Machine learning revealed stemness features and a novel stemness-based classification with appealing implications in discriminating the prognosis, immunotherapy and temozolomide responses of 906 glioblastoma patients
Glioblastoma (GBM) is the most malignant and lethal intracranial tumor, with extremely limited treatment options. Immunotherapy has been widely studied in GBM, but none can significantly prolong the overall survival (OS) of patients without selection. Considering that GBM cancer stem cells (CSCs) pl...
Saved in:
Published in | Briefings in bioinformatics Vol. 22; no. 5 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
02.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Glioblastoma (GBM) is the most malignant and lethal intracranial tumor, with extremely limited treatment options. Immunotherapy has been widely studied in GBM, but none can significantly prolong the overall survival (OS) of patients without selection. Considering that GBM cancer stem cells (CSCs) play a non-negligible role in tumorigenesis and chemoradiotherapy resistance, we proposed a novel stemness-based classification of GBM and screened out certain population more responsive to immunotherapy. The one-class logistic regression algorithm was used to calculate the stemness index (mRNAsi) of 518 GBM patients from The Cancer Genome Atlas (TCGA) database based on transcriptomics of GBM and pluripotent stem cells. Based on their stemness signature, GBM patients were divided into two subtypes via consensus clustering, and patients in Stemness Subtype I presented significantly better OS but poorer progression-free survival than Stemness Subtype II. Genomic variations revealed patients in Stemness Subtype I had higher somatic mutation loads and copy number alteration burdens. Additionally, two stemness subtypes had distinct tumor immune microenvironment patterns. Tumor Immune Dysfunction and Exclusion and subclass mapping analysis further demonstrated patients in Stemness Subtype I were more likely to respond to immunotherapy, especially anti-PD1 treatment. The pRRophetic algorithm also indicated patients in Stemness Subtype I were more resistant to temozolomide therapy. Finally, multiple machine learning algorithms were used to develop a 7-gene Stemness Subtype Predictor, which were further validated in two external independent GBM cohorts. This novel stemness-based classification could provide a promising prognostic predictor for GBM and may guide physicians in selecting potential responders for preferential use of immunotherapy. |
---|---|
AbstractList | Glioblastoma (GBM) is the most malignant and lethal intracranial tumor, with extremely limited treatment options. Immunotherapy has been widely studied in GBM, but none can significantly prolong the overall survival (OS) of patients without selection. Considering that GBM cancer stem cells (CSCs) play a non-negligible role in tumorigenesis and chemoradiotherapy resistance, we proposed a novel stemness-based classification of GBM and screened out certain population more responsive to immunotherapy. The one-class logistic regression algorithm was used to calculate the stemness index (mRNAsi) of 518 GBM patients from The Cancer Genome Atlas (TCGA) database based on transcriptomics of GBM and pluripotent stem cells. Based on their stemness signature, GBM patients were divided into two subtypes via consensus clustering, and patients in Stemness Subtype I presented significantly better OS but poorer progression-free survival than Stemness Subtype II. Genomic variations revealed patients in Stemness Subtype I had higher somatic mutation loads and copy number alteration burdens. Additionally, two stemness subtypes had distinct tumor immune microenvironment patterns. Tumor Immune Dysfunction and Exclusion and subclass mapping analysis further demonstrated patients in Stemness Subtype I were more likely to respond to immunotherapy, especially anti-PD1 treatment. The pRRophetic algorithm also indicated patients in Stemness Subtype I were more resistant to temozolomide therapy. Finally, multiple machine learning algorithms were used to develop a 7-gene Stemness Subtype Predictor, which were further validated in two external independent GBM cohorts. This novel stemness-based classification could provide a promising prognostic predictor for GBM and may guide physicians in selecting potential responders for preferential use of immunotherapy. Glioblastoma (GBM) is the most malignant and lethal intracranial tumor, with extremely limited treatment options. Immunotherapy has been widely studied in GBM, but none can significantly prolong the overall survival (OS) of patients without selection. Considering that GBM cancer stem cells (CSCs) play a non-negligible role in tumorigenesis and chemoradiotherapy resistance, we proposed a novel stemness-based classification of GBM and screened out certain population more responsive to immunotherapy. The one-class logistic regression algorithm was used to calculate the stemness index (mRNAsi) of 518 GBM patients from The Cancer Genome Atlas (TCGA) database based on transcriptomics of GBM and pluripotent stem cells. Based on their stemness signature, GBM patients were divided into two subtypes via consensus clustering, and patients in Stemness Subtype I presented significantly better OS but poorer progression-free survival than Stemness Subtype II. Genomic variations revealed patients in Stemness Subtype I had higher somatic mutation loads and copy number alteration burdens. Additionally, two stemness subtypes had distinct tumor immune microenvironment patterns. Tumor Immune Dysfunction and Exclusion and subclass mapping analysis further demonstrated patients in Stemness Subtype I were more likely to respond to immunotherapy, especially anti-PD1 treatment. The pRRophetic algorithm also indicated patients in Stemness Subtype I were more resistant to temozolomide therapy. Finally, multiple machine learning algorithms were used to develop a 7-gene Stemness Subtype Predictor, which were further validated in two external independent GBM cohorts. This novel stemness-based classification could provide a promising prognostic predictor for GBM and may guide physicians in selecting potential responders for preferential use of immunotherapy.Glioblastoma (GBM) is the most malignant and lethal intracranial tumor, with extremely limited treatment options. Immunotherapy has been widely studied in GBM, but none can significantly prolong the overall survival (OS) of patients without selection. Considering that GBM cancer stem cells (CSCs) play a non-negligible role in tumorigenesis and chemoradiotherapy resistance, we proposed a novel stemness-based classification of GBM and screened out certain population more responsive to immunotherapy. The one-class logistic regression algorithm was used to calculate the stemness index (mRNAsi) of 518 GBM patients from The Cancer Genome Atlas (TCGA) database based on transcriptomics of GBM and pluripotent stem cells. Based on their stemness signature, GBM patients were divided into two subtypes via consensus clustering, and patients in Stemness Subtype I presented significantly better OS but poorer progression-free survival than Stemness Subtype II. Genomic variations revealed patients in Stemness Subtype I had higher somatic mutation loads and copy number alteration burdens. Additionally, two stemness subtypes had distinct tumor immune microenvironment patterns. Tumor Immune Dysfunction and Exclusion and subclass mapping analysis further demonstrated patients in Stemness Subtype I were more likely to respond to immunotherapy, especially anti-PD1 treatment. The pRRophetic algorithm also indicated patients in Stemness Subtype I were more resistant to temozolomide therapy. Finally, multiple machine learning algorithms were used to develop a 7-gene Stemness Subtype Predictor, which were further validated in two external independent GBM cohorts. This novel stemness-based classification could provide a promising prognostic predictor for GBM and may guide physicians in selecting potential responders for preferential use of immunotherapy. |
Author | Wang, Zihao Wang, Yaning Gao, Lu Wang, Yu Xing, Hao Xing, Bing Yang, Tianrui Ma, Wenbin Guo, Xiaopeng Wang, Yuekun |
Author_xml | – sequence: 1 givenname: Zihao surname: Wang fullname: Wang, Zihao organization: Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China – sequence: 2 givenname: Yaning orcidid: 0000-0002-0999-0499 surname: Wang fullname: Wang, Yaning organization: Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China – sequence: 3 givenname: Tianrui surname: Yang fullname: Yang, Tianrui organization: Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China – sequence: 4 givenname: Hao surname: Xing fullname: Xing, Hao organization: Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China – sequence: 5 givenname: Yuekun surname: Wang fullname: Wang, Yuekun organization: Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China – sequence: 6 givenname: Lu surname: Gao fullname: Gao, Lu organization: Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China – sequence: 7 givenname: Xiaopeng surname: Guo fullname: Guo, Xiaopeng organization: Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China – sequence: 8 givenname: Bing surname: Xing fullname: Xing, Bing organization: Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China – sequence: 9 givenname: Yu surname: Wang fullname: Wang, Yu organization: Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China – sequence: 10 givenname: Wenbin surname: Ma fullname: Ma, Wenbin organization: Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33839757$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk2LFDEQhhtZcT_05F1yFLTdpJPuTl-EZfELVrzoOSTp6plIOmmT9Mj6S_051uyOg4oQSKh68r6VVJ1XJyEGqKqnjL5idOCXxplLY7ShvHlQnTHR97WgrTjZn7u-bkXHT6vznL9S2tBeskfVKeeSD33bn1U_P2q7dQGIB52CCxuSYAfaw0hygTlAzmQCXdYEmegwEk1C3IE_ZmujM8LW65zd5KwuLgby3ZUt0cuCSntNNy_-kMrEBTK6bJObXcAQpssWyJLiJsTs8kuk5zVEDCa93N6Zolf8EX2c3QhYYF5QB-uJExloRzbeRYP-Jc6aLCgJoeTH1cNJ-wxPDvtF9eXtm8_X7-ubT-8-XF_d1JZLVupGCGiMaMfBsMFKMQ3ArcTFLHR6mMaGtiOwjlk-8nGSgvctF8ClnDSFbuAX1et73WU1M4wWvZP2asHn6XSronbq70xwW7WJOyVF0wohUeD5QSDFbyvkomb8HfBeB4hrVk3LmBxaJhiiz_70Opr8bicCL-4Bm2LOCaYjwqjaD4vCYVGHYUGa_UNbV-6ahIU6_987vwCaMcze |
CitedBy_id | crossref_primary_10_1002_cam4_6908 crossref_primary_10_1007_s00432_023_05061_x crossref_primary_10_1155_2023_4945288 crossref_primary_10_1002_mef2_70009 crossref_primary_10_1093_nop_npae028 crossref_primary_10_3389_fimmu_2022_944030 crossref_primary_10_3390_ijms232415970 crossref_primary_10_1002_cbin_12027 crossref_primary_10_3389_fonc_2022_870328 crossref_primary_10_3390_genes13060993 crossref_primary_10_1007_s00432_023_05209_9 crossref_primary_10_1016_j_compbiomed_2024_108304 crossref_primary_10_3389_fimmu_2022_958161 crossref_primary_10_1016_j_compbiomed_2022_105988 crossref_primary_10_3389_fgene_2022_903117 crossref_primary_10_3389_fnmol_2022_913328 crossref_primary_10_1186_s12935_023_02930_w crossref_primary_10_1002_imt2_127 crossref_primary_10_3389_fgene_2022_1007108 crossref_primary_10_3389_fgene_2021_741226 crossref_primary_10_1038_s41698_024_00510_3 crossref_primary_10_3389_fendo_2022_975623 crossref_primary_10_1016_j_compbiomed_2023_106875 crossref_primary_10_1038_s41598_023_42253_4 crossref_primary_10_1111_cas_16384 crossref_primary_10_3389_fimmu_2022_986785 crossref_primary_10_3390_jcm12041279 crossref_primary_10_1016_j_amjms_2023_06_010 crossref_primary_10_1155_2024_2062283 crossref_primary_10_2147_OTT_S454295 crossref_primary_10_1152_physiolgenomics_00011_2024 crossref_primary_10_1038_s41419_024_06946_6 crossref_primary_10_3390_ijms241310859 crossref_primary_10_3389_fimmu_2024_1362543 crossref_primary_10_1155_2023_8383058 crossref_primary_10_3390_cells13211754 crossref_primary_10_1093_stcltm_szad074 crossref_primary_10_1016_j_semcancer_2023_03_006 crossref_primary_10_3390_ijms241814256 crossref_primary_10_1016_j_arcmed_2023_102897 crossref_primary_10_1038_s41598_025_91036_6 crossref_primary_10_1186_s40001_024_01893_6 crossref_primary_10_3389_fcell_2022_817509 crossref_primary_10_3389_fmolb_2022_1100285 crossref_primary_10_1186_s12885_023_11277_4 crossref_primary_10_3390_cancers14030563 crossref_primary_10_7717_peerj_16477 crossref_primary_10_1155_2022_6532591 crossref_primary_10_3390_vaccines10091521 crossref_primary_10_1186_s12964_024_01602_0 crossref_primary_10_1016_j_annonc_2023_10_125 crossref_primary_10_1371_journal_pone_0298004 crossref_primary_10_3389_fimmu_2022_950782 crossref_primary_10_1007_s13402_023_00886_7 crossref_primary_10_1186_s13073_022_01050_w crossref_primary_10_3389_fmolb_2022_910928 crossref_primary_10_3389_fmed_2023_1175507 crossref_primary_10_1038_s41598_024_61175_3 crossref_primary_10_1155_2022_6575052 crossref_primary_10_1155_2022_8422339 crossref_primary_10_1186_s43556_024_00197_9 crossref_primary_10_1093_stmcls_sxae054 crossref_primary_10_1007_s11060_022_04068_7 crossref_primary_10_1007_s00432_023_04898_6 crossref_primary_10_1007_s00262_024_03762_x crossref_primary_10_1093_bib_bbae261 crossref_primary_10_1186_s12885_022_09328_3 crossref_primary_10_1038_s41388_023_02817_0 crossref_primary_10_18632_aging_205481 crossref_primary_10_3390_ijms23136958 crossref_primary_10_18632_aging_205443 crossref_primary_10_3389_fcell_2023_1203650 crossref_primary_10_1016_j_heliyon_2024_e37100 crossref_primary_10_1038_s41746_024_01043_6 crossref_primary_10_3390_genes14040889 crossref_primary_10_1016_j_gene_2024_148701 crossref_primary_10_1042_BSR20230028 crossref_primary_10_1186_s12885_022_09449_9 crossref_primary_10_3389_fneur_2022_829926 crossref_primary_10_1155_2022_7248572 crossref_primary_10_2217_epi_2022_0098 crossref_primary_10_1093_bib_bbab386 crossref_primary_10_1186_s12885_023_10918_y crossref_primary_10_3389_fimmu_2023_1197152 crossref_primary_10_3389_fimmu_2024_1497570 crossref_primary_10_1038_s41598_024_78911_4 crossref_primary_10_1038_s41598_024_74806_6 crossref_primary_10_18632_aging_205699 crossref_primary_10_1016_j_cbi_2023_110471 crossref_primary_10_1186_s12967_025_06225_8 crossref_primary_10_1093_neuonc_noad017 crossref_primary_10_3389_fcell_2022_769711 crossref_primary_10_3389_fmolb_2022_904098 crossref_primary_10_3390_biomedicines10123029 |
Cites_doi | 10.1002/sim.3148 10.1001/jama.2017.18718 10.1200/JCO.2015.61.5005 10.1097/CAD.0b013e328364312f 10.1016/j.canlet.2016.01.024 10.1186/s13046-019-1085-3 10.1371/journal.pcbi.1004790 10.1038/nmeth.3337 10.1038/nature11287 10.1186/gb-2011-12-4-r41 10.1126/science.aaa1348 10.1001/jamaoncol.2020.1024 10.1038/ncomms3612 10.1016/j.stemcr.2014.12.006 10.1158/1078-0432.CCR-09-2730 10.1016/j.cell.2017.03.042 10.3389/fgene.2019.01077 10.1038/ncomms5196 10.1002/stem.261 10.1007/s00280-017-3329-2 10.1186/s13046-018-1002-1 10.1186/1471-2105-14-7 10.1038/cdd.2013.136 10.18632/aging.103695 10.1200/JCO.2016.66.6552 10.1016/j.ebiom.2019.08.064 10.1016/j.ejphar.2017.01.017 10.1093/nar/gkx356 10.1016/j.cell.2014.12.033 10.1093/neuonc/noy072 10.1038/nrc1740 10.1016/j.ejphar.2015.06.007 10.1186/gb-2014-15-3-r47 10.1016/j.bbrc.2011.08.093 10.1101/gr.239244.118 10.1371/journal.pone.0107468 10.1080/21645515.2020.1782692 10.1371/journal.pone.0001195 10.1038/nrclinonc.2017.44 10.1002/1878-0261.12639 10.1056/NEJMoa1406498 10.1038/s41586-020-2209-9 10.1038/srep06207 10.1504/IJDMB.2014.064889 10.1158/1078-0432.CCR-09-0867 10.1158/0008-5472.CAN-06-2048 10.1158/2159-8290.CD-13-0183 10.1016/j.ccr.2013.08.001 10.1097/NEN.0b013e3181c391be 10.1038/nature05236 10.1186/1471-2105-14-244 10.1093/nar/gkw1092 10.1186/s12883-020-01672-w 10.1056/NEJMoa1308573 10.1016/j.immuni.2018.03.023 10.1093/neuonc/noq082 10.1038/nature14432 10.1038/75556 10.1038/nmat4997 10.1093/bioinformatics/bti270 10.1016/j.cell.2017.10.049 10.1093/bioinformatics/btq170 10.1038/modpathol.2014.94 10.1007/s11060-015-1729-x 10.1002/stem.102 10.1016/j.cell.2018.03.034 10.1016/S1470-2045(17)30517-X 10.1038/s41591-018-0136-1 10.1002/ijc.27385 10.1093/bioinformatics/btw325 10.1111/bpa.12367 10.1101/gad.261982.115 |
ContentType | Journal Article |
Copyright | The Author(s) 2021. Published by Oxford University Press. The Author(s) 2021. Published by Oxford University Press. 2021 |
Copyright_xml | – notice: The Author(s) 2021. Published by Oxford University Press. – notice: The Author(s) 2021. Published by Oxford University Press. 2021 |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1093/bib/bbab032 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-4054 |
ExternalDocumentID | PMC8425448 33839757 10_1093_bib_bbab032 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: 2019ZLH101 – fundername: ; grantid: 2016-I2M-2-001 – fundername: ; grantid: 2019-1002-73 – fundername: ; grantid: 7202150; 19JCZDJC64200 |
GroupedDBID | --- -E4 .2P .I3 0R~ 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAHBH AAIJN AAIMJ AAJKP AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAVAP AAVLN AAYXX ABDBF ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABPTD ABQLI ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACUHS ACUXJ ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHGBF AHMBA AHQJS AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMNDL ANAKG APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C45 CDBKE CITATION CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ K1G KBUDW KOP KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 ADRIX AFXEN BCRHZ GROUPED_DOAJ M49 NPM ROX 7X8 5PM |
ID | FETCH-LOGICAL-c381t-244e2b45d9b19c84f9e3c83c81ce6a9fd205de161c3d3df8437534e388fa0e693 |
ISSN | 1467-5463 1477-4054 |
IngestDate | Thu Aug 21 14:37:59 EDT 2025 Fri Jul 11 15:27:25 EDT 2025 Wed Feb 19 02:28:41 EST 2025 Thu Apr 24 23:10:20 EDT 2025 Tue Jul 01 03:39:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | stemness subgroup integrated multiomic analysis glioblastoma mRNAsi immunotherapy |
Language | English |
License | http://creativecommons.org/licenses/by-nc/4.0 The Author(s) 2021. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c381t-244e2b45d9b19c84f9e3c83c81ce6a9fd205de161c3d3df8437534e388fa0e693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Zihao Wang and Yaning Wang authors contribute equally to this work. |
ORCID | 0000-0002-0999-0499 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8425448 |
PMID | 33839757 |
PQID | 2511895141 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8425448 proquest_miscellaneous_2511895141 pubmed_primary_33839757 crossref_primary_10_1093_bib_bbab032 crossref_citationtrail_10_1093_bib_bbab032 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210902 |
PublicationDateYYYYMMDD | 2021-09-02 |
PublicationDate_xml | – month: 09 year: 2021 text: 20210902 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Briefings in bioinformatics |
PublicationTitleAlternate | Brief Bioinform |
PublicationYear | 2021 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Di Tomaso (2021090815133840400_ref60) 2010; 16 Snyder (2021090815133840400_ref12) 2014; 371 Budczies (2021090815133840400_ref23) 2018; 7 Bielecka-Wajdman (2021090815133840400_ref69) 2017; 79 Malta (2021090815133840400_ref6) 2018; 173 Geeleher (2021090815133840400_ref41) 2014; 9 Reifenberger (2021090815133840400_ref54) 2012; 131 Jahchan (2021090815133840400_ref65) 2013; 3 Bhat (2021090815133840400_ref73) 2013; 24 Kanehisa (2021090815133840400_ref33) 2017; 45 Kim (2021090815133840400_ref75) 2015; 4 He (2021090815133840400_ref29) 2018; 37 Bjerkvig (2021090815133840400_ref7) 2005; 5 Ge (2021090815133840400_ref9) 2017; 169 Sandmann (2021090815133840400_ref5) 2015; 33 Pellegatta (2021090815133840400_ref62) 2006; 66 Smyth (2021090815133840400_ref20) 2005; 21 Gilbert (2021090815133840400_ref4) 2014; 370 Yang (2021090815133840400_ref38) 2020; 14 Wang (2021090815133840400_ref72) 2010; 28 Subramanian (2021090815133840400_ref43) 2017; 171 Kim (2021090815133840400_ref45) 2014; 10 Bouffet (2021090815133840400_ref18) 2016; 34 Pula (2021090815133840400_ref64) 2013; 24 Karachi (2021090815133840400_ref76) 2018; 20 Ashburner (2021090815133840400_ref32) 2000; 25 Venere (2021090815133840400_ref74) 2014; 21 Skidmore (2021090815133840400_ref22) 2016; 32 Li (2021090815133840400_ref49) 2019; 47 Zhang (2021090815133840400_ref31) 2020 Chan (2021090815133840400_ref51) 2015; 28 Louveau (2021090815133840400_ref14) 2015; 523 Sokolov (2021090815133840400_ref26) 2016; 12 Mayakonda (2021090815133840400_ref21) 2018; 28 Shibue (2021090815133840400_ref8) 2017; 14 Yang (2021090815133840400_ref16) 2021; 17 Wang (2021090815133840400_ref37) 2020; 12 Bao (2021090815133840400_ref71) 2006; 444 Zacher (2021090815133840400_ref52) 2017; 27 Yoshihara (2021090815133840400_ref27) 2013; 4 Wilkerson (2021090815133840400_ref35) 2010; 26 Jiang (2021090815133840400_ref39) 2018; 24 Ortiz (2021090815133840400_ref67) 2017; 797 Weller (2021090815133840400_ref57) 2017; 18 Watkins (2021090815133840400_ref13) 2014; 5 Yuan (2021090815133840400_ref66) 2015; 761 Wang (2021090815133840400_ref34) 2017; 45 Geeleher (2021090815133840400_ref42) 2014; 15 Wen (2021090815133840400_ref1) 2017; 23 Mermel (2021090815133840400_ref24) 2011; 12 Jeon (2021090815133840400_ref68) 2011; 413 Rooney (2021090815133840400_ref56) 2015; 160 Esparza (2021090815133840400_ref10) 2015; 123 Xu (2021090815133840400_ref63) 2009; 27 Yperman (2021090815133840400_ref46) 2020; 20 Reardon (2021090815133840400_ref15) 2020; 6 Touat (2021090815133840400_ref17) 2020; 580 Hoshida (2021090815133840400_ref40) 2007; 2 Lathia (2021090815133840400_ref59) 2015; 29 Thorsson (2021090815133840400_ref55) 2018; 48 Xu (2021090815133840400_ref48) 2017; 16 Jiang (2021090815133840400_ref2) 2016; 375 Wang (2021090815133840400_ref58) 2019; 38 Li (2021090815133840400_ref47) 2019; 10 Stupp (2021090815133840400_ref3) 2017; 318 Rizvi (2021090815133840400_ref11) 2015; 348 Wu (2021090815133840400_ref61) 2010; 12 Sauerbrei (2021090815133840400_ref44) 2007; 26 Hänzelmann (2021090815133840400_ref30) 2013; 14 Chen (2021090815133840400_ref70) 2012; 488 Zhao (2021090815133840400_ref19) 2014; 9 Snuderl (2021090815133840400_ref53) 2009; 15 Zhang (2021090815133840400_ref25) 2013; 14 Newman (2021090815133840400_ref28) 2015; 12 Şenbabaoğlu (2021090815133840400_ref36) 2014; 4 Horbinski (2021090815133840400_ref50) 2009; 68 |
References_xml | – volume: 26 start-page: 5512 year: 2007 ident: 2021090815133840400_ref44 article-title: Selection of important variables and determination of functional form for continuous predictors in multivariable model building publication-title: Stat Med doi: 10.1002/sim.3148 – volume: 318 start-page: 2306 year: 2017 ident: 2021090815133840400_ref3 article-title: Effect of tumor-treating fields plus maintenance Temozolomide vs maintenance Temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial publication-title: JAMA doi: 10.1001/jama.2017.18718 – year: 2020 ident: 2021090815133840400_ref31 article-title: Depiction of tumor stemlike features and underlying relationships with hazard immune infiltrations based on large prostate cancer cohorts publication-title: Brief Bioinform – volume: 33 start-page: 2735 year: 2015 ident: 2021090815133840400_ref5 article-title: Patients with proneural glioblastoma may derive overall survival benefit from the addition of bevacizumab to first-line radiotherapy and Temozolomide: retrospective analysis of the AVAglio trial publication-title: J Clin Oncol doi: 10.1200/JCO.2015.61.5005 – volume: 24 start-page: 899 year: 2013 ident: 2021090815133840400_ref64 article-title: The tricyclic antidepressant amitriptyline is cytotoxic to HTB114 human leiomyosarcoma and induces p75(NTR)-dependent apoptosis publication-title: Anticancer Drugs doi: 10.1097/CAD.0b013e328364312f – volume: 375 start-page: 263 year: 2016 ident: 2021090815133840400_ref2 article-title: CGCG clinical practice guidelines for the management of adult diffuse gliomas publication-title: Cancer Lett doi: 10.1016/j.canlet.2016.01.024 – volume: 38 start-page: 87 year: 2019 ident: 2021090815133840400_ref58 article-title: Challenges and potential of PD-1/PD-L1 checkpoint blockade immunotherapy for glioblastoma publication-title: J Exp Clin Cancer Res doi: 10.1186/s13046-019-1085-3 – volume: 12 year: 2016 ident: 2021090815133840400_ref26 article-title: Pathway-based genomics prediction using generalized elastic net publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1004790 – volume: 12 start-page: 453 year: 2015 ident: 2021090815133840400_ref28 article-title: Robust enumeration of cell subsets from tissue expression profiles publication-title: Nat Methods doi: 10.1038/nmeth.3337 – volume: 488 start-page: 522 year: 2012 ident: 2021090815133840400_ref70 article-title: A restricted cell population propagates glioblastoma growth after chemotherapy publication-title: Nature doi: 10.1038/nature11287 – volume: 12 start-page: R41 year: 2011 ident: 2021090815133840400_ref24 article-title: GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers publication-title: Genome Biol doi: 10.1186/gb-2011-12-4-r41 – volume: 348 start-page: 124 year: 2015 ident: 2021090815133840400_ref11 article-title: Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer publication-title: Science doi: 10.1126/science.aaa1348 – volume: 6 start-page: 1003 year: 2020 ident: 2021090815133840400_ref15 article-title: Effect of Nivolumab vs bevacizumab in patients with recurrent glioblastoma: the CheckMate 143 phase 3 randomized clinical trial publication-title: JAMA Oncol doi: 10.1001/jamaoncol.2020.1024 – volume: 4 start-page: 2612 year: 2013 ident: 2021090815133840400_ref27 article-title: Inferring tumour purity and stromal and immune cell admixture from expression data publication-title: Nat Commun doi: 10.1038/ncomms3612 – volume: 4 start-page: 226 year: 2015 ident: 2021090815133840400_ref75 article-title: EZH2 protects glioma stem cells from radiation-induced cell death in a MELK/FOXM1-dependent manner publication-title: Stem Cell Reports doi: 10.1016/j.stemcr.2014.12.006 – volume: 16 start-page: 800 year: 2010 ident: 2021090815133840400_ref60 article-title: Immunobiological characterization of cancer stem cells isolated from glioblastoma patients publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-09-2730 – volume: 169 start-page: 636 year: 2017 ident: 2021090815133840400_ref9 article-title: Stem cell lineage infidelity drives wound repair and cancer publication-title: Cell doi: 10.1016/j.cell.2017.03.042 – volume: 10 start-page: 1077 year: 2019 ident: 2021090815133840400_ref47 article-title: Gene expression value prediction based on XGBoost algorithm publication-title: Front Genet doi: 10.3389/fgene.2019.01077 – volume: 5 start-page: 4196 year: 2014 ident: 2021090815133840400_ref13 article-title: Disruption of astrocyte-vascular coupling and the blood-brain barrier by invading glioma cells publication-title: Nat Commun doi: 10.1038/ncomms5196 – volume: 28 start-page: 17 year: 2010 ident: 2021090815133840400_ref72 article-title: Notch promotes radioresistance of glioma stem cells publication-title: Stem Cells doi: 10.1002/stem.261 – volume: 9 year: 2014 ident: 2021090815133840400_ref19 article-title: Comparison of RNA-Seq and microarray in transcriptome profiling of activated T cells publication-title: PLoS One – volume: 79 start-page: 1249 year: 2017 ident: 2021090815133840400_ref69 article-title: Reversing glioma malignancy: a new look at the role of antidepressant drugs as adjuvant therapy for glioblastoma multiforme publication-title: Cancer Chemother Pharmacol doi: 10.1007/s00280-017-3329-2 – volume: 37 start-page: 327 year: 2018 ident: 2021090815133840400_ref29 article-title: Classification of triple-negative breast cancers based on Immunogenomic profiling publication-title: J Exp Clin Cancer Res doi: 10.1186/s13046-018-1002-1 – volume: 14 start-page: 7 year: 2013 ident: 2021090815133840400_ref30 article-title: Gene set variation analysis for microarray and RNA-seq data publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-14-7 – volume: 21 start-page: 258 year: 2014 ident: 2021090815133840400_ref74 article-title: Therapeutic targeting of constitutive PARP activation compromises stem cell phenotype and survival of glioblastoma-initiating cells publication-title: Cell Death Differ doi: 10.1038/cdd.2013.136 – volume: 12 start-page: 18297 year: 2020 ident: 2021090815133840400_ref37 article-title: Glioblastoma cell differentiation trajectory predicts the immunotherapy response and overall survival of patients publication-title: Aging (Albany NY) doi: 10.18632/aging.103695 – volume: 34 start-page: 2206 year: 2016 ident: 2021090815133840400_ref18 article-title: Immune checkpoint inhibition for Hypermutant glioblastoma Multiforme resulting from germline Biallelic mismatch repair deficiency publication-title: J Clin Oncol doi: 10.1200/JCO.2016.66.6552 – volume: 47 start-page: 128 year: 2019 ident: 2021090815133840400_ref49 article-title: Development and validation of a CIMP-associated prognostic model for hepatocellular carcinoma publication-title: EBioMedicine doi: 10.1016/j.ebiom.2019.08.064 – volume: 797 start-page: 75 year: 2017 ident: 2021090815133840400_ref67 article-title: Amitriptyline down-regulates coenzyme Q(10) biosynthesis in lung cancer cells publication-title: Eur J Pharmacol doi: 10.1016/j.ejphar.2017.01.017 – volume: 7 year: 2018 ident: 2021090815133840400_ref23 article-title: Integrated analysis of the immunological and genetic status in and across cancer types: impact of mutational signatures beyond tumor mutational burden publication-title: Onco Targets Ther – volume: 45 start-page: W130 year: 2017 ident: 2021090815133840400_ref34 article-title: WebGestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx356 – volume: 160 start-page: 48 year: 2015 ident: 2021090815133840400_ref56 article-title: Molecular and genetic properties of tumors associated with local immune cytolytic activity publication-title: Cell doi: 10.1016/j.cell.2014.12.033 – volume: 20 start-page: 1566 year: 2018 ident: 2021090815133840400_ref76 article-title: Temozolomide for immunomodulation in the treatment of glioblastoma publication-title: Neuro Oncol doi: 10.1093/neuonc/noy072 – volume: 5 start-page: 899 year: 2005 ident: 2021090815133840400_ref7 article-title: Opinion: the origin of the cancer stem cell: current controversies and new insights publication-title: Nat Rev Cancer doi: 10.1038/nrc1740 – volume: 761 start-page: 309 year: 2015 ident: 2021090815133840400_ref66 article-title: Nortriptyline induces mitochondria and death receptor-mediated apoptosis in bladder cancer cells and inhibits bladder tumor growth in vivo publication-title: Eur J Pharmacol doi: 10.1016/j.ejphar.2015.06.007 – volume: 15 start-page: R47 year: 2014 ident: 2021090815133840400_ref42 article-title: Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines publication-title: Genome Biol doi: 10.1186/gb-2014-15-3-r47 – volume: 413 start-page: 311 year: 2011 ident: 2021090815133840400_ref68 article-title: The tricyclic antidepressant imipramine induces autophagic cell death in U-87MG glioma cells publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2011.08.093 – volume: 23 start-page: 1531 year: 2017 ident: 2021090815133840400_ref1 article-title: 2016 World Health Organization classification of central nervous system Tumors publication-title: Continuum (Minneap Minn) – volume: 28 start-page: 1747 year: 2018 ident: 2021090815133840400_ref21 article-title: Maftools: efficient and comprehensive analysis of somatic variants in cancer publication-title: Genome Res doi: 10.1101/gr.239244.118 – volume: 9 year: 2014 ident: 2021090815133840400_ref41 article-title: pRRophetic: an R package for prediction of clinical chemotherapeutic response from tumor gene expression levels publication-title: PLoS One doi: 10.1371/journal.pone.0107468 – volume: 17 start-page: 546 year: 2021 ident: 2021090815133840400_ref16 article-title: 1/PD-L1 immune checkpoint inhibitors in glioblastoma: clinical studies, challenges and potential publication-title: Hum Vaccin Immunother doi: 10.1080/21645515.2020.1782692 – volume: 2 year: 2007 ident: 2021090815133840400_ref40 article-title: Subclass mapping: identifying common subtypes in independent disease data sets publication-title: PLoS One doi: 10.1371/journal.pone.0001195 – volume: 14 start-page: 611 year: 2017 ident: 2021090815133840400_ref8 article-title: CSCs, and drug resistance: the mechanistic link and clinical implications publication-title: Nat Rev Clin Oncol doi: 10.1038/nrclinonc.2017.44 – volume: 14 start-page: 896 year: 2020 ident: 2021090815133840400_ref38 article-title: Metabolism-associated molecular classification of hepatocellular carcinoma publication-title: Mol Oncol doi: 10.1002/1878-0261.12639 – volume: 371 start-page: 2189 year: 2014 ident: 2021090815133840400_ref12 article-title: Genetic basis for clinical response to CTLA-4 blockade in melanoma publication-title: N Engl J Med doi: 10.1056/NEJMoa1406498 – volume: 580 start-page: 517 year: 2020 ident: 2021090815133840400_ref17 article-title: Mechanisms and therapeutic implications of hypermutation in gliomas publication-title: Nature doi: 10.1038/s41586-020-2209-9 – volume: 4 start-page: 6207 year: 2014 ident: 2021090815133840400_ref36 article-title: Critical limitations of consensus clustering in class discovery publication-title: Sci Rep doi: 10.1038/srep06207 – volume: 10 start-page: 374 year: 2014 ident: 2021090815133840400_ref45 article-title: Margin-maximised redundancy-minimised SVM-RFE for diagnostic classification of mammograms publication-title: Int J Data Min Bioinform doi: 10.1504/IJDMB.2014.064889 – volume: 15 start-page: 6430 year: 2009 ident: 2021090815133840400_ref53 article-title: Polysomy for chromosomes 1 and 19 predicts earlier recurrence in anaplastic oligodendrogliomas with concurrent 1p/19q loss publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-09-0867 – volume: 66 start-page: 10247 year: 2006 ident: 2021090815133840400_ref62 article-title: Neurospheres enriched in cancer stem-like cells are highly effective in eliciting a dendritic cell-mediated immune response against malignant gliomas publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-06-2048 – volume: 3 start-page: 1364 year: 2013 ident: 2021090815133840400_ref65 article-title: A drug repositioning approach identifies tricyclic antidepressants as inhibitors of small cell lung cancer and other neuroendocrine tumors publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-13-0183 – volume: 24 start-page: 331 year: 2013 ident: 2021090815133840400_ref73 article-title: Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma publication-title: Cancer Cell doi: 10.1016/j.ccr.2013.08.001 – volume: 68 start-page: 1319 year: 2009 ident: 2021090815133840400_ref50 article-title: Diagnostic use of IDH1/2 mutation analysis in routine clinical testing of formalin-fixed, paraffin-embedded glioma tissues publication-title: J Neuropathol Exp Neurol doi: 10.1097/NEN.0b013e3181c391be – volume: 444 start-page: 756 year: 2006 ident: 2021090815133840400_ref71 article-title: Glioma stem cells promote radioresistance by preferential activation of the DNA damage response publication-title: Nature doi: 10.1038/nature05236 – volume: 14 start-page: 244 year: 2013 ident: 2021090815133840400_ref25 article-title: RCircos: an R package for Circos 2D track plots publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-14-244 – volume: 45 start-page: D353 year: 2017 ident: 2021090815133840400_ref33 article-title: KEGG: new perspectives on genomes, pathways, diseases and drugs publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw1092 – volume: 20 start-page: 105 year: 2020 ident: 2021090815133840400_ref46 article-title: Machine learning analysis of motor evoked potential time series to predict disability progression in multiple sclerosis publication-title: BMC Neurol doi: 10.1186/s12883-020-01672-w – volume: 370 start-page: 699 year: 2014 ident: 2021090815133840400_ref4 article-title: A randomized trial of bevacizumab for newly diagnosed glioblastoma publication-title: N Engl J Med doi: 10.1056/NEJMoa1308573 – volume: 48 start-page: 812 year: 2018 ident: 2021090815133840400_ref55 article-title: The immune landscape of cancer publication-title: Immunity doi: 10.1016/j.immuni.2018.03.023 – volume: 12 start-page: 1113 year: 2010 ident: 2021090815133840400_ref61 article-title: Glioma cancer stem cells induce immunosuppressive macrophages/microglia publication-title: Neuro Oncol doi: 10.1093/neuonc/noq082 – volume: 523 start-page: 337 year: 2015 ident: 2021090815133840400_ref14 article-title: Structural and functional features of central nervous system lymphatic vessels publication-title: Nature doi: 10.1038/nature14432 – volume: 25 start-page: 25 year: 2000 ident: 2021090815133840400_ref32 article-title: Gene ontology: tool for the unification of biology. The gene ontology consortium publication-title: Nat Genet doi: 10.1038/75556 – volume: 16 start-page: 1155 year: 2017 ident: 2021090815133840400_ref48 article-title: Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma publication-title: Nat Mater doi: 10.1038/nmat4997 – volume: 21 start-page: 2067 year: 2005 ident: 2021090815133840400_ref20 article-title: Use of within-array replicate spots for assessing differential expression in microarray experiments publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti270 – volume: 171 start-page: 1437 year: 2017 ident: 2021090815133840400_ref43 article-title: A next generation connectivity map: L1000 platform and the first 1,000,000 profiles publication-title: Cell doi: 10.1016/j.cell.2017.10.049 – volume: 26 start-page: 1572 year: 2010 ident: 2021090815133840400_ref35 article-title: ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq170 – volume: 28 start-page: 177 year: 2015 ident: 2021090815133840400_ref51 article-title: TERT promoter mutations contribute to subset prognostication of lower-grade gliomas publication-title: Mod Pathol doi: 10.1038/modpathol.2014.94 – volume: 123 start-page: 449 year: 2015 ident: 2021090815133840400_ref10 article-title: Glioblastoma stem cells and stem cell-targeting immunotherapies publication-title: J Neurooncol doi: 10.1007/s11060-015-1729-x – volume: 27 start-page: 1734 year: 2009 ident: 2021090815133840400_ref63 article-title: Antigen-specific T-cell response from dendritic cell vaccination using cancer stem-like cell-associated antigens publication-title: Stem Cells doi: 10.1002/stem.102 – volume: 173 start-page: 338 year: 2018 ident: 2021090815133840400_ref6 article-title: Machine learning identifies Stemness features associated with oncogenic dedifferentiation publication-title: Cell doi: 10.1016/j.cell.2018.03.034 – volume: 18 start-page: 1373 year: 2017 ident: 2021090815133840400_ref57 article-title: Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind publication-title: international phase 3 trial, Lancet Oncol doi: 10.1016/S1470-2045(17)30517-X – volume: 24 start-page: 1550 year: 2018 ident: 2021090815133840400_ref39 article-title: Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response publication-title: Nat Med doi: 10.1038/s41591-018-0136-1 – volume: 131 start-page: 1342 year: 2012 ident: 2021090815133840400_ref54 article-title: Predictive impact of MGMT promoter methylation in glioblastoma of the elderly publication-title: Int J Cancer doi: 10.1002/ijc.27385 – volume: 32 start-page: 3012 year: 2016 ident: 2021090815133840400_ref22 article-title: GenVisR: genomic visualizations in R publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw325 – volume: 27 start-page: 146 year: 2017 ident: 2021090815133840400_ref52 article-title: Molecular diagnostics of gliomas using next generation sequencing of a glioma-tailored gene panel publication-title: Brain Pathol doi: 10.1111/bpa.12367 – volume: 29 start-page: 1203 year: 2015 ident: 2021090815133840400_ref59 article-title: Cancer stem cells in glioblastoma publication-title: Genes Dev doi: 10.1101/gad.261982.115 |
SSID | ssj0020781 |
Score | 2.5868704 |
Snippet | Glioblastoma (GBM) is the most malignant and lethal intracranial tumor, with extremely limited treatment options. Immunotherapy has been widely studied in GBM,... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Problem Solving Protocol |
Title | Machine learning revealed stemness features and a novel stemness-based classification with appealing implications in discriminating the prognosis, immunotherapy and temozolomide responses of 906 glioblastoma patients |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33839757 https://www.proquest.com/docview/2511895141 https://pubmed.ncbi.nlm.nih.gov/PMC8425448 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1La9tAEMcXN6XQS-m77osp5FRXiR6r17GUBFPyuCjU7UWspFUicCTTyIXm0_Vj9ON0ZnelSK4PacEIeyWtBPPzamc18x_GdsOwJFUxx8pyz7V4xnNLlIGNroqQOD2IPGlTgvPxSTA_458X_mIy-TWIWlq32V5-vTWv5H-sim1oV8qS_QfL9p1iA35H--IWLYzbW9n4WEVCyq70wzklotDEr5iRPLMaxEqplDu1ErOY1c0Puez3WvQMK2Y5zaApZEjDoNPdVivsSSW8bMScUx6vrgXW3qRaNRSvp-UKKso4MXldWtyJonmvcZC9rAoq0qKCcrXWbWwHs_Nl1WR4B21zKTqZ16vRu2b05ktVXRSvnlWN0XptB3H6X8yq97fqQjSbjV9F3T2faXgzrQkpHa2rrnlharvMzflmIcR1VKTXYG3U4WGIjGlN6j25pc0M-K47ANvf-hzRGltZldE2E5ltFmFHet0np-nh2dFRmhwskjvsrouOCo20yemid_lJSknlt5nbMBmi2P0-dr5vuh7Pif5ydDbjdQcToOQhe2A8F_ioMXzEJrJ-zO7pWqY_n7DfBkboYIQORuhwgw5GQCpAgIIRxjDCGEYgGKGHEYYwQlXDGEZA6qCH8QOMUFQXHaIIPYrQlIAowhBF6FB8ys4OD5JPc8uUDbFynH62Fk5YpZtxv4gzJ84jXsbSyyP8OLkMRFwWru0XEj2d3Cu8ooy4hy47l14UlcKWQew9Yzt1U8sXDOIgEKGdk59fct_lURFGeK7EXyV3pTdl7zvDpbnR1KfSLstUx3Z4KVo5NVaest3-4JWWktl-2LuOgBSHenp_J2rZrK9StRqAHhF3puy5JqLviFaa4tAPpywcsdIfQDLy4z11daHk5OlFPOfRy1tc9xW7f_PPe8122u9r-QYn5W32VnH_B_kM9-A |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+revealed+stemness+features+and+a+novel+stemness-based+classification+with+appealing+implications+in+discriminating+the+prognosis%2C+immunotherapy+and+temozolomide+responses+of+906+glioblastoma+patients&rft.jtitle=Briefings+in+bioinformatics&rft.au=Wang%2C+Zihao&rft.au=Wang%2C+Yaning&rft.au=Yang%2C+Tianrui&rft.au=Xing%2C+Hao&rft.date=2021-09-02&rft.issn=1477-4054&rft.eissn=1477-4054&rft.volume=22&rft.issue=5&rft_id=info:doi/10.1093%2Fbib%2Fbbab032&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |