Interprovincial food trade and water resources conservation in China
A spatial mismatch in water and arable land availability results in large virtual water transfers through interprovincial food trade in China. Accurately identifying and measuring water-saving links in interprovincial food trade can help to relieve water resources pressure in main grain-producing ar...
Saved in:
Published in | The Science of the total environment Vol. 737; p. 139651 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A spatial mismatch in water and arable land availability results in large virtual water transfers through interprovincial food trade in China. Accurately identifying and measuring water-saving links in interprovincial food trade can help to relieve water resources pressure in main grain-producing areas. We use a multiregional input-output table combined with the CROPWAT model to build China's interprovincial virtual water transfer network embedded in food trade in 2012. Then, water saving and scarce water saving are measured. Both consider the difference in water productivity among provinces, but the latter also pays attention to the scarcity of water resources. Finally, we adopt a water footprint to recalculate the scarce water savings without precipitation (green water). Our results indicate that the amount of virtual water transfer embedded in food trade is 74.9 billion m3, which is equivalent to 12.22% of the total water use in 2012. We observe large variations in the relationship between water resources abundance and agricultural water-use efficiency across provinces. Especially, there is a virtual water transfer from provinces with high water productivity but a lack of water to provinces with low water productivity but an abundance of water. The scarce water saving can identify sustainable food trade links, which can alleviate water scarcity in consuming provinces without exacerbating water shortage in producing provinces. In addition, interprovincial food trade results in 15 billion m3 of scarce gray water saving, which is equivalent to 59.76% of the scarce blue water saving. Scarce water saving based on blue water and gray water provides a basis for establishing an interprovincial compensation mechanism to balance the cost of water redistribution caused by food trade.
[Display omitted]
•The interprovincial food virtual water trade network is constructed in China.•Water endowments is added to improve the calculation method of water saving.•The difference between water saving and scarce water saving is compared.•Water footprint is used to distinguish the saving of different types of water.•Important insights about coordinating food trade with sustainable water use. |
---|---|
AbstractList | A spatial mismatch in water and arable land availability results in large virtual water transfers through interprovincial food trade in China. Accurately identifying and measuring water-saving links in interprovincial food trade can help to relieve water resources pressure in main grain-producing areas. We use a multiregional input-output table combined with the CROPWAT model to build China's interprovincial virtual water transfer network embedded in food trade in 2012. Then, water saving and scarce water saving are measured. Both consider the difference in water productivity among provinces, but the latter also pays attention to the scarcity of water resources. Finally, we adopt a water footprint to recalculate the scarce water savings without precipitation (green water). Our results indicate that the amount of virtual water transfer embedded in food trade is 74.9 billion m3, which is equivalent to 12.22% of the total water use in 2012. We observe large variations in the relationship between water resources abundance and agricultural water-use efficiency across provinces. Especially, there is a virtual water transfer from provinces with high water productivity but a lack of water to provinces with low water productivity but an abundance of water. The scarce water saving can identify sustainable food trade links, which can alleviate water scarcity in consuming provinces without exacerbating water shortage in producing provinces. In addition, interprovincial food trade results in 15 billion m3 of scarce gray water saving, which is equivalent to 59.76% of the scarce blue water saving. Scarce water saving based on blue water and gray water provides a basis for establishing an interprovincial compensation mechanism to balance the cost of water redistribution caused by food trade.
[Display omitted]
•The interprovincial food virtual water trade network is constructed in China.•Water endowments is added to improve the calculation method of water saving.•The difference between water saving and scarce water saving is compared.•Water footprint is used to distinguish the saving of different types of water.•Important insights about coordinating food trade with sustainable water use. A spatial mismatch in water and arable land availability results in large virtual water transfers through interprovincial food trade in China. Accurately identifying and measuring water-saving links in interprovincial food trade can help to relieve water resources pressure in main grain-producing areas. We use a multiregional input-output table combined with the CROPWAT model to build China's interprovincial virtual water transfer network embedded in food trade in 2012. Then, water saving and scarce water saving are measured. Both consider the difference in water productivity among provinces, but the latter also pays attention to the scarcity of water resources. Finally, we adopt a water footprint to recalculate the scarce water savings without precipitation (green water). Our results indicate that the amount of virtual water transfer embedded in food trade is 74.9 billion m³, which is equivalent to 12.22% of the total water use in 2012. We observe large variations in the relationship between water resources abundance and agricultural water-use efficiency across provinces. Especially, there is a virtual water transfer from provinces with high water productivity but a lack of water to provinces with low water productivity but an abundance of water. The scarce water saving can identify sustainable food trade links, which can alleviate water scarcity in consuming provinces without exacerbating water shortage in producing provinces. In addition, interprovincial food trade results in 15 billion m³ of scarce gray water saving, which is equivalent to 59.76% of the scarce blue water saving. Scarce water saving based on blue water and gray water provides a basis for establishing an interprovincial compensation mechanism to balance the cost of water redistribution caused by food trade. A spatial mismatch in water and arable land availability results in large virtual water transfers through interprovincial food trade in China. Accurately identifying and measuring water-saving links in interprovincial food trade can help to relieve water resources pressure in main grain-producing areas. We use a multiregional input-output table combined with the CROPWAT model to build China's interprovincial virtual water transfer network embedded in food trade in 2012. Then, water saving and scarce water saving are measured. Both consider the difference in water productivity among provinces, but the latter also pays attention to the scarcity of water resources. Finally, we adopt a water footprint to recalculate the scarce water savings without precipitation (green water). Our results indicate that the amount of virtual water transfer embedded in food trade is 74.9 billion m3, which is equivalent to 12.22% of the total water use in 2012. We observe large variations in the relationship between water resources abundance and agricultural water-use efficiency across provinces. Especially, there is a virtual water transfer from provinces with high water productivity but a lack of water to provinces with low water productivity but an abundance of water. The scarce water saving can identify sustainable food trade links, which can alleviate water scarcity in consuming provinces without exacerbating water shortage in producing provinces. In addition, interprovincial food trade results in 15 billion m3 of scarce gray water saving, which is equivalent to 59.76% of the scarce blue water saving. Scarce water saving based on blue water and gray water provides a basis for establishing an interprovincial compensation mechanism to balance the cost of water redistribution caused by food trade.A spatial mismatch in water and arable land availability results in large virtual water transfers through interprovincial food trade in China. Accurately identifying and measuring water-saving links in interprovincial food trade can help to relieve water resources pressure in main grain-producing areas. We use a multiregional input-output table combined with the CROPWAT model to build China's interprovincial virtual water transfer network embedded in food trade in 2012. Then, water saving and scarce water saving are measured. Both consider the difference in water productivity among provinces, but the latter also pays attention to the scarcity of water resources. Finally, we adopt a water footprint to recalculate the scarce water savings without precipitation (green water). Our results indicate that the amount of virtual water transfer embedded in food trade is 74.9 billion m3, which is equivalent to 12.22% of the total water use in 2012. We observe large variations in the relationship between water resources abundance and agricultural water-use efficiency across provinces. Especially, there is a virtual water transfer from provinces with high water productivity but a lack of water to provinces with low water productivity but an abundance of water. The scarce water saving can identify sustainable food trade links, which can alleviate water scarcity in consuming provinces without exacerbating water shortage in producing provinces. In addition, interprovincial food trade results in 15 billion m3 of scarce gray water saving, which is equivalent to 59.76% of the scarce blue water saving. Scarce water saving based on blue water and gray water provides a basis for establishing an interprovincial compensation mechanism to balance the cost of water redistribution caused by food trade. |
ArticleNumber | 139651 |
Author | Zhang, Guangjie Li, Zhongwu Deng, Chuxiong Li, Ke |
Author_xml | – sequence: 1 givenname: Chuxiong surname: Deng fullname: Deng, Chuxiong organization: College of Resource and Environment Sciences, Hunan Normal University, Changsha, Hunan 410081, PR China – sequence: 2 givenname: Guangjie surname: Zhang fullname: Zhang, Guangjie organization: College of Resource and Environment Sciences, Hunan Normal University, Changsha, Hunan 410081, PR China – sequence: 3 givenname: Zhongwu surname: Li fullname: Li, Zhongwu organization: College of Resource and Environment Sciences, Hunan Normal University, Changsha, Hunan 410081, PR China – sequence: 4 givenname: Ke surname: Li fullname: Li, Ke email: likekent1208@163.com organization: Key Laboratory of Applied Statistics and Data Science, School of Mathematics & Statistics, Hunan Normal University, Changsha, Hunan 410081, PR China |
BookMark | eNqNkD1PwzAQhi1UJFrgN5CRJcXnJLYzMFTlq1IlFpgtx7kKV6ld7DSIf49LEQNL8WL5_Lx3p2dCRs47JOQK6BQo8Jv1NBrb-x7dMGWUpWpR8wpOyBikqHOgjI_ImNJS5jWvxRmZxLim6QgJY3K3cD2GbfCDdcbqLlt532Z90C1m2rXZh07fWcDod8FgzIx3EcOge-tdZl02f7NOX5DTle4iXv7c5-T14f5l_pQvnx8X89kyN4WEPmcNaNZQarCqpEHNoRVtwQwzdaqniaKRsk3PooDCSBQggHPGAWlVQyOKc3J96Jv2fd9h7NXGRoNdpx36XVSsllzQAsryOFomitYlVAkVB9QEH2PAldoGu9HhUwFVe8VqrX4Vq71idVCckrd_kgn7VpME2u4f-dkhj0naYDHsOXQGWxvQ9Kr19miPL4hloBM |
CitedBy_id | crossref_primary_10_3389_fevo_2022_901873 crossref_primary_10_1016_j_resconrec_2024_107433 crossref_primary_10_3390_agriculture13122220 crossref_primary_10_1007_s10640_023_00763_9 crossref_primary_10_3390_w15061096 crossref_primary_10_1016_j_rser_2023_113850 crossref_primary_10_1061_JIDEDH_IRENG_10103 crossref_primary_10_3390_ijerph17218171 crossref_primary_10_1029_2023EF004052 crossref_primary_10_1016_j_scitotenv_2021_147085 crossref_primary_10_1016_j_scitotenv_2021_148110 crossref_primary_10_1016_j_scitotenv_2024_175996 crossref_primary_10_1016_j_scitotenv_2024_174863 crossref_primary_10_1016_j_jhydrol_2025_132831 crossref_primary_10_1016_j_energy_2023_127893 crossref_primary_10_1007_s00477_021_02096_9 crossref_primary_10_3390_w16111518 crossref_primary_10_1016_j_landusepol_2024_107290 crossref_primary_10_1088_1748_9326_abe9ec crossref_primary_10_3390_agriculture15050549 crossref_primary_10_3390_w13212994 crossref_primary_10_1007_s11356_023_31708_w crossref_primary_10_1016_j_crsust_2024_100261 crossref_primary_10_1016_j_jclepro_2021_128190 crossref_primary_10_1016_j_eiar_2024_107737 crossref_primary_10_1007_s00477_024_02829_6 crossref_primary_10_1016_j_agwat_2021_107127 crossref_primary_10_2166_wp_2021_045 crossref_primary_10_1016_j_resconrec_2024_107662 crossref_primary_10_1016_j_resconrec_2022_106573 crossref_primary_10_3390_su16093666 |
Cites_doi | 10.1016/j.jclepro.2019.04.298 10.1029/2018WR023379 10.1016/j.aqpro.2013.07.006 10.1016/j.ecolecon.2017.12.016 10.1021/es500502q 10.1016/j.ecolind.2014.12.013 10.1016/j.jclepro.2019.03.151 10.1016/j.gloenvcha.2013.02.002 10.1016/j.jhydrol.2010.08.017 10.1002/2013WR014707 10.1016/j.gloenvcha.2009.08.003 10.1088/1748-9326/aaba49 10.1038/nature09364 10.1016/j.enpol.2014.02.033 10.1016/S0301-4215(00)00021-5 10.1073/pnas.1404749111 10.1016/j.watres.2019.01.025 10.5194/hess-15-1641-2011 10.1016/j.foodpol.2008.09.001 10.1038/s41467-017-01820-w 10.1038/sdata.2018.155 10.2166/wst.2004.0407 10.1016/j.foodpol.2006.11.004 10.1073/pnas.1404130112 10.1016/j.scitotenv.2015.05.050 10.1088/1748-9326/11/3/035012 10.1016/j.scitotenv.2018.12.433 10.1038/ngeo1617 10.1021/acs.est.9b01208 10.5194/hess-10-443-2006 10.1098/rstb.2003.1400 10.1029/2018GL077915 10.1016/j.envsci.2012.07.015 10.1016/j.jclepro.2019.05.053 10.1016/j.apenergy.2016.11.052 10.1126/science.1128845 10.1016/j.resconrec.2018.01.018 10.1029/2010WR010307 10.1111/j.1574-0862.2003.tb00136.x 10.1016/j.ecolmodel.2012.07.011 10.1021/es0263689 10.1016/j.agwat.2003.09.006 10.1007/s11113-019-09519-0 10.1021/es802423e 10.1016/j.ecolecon.2006.02.022 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.scitotenv.2020.139651 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology Environmental Sciences |
EISSN | 1879-1026 |
ExternalDocumentID | 10_1016_j_scitotenv_2020_139651 S0048969720331715 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- RIG SEN SEW SSH WUQ XPP ZXP ZY4 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c381t-2b1a2b00ce558cea61d7d32c2c9a2bade7b88dc2c3313c8e717166261e0591b73 |
IEDL.DBID | .~1 |
ISSN | 0048-9697 1879-1026 |
IngestDate | Thu Jul 10 22:19:18 EDT 2025 Fri Jul 11 06:54:44 EDT 2025 Tue Jul 01 03:35:45 EDT 2025 Thu Apr 24 22:57:20 EDT 2025 Fri Feb 23 02:43:46 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Multiregional input-output analysis Water stress index Water saving Virtual water China Food trade |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c381t-2b1a2b00ce558cea61d7d32c2c9a2bade7b88dc2c3313c8e717166261e0591b73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2414409415 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2986703144 proquest_miscellaneous_2414409415 crossref_primary_10_1016_j_scitotenv_2020_139651 crossref_citationtrail_10_1016_j_scitotenv_2020_139651 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2020_139651 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 2020-10-00 20201001 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | The Science of the total environment |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Salmoral, Yan (bb0170) 2018; 133 Oki, Kanae (bb0135) 2006; 313 Song, Guo, Wu, Sun (bb0175) 2018; 146 Dumont, Mayor, López-Gunn (bb0035) 2013; 1 Zhai, Huang, Liu, Xu, Li (bb0250) 2019; 659 Allan (bb0010) 1993 Özerol, Bressers, Coenen (bb0140) 2012; 23 Zhang, Zhong, Liang, Sanders, Wang, Xu (bb0255) 2017; 187 Galvin (bb0060) 2014; 73 Liu, Antonelli, Kummu, Zhao, Wu, Liu (bb0110) 2018 Liu, Zang, Tian, Liu, Yang, Jia (bb0105) 2013; 23 Wang, Wu, Engel, Sun (bb0195) 2014; 497–498 Hoekstra, Chapagain, Mekonnen, Aldaya (bb0080) 2011 Mi, Meng, Zheng, Shan, Wei, Guan (bb0125) 2018; 5 Yang, Wang, Zehnder (bb0245) 2007; 32 Wang, Zhang, Ding, Mi (bb0205) 2019; 223 Fader, Gerten, Thammer, Heinke, Lotze-Campen, Lucht (bb0040) 2011; 15 Ramirez, Rogers (bb0155) 2004; 49 Rockström (bb0165) 2003; 358 Yang, Reichert, Abbaspour, Zehnder (bb0235) 2003; 37 Piao, Ciais, Huang, Shen, Peng, Li (bb0150) 2010; 467 Xie, Liu (bb0225) 2015; 70 Fang, Sun, You, Daniel (bb0045) 2019; 13 Wichelns (bb0210) 2004; 66 Tamea, Carr, Laio, Ridolfi (bb0185) 2014; 50 He, Zhao, Wang, Jiang, Zhu (bb0075) 2019; 229 Ridoutt, Pfister (bb0160) 2010; 20 Wichelns (bb0215) 2015; 52 Zhang, Guo, Zhai (bb0260) 2019; 38 Pfister, Koehler, Hellweg (bb0145) 2009; 43 Hu, Moiwo, Yang, Han, Yang (bb0090) 2010; 393 Zhang, Taiebat, Liu, Qu, Liang, Xu (bb0265) 2019; 228 Wiebe, Harsdorff, Montt, Simas, Wood (bb0220) 2019; 53 Cao, Wang, Wu, Zhao, Wang (bb0020) 2015; 529 Felloni, Gilbert, Wahl, Wandschneider (bb0050) 2003; 28 Dalin, Rodríguez (bb0025) 2016; 11 National Bureau of Statistics (bb0130) 2018 Konar, Dalin, Suweis, Hanasaki, Rinaldo, Rodriguez (bb0100) 2011; 47 Khan, Hanjra (bb0095) 2009; 34 Zhao, Hubacek, Feng, Sun, Liu (bb0280) 2019; 153 Greening, Greene, Difiglio (bb0065) 2000; 28 The Central People's Government of the People's Republic of China (bb0190) 2017 Wang, Zhong, Long (bb0200) 2016 Dalin, Hanasaki, Qiu, Mauzerall, Rodriguez (bb0030) 2014; 111 Feng, Hubacek, Pfister, Yu, Sun (bb0055) 2014; 48 Zhao, Liu, Liu, Tillotson, Guan, Hubacek (bb0270) 2015; 112 Guan, Hubacek (bb0070) 2007; 61 Yang, Wang, Abbaspour, Zehnder (bb0240) 2006; 10 Aeschbach, Gleeson (bb0005) 2012; 5 Mi, Meng, Green, Coffman, Guan (bb0120) 2018; 45 Yang, Chen (bb0230) 2013; 252 Ayres, Kneese (bb0015) 2014; 59 Sun, Yin, Wu, Wang, Luan, Li (bb0180) 2019; 55 Zhao, Li, Yang, Liu, Tillotson, Guan (bb0275) 2018; 13 Mi, Meng, Guan, Shan, Song, Wei (bb0115) 2017; 8 Howell (bb0085) 2006 Fader (10.1016/j.scitotenv.2020.139651_bb0040) 2011; 15 Ridoutt (10.1016/j.scitotenv.2020.139651_bb0160) 2010; 20 Wiebe (10.1016/j.scitotenv.2020.139651_bb0220) 2019; 53 Wichelns (10.1016/j.scitotenv.2020.139651_bb0210) 2004; 66 Galvin (10.1016/j.scitotenv.2020.139651_bb0060) 2014; 73 Wichelns (10.1016/j.scitotenv.2020.139651_bb0215) 2015; 52 Hu (10.1016/j.scitotenv.2020.139651_bb0090) 2010; 393 Zhao (10.1016/j.scitotenv.2020.139651_bb0275) 2018; 13 Yang (10.1016/j.scitotenv.2020.139651_bb0240) 2006; 10 Mi (10.1016/j.scitotenv.2020.139651_bb0115) 2017; 8 Yang (10.1016/j.scitotenv.2020.139651_bb0245) 2007; 32 Zhao (10.1016/j.scitotenv.2020.139651_bb0270) 2015; 112 Zhao (10.1016/j.scitotenv.2020.139651_bb0280) 2019; 153 Wang (10.1016/j.scitotenv.2020.139651_bb0200) 2016 Xie (10.1016/j.scitotenv.2020.139651_bb0225) 2015; 70 Konar (10.1016/j.scitotenv.2020.139651_bb0100) 2011; 47 Sun (10.1016/j.scitotenv.2020.139651_bb0180) 2019; 55 Yang (10.1016/j.scitotenv.2020.139651_bb0235) 2003; 37 Zhang (10.1016/j.scitotenv.2020.139651_bb0260) 2019; 38 Pfister (10.1016/j.scitotenv.2020.139651_bb0145) 2009; 43 Wang (10.1016/j.scitotenv.2020.139651_bb0195) 2014; 497–498 Zhang (10.1016/j.scitotenv.2020.139651_bb0265) 2019; 228 Rockström (10.1016/j.scitotenv.2020.139651_bb0165) 2003; 358 Wang (10.1016/j.scitotenv.2020.139651_bb0205) 2019; 223 Dalin (10.1016/j.scitotenv.2020.139651_bb0030) 2014; 111 Allan (10.1016/j.scitotenv.2020.139651_bb0010) 1993 Felloni (10.1016/j.scitotenv.2020.139651_bb0050) 2003; 28 Greening (10.1016/j.scitotenv.2020.139651_bb0065) 2000; 28 Fang (10.1016/j.scitotenv.2020.139651_bb0045) 2019; 13 Howell (10.1016/j.scitotenv.2020.139651_bb0085) 2006 Liu (10.1016/j.scitotenv.2020.139651_bb0110) 2018 Zhai (10.1016/j.scitotenv.2020.139651_bb0250) 2019; 659 Dumont (10.1016/j.scitotenv.2020.139651_bb0035) 2013; 1 Yang (10.1016/j.scitotenv.2020.139651_bb0230) 2013; 252 Khan (10.1016/j.scitotenv.2020.139651_bb0095) 2009; 34 Piao (10.1016/j.scitotenv.2020.139651_bb0150) 2010; 467 Mi (10.1016/j.scitotenv.2020.139651_bb0125) 2018; 5 Feng (10.1016/j.scitotenv.2020.139651_bb0055) 2014; 48 Song (10.1016/j.scitotenv.2020.139651_bb0175) 2018; 146 Ramirez (10.1016/j.scitotenv.2020.139651_bb0155) 2004; 49 Dalin (10.1016/j.scitotenv.2020.139651_bb0025) 2016; 11 Oki (10.1016/j.scitotenv.2020.139651_bb0135) 2006; 313 He (10.1016/j.scitotenv.2020.139651_bb0075) 2019; 229 The Central People's Government of the People's Republic of China (10.1016/j.scitotenv.2020.139651_bb0190) Mi (10.1016/j.scitotenv.2020.139651_bb0120) 2018; 45 Ayres (10.1016/j.scitotenv.2020.139651_bb0015) 2014; 59 Hoekstra (10.1016/j.scitotenv.2020.139651_bb0080) 2011 Tamea (10.1016/j.scitotenv.2020.139651_bb0185) 2014; 50 Guan (10.1016/j.scitotenv.2020.139651_bb0070) 2007; 61 National Bureau of Statistics (10.1016/j.scitotenv.2020.139651_bb0130) Aeschbach (10.1016/j.scitotenv.2020.139651_bb0005) 2012; 5 Liu (10.1016/j.scitotenv.2020.139651_bb0105) 2013; 23 Özerol (10.1016/j.scitotenv.2020.139651_bb0140) 2012; 23 Cao (10.1016/j.scitotenv.2020.139651_bb0020) 2015; 529 Salmoral (10.1016/j.scitotenv.2020.139651_bb0170) 2018; 133 Zhang (10.1016/j.scitotenv.2020.139651_bb0255) 2017; 187 |
References_xml | – volume: 47 start-page: W05520 year: 2011 ident: bb0100 article-title: Water for food: the global virtual water trade network publication-title: Water Resour. Res. – volume: 43 start-page: 4098 year: 2009 end-page: 4104 ident: bb0145 article-title: Assessing the environmental impacts of freshwater consumption in LCA publication-title: Environ. Sci. Technol. – volume: 467 start-page: 43 year: 2010 end-page: 51 ident: bb0150 article-title: The impacts of climate change on water resources and agriculture in China publication-title: Nature – volume: 61 start-page: 159 year: 2007 end-page: 170 ident: bb0070 article-title: Assessment of regional trade and virtual water flows in China publication-title: Ecol. Econ. – volume: 111 start-page: 9774 year: 2014 end-page: 9779 ident: bb0030 article-title: Water resources transfers through Chinese interprovincial and foreign food trade publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 70 start-page: 604 year: 2015 end-page: 614 ident: bb0225 article-title: Spatiotemporal difference and determinants of multiple cropping index in China during 1998-2012 publication-title: Acta Geograph. Sin. – volume: 223 start-page: 445 year: 2019 end-page: 455 ident: bb0205 article-title: Virtual water flow pattern of grain trade and its benefits in China publication-title: J. Clean. Prod. – volume: 313 start-page: 1068 year: 2006 end-page: 1072 ident: bb0135 article-title: Global hydrological cycles and world water resources publication-title: Science – volume: 1 start-page: 64 year: 2013 end-page: 76 ident: bb0035 article-title: Is the rebound effect or Jevons paradox a useful concept for better Management of Water Resources? Insights from the irrigation modernisation process in Spain publication-title: Aquatic Procedia – volume: 50 start-page: 17 year: 2014 end-page: 28 ident: bb0185 article-title: Drivers of the virtual water trade publication-title: Water Resour. Res. – volume: 52 start-page: 277 year: 2015 end-page: 283 ident: bb0215 article-title: Virtual water and water footprints do not provide helpful insight regarding international trade or water scarcity publication-title: Ecol. Indic. – volume: 20 start-page: 113 year: 2010 end-page: 120 ident: bb0160 article-title: A revised approach to water footprinting to make transparent the impacts of consumption and production on global freshwater scarcity publication-title: Global. Environ. Chang. – volume: 49 start-page: 25 year: 2004 end-page: 32 ident: bb0155 article-title: Virtual water flows and trade liberalization publication-title: Water Sci. Technol. – volume: 229 start-page: 379 year: 2019 end-page: 750 ident: bb0075 article-title: China’s food security challenge: effects of food habit changes on requirements for arable land and water publication-title: J. Clean. Prod. – volume: 659 start-page: 872 year: 2019 end-page: 883 ident: bb0250 article-title: Transfer of virtual water embodied in food: a new perspective publication-title: Sci. Total Environ. – volume: 45 start-page: 4309 year: 2018 end-page: 4318 ident: bb0120 article-title: China's “exported carbon” peak: patterns, drivers, and implications publication-title: Geophys. Res. Lett. – volume: 153 start-page: 304 year: 2019 end-page: 314 ident: bb0280 article-title: Explaining virtual water trade: a spatial-temporal analysis of the comparative advantage of land, labor and water in China publication-title: Water Res. – volume: 529 start-page: 10 year: 2015 end-page: 20 ident: bb0020 article-title: An evaluation of the water utilization and grain production of irrigated and rain-fed croplands in China publication-title: Sci. Total Environ. – volume: 13 year: 2018 ident: bb0275 article-title: Measuring scarce water saving from interregional virtual water flows in China publication-title: Environ. Res. Lett. – volume: 228 start-page: 1401 year: 2019 end-page: 1412 ident: bb0265 article-title: Regional water footprints and interregional virtual water transfers in China publication-title: J. Clean. Prod. – volume: 15 year: 2011 ident: bb0040 article-title: Internal and external green-blue agricultural water footprints of nations, and related water and land savings through trade publication-title: Hydrol. Earth Syst. Sci. – volume: 8 start-page: 1712 year: 2017 ident: bb0115 article-title: Chinese CO2 emission flows have reversed since the global financial crisis publication-title: Nat. Commun. – volume: 187 start-page: 438 year: 2017 end-page: 448 ident: bb0255 article-title: Virtual scarce water embodied in inter-provincial electricity transmission in China publication-title: Appl. Energy – volume: 59 start-page: 282 year: 2014 end-page: 297 ident: bb0015 article-title: Production, consumption, and externalities publication-title: Am. Econ. Rev. – volume: 73 start-page: 323 year: 2014 end-page: 332 ident: bb0060 article-title: Estimating broad-brush rebound effects for household energy consumption in the EU 28 countries and Norway: some policy implications of Odyssee data publication-title: Energ Policy – volume: 133 start-page: 320 year: 2018 end-page: 330 ident: bb0170 article-title: Food-energy-water nexus: a life cycle analysis on virtual water and embodied energy in food consumption in the Tamar catchment, UK publication-title: Resour. Conserv. Recy. – volume: 32 start-page: 585 year: 2007 end-page: 605 ident: bb0245 article-title: Water scarcity and food trade in the southern and eastern Mediterranean countries publication-title: Food Policy – volume: 34 start-page: 130 year: 2009 end-page: 140 ident: bb0095 article-title: Footprints of water and energy inputs in food production – global perspectives publication-title: Food Policy – volume: 112 start-page: 1031 year: 2015 end-page: 1035 ident: bb0270 article-title: Physical and virtual water transfers for regional water stress alleviation in China publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 5 start-page: 853 year: 2012 end-page: 861 ident: bb0005 article-title: Regional strategies for the accelerating global problem of groundwater depletion publication-title: Nat. Geosci. – volume: 55 start-page: 4014 year: 2019 end-page: 4029 ident: bb0180 article-title: Geographical evolution of agricultural production in China and its effects on water stress, economy, and the environment: the virtual water perspective publication-title: Water Resour. Res. – year: 2011 ident: bb0080 article-title: The Water Footprint Assessment Manual: Setting the Global Standard – volume: 146 start-page: 497 year: 2018 end-page: 506 ident: bb0175 article-title: The agricultural water rebound effect in China publication-title: Ecol. Econ. – volume: 23 start-page: 57 year: 2012 end-page: 67 ident: bb0140 article-title: Irrigated agriculture and environmental sustainability: an alignment perspective publication-title: Environ. Sci. & Policy. – volume: 28 start-page: 389 year: 2000 end-page: 401 ident: bb0065 article-title: Energy efficiency and consumption - the rebound effect - a survey publication-title: Energ Policy – year: 2016 ident: bb0200 article-title: Baseline Water Stress: China. Technical Note – start-page: e1320 year: 2018 ident: bb0110 article-title: Savings and losses of global water resources in food-related virtual water trade publication-title: Wires. Water. – volume: 28 start-page: 173 year: 2003 end-page: 186 ident: bb0050 article-title: Trade policy, biotechnology and grain self-sufficiency in China publication-title: Agric. Econ. – volume: 38 start-page: 537 year: 2019 end-page: 563 ident: bb0260 article-title: China’s demographic future under the new two-child policy publication-title: Popul. Res.Policy. Rev. – volume: 11 start-page: 035012 year: 2016 ident: bb0025 article-title: Environmental impacts of food trade via resource use and greenhouse gas emissions publication-title: Environ. Res. Lett. – volume: 23 start-page: 633 year: 2013 end-page: 643 ident: bb0105 article-title: Water conservancy projects in China: achievements, challenges and way forward publication-title: Global. Environ.Chang. – volume: 252 start-page: 176 year: 2013 end-page: 184 ident: bb0230 article-title: 2013. Greenhouse gas emissions of corn-ethanol production in China. Ecol publication-title: Model – year: 2018 ident: bb0130 article-title: Irrigated area of cultivated land and consumption of chemical fertilizers – volume: 37 start-page: 3048 year: 2003 end-page: 3054 ident: bb0235 article-title: A water resources threshold and its implications for food security publication-title: Environ. Sci. Technol. – volume: 48 start-page: 7704 year: 2014 end-page: 7713 ident: bb0055 article-title: Virtual scarce water in China publication-title: Environ. Sci. & Technol. – volume: 66 start-page: 49 year: 2004 end-page: 63 ident: bb0210 article-title: The policy relevance of virtual water can be enhanced by considering comparative advantages publication-title: Agr. Water. Manage. – year: 2006 ident: bb0085 article-title: Challenges in increasing water use efficiency in irrigated agriculture publication-title: Paper Presented at International Symposium on Water and Land Management for Sustainable Irrigated Agriculture, Adana, Turkey, 4–8 April. 2006 – start-page: 13 year: 1993 end-page: 26 ident: bb0010 article-title: Fortunately there are substitutes for water otherwise our hydro-political futures would be impossible publication-title: Proceedings of the Conference on Priorities for Water Resources Allocation and Management: Natural Resources and Engineering Advisers Conference, Southampton – volume: 5 year: 2018 ident: bb0125 article-title: A multi-regional input-output table mapping China's economic outputs and interdependencies in 2012 publication-title: Sci. Data. – volume: 13 start-page: 480 year: 2019 end-page: 493 ident: bb0045 article-title: Increasing concentration of major crops in China from 1980 to 2011 publication-title: J. Land Use Sci. – volume: 393 start-page: 219 year: 2010 end-page: 232 ident: bb0090 article-title: Agricultural water-saving and sustainable groundwater management in Shijiazhuang Irrigation District, North China Plain publication-title: J. Hydrol. – volume: 497–498 start-page: 1 year: 2014 end-page: 9 ident: bb0195 article-title: Application of water footprint combined with a unified virtual crop pattern to evaluate crop water productivity in grain production in China publication-title: Sci. Total Environ. – volume: 53 start-page: 6362 year: 2019 end-page: 6373 ident: bb0220 article-title: Global circular economy scenario in a multiregional input-output framework publication-title: Environ. Sci. Technol. – volume: 358 start-page: 1997 year: 2003 end-page: 2009 ident: bb0165 article-title: Water for food and nature in drought-prone tropics: vapour shift in rain-fed agriculture publication-title: Philo. Trans. R. Soc. Lond. B. – year: 2017 ident: bb0190 article-title: Opinions on innovating institutions and mechanisms to promote Green development of agriculture – volume: 10 start-page: 443 year: 2006 end-page: 454 ident: bb0240 article-title: Virtual water trade: an assessment of water use efficiency in the international food trade publication-title: Hydrol. Earth. Syst. Sc. – volume: 228 start-page: 1401 year: 2019 ident: 10.1016/j.scitotenv.2020.139651_bb0265 article-title: Regional water footprints and interregional virtual water transfers in China publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.04.298 – start-page: e1320 year: 2018 ident: 10.1016/j.scitotenv.2020.139651_bb0110 article-title: Savings and losses of global water resources in food-related virtual water trade publication-title: Wires. Water. – volume: 55 start-page: 4014 year: 2019 ident: 10.1016/j.scitotenv.2020.139651_bb0180 article-title: Geographical evolution of agricultural production in China and its effects on water stress, economy, and the environment: the virtual water perspective publication-title: Water Resour. Res. doi: 10.1029/2018WR023379 – volume: 1 start-page: 64 year: 2013 ident: 10.1016/j.scitotenv.2020.139651_bb0035 article-title: Is the rebound effect or Jevons paradox a useful concept for better Management of Water Resources? Insights from the irrigation modernisation process in Spain publication-title: Aquatic Procedia doi: 10.1016/j.aqpro.2013.07.006 – volume: 146 start-page: 497 year: 2018 ident: 10.1016/j.scitotenv.2020.139651_bb0175 article-title: The agricultural water rebound effect in China publication-title: Ecol. Econ. doi: 10.1016/j.ecolecon.2017.12.016 – volume: 48 start-page: 7704 year: 2014 ident: 10.1016/j.scitotenv.2020.139651_bb0055 article-title: Virtual scarce water in China publication-title: Environ. Sci. & Technol. doi: 10.1021/es500502q – volume: 52 start-page: 277 year: 2015 ident: 10.1016/j.scitotenv.2020.139651_bb0215 article-title: Virtual water and water footprints do not provide helpful insight regarding international trade or water scarcity publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2014.12.013 – volume: 223 start-page: 445 year: 2019 ident: 10.1016/j.scitotenv.2020.139651_bb0205 article-title: Virtual water flow pattern of grain trade and its benefits in China publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.03.151 – volume: 59 start-page: 282 year: 2014 ident: 10.1016/j.scitotenv.2020.139651_bb0015 article-title: Production, consumption, and externalities publication-title: Am. Econ. Rev. – volume: 23 start-page: 633 year: 2013 ident: 10.1016/j.scitotenv.2020.139651_bb0105 article-title: Water conservancy projects in China: achievements, challenges and way forward publication-title: Global. Environ.Chang. doi: 10.1016/j.gloenvcha.2013.02.002 – year: 2016 ident: 10.1016/j.scitotenv.2020.139651_bb0200 – volume: 393 start-page: 219 year: 2010 ident: 10.1016/j.scitotenv.2020.139651_bb0090 article-title: Agricultural water-saving and sustainable groundwater management in Shijiazhuang Irrigation District, North China Plain publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2010.08.017 – volume: 50 start-page: 17 year: 2014 ident: 10.1016/j.scitotenv.2020.139651_bb0185 article-title: Drivers of the virtual water trade publication-title: Water Resour. Res. doi: 10.1002/2013WR014707 – year: 2006 ident: 10.1016/j.scitotenv.2020.139651_bb0085 article-title: Challenges in increasing water use efficiency in irrigated agriculture – volume: 20 start-page: 113 year: 2010 ident: 10.1016/j.scitotenv.2020.139651_bb0160 article-title: A revised approach to water footprinting to make transparent the impacts of consumption and production on global freshwater scarcity publication-title: Global. Environ. Chang. doi: 10.1016/j.gloenvcha.2009.08.003 – volume: 70 start-page: 604 year: 2015 ident: 10.1016/j.scitotenv.2020.139651_bb0225 article-title: Spatiotemporal difference and determinants of multiple cropping index in China during 1998-2012 publication-title: Acta Geograph. Sin. – volume: 13 year: 2018 ident: 10.1016/j.scitotenv.2020.139651_bb0275 article-title: Measuring scarce water saving from interregional virtual water flows in China publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/aaba49 – volume: 467 start-page: 43 year: 2010 ident: 10.1016/j.scitotenv.2020.139651_bb0150 article-title: The impacts of climate change on water resources and agriculture in China publication-title: Nature doi: 10.1038/nature09364 – volume: 73 start-page: 323 year: 2014 ident: 10.1016/j.scitotenv.2020.139651_bb0060 article-title: Estimating broad-brush rebound effects for household energy consumption in the EU 28 countries and Norway: some policy implications of Odyssee data publication-title: Energ Policy doi: 10.1016/j.enpol.2014.02.033 – volume: 28 start-page: 389 year: 2000 ident: 10.1016/j.scitotenv.2020.139651_bb0065 article-title: Energy efficiency and consumption - the rebound effect - a survey publication-title: Energ Policy doi: 10.1016/S0301-4215(00)00021-5 – volume: 111 start-page: 9774 year: 2014 ident: 10.1016/j.scitotenv.2020.139651_bb0030 article-title: Water resources transfers through Chinese interprovincial and foreign food trade publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1404749111 – volume: 153 start-page: 304 year: 2019 ident: 10.1016/j.scitotenv.2020.139651_bb0280 article-title: Explaining virtual water trade: a spatial-temporal analysis of the comparative advantage of land, labor and water in China publication-title: Water Res. doi: 10.1016/j.watres.2019.01.025 – volume: 15 year: 2011 ident: 10.1016/j.scitotenv.2020.139651_bb0040 article-title: Internal and external green-blue agricultural water footprints of nations, and related water and land savings through trade publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-15-1641-2011 – volume: 34 start-page: 130 year: 2009 ident: 10.1016/j.scitotenv.2020.139651_bb0095 article-title: Footprints of water and energy inputs in food production – global perspectives publication-title: Food Policy doi: 10.1016/j.foodpol.2008.09.001 – volume: 8 start-page: 1712 year: 2017 ident: 10.1016/j.scitotenv.2020.139651_bb0115 article-title: Chinese CO2 emission flows have reversed since the global financial crisis publication-title: Nat. Commun. doi: 10.1038/s41467-017-01820-w – volume: 5 year: 2018 ident: 10.1016/j.scitotenv.2020.139651_bb0125 article-title: A multi-regional input-output table mapping China's economic outputs and interdependencies in 2012 publication-title: Sci. Data. doi: 10.1038/sdata.2018.155 – volume: 49 start-page: 25 year: 2004 ident: 10.1016/j.scitotenv.2020.139651_bb0155 article-title: Virtual water flows and trade liberalization publication-title: Water Sci. Technol. doi: 10.2166/wst.2004.0407 – volume: 13 start-page: 480 year: 2019 ident: 10.1016/j.scitotenv.2020.139651_bb0045 article-title: Increasing concentration of major crops in China from 1980 to 2011 publication-title: J. Land Use Sci. – ident: 10.1016/j.scitotenv.2020.139651_bb0130 – volume: 32 start-page: 585 year: 2007 ident: 10.1016/j.scitotenv.2020.139651_bb0245 article-title: Water scarcity and food trade in the southern and eastern Mediterranean countries publication-title: Food Policy doi: 10.1016/j.foodpol.2006.11.004 – volume: 112 start-page: 1031 year: 2015 ident: 10.1016/j.scitotenv.2020.139651_bb0270 article-title: Physical and virtual water transfers for regional water stress alleviation in China publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1404130112 – volume: 529 start-page: 10 year: 2015 ident: 10.1016/j.scitotenv.2020.139651_bb0020 article-title: An evaluation of the water utilization and grain production of irrigated and rain-fed croplands in China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.05.050 – volume: 11 start-page: 035012 year: 2016 ident: 10.1016/j.scitotenv.2020.139651_bb0025 article-title: Environmental impacts of food trade via resource use and greenhouse gas emissions publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/11/3/035012 – volume: 659 start-page: 872 year: 2019 ident: 10.1016/j.scitotenv.2020.139651_bb0250 article-title: Transfer of virtual water embodied in food: a new perspective publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.12.433 – volume: 5 start-page: 853 year: 2012 ident: 10.1016/j.scitotenv.2020.139651_bb0005 article-title: Regional strategies for the accelerating global problem of groundwater depletion publication-title: Nat. Geosci. doi: 10.1038/ngeo1617 – start-page: 13 year: 1993 ident: 10.1016/j.scitotenv.2020.139651_bb0010 article-title: Fortunately there are substitutes for water otherwise our hydro-political futures would be impossible – volume: 53 start-page: 6362 year: 2019 ident: 10.1016/j.scitotenv.2020.139651_bb0220 article-title: Global circular economy scenario in a multiregional input-output framework publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b01208 – ident: 10.1016/j.scitotenv.2020.139651_bb0190 – volume: 10 start-page: 443 year: 2006 ident: 10.1016/j.scitotenv.2020.139651_bb0240 article-title: Virtual water trade: an assessment of water use efficiency in the international food trade publication-title: Hydrol. Earth. Syst. Sc. doi: 10.5194/hess-10-443-2006 – volume: 497–498 start-page: 1 year: 2014 ident: 10.1016/j.scitotenv.2020.139651_bb0195 article-title: Application of water footprint combined with a unified virtual crop pattern to evaluate crop water productivity in grain production in China publication-title: Sci. Total Environ. – volume: 358 start-page: 1997 year: 2003 ident: 10.1016/j.scitotenv.2020.139651_bb0165 article-title: Water for food and nature in drought-prone tropics: vapour shift in rain-fed agriculture publication-title: Philo. Trans. R. Soc. Lond. B. doi: 10.1098/rstb.2003.1400 – volume: 45 start-page: 4309 year: 2018 ident: 10.1016/j.scitotenv.2020.139651_bb0120 article-title: China's “exported carbon” peak: patterns, drivers, and implications publication-title: Geophys. Res. Lett. doi: 10.1029/2018GL077915 – volume: 23 start-page: 57 year: 2012 ident: 10.1016/j.scitotenv.2020.139651_bb0140 article-title: Irrigated agriculture and environmental sustainability: an alignment perspective publication-title: Environ. Sci. & Policy. doi: 10.1016/j.envsci.2012.07.015 – volume: 229 start-page: 379 year: 2019 ident: 10.1016/j.scitotenv.2020.139651_bb0075 article-title: China’s food security challenge: effects of food habit changes on requirements for arable land and water publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.05.053 – volume: 187 start-page: 438 year: 2017 ident: 10.1016/j.scitotenv.2020.139651_bb0255 article-title: Virtual scarce water embodied in inter-provincial electricity transmission in China publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.11.052 – volume: 313 start-page: 1068 year: 2006 ident: 10.1016/j.scitotenv.2020.139651_bb0135 article-title: Global hydrological cycles and world water resources publication-title: Science doi: 10.1126/science.1128845 – volume: 133 start-page: 320 year: 2018 ident: 10.1016/j.scitotenv.2020.139651_bb0170 article-title: Food-energy-water nexus: a life cycle analysis on virtual water and embodied energy in food consumption in the Tamar catchment, UK publication-title: Resour. Conserv. Recy. doi: 10.1016/j.resconrec.2018.01.018 – volume: 47 start-page: W05520 year: 2011 ident: 10.1016/j.scitotenv.2020.139651_bb0100 article-title: Water for food: the global virtual water trade network publication-title: Water Resour. Res. doi: 10.1029/2010WR010307 – volume: 28 start-page: 173 year: 2003 ident: 10.1016/j.scitotenv.2020.139651_bb0050 article-title: Trade policy, biotechnology and grain self-sufficiency in China publication-title: Agric. Econ. doi: 10.1111/j.1574-0862.2003.tb00136.x – volume: 252 start-page: 176 year: 2013 ident: 10.1016/j.scitotenv.2020.139651_bb0230 article-title: 2013. Greenhouse gas emissions of corn-ethanol production in China. Ecol publication-title: Model doi: 10.1016/j.ecolmodel.2012.07.011 – volume: 37 start-page: 3048 year: 2003 ident: 10.1016/j.scitotenv.2020.139651_bb0235 article-title: A water resources threshold and its implications for food security publication-title: Environ. Sci. Technol. doi: 10.1021/es0263689 – volume: 66 start-page: 49 year: 2004 ident: 10.1016/j.scitotenv.2020.139651_bb0210 article-title: The policy relevance of virtual water can be enhanced by considering comparative advantages publication-title: Agr. Water. Manage. doi: 10.1016/j.agwat.2003.09.006 – volume: 38 start-page: 537 year: 2019 ident: 10.1016/j.scitotenv.2020.139651_bb0260 article-title: China’s demographic future under the new two-child policy publication-title: Popul. Res.Policy. Rev. doi: 10.1007/s11113-019-09519-0 – volume: 43 start-page: 4098 year: 2009 ident: 10.1016/j.scitotenv.2020.139651_bb0145 article-title: Assessing the environmental impacts of freshwater consumption in LCA publication-title: Environ. Sci. Technol. doi: 10.1021/es802423e – volume: 61 start-page: 159 year: 2007 ident: 10.1016/j.scitotenv.2020.139651_bb0070 article-title: Assessment of regional trade and virtual water flows in China publication-title: Ecol. Econ. doi: 10.1016/j.ecolecon.2006.02.022 – year: 2011 ident: 10.1016/j.scitotenv.2020.139651_bb0080 |
SSID | ssj0000781 |
Score | 2.4879172 |
Snippet | A spatial mismatch in water and arable land availability results in large virtual water transfers through interprovincial food trade in China. Accurately... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 139651 |
SubjectTerms | arable soils China environment Food trade greywater Multiregional input-output analysis trade Virtual water water conservation Water saving water shortages Water stress index water use efficiency |
Title | Interprovincial food trade and water resources conservation in China |
URI | https://dx.doi.org/10.1016/j.scitotenv.2020.139651 https://www.proquest.com/docview/2414409415 https://www.proquest.com/docview/2986703144 |
Volume | 737 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1NS8Mw9CGKIIjoVJxfRPBaXdv0y5voxnS4gyh6C22SwkTasXWKF3-77zWpQ0E9eCopSRte8r6_AI4D5Aupj9oJyqIdcjNKJ-EedzQPeI7yrRcrUhRvhmH_nl8_Bo8LcNHkwlBYpaX9hqbX1Nq-ObXQPB2PRpTjy-MkTMiPiEywTjTnPKJbfvI-D_OgYjbGy4yIjbO_xHjhd6sSZdMXVBQ96gGRhIH7E4f6RqtrBtRbhzUrObJzs7kNWNBFC5ZNL8m3Fmx35ylrOM3i7LQFq8Yyx0zC0SZc2jhDMiWQvZzlZalYNUmVZmmh2CtKnxM2sWb9KZMUb20tt2xUsLrj9hbc97p3F33H9lJwJPLkyvEyN_UQxaQOgljqNHRVpHxPejLB9_iHKItjhUOEpS9jHVEZHVR2XI3yl5tF_jYsFmWhd4D5mooWdVTSkSnPAmp35ZOzNZd-rmQu2xA28BPSFhqnfhfPookoexKfgBcEeGEA34bO58KxqbXx95Kz5oDEl2sjkCP8vfioOVKBSEWekrTQ5WwqUKzhpPi6wS9zkjisi__z3f9sYg9WaGTiA_dhsZrM9AHKOVV2WF_kQ1g6vxr0h_Qc3D4MPgAucf75 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3bSsMw9DAmoiCiU_FuBF-La5v04pt4YfOyJwXfQpukMJF2bFXx7z1nSScT1Acfm-a04SQ59wvAiUC-kIWonaAs2iU3o_JSHnDPcMELlG-DRJOieD-Ieo_85kk8teCiyYWhsEpH-y1Nn1JrN3LqsHk6Gg4px5cnaZSSHxGZICWaL1B1KtGGhfP-bW_wRZDjxDbO43i3EWAuzAs_XVconr6hrhhQG4g0Ev5PTOobuZ7yoOs1WHXCIzu361uHlik7sGjbSX50YOvqK2sNp7lrO-nAijXOMZtztAGXLtSQrAlkMmdFVWlWjzNtWFZq9o4C6JiNnWV_whSFXDvjLRuWbNp0exMer68eLnqea6fgKWTLtRfkfhbgLVNGiESZLPJ1rMNABSrFcfxDnCeJxkdEZ6gSE1MlHdR3fIMimJ_H4Ra0y6o028BCQ3WLujrtqozngjpeheRvLVRYaFWoHYga_Enlao1Ty4sX2QSVPcsZ4iUhXlrE70B3Bjiy5Tb-BjlrNkjOnRyJTOFv4ONmSyXeK3KWZKWpXicSJRtOuq8vfpmTJtG0_j_f_c8ijmCp93B_J-_6g9s9WKY3NlxwH9r1-NUcoNhT54fuWH8C48kAFg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interprovincial+food+trade+and+water+resources+conservation+in+China&rft.jtitle=The+Science+of+the+total+environment&rft.au=Deng%2C+Chuxiong&rft.au=Zhang%2C+Guangjie&rft.au=Li%2C+Zhongwu&rft.au=Li%2C+Ke&rft.date=2020-10-01&rft.pub=Elsevier+B.V&rft.issn=0048-9697&rft.eissn=1879-1026&rft.volume=737&rft_id=info:doi/10.1016%2Fj.scitotenv.2020.139651&rft.externalDocID=S0048969720331715 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |