Machine learning revealed stemness features and a novel stemness-based classification with appealing implications in discriminating the prognosis, immunotherapy and temozolomide responses of 906 glioblastoma patients

Glioblastoma (GBM) is the most malignant and lethal intracranial tumor, with extremely limited treatment options. Immunotherapy has been widely studied in GBM, but none can significantly prolong the overall survival (OS) of patients without selection. Considering that GBM cancer stem cells (CSCs) pl...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 22; no. 5
Main Authors Wang, Zihao, Wang, Yaning, Yang, Tianrui, Xing, Hao, Wang, Yuekun, Gao, Lu, Guo, Xiaopeng, Xing, Bing, Wang, Yu, Ma, Wenbin
Format Journal Article
LanguageEnglish
Published England Oxford University Press 02.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Glioblastoma (GBM) is the most malignant and lethal intracranial tumor, with extremely limited treatment options. Immunotherapy has been widely studied in GBM, but none can significantly prolong the overall survival (OS) of patients without selection. Considering that GBM cancer stem cells (CSCs) play a non-negligible role in tumorigenesis and chemoradiotherapy resistance, we proposed a novel stemness-based classification of GBM and screened out certain population more responsive to immunotherapy. The one-class logistic regression algorithm was used to calculate the stemness index (mRNAsi) of 518 GBM patients from The Cancer Genome Atlas (TCGA) database based on transcriptomics of GBM and pluripotent stem cells. Based on their stemness signature, GBM patients were divided into two subtypes via consensus clustering, and patients in Stemness Subtype I presented significantly better OS but poorer progression-free survival than Stemness Subtype II. Genomic variations revealed patients in Stemness Subtype I had higher somatic mutation loads and copy number alteration burdens. Additionally, two stemness subtypes had distinct tumor immune microenvironment patterns. Tumor Immune Dysfunction and Exclusion and subclass mapping analysis further demonstrated patients in Stemness Subtype I were more likely to respond to immunotherapy, especially anti-PD1 treatment. The pRRophetic algorithm also indicated patients in Stemness Subtype I were more resistant to temozolomide therapy. Finally, multiple machine learning algorithms were used to develop a 7-gene Stemness Subtype Predictor, which were further validated in two external independent GBM cohorts. This novel stemness-based classification could provide a promising prognostic predictor for GBM and may guide physicians in selecting potential responders for preferential use of immunotherapy.
AbstractList Glioblastoma (GBM) is the most malignant and lethal intracranial tumor, with extremely limited treatment options. Immunotherapy has been widely studied in GBM, but none can significantly prolong the overall survival (OS) of patients without selection. Considering that GBM cancer stem cells (CSCs) play a non-negligible role in tumorigenesis and chemoradiotherapy resistance, we proposed a novel stemness-based classification of GBM and screened out certain population more responsive to immunotherapy. The one-class logistic regression algorithm was used to calculate the stemness index (mRNAsi) of 518 GBM patients from The Cancer Genome Atlas (TCGA) database based on transcriptomics of GBM and pluripotent stem cells. Based on their stemness signature, GBM patients were divided into two subtypes via consensus clustering, and patients in Stemness Subtype I presented significantly better OS but poorer progression-free survival than Stemness Subtype II. Genomic variations revealed patients in Stemness Subtype I had higher somatic mutation loads and copy number alteration burdens. Additionally, two stemness subtypes had distinct tumor immune microenvironment patterns. Tumor Immune Dysfunction and Exclusion and subclass mapping analysis further demonstrated patients in Stemness Subtype I were more likely to respond to immunotherapy, especially anti-PD1 treatment. The pRRophetic algorithm also indicated patients in Stemness Subtype I were more resistant to temozolomide therapy. Finally, multiple machine learning algorithms were used to develop a 7-gene Stemness Subtype Predictor, which were further validated in two external independent GBM cohorts. This novel stemness-based classification could provide a promising prognostic predictor for GBM and may guide physicians in selecting potential responders for preferential use of immunotherapy.
Glioblastoma (GBM) is the most malignant and lethal intracranial tumor, with extremely limited treatment options. Immunotherapy has been widely studied in GBM, but none can significantly prolong the overall survival (OS) of patients without selection. Considering that GBM cancer stem cells (CSCs) play a non-negligible role in tumorigenesis and chemoradiotherapy resistance, we proposed a novel stemness-based classification of GBM and screened out certain population more responsive to immunotherapy. The one-class logistic regression algorithm was used to calculate the stemness index (mRNAsi) of 518 GBM patients from The Cancer Genome Atlas (TCGA) database based on transcriptomics of GBM and pluripotent stem cells. Based on their stemness signature, GBM patients were divided into two subtypes via consensus clustering, and patients in Stemness Subtype I presented significantly better OS but poorer progression-free survival than Stemness Subtype II. Genomic variations revealed patients in Stemness Subtype I had higher somatic mutation loads and copy number alteration burdens. Additionally, two stemness subtypes had distinct tumor immune microenvironment patterns. Tumor Immune Dysfunction and Exclusion and subclass mapping analysis further demonstrated patients in Stemness Subtype I were more likely to respond to immunotherapy, especially anti-PD1 treatment. The pRRophetic algorithm also indicated patients in Stemness Subtype I were more resistant to temozolomide therapy. Finally, multiple machine learning algorithms were used to develop a 7-gene Stemness Subtype Predictor, which were further validated in two external independent GBM cohorts. This novel stemness-based classification could provide a promising prognostic predictor for GBM and may guide physicians in selecting potential responders for preferential use of immunotherapy.Glioblastoma (GBM) is the most malignant and lethal intracranial tumor, with extremely limited treatment options. Immunotherapy has been widely studied in GBM, but none can significantly prolong the overall survival (OS) of patients without selection. Considering that GBM cancer stem cells (CSCs) play a non-negligible role in tumorigenesis and chemoradiotherapy resistance, we proposed a novel stemness-based classification of GBM and screened out certain population more responsive to immunotherapy. The one-class logistic regression algorithm was used to calculate the stemness index (mRNAsi) of 518 GBM patients from The Cancer Genome Atlas (TCGA) database based on transcriptomics of GBM and pluripotent stem cells. Based on their stemness signature, GBM patients were divided into two subtypes via consensus clustering, and patients in Stemness Subtype I presented significantly better OS but poorer progression-free survival than Stemness Subtype II. Genomic variations revealed patients in Stemness Subtype I had higher somatic mutation loads and copy number alteration burdens. Additionally, two stemness subtypes had distinct tumor immune microenvironment patterns. Tumor Immune Dysfunction and Exclusion and subclass mapping analysis further demonstrated patients in Stemness Subtype I were more likely to respond to immunotherapy, especially anti-PD1 treatment. The pRRophetic algorithm also indicated patients in Stemness Subtype I were more resistant to temozolomide therapy. Finally, multiple machine learning algorithms were used to develop a 7-gene Stemness Subtype Predictor, which were further validated in two external independent GBM cohorts. This novel stemness-based classification could provide a promising prognostic predictor for GBM and may guide physicians in selecting potential responders for preferential use of immunotherapy.
Author Wang, Zihao
Wang, Yaning
Gao, Lu
Wang, Yu
Xing, Hao
Xing, Bing
Yang, Tianrui
Ma, Wenbin
Guo, Xiaopeng
Wang, Yuekun
Author_xml – sequence: 1
  givenname: Zihao
  surname: Wang
  fullname: Wang, Zihao
  organization: Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
– sequence: 2
  givenname: Yaning
  orcidid: 0000-0002-0999-0499
  surname: Wang
  fullname: Wang, Yaning
  organization: Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
– sequence: 3
  givenname: Tianrui
  surname: Yang
  fullname: Yang, Tianrui
  organization: Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
– sequence: 4
  givenname: Hao
  surname: Xing
  fullname: Xing, Hao
  organization: Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
– sequence: 5
  givenname: Yuekun
  surname: Wang
  fullname: Wang, Yuekun
  organization: Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
– sequence: 6
  givenname: Lu
  surname: Gao
  fullname: Gao, Lu
  organization: Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
– sequence: 7
  givenname: Xiaopeng
  surname: Guo
  fullname: Guo, Xiaopeng
  organization: Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
– sequence: 8
  givenname: Bing
  surname: Xing
  fullname: Xing, Bing
  organization: Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
– sequence: 9
  givenname: Yu
  surname: Wang
  fullname: Wang, Yu
  organization: Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
– sequence: 10
  givenname: Wenbin
  surname: Ma
  fullname: Ma, Wenbin
  organization: Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33839757$$D View this record in MEDLINE/PubMed
BookMark eNptkk2LFDEQhhtZcT_05F1yFLTdpJPuTl-EZfELVrzoOSTp6plIOmmT9Mj6S_051uyOg4oQSKh68r6VVJ1XJyEGqKqnjL5idOCXxplLY7ShvHlQnTHR97WgrTjZn7u-bkXHT6vznL9S2tBeskfVKeeSD33bn1U_P2q7dQGIB52CCxuSYAfaw0hygTlAzmQCXdYEmegwEk1C3IE_ZmujM8LW65zd5KwuLgby3ZUt0cuCSntNNy_-kMrEBTK6bJObXcAQpssWyJLiJsTs8kuk5zVEDCa93N6Zolf8EX2c3QhYYF5QB-uJExloRzbeRYP-Jc6aLCgJoeTH1cNJ-wxPDvtF9eXtm8_X7-ubT-8-XF_d1JZLVupGCGiMaMfBsMFKMQ3ArcTFLHR6mMaGtiOwjlk-8nGSgvctF8ClnDSFbuAX1et73WU1M4wWvZP2asHn6XSronbq70xwW7WJOyVF0wohUeD5QSDFbyvkomb8HfBeB4hrVk3LmBxaJhiiz_70Opr8bicCL-4Bm2LOCaYjwqjaD4vCYVGHYUGa_UNbV-6ahIU6_987vwCaMcze
CitedBy_id crossref_primary_10_1002_cam4_6908
crossref_primary_10_1007_s00432_023_05061_x
crossref_primary_10_1155_2023_4945288
crossref_primary_10_1002_mef2_70009
crossref_primary_10_1093_nop_npae028
crossref_primary_10_3389_fimmu_2022_944030
crossref_primary_10_3390_ijms232415970
crossref_primary_10_1002_cbin_12027
crossref_primary_10_3389_fonc_2022_870328
crossref_primary_10_3390_genes13060993
crossref_primary_10_1007_s00432_023_05209_9
crossref_primary_10_1016_j_compbiomed_2024_108304
crossref_primary_10_3389_fimmu_2022_958161
crossref_primary_10_1016_j_compbiomed_2022_105988
crossref_primary_10_3389_fgene_2022_903117
crossref_primary_10_3389_fnmol_2022_913328
crossref_primary_10_1186_s12935_023_02930_w
crossref_primary_10_1002_imt2_127
crossref_primary_10_3389_fgene_2022_1007108
crossref_primary_10_3389_fgene_2021_741226
crossref_primary_10_1038_s41698_024_00510_3
crossref_primary_10_3389_fendo_2022_975623
crossref_primary_10_1016_j_compbiomed_2023_106875
crossref_primary_10_1038_s41598_023_42253_4
crossref_primary_10_1111_cas_16384
crossref_primary_10_3389_fimmu_2022_986785
crossref_primary_10_3390_jcm12041279
crossref_primary_10_1016_j_amjms_2023_06_010
crossref_primary_10_1155_2024_2062283
crossref_primary_10_2147_OTT_S454295
crossref_primary_10_1152_physiolgenomics_00011_2024
crossref_primary_10_1038_s41419_024_06946_6
crossref_primary_10_3390_ijms241310859
crossref_primary_10_3389_fimmu_2024_1362543
crossref_primary_10_1155_2023_8383058
crossref_primary_10_3390_cells13211754
crossref_primary_10_1093_stcltm_szad074
crossref_primary_10_1016_j_semcancer_2023_03_006
crossref_primary_10_3390_ijms241814256
crossref_primary_10_1016_j_arcmed_2023_102897
crossref_primary_10_1038_s41598_025_91036_6
crossref_primary_10_1186_s40001_024_01893_6
crossref_primary_10_3389_fcell_2022_817509
crossref_primary_10_3389_fmolb_2022_1100285
crossref_primary_10_1186_s12885_023_11277_4
crossref_primary_10_3390_cancers14030563
crossref_primary_10_7717_peerj_16477
crossref_primary_10_1155_2022_6532591
crossref_primary_10_3390_vaccines10091521
crossref_primary_10_1186_s12964_024_01602_0
crossref_primary_10_1016_j_annonc_2023_10_125
crossref_primary_10_1371_journal_pone_0298004
crossref_primary_10_3389_fimmu_2022_950782
crossref_primary_10_1007_s13402_023_00886_7
crossref_primary_10_1186_s13073_022_01050_w
crossref_primary_10_3389_fmolb_2022_910928
crossref_primary_10_3389_fmed_2023_1175507
crossref_primary_10_1038_s41598_024_61175_3
crossref_primary_10_1155_2022_6575052
crossref_primary_10_1155_2022_8422339
crossref_primary_10_1186_s43556_024_00197_9
crossref_primary_10_1093_stmcls_sxae054
crossref_primary_10_1007_s11060_022_04068_7
crossref_primary_10_1007_s00432_023_04898_6
crossref_primary_10_1007_s00262_024_03762_x
crossref_primary_10_1093_bib_bbae261
crossref_primary_10_1186_s12885_022_09328_3
crossref_primary_10_1038_s41388_023_02817_0
crossref_primary_10_18632_aging_205481
crossref_primary_10_3390_ijms23136958
crossref_primary_10_18632_aging_205443
crossref_primary_10_3389_fcell_2023_1203650
crossref_primary_10_1016_j_heliyon_2024_e37100
crossref_primary_10_1038_s41746_024_01043_6
crossref_primary_10_3390_genes14040889
crossref_primary_10_1016_j_gene_2024_148701
crossref_primary_10_1042_BSR20230028
crossref_primary_10_1186_s12885_022_09449_9
crossref_primary_10_3389_fneur_2022_829926
crossref_primary_10_1155_2022_7248572
crossref_primary_10_2217_epi_2022_0098
crossref_primary_10_1093_bib_bbab386
crossref_primary_10_1186_s12885_023_10918_y
crossref_primary_10_3389_fimmu_2023_1197152
crossref_primary_10_3389_fimmu_2024_1497570
crossref_primary_10_1038_s41598_024_78911_4
crossref_primary_10_1038_s41598_024_74806_6
crossref_primary_10_18632_aging_205699
crossref_primary_10_1016_j_cbi_2023_110471
crossref_primary_10_1186_s12967_025_06225_8
crossref_primary_10_1093_neuonc_noad017
crossref_primary_10_3389_fcell_2022_769711
crossref_primary_10_3389_fmolb_2022_904098
crossref_primary_10_3390_biomedicines10123029
Cites_doi 10.1002/sim.3148
10.1001/jama.2017.18718
10.1200/JCO.2015.61.5005
10.1097/CAD.0b013e328364312f
10.1016/j.canlet.2016.01.024
10.1186/s13046-019-1085-3
10.1371/journal.pcbi.1004790
10.1038/nmeth.3337
10.1038/nature11287
10.1186/gb-2011-12-4-r41
10.1126/science.aaa1348
10.1001/jamaoncol.2020.1024
10.1038/ncomms3612
10.1016/j.stemcr.2014.12.006
10.1158/1078-0432.CCR-09-2730
10.1016/j.cell.2017.03.042
10.3389/fgene.2019.01077
10.1038/ncomms5196
10.1002/stem.261
10.1007/s00280-017-3329-2
10.1186/s13046-018-1002-1
10.1186/1471-2105-14-7
10.1038/cdd.2013.136
10.18632/aging.103695
10.1200/JCO.2016.66.6552
10.1016/j.ebiom.2019.08.064
10.1016/j.ejphar.2017.01.017
10.1093/nar/gkx356
10.1016/j.cell.2014.12.033
10.1093/neuonc/noy072
10.1038/nrc1740
10.1016/j.ejphar.2015.06.007
10.1186/gb-2014-15-3-r47
10.1016/j.bbrc.2011.08.093
10.1101/gr.239244.118
10.1371/journal.pone.0107468
10.1080/21645515.2020.1782692
10.1371/journal.pone.0001195
10.1038/nrclinonc.2017.44
10.1002/1878-0261.12639
10.1056/NEJMoa1406498
10.1038/s41586-020-2209-9
10.1038/srep06207
10.1504/IJDMB.2014.064889
10.1158/1078-0432.CCR-09-0867
10.1158/0008-5472.CAN-06-2048
10.1158/2159-8290.CD-13-0183
10.1016/j.ccr.2013.08.001
10.1097/NEN.0b013e3181c391be
10.1038/nature05236
10.1186/1471-2105-14-244
10.1093/nar/gkw1092
10.1186/s12883-020-01672-w
10.1056/NEJMoa1308573
10.1016/j.immuni.2018.03.023
10.1093/neuonc/noq082
10.1038/nature14432
10.1038/75556
10.1038/nmat4997
10.1093/bioinformatics/bti270
10.1016/j.cell.2017.10.049
10.1093/bioinformatics/btq170
10.1038/modpathol.2014.94
10.1007/s11060-015-1729-x
10.1002/stem.102
10.1016/j.cell.2018.03.034
10.1016/S1470-2045(17)30517-X
10.1038/s41591-018-0136-1
10.1002/ijc.27385
10.1093/bioinformatics/btw325
10.1111/bpa.12367
10.1101/gad.261982.115
ContentType Journal Article
Copyright The Author(s) 2021. Published by Oxford University Press.
The Author(s) 2021. Published by Oxford University Press. 2021
Copyright_xml – notice: The Author(s) 2021. Published by Oxford University Press.
– notice: The Author(s) 2021. Published by Oxford University Press. 2021
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1093/bib/bbab032
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
ExternalDocumentID PMC8425448
33839757
10_1093_bib_bbab032
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: 2019ZLH101
– fundername: ;
  grantid: 2016-I2M-2-001
– fundername: ;
  grantid: 2019-1002-73
– fundername: ;
  grantid: 7202150; 19JCZDJC64200
GroupedDBID ---
-E4
.2P
.I3
0R~
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAHBH
AAIJN
AAIMJ
AAJKP
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAVAP
AAVLN
AAYXX
ABDBF
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACUHS
ACUXJ
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHGBF
AHMBA
AHQJS
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
K1G
KBUDW
KOP
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
ADRIX
AFXEN
BCRHZ
GROUPED_DOAJ
M49
NPM
ROX
7X8
5PM
ID FETCH-LOGICAL-c381t-244e2b45d9b19c84f9e3c83c81ce6a9fd205de161c3d3df8437534e388fa0e693
ISSN 1467-5463
1477-4054
IngestDate Thu Aug 21 14:37:59 EDT 2025
Fri Jul 11 15:27:25 EDT 2025
Wed Feb 19 02:28:41 EST 2025
Thu Apr 24 23:10:20 EDT 2025
Tue Jul 01 03:39:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords stemness subgroup
integrated multiomic analysis
glioblastoma
mRNAsi
immunotherapy
Language English
License http://creativecommons.org/licenses/by-nc/4.0
The Author(s) 2021. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c381t-244e2b45d9b19c84f9e3c83c81ce6a9fd205de161c3d3df8437534e388fa0e693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Zihao Wang and Yaning Wang authors contribute equally to this work.
ORCID 0000-0002-0999-0499
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8425448
PMID 33839757
PQID 2511895141
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8425448
proquest_miscellaneous_2511895141
pubmed_primary_33839757
crossref_primary_10_1093_bib_bbab032
crossref_citationtrail_10_1093_bib_bbab032
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210902
PublicationDateYYYYMMDD 2021-09-02
PublicationDate_xml – month: 09
  year: 2021
  text: 20210902
  day: 02
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2021
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Di Tomaso (2021090815133840400_ref60) 2010; 16
Snyder (2021090815133840400_ref12) 2014; 371
Budczies (2021090815133840400_ref23) 2018; 7
Bielecka-Wajdman (2021090815133840400_ref69) 2017; 79
Malta (2021090815133840400_ref6) 2018; 173
Geeleher (2021090815133840400_ref41) 2014; 9
Reifenberger (2021090815133840400_ref54) 2012; 131
Jahchan (2021090815133840400_ref65) 2013; 3
Bhat (2021090815133840400_ref73) 2013; 24
Kanehisa (2021090815133840400_ref33) 2017; 45
Kim (2021090815133840400_ref75) 2015; 4
He (2021090815133840400_ref29) 2018; 37
Bjerkvig (2021090815133840400_ref7) 2005; 5
Ge (2021090815133840400_ref9) 2017; 169
Sandmann (2021090815133840400_ref5) 2015; 33
Pellegatta (2021090815133840400_ref62) 2006; 66
Smyth (2021090815133840400_ref20) 2005; 21
Gilbert (2021090815133840400_ref4) 2014; 370
Yang (2021090815133840400_ref38) 2020; 14
Wang (2021090815133840400_ref72) 2010; 28
Subramanian (2021090815133840400_ref43) 2017; 171
Kim (2021090815133840400_ref45) 2014; 10
Bouffet (2021090815133840400_ref18) 2016; 34
Pula (2021090815133840400_ref64) 2013; 24
Karachi (2021090815133840400_ref76) 2018; 20
Ashburner (2021090815133840400_ref32) 2000; 25
Venere (2021090815133840400_ref74) 2014; 21
Skidmore (2021090815133840400_ref22) 2016; 32
Li (2021090815133840400_ref49) 2019; 47
Zhang (2021090815133840400_ref31) 2020
Chan (2021090815133840400_ref51) 2015; 28
Louveau (2021090815133840400_ref14) 2015; 523
Sokolov (2021090815133840400_ref26) 2016; 12
Mayakonda (2021090815133840400_ref21) 2018; 28
Shibue (2021090815133840400_ref8) 2017; 14
Yang (2021090815133840400_ref16) 2021; 17
Wang (2021090815133840400_ref37) 2020; 12
Bao (2021090815133840400_ref71) 2006; 444
Zacher (2021090815133840400_ref52) 2017; 27
Yoshihara (2021090815133840400_ref27) 2013; 4
Wilkerson (2021090815133840400_ref35) 2010; 26
Jiang (2021090815133840400_ref39) 2018; 24
Ortiz (2021090815133840400_ref67) 2017; 797
Weller (2021090815133840400_ref57) 2017; 18
Watkins (2021090815133840400_ref13) 2014; 5
Yuan (2021090815133840400_ref66) 2015; 761
Wang (2021090815133840400_ref34) 2017; 45
Geeleher (2021090815133840400_ref42) 2014; 15
Wen (2021090815133840400_ref1) 2017; 23
Mermel (2021090815133840400_ref24) 2011; 12
Jeon (2021090815133840400_ref68) 2011; 413
Rooney (2021090815133840400_ref56) 2015; 160
Esparza (2021090815133840400_ref10) 2015; 123
Xu (2021090815133840400_ref63) 2009; 27
Yperman (2021090815133840400_ref46) 2020; 20
Reardon (2021090815133840400_ref15) 2020; 6
Touat (2021090815133840400_ref17) 2020; 580
Hoshida (2021090815133840400_ref40) 2007; 2
Lathia (2021090815133840400_ref59) 2015; 29
Thorsson (2021090815133840400_ref55) 2018; 48
Xu (2021090815133840400_ref48) 2017; 16
Jiang (2021090815133840400_ref2) 2016; 375
Wang (2021090815133840400_ref58) 2019; 38
Li (2021090815133840400_ref47) 2019; 10
Stupp (2021090815133840400_ref3) 2017; 318
Rizvi (2021090815133840400_ref11) 2015; 348
Wu (2021090815133840400_ref61) 2010; 12
Sauerbrei (2021090815133840400_ref44) 2007; 26
Hänzelmann (2021090815133840400_ref30) 2013; 14
Chen (2021090815133840400_ref70) 2012; 488
Zhao (2021090815133840400_ref19) 2014; 9
Snuderl (2021090815133840400_ref53) 2009; 15
Zhang (2021090815133840400_ref25) 2013; 14
Newman (2021090815133840400_ref28) 2015; 12
Şenbabaoğlu (2021090815133840400_ref36) 2014; 4
Horbinski (2021090815133840400_ref50) 2009; 68
References_xml – volume: 26
  start-page: 5512
  year: 2007
  ident: 2021090815133840400_ref44
  article-title: Selection of important variables and determination of functional form for continuous predictors in multivariable model building
  publication-title: Stat Med
  doi: 10.1002/sim.3148
– volume: 318
  start-page: 2306
  year: 2017
  ident: 2021090815133840400_ref3
  article-title: Effect of tumor-treating fields plus maintenance Temozolomide vs maintenance Temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial
  publication-title: JAMA
  doi: 10.1001/jama.2017.18718
– year: 2020
  ident: 2021090815133840400_ref31
  article-title: Depiction of tumor stemlike features and underlying relationships with hazard immune infiltrations based on large prostate cancer cohorts
  publication-title: Brief Bioinform
– volume: 33
  start-page: 2735
  year: 2015
  ident: 2021090815133840400_ref5
  article-title: Patients with proneural glioblastoma may derive overall survival benefit from the addition of bevacizumab to first-line radiotherapy and Temozolomide: retrospective analysis of the AVAglio trial
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2015.61.5005
– volume: 24
  start-page: 899
  year: 2013
  ident: 2021090815133840400_ref64
  article-title: The tricyclic antidepressant amitriptyline is cytotoxic to HTB114 human leiomyosarcoma and induces p75(NTR)-dependent apoptosis
  publication-title: Anticancer Drugs
  doi: 10.1097/CAD.0b013e328364312f
– volume: 375
  start-page: 263
  year: 2016
  ident: 2021090815133840400_ref2
  article-title: CGCG clinical practice guidelines for the management of adult diffuse gliomas
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2016.01.024
– volume: 38
  start-page: 87
  year: 2019
  ident: 2021090815133840400_ref58
  article-title: Challenges and potential of PD-1/PD-L1 checkpoint blockade immunotherapy for glioblastoma
  publication-title: J Exp Clin Cancer Res
  doi: 10.1186/s13046-019-1085-3
– volume: 12
  year: 2016
  ident: 2021090815133840400_ref26
  article-title: Pathway-based genomics prediction using generalized elastic net
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1004790
– volume: 12
  start-page: 453
  year: 2015
  ident: 2021090815133840400_ref28
  article-title: Robust enumeration of cell subsets from tissue expression profiles
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3337
– volume: 488
  start-page: 522
  year: 2012
  ident: 2021090815133840400_ref70
  article-title: A restricted cell population propagates glioblastoma growth after chemotherapy
  publication-title: Nature
  doi: 10.1038/nature11287
– volume: 12
  start-page: R41
  year: 2011
  ident: 2021090815133840400_ref24
  article-title: GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers
  publication-title: Genome Biol
  doi: 10.1186/gb-2011-12-4-r41
– volume: 348
  start-page: 124
  year: 2015
  ident: 2021090815133840400_ref11
  article-title: Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer
  publication-title: Science
  doi: 10.1126/science.aaa1348
– volume: 6
  start-page: 1003
  year: 2020
  ident: 2021090815133840400_ref15
  article-title: Effect of Nivolumab vs bevacizumab in patients with recurrent glioblastoma: the CheckMate 143 phase 3 randomized clinical trial
  publication-title: JAMA Oncol
  doi: 10.1001/jamaoncol.2020.1024
– volume: 4
  start-page: 2612
  year: 2013
  ident: 2021090815133840400_ref27
  article-title: Inferring tumour purity and stromal and immune cell admixture from expression data
  publication-title: Nat Commun
  doi: 10.1038/ncomms3612
– volume: 4
  start-page: 226
  year: 2015
  ident: 2021090815133840400_ref75
  article-title: EZH2 protects glioma stem cells from radiation-induced cell death in a MELK/FOXM1-dependent manner
  publication-title: Stem Cell Reports
  doi: 10.1016/j.stemcr.2014.12.006
– volume: 16
  start-page: 800
  year: 2010
  ident: 2021090815133840400_ref60
  article-title: Immunobiological characterization of cancer stem cells isolated from glioblastoma patients
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-09-2730
– volume: 169
  start-page: 636
  year: 2017
  ident: 2021090815133840400_ref9
  article-title: Stem cell lineage infidelity drives wound repair and cancer
  publication-title: Cell
  doi: 10.1016/j.cell.2017.03.042
– volume: 10
  start-page: 1077
  year: 2019
  ident: 2021090815133840400_ref47
  article-title: Gene expression value prediction based on XGBoost algorithm
  publication-title: Front Genet
  doi: 10.3389/fgene.2019.01077
– volume: 5
  start-page: 4196
  year: 2014
  ident: 2021090815133840400_ref13
  article-title: Disruption of astrocyte-vascular coupling and the blood-brain barrier by invading glioma cells
  publication-title: Nat Commun
  doi: 10.1038/ncomms5196
– volume: 28
  start-page: 17
  year: 2010
  ident: 2021090815133840400_ref72
  article-title: Notch promotes radioresistance of glioma stem cells
  publication-title: Stem Cells
  doi: 10.1002/stem.261
– volume: 9
  year: 2014
  ident: 2021090815133840400_ref19
  article-title: Comparison of RNA-Seq and microarray in transcriptome profiling of activated T cells
  publication-title: PLoS One
– volume: 79
  start-page: 1249
  year: 2017
  ident: 2021090815133840400_ref69
  article-title: Reversing glioma malignancy: a new look at the role of antidepressant drugs as adjuvant therapy for glioblastoma multiforme
  publication-title: Cancer Chemother Pharmacol
  doi: 10.1007/s00280-017-3329-2
– volume: 37
  start-page: 327
  year: 2018
  ident: 2021090815133840400_ref29
  article-title: Classification of triple-negative breast cancers based on Immunogenomic profiling
  publication-title: J Exp Clin Cancer Res
  doi: 10.1186/s13046-018-1002-1
– volume: 14
  start-page: 7
  year: 2013
  ident: 2021090815133840400_ref30
  article-title: Gene set variation analysis for microarray and RNA-seq data
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-14-7
– volume: 21
  start-page: 258
  year: 2014
  ident: 2021090815133840400_ref74
  article-title: Therapeutic targeting of constitutive PARP activation compromises stem cell phenotype and survival of glioblastoma-initiating cells
  publication-title: Cell Death Differ
  doi: 10.1038/cdd.2013.136
– volume: 12
  start-page: 18297
  year: 2020
  ident: 2021090815133840400_ref37
  article-title: Glioblastoma cell differentiation trajectory predicts the immunotherapy response and overall survival of patients
  publication-title: Aging (Albany NY)
  doi: 10.18632/aging.103695
– volume: 34
  start-page: 2206
  year: 2016
  ident: 2021090815133840400_ref18
  article-title: Immune checkpoint inhibition for Hypermutant glioblastoma Multiforme resulting from germline Biallelic mismatch repair deficiency
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2016.66.6552
– volume: 47
  start-page: 128
  year: 2019
  ident: 2021090815133840400_ref49
  article-title: Development and validation of a CIMP-associated prognostic model for hepatocellular carcinoma
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2019.08.064
– volume: 797
  start-page: 75
  year: 2017
  ident: 2021090815133840400_ref67
  article-title: Amitriptyline down-regulates coenzyme Q(10) biosynthesis in lung cancer cells
  publication-title: Eur J Pharmacol
  doi: 10.1016/j.ejphar.2017.01.017
– volume: 7
  year: 2018
  ident: 2021090815133840400_ref23
  article-title: Integrated analysis of the immunological and genetic status in and across cancer types: impact of mutational signatures beyond tumor mutational burden
  publication-title: Onco Targets Ther
– volume: 45
  start-page: W130
  year: 2017
  ident: 2021090815133840400_ref34
  article-title: WebGestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx356
– volume: 160
  start-page: 48
  year: 2015
  ident: 2021090815133840400_ref56
  article-title: Molecular and genetic properties of tumors associated with local immune cytolytic activity
  publication-title: Cell
  doi: 10.1016/j.cell.2014.12.033
– volume: 20
  start-page: 1566
  year: 2018
  ident: 2021090815133840400_ref76
  article-title: Temozolomide for immunomodulation in the treatment of glioblastoma
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/noy072
– volume: 5
  start-page: 899
  year: 2005
  ident: 2021090815133840400_ref7
  article-title: Opinion: the origin of the cancer stem cell: current controversies and new insights
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc1740
– volume: 761
  start-page: 309
  year: 2015
  ident: 2021090815133840400_ref66
  article-title: Nortriptyline induces mitochondria and death receptor-mediated apoptosis in bladder cancer cells and inhibits bladder tumor growth in vivo
  publication-title: Eur J Pharmacol
  doi: 10.1016/j.ejphar.2015.06.007
– volume: 15
  start-page: R47
  year: 2014
  ident: 2021090815133840400_ref42
  article-title: Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines
  publication-title: Genome Biol
  doi: 10.1186/gb-2014-15-3-r47
– volume: 413
  start-page: 311
  year: 2011
  ident: 2021090815133840400_ref68
  article-title: The tricyclic antidepressant imipramine induces autophagic cell death in U-87MG glioma cells
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2011.08.093
– volume: 23
  start-page: 1531
  year: 2017
  ident: 2021090815133840400_ref1
  article-title: 2016 World Health Organization classification of central nervous system Tumors
  publication-title: Continuum (Minneap Minn)
– volume: 28
  start-page: 1747
  year: 2018
  ident: 2021090815133840400_ref21
  article-title: Maftools: efficient and comprehensive analysis of somatic variants in cancer
  publication-title: Genome Res
  doi: 10.1101/gr.239244.118
– volume: 9
  year: 2014
  ident: 2021090815133840400_ref41
  article-title: pRRophetic: an R package for prediction of clinical chemotherapeutic response from tumor gene expression levels
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0107468
– volume: 17
  start-page: 546
  year: 2021
  ident: 2021090815133840400_ref16
  article-title: 1/PD-L1 immune checkpoint inhibitors in glioblastoma: clinical studies, challenges and potential
  publication-title: Hum Vaccin Immunother
  doi: 10.1080/21645515.2020.1782692
– volume: 2
  year: 2007
  ident: 2021090815133840400_ref40
  article-title: Subclass mapping: identifying common subtypes in independent disease data sets
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0001195
– volume: 14
  start-page: 611
  year: 2017
  ident: 2021090815133840400_ref8
  article-title: CSCs, and drug resistance: the mechanistic link and clinical implications
  publication-title: Nat Rev Clin Oncol
  doi: 10.1038/nrclinonc.2017.44
– volume: 14
  start-page: 896
  year: 2020
  ident: 2021090815133840400_ref38
  article-title: Metabolism-associated molecular classification of hepatocellular carcinoma
  publication-title: Mol Oncol
  doi: 10.1002/1878-0261.12639
– volume: 371
  start-page: 2189
  year: 2014
  ident: 2021090815133840400_ref12
  article-title: Genetic basis for clinical response to CTLA-4 blockade in melanoma
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1406498
– volume: 580
  start-page: 517
  year: 2020
  ident: 2021090815133840400_ref17
  article-title: Mechanisms and therapeutic implications of hypermutation in gliomas
  publication-title: Nature
  doi: 10.1038/s41586-020-2209-9
– volume: 4
  start-page: 6207
  year: 2014
  ident: 2021090815133840400_ref36
  article-title: Critical limitations of consensus clustering in class discovery
  publication-title: Sci Rep
  doi: 10.1038/srep06207
– volume: 10
  start-page: 374
  year: 2014
  ident: 2021090815133840400_ref45
  article-title: Margin-maximised redundancy-minimised SVM-RFE for diagnostic classification of mammograms
  publication-title: Int J Data Min Bioinform
  doi: 10.1504/IJDMB.2014.064889
– volume: 15
  start-page: 6430
  year: 2009
  ident: 2021090815133840400_ref53
  article-title: Polysomy for chromosomes 1 and 19 predicts earlier recurrence in anaplastic oligodendrogliomas with concurrent 1p/19q loss
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-09-0867
– volume: 66
  start-page: 10247
  year: 2006
  ident: 2021090815133840400_ref62
  article-title: Neurospheres enriched in cancer stem-like cells are highly effective in eliciting a dendritic cell-mediated immune response against malignant gliomas
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-06-2048
– volume: 3
  start-page: 1364
  year: 2013
  ident: 2021090815133840400_ref65
  article-title: A drug repositioning approach identifies tricyclic antidepressants as inhibitors of small cell lung cancer and other neuroendocrine tumors
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-13-0183
– volume: 24
  start-page: 331
  year: 2013
  ident: 2021090815133840400_ref73
  article-title: Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2013.08.001
– volume: 68
  start-page: 1319
  year: 2009
  ident: 2021090815133840400_ref50
  article-title: Diagnostic use of IDH1/2 mutation analysis in routine clinical testing of formalin-fixed, paraffin-embedded glioma tissues
  publication-title: J Neuropathol Exp Neurol
  doi: 10.1097/NEN.0b013e3181c391be
– volume: 444
  start-page: 756
  year: 2006
  ident: 2021090815133840400_ref71
  article-title: Glioma stem cells promote radioresistance by preferential activation of the DNA damage response
  publication-title: Nature
  doi: 10.1038/nature05236
– volume: 14
  start-page: 244
  year: 2013
  ident: 2021090815133840400_ref25
  article-title: RCircos: an R package for Circos 2D track plots
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-14-244
– volume: 45
  start-page: D353
  year: 2017
  ident: 2021090815133840400_ref33
  article-title: KEGG: new perspectives on genomes, pathways, diseases and drugs
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw1092
– volume: 20
  start-page: 105
  year: 2020
  ident: 2021090815133840400_ref46
  article-title: Machine learning analysis of motor evoked potential time series to predict disability progression in multiple sclerosis
  publication-title: BMC Neurol
  doi: 10.1186/s12883-020-01672-w
– volume: 370
  start-page: 699
  year: 2014
  ident: 2021090815133840400_ref4
  article-title: A randomized trial of bevacizumab for newly diagnosed glioblastoma
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1308573
– volume: 48
  start-page: 812
  year: 2018
  ident: 2021090815133840400_ref55
  article-title: The immune landscape of cancer
  publication-title: Immunity
  doi: 10.1016/j.immuni.2018.03.023
– volume: 12
  start-page: 1113
  year: 2010
  ident: 2021090815133840400_ref61
  article-title: Glioma cancer stem cells induce immunosuppressive macrophages/microglia
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/noq082
– volume: 523
  start-page: 337
  year: 2015
  ident: 2021090815133840400_ref14
  article-title: Structural and functional features of central nervous system lymphatic vessels
  publication-title: Nature
  doi: 10.1038/nature14432
– volume: 25
  start-page: 25
  year: 2000
  ident: 2021090815133840400_ref32
  article-title: Gene ontology: tool for the unification of biology. The gene ontology consortium
  publication-title: Nat Genet
  doi: 10.1038/75556
– volume: 16
  start-page: 1155
  year: 2017
  ident: 2021090815133840400_ref48
  article-title: Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma
  publication-title: Nat Mater
  doi: 10.1038/nmat4997
– volume: 21
  start-page: 2067
  year: 2005
  ident: 2021090815133840400_ref20
  article-title: Use of within-array replicate spots for assessing differential expression in microarray experiments
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti270
– volume: 171
  start-page: 1437
  year: 2017
  ident: 2021090815133840400_ref43
  article-title: A next generation connectivity map: L1000 platform and the first 1,000,000 profiles
  publication-title: Cell
  doi: 10.1016/j.cell.2017.10.049
– volume: 26
  start-page: 1572
  year: 2010
  ident: 2021090815133840400_ref35
  article-title: ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq170
– volume: 28
  start-page: 177
  year: 2015
  ident: 2021090815133840400_ref51
  article-title: TERT promoter mutations contribute to subset prognostication of lower-grade gliomas
  publication-title: Mod Pathol
  doi: 10.1038/modpathol.2014.94
– volume: 123
  start-page: 449
  year: 2015
  ident: 2021090815133840400_ref10
  article-title: Glioblastoma stem cells and stem cell-targeting immunotherapies
  publication-title: J Neurooncol
  doi: 10.1007/s11060-015-1729-x
– volume: 27
  start-page: 1734
  year: 2009
  ident: 2021090815133840400_ref63
  article-title: Antigen-specific T-cell response from dendritic cell vaccination using cancer stem-like cell-associated antigens
  publication-title: Stem Cells
  doi: 10.1002/stem.102
– volume: 173
  start-page: 338
  year: 2018
  ident: 2021090815133840400_ref6
  article-title: Machine learning identifies Stemness features associated with oncogenic dedifferentiation
  publication-title: Cell
  doi: 10.1016/j.cell.2018.03.034
– volume: 18
  start-page: 1373
  year: 2017
  ident: 2021090815133840400_ref57
  article-title: Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind
  publication-title: international phase 3 trial, Lancet Oncol
  doi: 10.1016/S1470-2045(17)30517-X
– volume: 24
  start-page: 1550
  year: 2018
  ident: 2021090815133840400_ref39
  article-title: Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0136-1
– volume: 131
  start-page: 1342
  year: 2012
  ident: 2021090815133840400_ref54
  article-title: Predictive impact of MGMT promoter methylation in glioblastoma of the elderly
  publication-title: Int J Cancer
  doi: 10.1002/ijc.27385
– volume: 32
  start-page: 3012
  year: 2016
  ident: 2021090815133840400_ref22
  article-title: GenVisR: genomic visualizations in R
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw325
– volume: 27
  start-page: 146
  year: 2017
  ident: 2021090815133840400_ref52
  article-title: Molecular diagnostics of gliomas using next generation sequencing of a glioma-tailored gene panel
  publication-title: Brain Pathol
  doi: 10.1111/bpa.12367
– volume: 29
  start-page: 1203
  year: 2015
  ident: 2021090815133840400_ref59
  article-title: Cancer stem cells in glioblastoma
  publication-title: Genes Dev
  doi: 10.1101/gad.261982.115
SSID ssj0020781
Score 2.5868704
Snippet Glioblastoma (GBM) is the most malignant and lethal intracranial tumor, with extremely limited treatment options. Immunotherapy has been widely studied in GBM,...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Problem Solving Protocol
Title Machine learning revealed stemness features and a novel stemness-based classification with appealing implications in discriminating the prognosis, immunotherapy and temozolomide responses of 906 glioblastoma patients
URI https://www.ncbi.nlm.nih.gov/pubmed/33839757
https://www.proquest.com/docview/2511895141
https://pubmed.ncbi.nlm.nih.gov/PMC8425448
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1La9tAEMcXN6XQS-m77osp5FRXiR6r17GUBFPyuCjU7UWspFUicCTTyIXm0_Vj9ON0ZnelSK4PacEIeyWtBPPzamc18x_GdsOwJFUxx8pyz7V4xnNLlIGNroqQOD2IPGlTgvPxSTA_458X_mIy-TWIWlq32V5-vTWv5H-sim1oV8qS_QfL9p1iA35H--IWLYzbW9n4WEVCyq70wzklotDEr5iRPLMaxEqplDu1ErOY1c0Puez3WvQMK2Y5zaApZEjDoNPdVivsSSW8bMScUx6vrgXW3qRaNRSvp-UKKso4MXldWtyJonmvcZC9rAoq0qKCcrXWbWwHs_Nl1WR4B21zKTqZ16vRu2b05ktVXRSvnlWN0XptB3H6X8yq97fqQjSbjV9F3T2faXgzrQkpHa2rrnlharvMzflmIcR1VKTXYG3U4WGIjGlN6j25pc0M-K47ANvf-hzRGltZldE2E5ltFmFHet0np-nh2dFRmhwskjvsrouOCo20yemid_lJSknlt5nbMBmi2P0-dr5vuh7Pif5ydDbjdQcToOQhe2A8F_ioMXzEJrJ-zO7pWqY_n7DfBkboYIQORuhwgw5GQCpAgIIRxjDCGEYgGKGHEYYwQlXDGEZA6qCH8QOMUFQXHaIIPYrQlIAowhBF6FB8ys4OD5JPc8uUDbFynH62Fk5YpZtxv4gzJ84jXsbSyyP8OLkMRFwWru0XEj2d3Cu8ooy4hy47l14UlcKWQew9Yzt1U8sXDOIgEKGdk59fct_lURFGeK7EXyV3pTdl7zvDpbnR1KfSLstUx3Z4KVo5NVaest3-4JWWktl-2LuOgBSHenp_J2rZrK9StRqAHhF3puy5JqLviFaa4tAPpywcsdIfQDLy4z11daHk5OlFPOfRy1tc9xW7f_PPe8122u9r-QYn5W32VnH_B_kM9-A
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+revealed+stemness+features+and+a+novel+stemness-based+classification+with+appealing+implications+in+discriminating+the+prognosis%2C+immunotherapy+and+temozolomide+responses+of+906+glioblastoma+patients&rft.jtitle=Briefings+in+bioinformatics&rft.au=Wang%2C+Zihao&rft.au=Wang%2C+Yaning&rft.au=Yang%2C+Tianrui&rft.au=Xing%2C+Hao&rft.date=2021-09-02&rft.issn=1477-4054&rft.eissn=1477-4054&rft.volume=22&rft.issue=5&rft_id=info:doi/10.1093%2Fbib%2Fbbab032&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon