Some well known inequalities for $ (h_1, h_2) $-convex stochastic process via interval set inclusion relation
This note introduces the concept of $ (h_1, h_2) $-convex stochastic processes using interval-valued functions. First we develop Hermite-Hadmard $ (\mathbb{H.H}) $ type inequalities, then we check the results for the product of two convex stochastic process mappings, and finally we develop Ostrowski...
Saved in:
Published in | AIMS mathematics Vol. 8; no. 9; pp. 19913 - 19932 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This note introduces the concept of $ (h_1, h_2) $-convex stochastic processes using interval-valued functions. First we develop Hermite-Hadmard $ (\mathbb{H.H}) $ type inequalities, then we check the results for the product of two convex stochastic process mappings, and finally we develop Ostrowski and Jensen type inequalities for $ (h_1, h_2) $-convex stochastic process. Also, we have shown that this is a more generalized and larger class of convex stochastic processes with some remark. Furthermore, we validate our main findings by providing some non-trivial examples. |
---|---|
AbstractList | This note introduces the concept of $ (h_1, h_2) $-convex stochastic processes using interval-valued functions. First we develop Hermite-Hadmard $ (\mathbb{H.H}) $ type inequalities, then we check the results for the product of two convex stochastic process mappings, and finally we develop Ostrowski and Jensen type inequalities for $ (h_1, h_2) $-convex stochastic process. Also, we have shown that this is a more generalized and larger class of convex stochastic processes with some remark. Furthermore, we validate our main findings by providing some non-trivial examples. |
Author | Khan, Zareen A. Afzal, Waqar Eldin, Sayed M. Abbas, Mujahid |
Author_xml | – sequence: 1 givenname: Waqar surname: Afzal fullname: Afzal, Waqar organization: Department of Mathemtics, Government College University Lahore (GCUL), Lahore 54000, Pakistan – sequence: 2 givenname: Mujahid surname: Abbas fullname: Abbas, Mujahid organization: Department of Mathemtics, Government College University Lahore (GCUL), Lahore 54000, Pakistan, Department of Medical Research, China Medical University, Taichung, Taiwan, Department of Mathematics and Applied Mathematics, University of Pretoria, Lynnwood road, Pretoria 0002, South Africa – sequence: 3 givenname: Sayed M. surname: Eldin fullname: Eldin, Sayed M. organization: Center of Research, Faculty of Engineering and Technology, Future University in Egypt, New Cairo 11835, Egypt – sequence: 4 givenname: Zareen A. surname: Khan fullname: Khan, Zareen A. organization: Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia |
BookMark | eNp1UD1PHTEQtCIihQBlehcUROLAX3dnlxEiCRISBUlt7dlrnsHvDLZ5JP-eAwKKIqXaD83M7sxHsjXnGQn5xNmRNFIdr6GtjgQTkjPevyPbQo2yG4zWW3_1H8herdeMMcGFEqPaJuvLvEb6gCnRmzk_zDTOeHcPKbaIlYZc6D49WFl-SFdWfKb7ncvzBn_R2rJbQW3R0duSHdZKNxEWdsOygUQrtmVw6b7GPNOCCdrS7JL3AVLFvT91h_z8evrj5Ht3fvHt7OTLeeek5q0TAGiY8lpMzi92RheUH9wgRK-1C8OkPTNu4IaDCpM3TPt-wLHnxkyCaSd3yNmLrs9wbW9LXEP5bTNE-7zI5cpCWX5PaBVfTgqvUIFXQbpJwdgHL0MwfT_iuGh1L1qu5FoLhjc9zuxT9PYpevsa_YKX_-BdbM_uW4GY_sN6BBxSinc |
CitedBy_id | crossref_primary_10_2478_ama_2024_0016 crossref_primary_10_3390_fractalfract7090687 crossref_primary_10_3934_mbe_2024151 crossref_primary_10_3390_math12030382 crossref_primary_10_3934_math_2024778 crossref_primary_10_3934_math_2024249 |
Cites_doi | 10.1080/09720502.2021.1938994 10.1186/s13660-021-02619-6 10.3390/sym13040568 10.15559/18-VMSTA117 10.1080/03610926.2020.1865403 10.1063/1.5143908 10.1016/j.jsv.2013.12.015 10.3934/math.2023366 10.3390/sym15040831 10.3934/jimo.2018063 10.1080/09720502.2021.1887607 10.1007/BF02190513 10.3934/math.2020315 10.55730/1300-0098.3263 10.2991/ijcis.d.210620.001 10.12691/tjant-2-6-3 10.3390/fractalfract6090518 10.3934/math.2023683 10.1109/TNN.2008.2011267 10.1186/s13662-020-02977-3 10.20852/ntmsci.2019.376 10.3934/math.2021371 10.11121/ijocta.01.2019.00602 10.3934/math.20221064 10.3934/math.2023170 10.1186/1029-242X-2013-326 10.3934/math.2023160 10.1186/s13660-018-1896-3 10.1007/s00500-017-2818-x 10.1186/s13662-021-03245-8 10.1007/s00010-011-0090-1 10.1186/s13660-020-02393-x 10.1016/j.envsoft.2011.10.007 10.3934/math.2023087 10.3390/math10234540 10.1063/5.0039672 10.1186/s13662-020-02782-y 10.1155/2022/3830324 10.29020/nybg.ejpam.v16i1.4689 10.1007/BF01830983 10.18576/amis/120104 10.1007/s00010-017-0488-5 10.3390/math10244777 10.3390/math10162970 10.3934/math.2023168 10.1063/5.0008964 10.18576/amis/22nuevoformat20(1)2 10.3934/math.2023817 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.20231015 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 19932 |
ExternalDocumentID | oai_doaj_org_article_413812d4e4ad4f3cb4a75fd3ff9557e7 10_3934_math_20231015 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c381t-2aae904d82bcd0157cf4d6c622588cf6b8d09c6191a4fbd908d56e75199b208c3 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:28:17 EDT 2025 Thu Apr 24 23:02:15 EDT 2025 Tue Jul 01 03:57:03 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c381t-2aae904d82bcd0157cf4d6c622588cf6b8d09c6191a4fbd908d56e75199b208c3 |
OpenAccessLink | https://doaj.org/article/413812d4e4ad4f3cb4a75fd3ff9557e7 |
PageCount | 20 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_413812d4e4ad4f3cb4a75fd3ff9557e7 crossref_primary_10_3934_math_20231015 crossref_citationtrail_10_3934_math_20231015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2023 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.20231015-51 key-10.3934/math.20231015-52 key-10.3934/math.20231015-53 key-10.3934/math.20231015-10 key-10.3934/math.20231015-54 key-10.3934/math.20231015-11 key-10.3934/math.20231015-55 key-10.3934/math.20231015-12 key-10.3934/math.20231015-56 key-10.3934/math.20231015-13 key-10.3934/math.20231015-14 key-10.3934/math.20231015-50 key-10.3934/math.20231015-15 key-10.3934/math.20231015-16 key-10.3934/math.20231015-17 key-10.3934/math.20231015-18 key-10.3934/math.20231015-19 key-10.3934/math.20231015-20 key-10.3934/math.20231015-21 key-10.3934/math.20231015-22 key-10.3934/math.20231015-23 key-10.3934/math.20231015-24 key-10.3934/math.20231015-25 key-10.3934/math.20231015-26 key-10.3934/math.20231015-27 key-10.3934/math.20231015-28 key-10.3934/math.20231015-29 key-10.3934/math.20231015-1 key-10.3934/math.20231015-30 key-10.3934/math.20231015-2 key-10.3934/math.20231015-31 key-10.3934/math.20231015-3 key-10.3934/math.20231015-32 key-10.3934/math.20231015-33 key-10.3934/math.20231015-34 key-10.3934/math.20231015-35 key-10.3934/math.20231015-36 key-10.3934/math.20231015-8 key-10.3934/math.20231015-9 key-10.3934/math.20231015-4 key-10.3934/math.20231015-5 key-10.3934/math.20231015-6 key-10.3934/math.20231015-7 key-10.3934/math.20231015-37 key-10.3934/math.20231015-38 key-10.3934/math.20231015-39 key-10.3934/math.20231015-40 key-10.3934/math.20231015-41 key-10.3934/math.20231015-42 key-10.3934/math.20231015-43 key-10.3934/math.20231015-44 key-10.3934/math.20231015-45 key-10.3934/math.20231015-46 key-10.3934/math.20231015-47 key-10.3934/math.20231015-48 key-10.3934/math.20231015-49 |
References_xml | – ident: key-10.3934/math.20231015-30 – ident: key-10.3934/math.20231015-12 doi: 10.1080/09720502.2021.1938994 – ident: key-10.3934/math.20231015-35 doi: 10.1186/s13660-021-02619-6 – ident: key-10.3934/math.20231015-53 doi: 10.3390/sym13040568 – ident: key-10.3934/math.20231015-17 doi: 10.15559/18-VMSTA117 – ident: key-10.3934/math.20231015-16 doi: 10.1080/03610926.2020.1865403 – ident: key-10.3934/math.20231015-36 doi: 10.1063/1.5143908 – ident: key-10.3934/math.20231015-11 – ident: key-10.3934/math.20231015-55 doi: 10.1016/j.jsv.2013.12.015 – ident: key-10.3934/math.20231015-25 doi: 10.3934/math.2023366 – ident: key-10.3934/math.20231015-14 doi: 10.3390/sym15040831 – ident: key-10.3934/math.20231015-3 doi: 10.3934/jimo.2018063 – ident: key-10.3934/math.20231015-15 doi: 10.1080/09720502.2021.1887607 – ident: key-10.3934/math.20231015-5 doi: 10.1007/BF02190513 – ident: key-10.3934/math.20231015-46 doi: 10.3934/math.2020315 – ident: key-10.3934/math.20231015-19 doi: 10.55730/1300-0098.3263 – ident: key-10.3934/math.20231015-39 doi: 10.2991/ijcis.d.210620.001 – ident: key-10.3934/math.20231015-9 doi: 10.12691/tjant-2-6-3 – ident: key-10.3934/math.20231015-50 doi: 10.3390/fractalfract6090518 – ident: key-10.3934/math.20231015-18 doi: 10.3934/math.2023683 – ident: key-10.3934/math.20231015-4 doi: 10.1109/TNN.2008.2011267 – ident: key-10.3934/math.20231015-33 doi: 10.1186/s13662-020-02977-3 – ident: key-10.3934/math.20231015-10 doi: 10.20852/ntmsci.2019.376 – ident: key-10.3934/math.20231015-28 doi: 10.3934/math.2021371 – ident: key-10.3934/math.20231015-8 doi: 10.11121/ijocta.01.2019.00602 – ident: key-10.3934/math.20231015-20 doi: 10.1080/03610926.2020.1865403 – ident: key-10.3934/math.20231015-49 doi: 10.3934/math.20221064 – ident: key-10.3934/math.20231015-48 doi: 10.3934/math.2023170 – ident: key-10.3934/math.20231015-22 doi: 10.1186/1029-242X-2013-326 – ident: key-10.3934/math.20231015-52 doi: 10.3934/math.2023160 – ident: key-10.3934/math.20231015-24 doi: 10.1186/s13660-018-1896-3 – ident: key-10.3934/math.20231015-2 doi: 10.1007/s00500-017-2818-x – ident: key-10.3934/math.20231015-37 doi: 10.1186/s13662-021-03245-8 – ident: key-10.3934/math.20231015-7 doi: 10.1007/s00010-011-0090-1 – ident: key-10.3934/math.20231015-34 doi: 10.1186/s13660-020-02393-x – ident: key-10.3934/math.20231015-56 doi: 10.1016/j.envsoft.2011.10.007 – ident: key-10.3934/math.20231015-31 doi: 10.3934/math.2023087 – ident: key-10.3934/math.20231015-42 doi: 10.3390/math10234540 – ident: key-10.3934/math.20231015-1 – ident: key-10.3934/math.20231015-23 – ident: key-10.3934/math.20231015-26 doi: 10.3934/math.2023366 – ident: key-10.3934/math.20231015-45 doi: 10.1063/5.0039672 – ident: key-10.3934/math.20231015-38 doi: 10.1186/s13662-020-02782-y – ident: key-10.3934/math.20231015-47 doi: 10.1155/2022/3830324 – ident: key-10.3934/math.20231015-43 doi: 10.29020/nybg.ejpam.v16i1.4689 – ident: key-10.3934/math.20231015-6 doi: 10.1007/BF01830983 – ident: key-10.3934/math.20231015-27 doi: 10.18576/amis/120104 – ident: key-10.3934/math.20231015-32 doi: 10.1007/s00010-017-0488-5 – ident: key-10.3934/math.20231015-41 doi: 10.3390/math10244777 – ident: key-10.3934/math.20231015-54 doi: 10.1016/j.jsv.2013.12.015 – ident: key-10.3934/math.20231015-51 doi: 10.3390/math10162970 – ident: key-10.3934/math.20231015-44 doi: 10.3934/math.2023168 – ident: key-10.3934/math.20231015-40 doi: 10.1063/5.0008964 – ident: key-10.3934/math.20231015-29 doi: 10.3934/math.2021371 – ident: key-10.3934/math.20231015-13 doi: 10.18576/amis/22nuevoformat20(1)2 – ident: key-10.3934/math.20231015-21 doi: 10.3934/math.2023817 |
SSID | ssj0002124274 |
Score | 2.253908 |
Snippet | This note introduces the concept of $ (h_1, h_2) $-convex stochastic processes using interval-valued functions. First we develop Hermite-Hadmard $... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 19913 |
SubjectTerms | hermite-hadamard inequality interval valued functions jensen inequality ostrowski inequality stochastic process |
Title | Some well known inequalities for $ (h_1, h_2) $-convex stochastic process via interval set inclusion relation |
URI | https://doaj.org/article/413812d4e4ad4f3cb4a75fd3ff9557e7 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXOSyiYNluk7bJUcVlEdaLLngrySRhF_bFPsSf70zbXfYiXjy2hDadTDLfTGe-YaypwGqXtV3kMyLVFgIiYxIiBLB524GQKlChcO8t6_bl62f6udXqi3LCKnrgSnAtPGTRBjnppXEyCLDS5GlwIgSdprkv68jR5m05U3QG44Es0d-qSDWFFrKF-I_-PRCcoRa4W0Zoi6u_NCqdQ3ZQo0H-WM3iiO34yTHb722oVBcnbPw-HXtOITZO8a8JR1hYVUKij8sRcvImvxsU7Qc-KJJ73ozKPPJvjqAOBoZYmPmsKgbgX0PDh2WOI75z4Zd4AaMVhcv4vM6JO2X9zsvHczeqeyREgHJZRokxXsfSqcSCwy_LIUiXQYbbVCkImVUu1oBeUtvIYJ2OlUsznyNu0zaJFYgztjuZTvw54z620jttQEkhHeBOlsHoGFdZmQBx3mAPa6EVUBOIUx-LUYGOBMm4IBkXaxk32O1m-Kxizvht4BOtwGYQEV6XN1ANiloNir_U4OI_HnLJ9mhSVYTliu0u5yt_jZhjaW9K9foBLaLWiQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Some+well+known+inequalities+for+%24+%28h_1%2C+h_2%29+%24-convex+stochastic+process+via+interval+set+inclusion+relation&rft.jtitle=AIMS+mathematics&rft.au=Afzal%2C+Waqar&rft.au=Abbas%2C+Mujahid&rft.au=Eldin%2C+Sayed+M.&rft.au=Khan%2C+Zareen+A.&rft.date=2023-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=8&rft.issue=9&rft.spage=19913&rft.epage=19932&rft_id=info:doi/10.3934%2Fmath.20231015&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_20231015 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |