication-title: Energ Policy
– year: 2016
  ident: bb0200
  article-title: Baseline Water Stress: China. Technical Note
– start-page: e1320
  year: 2018
  ident: bb0110
  article-title: Savings and losses of global water resources in food-related virtual water trade
  publication-title: Wires. Water.
– volume: 28
  start-page: 173
  year: 2003
  end-page: 186
  ident: bb0050
  article-title: Trade policy, biotechnology and grain self-sufficiency in China
  publication-title: Agric. Econ.
– volume: 38
  start-page: 537
  year: 2019
  end-page: 563
  ident: bb0260
  article-title: China’s demographic future under the new two-child policy
  publication-title: Popul. Res.Policy. Rev.
– volume: 11
  start-page: 035012
  year: 2016
  ident: bb0025
  article-title: Environmental impacts of food trade via resource use and greenhouse gas emissions
  publication-title: Environ. Res. Lett.
– volume: 23
  start-page: 633
  year: 2013
  end-page: 643
  ident: bb0105
  article-title: Water conservancy projects in China: achievements, challenges and way forward
  publication-title: Global. Environ.Chang.
– volume: 252
  start-page: 176
  year: 2013
  end-page: 184
  ident: bb0230
  article-title: 2013. Greenhouse gas emissions of corn-ethanol production in China. Ecol
  publication-title: Model
– year: 2018
  ident: bb0130
  article-title: Irrigated area of cultivated land and consumption of chemical fertilizers
– volume: 37
  start-page: 3048
  year: 2003
  end-page: 3054
  ident: bb0235
  article-title: A water resources threshold and its implications for food security
  publication-title: Environ. Sci. Technol.
– volume: 48
  start-page: 7704
  year: 2014
  end-page: 7713
  ident: bb0055
  article-title: Virtual scarce water in China
  publication-title: Environ. Sci. & Technol.
– volume: 66
  start-page: 49
  year: 2004
  end-page: 63
  ident: bb0210
  article-title: The policy relevance of virtual water can be enhanced by considering comparative advantages
  publication-title: Agr. Water. Manage.
– year: 2006
  ident: bb0085
  article-title: Challenges in increasing water use efficiency in irrigated agriculture
  publication-title: Paper Presented at International Symposium on Water and Land Management for Sustainable Irrigated Agriculture, Adana, Turkey, 4–8 April. 2006
– start-page: 13
  year: 1993
  end-page: 26
  ident: bb0010
  article-title: Fortunately there are substitutes for water otherwise our hydro-political futures would be impossible
  publication-title: Proceedings of the Conference on Priorities for Water Resources Allocation and Management: Natural Resources and Engineering Advisers Conference, Southampton
– volume: 5
  year: 2018
  ident: bb0125
  article-title: A multi-regional input-output table mapping China's economic outputs and interdependencies in 2012
  publication-title: Sci. Data.
– volume: 13
  start-page: 480
  year: 2019
  end-page: 493
  ident: bb0045
  article-title: Increasing concentration of major crops in China from 1980 to 2011
  publication-title: J. Land Use Sci.
– volume: 393
  start-page: 219
  year: 2010
  end-page: 232
  ident: bb0090
  article-title: Agricultural water-saving and sustainable groundwater management in Shijiazhuang Irrigation District, North China Plain
  publication-title: J. Hydrol.
– volume: 497–498
  start-page: 1
  year: 2014
  end-page: 9
  ident: bb0195
  article-title: Application of water footprint combined with a unified virtual crop pattern to evaluate crop water productivity in grain production in China
  publication-title: Sci. Total Environ.
– volume: 53
  start-page: 6362
  year: 2019
  end-page: 6373
  ident: bb0220
  article-title: Global circular economy scenario in a multiregional input-output framework
  publication-title: Environ. Sci. Technol.
– volume: 358
  start-page: 1997
  year: 2003
  end-page: 2009
  ident: bb0165
  article-title: Water for food and nature in drought-prone tropics: vapour shift in rain-fed agriculture
  publication-title: Philo. Trans. R. Soc. Lond. B.
– year: 2017
  ident: bb0190
  article-title: Opinions on innovating institutions and mechanisms to promote Green development of agriculture
– volume: 10
  start-page: 443
  year: 2006
  end-page: 454
  ident: bb0240
  article-title: Virtual water trade: an assessment of water use efficiency in the international food trade
  publication-title: Hydrol. Earth. Syst. Sc.
– volume: 228
  start-page: 1401
  year: 2019
  ident: 10.1016/j.scitotenv.2020.139651_bb0265
  article-title: Regional water footprints and interregional virtual water transfers in China
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.04.298
– start-page: e1320
  year: 2018
  ident: 10.1016/j.scitotenv.2020.139651_bb0110
  article-title: Savings and losses of global water resources in food-related virtual water trade
  publication-title: Wires. Water.
– volume: 55
  start-page: 4014
  year: 2019
  ident: 10.1016/j.scitotenv.2020.139651_bb0180
  article-title: Geographical evolution of agricultural production in China and its effects on water stress, economy, and the environment: the virtual water perspective
  publication-title: Water Resour. Res.
  doi: 10.1029/2018WR023379
– volume: 1
  start-page: 64
  year: 2013
  ident: 10.1016/j.scitotenv.2020.139651_bb0035
  article-title: Is the rebound effect or Jevons paradox a useful concept for better Management of Water Resources? Insights from the irrigation modernisation process in Spain
  publication-title: Aquatic Procedia
  doi: 10.1016/j.aqpro.2013.07.006
– volume: 146
  start-page: 497
  year: 2018
  ident: 10.1016/j.scitotenv.2020.139651_bb0175
  article-title: The agricultural water rebound effect in China
  publication-title: Ecol. Econ.
  doi: 10.1016/j.ecolecon.2017.12.016
– volume: 48
  start-page: 7704
  year: 2014
  ident: 10.1016/j.scitotenv.2020.139651_bb0055
  article-title: Virtual scarce water in China
  publication-title: Environ. Sci. & Technol.
  doi: 10.1021/es500502q
– volume: 52
  start-page: 277
  year: 2015
  ident: 10.1016/j.scitotenv.2020.139651_bb0215
  article-title: Virtual water and water footprints do not provide helpful insight regarding international trade or water scarcity
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2014.12.013
– volume: 223
  start-page: 445
  year: 2019
  ident: 10.1016/j.scitotenv.2020.139651_bb0205
  article-title: Virtual water flow pattern of grain trade and its benefits in China
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.03.151
– volume: 59
  start-page: 282
  year: 2014
  ident: 10.1016/j.scitotenv.2020.139651_bb0015
  article-title: Production, consumption, and externalities
  publication-title: Am. Econ. Rev.
– volume: 23
  start-page: 633
  year: 2013
  ident: 10.1016/j.scitotenv.2020.139651_bb0105
  article-title: Water conservancy projects in China: achievements, challenges and way forward
  publication-title: Global. Environ.Chang.
  doi: 10.1016/j.gloenvcha.2013.02.002
– year: 2016
  ident: 10.1016/j.scitotenv.2020.139651_bb0200
– volume: 393
  start-page: 219
  year: 2010
  ident: 10.1016/j.scitotenv.2020.139651_bb0090
  article-title: Agricultural water-saving and sustainable groundwater management in Shijiazhuang Irrigation District, North China Plain
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2010.08.017
– volume: 50
  start-page: 17
  year: 2014
  ident: 10.1016/j.scitotenv.2020.139651_bb0185
  article-title: Drivers of the virtual water trade
  publication-title: Water Resour. Res.
  doi: 10.1002/2013WR014707
– year: 2006
  ident: 10.1016/j.scitotenv.2020.139651_bb0085
  article-title: Challenges in increasing water use efficiency in irrigated agriculture
– volume: 20
  start-page: 113
  year: 2010
  ident: 10.1016/j.scitotenv.2020.139651_bb0160
  article-title: A revised approach to water footprinting to make transparent the impacts of consumption and production on global freshwater scarcity
  publication-title: Global. Environ. Chang.
  doi: 10.1016/j.gloenvcha.2009.08.003
– volume: 70
  start-page: 604
  year: 2015
  ident: 10.1016/j.scitotenv.2020.139651_bb0225
  article-title: Spatiotemporal difference and determinants of multiple cropping index in China during 1998-2012
  publication-title: Acta Geograph. Sin.
– volume: 13
  year: 2018
  ident: 10.1016/j.scitotenv.2020.139651_bb0275
  article-title: Measuring scarce water saving from interregional virtual water flows in China
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aaba49
– volume: 467
  start-page: 43
  year: 2010
  ident: 10.1016/j.scitotenv.2020.139651_bb0150
  article-title: The impacts of climate change on water resources and agriculture in China
  publication-title: Nature
  doi: 10.1038/nature09364
– volume: 73
  start-page: 323
  year: 2014
  ident: 10.1016/j.scitotenv.2020.139651_bb0060
  article-title: Estimating broad-brush rebound effects for household energy consumption in the EU 28 countries and Norway: some policy implications of Odyssee data
  publication-title: Energ Policy
  doi: 10.1016/j.enpol.2014.02.033
– volume: 28
  start-page: 389
  year: 2000
  ident: 10.1016/j.scitotenv.2020.139651_bb0065
  article-title: Energy efficiency and consumption - the rebound effect - a survey
  publication-title: Energ Policy
  doi: 10.1016/S0301-4215(00)00021-5
– volume: 111
  start-page: 9774
  year: 2014
  ident: 10.1016/j.scitotenv.2020.139651_bb0030
  article-title: Water resources transfers through Chinese interprovincial and foreign food trade
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1404749111
– volume: 153
  start-page: 304
  year: 2019
  ident: 10.1016/j.scitotenv.2020.139651_bb0280
  article-title: Explaining virtual water trade: a spatial-temporal analysis of the comparative advantage of land, labor and water in China
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.01.025
– volume: 15
  year: 2011
  ident: 10.1016/j.scitotenv.2020.139651_bb0040
  article-title: Internal and external green-blue agricultural water footprints of nations, and related water and land savings through trade
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-15-1641-2011
– volume: 34
  start-page: 130
  year: 2009
  ident: 10.1016/j.scitotenv.2020.139651_bb0095
  article-title: Footprints of water and energy inputs in food production – global perspectives
  publication-title: Food Policy
  doi: 10.1016/j.foodpol.2008.09.001
– volume: 8
  start-page: 1712
  year: 2017
  ident: 10.1016/j.scitotenv.2020.139651_bb0115
  article-title: Chinese CO2 emission flows have reversed since the global financial crisis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01820-w
– volume: 5
  year: 2018
  ident: 10.1016/j.scitotenv.2020.139651_bb0125
  article-title: A multi-regional input-output table mapping China's economic outputs and interdependencies in 2012
  publication-title: Sci. Data.
  doi: 10.1038/sdata.2018.155
– volume: 49
  start-page: 25
  year: 2004
  ident: 10.1016/j.scitotenv.2020.139651_bb0155
  article-title: Virtual water flows and trade liberalization
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2004.0407
– volume: 13
  start-page: 480
  year: 2019
  ident: 10.1016/j.scitotenv.2020.139651_bb0045
  article-title: Increasing concentration of major crops in China from 1980 to 2011
  publication-title: J. Land Use Sci.
– ident: 10.1016/j.scitotenv.2020.139651_bb0130
– volume: 32
  start-page: 585
  year: 2007
  ident: 10.1016/j.scitotenv.2020.139651_bb0245
  article-title: Water scarcity and food trade in the southern and eastern Mediterranean countries
  publication-title: Food Policy
  doi: 10.1016/j.foodpol.2006.11.004
– volume: 112
  start-page: 1031
  year: 2015
  ident: 10.1016/j.scitotenv.2020.139651_bb0270
  article-title: Physical and virtual water transfers for regional water stress alleviation in China
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1404130112
– volume: 529
  start-page: 10
  year: 2015
  ident: 10.1016/j.scitotenv.2020.139651_bb0020
  article-title: An evaluation of the water utilization and grain production of irrigated and rain-fed croplands in China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.05.050
– volume: 11
  start-page: 035012
  year: 2016
  ident: 10.1016/j.scitotenv.2020.139651_bb0025
  article-title: Environmental impacts of food trade via resource use and greenhouse gas emissions
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/11/3/035012
– volume: 659
  start-page: 872
  year: 2019
  ident: 10.1016/j.scitotenv.2020.139651_bb0250
  article-title: Transfer of virtual water embodied in food: a new perspective
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.12.433
– volume: 5
  start-page: 853
  year: 2012
  ident: 10.1016/j.scitotenv.2020.139651_bb0005
  article-title: Regional strategies for the accelerating global problem of groundwater depletion
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo1617
– start-page: 13
  year: 1993
  ident: 10.1016/j.scitotenv.2020.139651_bb0010
  article-title: Fortunately there are substitutes for water otherwise our hydro-political futures would be impossible
– volume: 53
  start-page: 6362
  year: 2019
  ident: 10.1016/j.scitotenv.2020.139651_bb0220
  article-title: Global circular economy scenario in a multiregional input-output framework
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b01208
– ident: 10.1016/j.scitotenv.2020.139651_bb0190
– volume: 10
  start-page: 443
  year: 2006
  ident: 10.1016/j.scitotenv.2020.139651_bb0240
  article-title: Virtual water trade: an assessment of water use efficiency in the international food trade
  publication-title: Hydrol. Earth. Syst. Sc.
  doi: 10.5194/hess-10-443-2006
– volume: 497–498
  start-page: 1
  year: 2014
  ident: 10.1016/j.scitotenv.2020.139651_bb0195
  article-title: Application of water footprint combined with a unified virtual crop pattern to evaluate crop water productivity in grain production in China
  publication-title: Sci. Total Environ.
– volume: 358
  start-page: 1997
  year: 2003
  ident: 10.1016/j.scitotenv.2020.139651_bb0165
  article-title: Water for food and nature in drought-prone tropics: vapour shift in rain-fed agriculture
  publication-title: Philo. Trans. R. Soc. Lond. B.
  doi: 10.1098/rstb.2003.1400
– volume: 45
  start-page: 4309
  year: 2018
  ident: 10.1016/j.scitotenv.2020.139651_bb0120
  article-title: China's “exported carbon” peak: patterns, drivers, and implications
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2018GL077915
– volume: 23
  start-page: 57
  year: 2012
  ident: 10.1016/j.scitotenv.2020.139651_bb0140
  article-title: Irrigated agriculture and environmental sustainability: an alignment perspective
  publication-title: Environ. Sci. & Policy.
  doi: 10.1016/j.envsci.2012.07.015
– volume: 229
  start-page: 379
  year: 2019
  ident: 10.1016/j.scitotenv.2020.139651_bb0075
  article-title: China’s food security challenge: effects of food habit changes on requirements for arable land and water
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.05.053
– volume: 187
  start-page: 438
  year: 2017
  ident: 10.1016/j.scitotenv.2020.139651_bb0255
  article-title: Virtual scarce water embodied in inter-provincial electricity transmission in China
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.11.052
– volume: 313
  start-page: 1068
  year: 2006
  ident: 10.1016/j.scitotenv.2020.139651_bb0135
  article-title: Global hydrological cycles and world water resources
  publication-title: Science
  doi: 10.1126/science.1128845
– volume: 133
  start-page: 320
  year: 2018
  ident: 10.1016/j.scitotenv.2020.139651_bb0170
  article-title: Food-energy-water nexus: a life cycle analysis on virtual water and embodied energy in food consumption in the Tamar catchment, UK
  publication-title: Resour. Conserv. Recy.
  doi: 10.1016/j.resconrec.2018.01.018
– volume: 47
  start-page: W05520
  year: 2011
  ident: 10.1016/j.scitotenv.2020.139651_bb0100
  article-title: Water for food: the global virtual water trade network
  publication-title: Water Resour. Res.
  doi: 10.1029/2010WR010307
– volume: 28
  start-page: 173
  year: 2003
  ident: 10.1016/j.scitotenv.2020.139651_bb0050
  article-title: Trade policy, biotechnology and grain self-sufficiency in China
  publication-title: Agric. Econ.
  doi: 10.1111/j.1574-0862.2003.tb00136.x
– volume: 252
  start-page: 176
  year: 2013
  ident: 10.1016/j.scitotenv.2020.139651_bb0230
  article-title: 2013. Greenhouse gas emissions of corn-ethanol production in China. Ecol
  publication-title: Model
  doi: 10.1016/j.ecolmodel.2012.07.011
– volume: 37
  start-page: 3048
  year: 2003
  ident: 10.1016/j.scitotenv.2020.139651_bb0235
  article-title: A water resources threshold and its implications for food security
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0263689
– volume: 66
  start-page: 49
  year: 2004
  ident: 10.1016/j.scitotenv.2020.139651_bb0210
  article-title: The policy relevance of virtual water can be enhanced by considering comparative advantages
  publication-title: Agr. Water. Manage.
  doi: 10.1016/j.agwat.2003.09.006
– volume: 38
  start-page: 537
  year: 2019
  ident: 10.1016/j.scitotenv.2020.139651_bb0260
  article-title: China’s demographic future under the new two-child policy
  publication-title: Popul. Res.Policy. Rev.
  doi: 10.1007/s11113-019-09519-0
– volume: 43
  start-page: 4098
  year: 2009
  ident: 10.1016/j.scitotenv.2020.139651_bb0145
  article-title: Assessing the environmental impacts of freshwater consumption in LCA
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es802423e
– volume: 61
  start-page: 159
  year: 2007
  ident: 10.1016/j.scitotenv.2020.139651_bb0070
  article-title: Assessment of regional trade and virtual water flows in China
  publication-title: Ecol. Econ.
  doi: 10.1016/j.ecolecon.2006.02.022
– year: 2011
  ident: 10.1016/j.scitotenv.2020.139651_bb0080
SSID ssj0000781
Score 2.4879172
Snippet A spatial mismatch in water and arable land availability results in large virtual water transfers through interprovincial food trade in China. Accurately...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 139651
SubjectTerms arable soils
China
environment
Food trade
greywater
Multiregional input-output analysis
trade
Virtual water
water conservation
Water saving
water shortages
Water stress index
water use efficiency
Title Interprovincial food trade and water resources conservation in China
URI https://dx.doi.org/10.1016/j.scitotenv.2020.139651
https://www.proquest.com/docview/2414409415
https://www.proquest.com/docview/2986703144
Volume 737
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1NS8Mw9CGKIIjoVJxfRPBaXdv0y5voxnS4gyh6C22SwkTasXWKF3-77zWpQ0E9eCopSRte8r6_AI4D5Aupj9oJyqIdcjNKJ-EedzQPeI7yrRcrUhRvhmH_nl8_Bo8LcNHkwlBYpaX9hqbX1Nq-ObXQPB2PRpTjy-MkTMiPiEywTjTnPKJbfvI-D_OgYjbGy4yIjbO_xHjhd6sSZdMXVBQ96gGRhIH7E4f6RqtrBtRbhzUrObJzs7kNWNBFC5ZNL8m3Fmx35ylrOM3i7LQFq8Yyx0zC0SZc2jhDMiWQvZzlZalYNUmVZmmh2CtKnxM2sWb9KZMUb20tt2xUsLrj9hbc97p3F33H9lJwJPLkyvEyN_UQxaQOgljqNHRVpHxPejLB9_iHKItjhUOEpS9jHVEZHVR2XI3yl5tF_jYsFmWhd4D5mooWdVTSkSnPAmp35ZOzNZd-rmQu2xA28BPSFhqnfhfPookoexKfgBcEeGEA34bO58KxqbXx95Kz5oDEl2sjkCP8vfioOVKBSEWekrTQ5WwqUKzhpPi6wS9zkjisi__z3f9sYg9WaGTiA_dhsZrM9AHKOVV2WF_kQ1g6vxr0h_Qc3D4MPgAucf75
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3bSsMw9DAmoiCiU_FuBF-La5v04pt4YfOyJwXfQpukMJF2bFXx7z1nSScT1Acfm-a04SQ59wvAiUC-kIWonaAs2iU3o_JSHnDPcMELlG-DRJOieD-Ieo_85kk8teCiyYWhsEpH-y1Nn1JrN3LqsHk6Gg4px5cnaZSSHxGZICWaL1B1KtGGhfP-bW_wRZDjxDbO43i3EWAuzAs_XVconr6hrhhQG4g0Ev5PTOobuZ7yoOs1WHXCIzu361uHlik7sGjbSX50YOvqK2sNp7lrO-nAijXOMZtztAGXLtSQrAlkMmdFVWlWjzNtWFZq9o4C6JiNnWV_whSFXDvjLRuWbNp0exMer68eLnqea6fgKWTLtRfkfhbgLVNGiESZLPJ1rMNABSrFcfxDnCeJxkdEZ6gSE1MlHdR3fIMimJ_H4Ra0y6o028BCQ3WLujrtqozngjpeheRvLVRYaFWoHYga_Enlao1Ty4sX2QSVPcsZ4iUhXlrE70B3Bjiy5Tb-BjlrNkjOnRyJTOFv4ONmSyXeK3KWZKWpXicSJRtOuq8vfpmTJtG0_j_f_c8ijmCp93B_J-_6g9s9WKY3NlxwH9r1-NUcoNhT54fuWH8C48kAFg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interprovincial+food+trade+and+water+resources+conservation+in+China&rft.jtitle=The+Science+of+the+total+environment&rft.au=Deng%2C+Chuxiong&rft.au=Zhang%2C+Guangjie&rft.au=Li%2C+Zhongwu&rft.au=Li%2C+Ke&rft.date=2020-10-01&rft.pub=Elsevier+B.V&rft.issn=0048-9697&rft.eissn=1879-1026&rft.volume=737&rft_id=info:doi/10.1016%2Fj.scitotenv.2020.139651&rft.externalDocID=S0048969720331715
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon