A Study on Interpretable Electric Load Forecasting Model with Spatiotemporal Feature Fusion Based on Attention Mechanism
Driven by the global “double carbon” goal, the volatility of renewable energy poses a challenge to the stability of power systems. Traditional methods have difficulty dealing with high-dimensional nonlinear data, and the single deep learning model has the limitations of spatiotemporal feature decoup...
Saved in:
Published in | Technologies (Basel) Vol. 13; no. 6; p. 219 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.06.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Driven by the global “double carbon” goal, the volatility of renewable energy poses a challenge to the stability of power systems. Traditional methods have difficulty dealing with high-dimensional nonlinear data, and the single deep learning model has the limitations of spatiotemporal feature decoupling and being a “black box”. Aiming at the problem of insufficient accuracy and interpretability of power load forecasting in a renewable energy grid connected scenario, this study proposes an interpretable spatiotemporal feature fusion model based on an attention mechanism. Through CNN layered extraction of multi-dimensional space–time features such as meteorology and electricity price, BiLSTM bi-directional modeling time series rely on capturing the evolution rules of load series before and after, and the improved self-attention mechanism dynamically focuses on key features. Combined with the SHAP quantitative feature contribution and feature deletion experiment, a complete chain of “feature extraction time series modeling weight allocation interpretation and verification” is constructed. The experimental results show that the determination coefficient R2 of the model on the Australian electricity market data set reaches 0.9935, which is 84.6% and 59.8% higher than that of the LSTM and GRU models, respectively. The prediction error (RMSE = 105.5079) is 9.7% lower than that of TCN-LSTM model and 52.1% compared to the GNN (220.6049). Cross scenario validation shows that the generalization performance is excellent (R2 ≥ 0.9849). The interpretability analysis reveals that electricity price (average absolute value of SHAP 716.7761) is the core influencing factor, and its lack leads to a 0.76% decline in R2. The research breaks through the limitation of time–space decoupling and the unexplainable bottleneck of traditional models, provides a transparent basis for power dispatching, and has an important reference value for the construction of new power systems. |
---|---|
AbstractList | Driven by the global “double carbon” goal, the volatility of renewable energy poses a challenge to the stability of power systems. Traditional methods have difficulty dealing with high-dimensional nonlinear data, and the single deep learning model has the limitations of spatiotemporal feature decoupling and being a “black box”. Aiming at the problem of insufficient accuracy and interpretability of power load forecasting in a renewable energy grid connected scenario, this study proposes an interpretable spatiotemporal feature fusion model based on an attention mechanism. Through CNN layered extraction of multi-dimensional space–time features such as meteorology and electricity price, BiLSTM bi-directional modeling time series rely on capturing the evolution rules of load series before and after, and the improved self-attention mechanism dynamically focuses on key features. Combined with the SHAP quantitative feature contribution and feature deletion experiment, a complete chain of “feature extraction time series modeling weight allocation interpretation and verification” is constructed. The experimental results show that the determination coefficient R2 of the model on the Australian electricity market data set reaches 0.9935, which is 84.6% and 59.8% higher than that of the LSTM and GRU models, respectively. The prediction error (RMSE = 105.5079) is 9.7% lower than that of TCN-LSTM model and 52.1% compared to the GNN (220.6049). Cross scenario validation shows that the generalization performance is excellent (R2 ≥ 0.9849). The interpretability analysis reveals that electricity price (average absolute value of SHAP 716.7761) is the core influencing factor, and its lack leads to a 0.76% decline in R2. The research breaks through the limitation of time–space decoupling and the unexplainable bottleneck of traditional models, provides a transparent basis for power dispatching, and has an important reference value for the construction of new power systems. Driven by the global “double carbon” goal, the volatility of renewable energy poses a challenge to the stability of power systems. Traditional methods have difficulty dealing with high-dimensional nonlinear data, and the single deep learning model has the limitations of spatiotemporal feature decoupling and being a “black box”. Aiming at the problem of insufficient accuracy and interpretability of power load forecasting in a renewable energy grid connected scenario, this study proposes an interpretable spatiotemporal feature fusion model based on an attention mechanism. Through CNN layered extraction of multi-dimensional space–time features such as meteorology and electricity price, BiLSTM bi-directional modeling time series rely on capturing the evolution rules of load series before and after, and the improved self-attention mechanism dynamically focuses on key features. Combined with the SHAP quantitative feature contribution and feature deletion experiment, a complete chain of “feature extraction time series modeling weight allocation interpretation and verification” is constructed. The experimental results show that the determination coefficient R[sup.2] of the model on the Australian electricity market data set reaches 0.9935, which is 84.6% and 59.8% higher than that of the LSTM and GRU models, respectively. The prediction error (RMSE = 105.5079) is 9.7% lower than that of TCN-LSTM model and 52.1% compared to the GNN (220.6049). Cross scenario validation shows that the generalization performance is excellent (R[sup.2] ≥ 0.9849). The interpretability analysis reveals that electricity price (average absolute value of SHAP 716.7761) is the core influencing factor, and its lack leads to a 0.76% decline in R[sup.2] . The research breaks through the limitation of time–space decoupling and the unexplainable bottleneck of traditional models, provides a transparent basis for power dispatching, and has an important reference value for the construction of new power systems. |
Audience | Academic |
Author | Li, Shuaishuai Chen, Weizhen |
Author_xml | – sequence: 1 givenname: Shuaishuai orcidid: 0009-0007-9000-4927 surname: Li fullname: Li, Shuaishuai – sequence: 2 givenname: Weizhen surname: Chen fullname: Chen, Weizhen |
BookMark | eNptkU9vEzEQxVeoSJTSb8DBEucU_1nv2sdQNSVSKg6F82rWHqeONvZiewX99nUIqjgwc5jR08xPT3rvm4sQAzbNR0ZvhND0c0HzFOIU9x4zE7SjnOk3zSXnvF_1VNGLf_Z3zXXOB1pLM6E6edn8XpPHsthnEgPZhoJpTlhgnJDcTWhK8obsIliyiQkN5OLDnjxEixP55csTeZyh-FjwOMcEE9kglCUh2SzZV-AXyGhP5HUpGMpJeqhuIfh8_NC8dTBlvP47r5ofm7vvt19Xu2_329v1bmWEYmXFQDvLO8GcbFFzpTWj0FslBWgcR8pBaCkcSq4Rbeuo0VRKTlUvkfVWi6tme-baCIdhTv4I6XmI4Ic_Qkz7AVLxZsIB0THeOkm1NC0fO621oWxk1jjjmBWV9enMmlP8uWAuwyEuKVT7g-Bc6JYLperVzflqDxXqg4slgalt8ehNDc_5qq9VK1XPJOvqQ3t-MCnmnNC92mR0OGU8_C9j8QKIBJ95 |
Cites_doi | 10.1109/IAECST60924.2023.10502841 10.1016/j.apenergy.2023.122079 10.1007/978-3-642-24797-2 10.1016/j.oceaneng.2024.117598 10.1038/nature14539 10.1016/j.epsr.2024.110263 10.1155/2024/2403847 10.3390/app15084520 10.3390/electricity6020026 10.1016/j.apenergy.2024.123788 10.20944/preprints202405.0037.v1 10.1007/s42835-022-01161-9 10.3390/en17102312 10.1016/j.egyai.2022.100169 10.1016/j.aiopen.2021.01.001 10.1109/59.910780 10.3390/en12081520 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7X5 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU COVID D1I DWQXO F28 FR3 GNUQQ HCIFZ JQ2 K6~ K7- KB. L6V M7S P5Z P62 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS DOA |
DOI | 10.3390/technologies13060219 |
DatabaseName | CrossRef Entrepreneurship Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Coronavirus Research Database ProQuest Materials Science Collection ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection Computer Science Database Materials Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering ProQuest Entrepreneurship ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Business Premium Collection Engineering Database ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2227-7080 |
ExternalDocumentID | oai_doaj_org_article_eef124f5095c42b6999c01b1dcfcf1d3 A845871516 10_3390_technologies13060219 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ AAYXX ABJCF ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KB. KC. KQ8 L6V M7S MODMG M~E OK1 P62 PDBOC PHGZM PHGZT PIMPY PQGLB PROAC PTHSS 7X5 8FD ABUWG AZQEC BEZIV COVID DWQXO F28 FR3 GNUQQ JQ2 K6~ PKEHL PQEST PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c381t-1a9fd2631f54e9289910a7d853a9ebb02a3953fe529eed4f0c905520875e17d93 |
IEDL.DBID | DOA |
ISSN | 2227-7080 |
IngestDate | Wed Aug 27 01:16:49 EDT 2025 Fri Jul 25 09:11:49 EDT 2025 Tue Jul 22 03:42:53 EDT 2025 Sun Aug 03 02:36:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c381t-1a9fd2631f54e9289910a7d853a9ebb02a3953fe529eed4f0c905520875e17d93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0007-9000-4927 |
OpenAccessLink | https://doaj.org/article/eef124f5095c42b6999c01b1dcfcf1d3 |
PQID | 3223942388 |
PQPubID | 2032323 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_eef124f5095c42b6999c01b1dcfcf1d3 proquest_journals_3223942388 gale_infotracacademiconefile_A845871516 crossref_primary_10_3390_technologies13060219 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Technologies (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Li (ref_33) 2000; 44 Wei (ref_38) 1999; 6 Machlev (ref_11) 2022; 9 LeCun (ref_12) 2015; 521 ref_36 ref_13 Ouyang (ref_19) 2023; 51 Zhuang (ref_9) 2021; 54 ref_10 Zhang (ref_35) 2002; 4 Zhao (ref_31) 2025; 38 Sun (ref_34) 2024; 301 Hasanat (ref_20) 2024; 2024 Song (ref_3) 2024; 373 ref_16 ref_15 ref_37 Cheng (ref_30) 2020; 54 Gao (ref_32) 2020; 1 Lv (ref_4) 2022; 20 Mansoor (ref_17) 2024; 230 ref_25 ref_24 ref_23 ref_21 Ye (ref_22) 2024; 353 ref_1 ref_2 Zhou (ref_18) 2020; 1 Ren (ref_14) 2022; 50 ref_28 Bao (ref_26) 2021; 48 ref_27 Hippert (ref_5) 2001; 16 Zhao (ref_8) 2024; 14 ref_7 ref_6 Lee (ref_29) 2023; 18 |
References_xml | – ident: ref_7 – ident: ref_28 doi: 10.1109/IAECST60924.2023.10502841 – volume: 353 start-page: 122079 year: 2024 ident: ref_22 article-title: Harnessing eXplainable Artificial Intelligence for Feature Selection in Time Series Energy Forecasting: A Comparative Analysis of Grad-CAM and SHAP publication-title: Appl. Energy doi: 10.1016/j.apenergy.2023.122079 – ident: ref_24 – ident: ref_13 doi: 10.1007/978-3-642-24797-2 – volume: 14 start-page: 169 year: 2024 ident: ref_8 article-title: Short-Term Power Load Forecasting Based on SSA-CNN-LSTM publication-title: Mod. Ind. Econ. Inf. Technol. – volume: 54 start-page: 792 year: 2020 ident: ref_30 article-title: Study on the Influence of Refined Meteorological Factors on Short-Term Power Load Forecasting publication-title: J. Cent. China Norm. Univ. (Nat. Sci.) – volume: 38 start-page: 990 year: 2025 ident: ref_31 article-title: Analysis of Influencing Factors of PM2.5 in Shaanxi Province Based on XGBoost-SHAP Method publication-title: Res. Environ. Sci. – volume: 301 start-page: 117598 year: 2024 ident: ref_34 article-title: CNN–LSTM–AM: A Power Prediction Model for Offshore Wind Turbines publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2024.117598 – ident: ref_37 – volume: 521 start-page: 436 year: 2015 ident: ref_12 article-title: Deep Learning publication-title: Nature doi: 10.1038/nature14539 – ident: ref_1 – volume: 54 start-page: 46 year: 2021 ident: ref_9 article-title: A Short-Term Power Load Forecasting Method Based on Multi-Model Fusion of CNN-LSTM-XGBoost publication-title: Electr. Power China – ident: ref_6 – volume: 230 start-page: 110263 year: 2024 ident: ref_17 article-title: Graph Convolutional Networks Based Short-Term Load Forecasting: Leveraging Spatial Information for Improved Accuracy publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2024.110263 – volume: 2024 start-page: 2403847 year: 2024 ident: ref_20 article-title: Enhancing Load Forecasting Accuracy in Smart Grids: A Novel Parallel Multichannel Network Approach Using 1D CNN and Bi-LSTM Models publication-title: Int. J. Energy Res. doi: 10.1155/2024/2403847 – ident: ref_25 – ident: ref_2 – volume: 44 start-page: 5 year: 2000 ident: ref_33 article-title: The Qualities and Image of an Ideal Librarian and Information Specialist publication-title: Libr. Inf. Serv. – volume: 1 start-page: 135 year: 2020 ident: ref_32 article-title: Solutions for Information Processing and Library Management Systems in the Internet Environment publication-title: China Flights – ident: ref_16 doi: 10.3390/app15084520 – ident: ref_21 doi: 10.3390/electricity6020026 – volume: 373 start-page: 123788 year: 2024 ident: ref_3 article-title: Multi-Energy Load Forecasting via Hierarchical Multi-Task Learning and Spatiotemporal Attention publication-title: Appl. Energy doi: 10.1016/j.apenergy.2024.123788 – ident: ref_23 doi: 10.20944/preprints202405.0037.v1 – ident: ref_15 – volume: 18 start-page: 579 year: 2023 ident: ref_29 article-title: SHAP Value-Based Feature Importance Analysis for Short-Term Load Forecasting publication-title: J. Electr. Eng. Technol. doi: 10.1007/s42835-022-01161-9 – ident: ref_27 doi: 10.3390/en17102312 – volume: 48 start-page: 1495 year: 2021 ident: ref_26 article-title: A Prediction Model for COVID-19 Epidemic Based on Spatiotemporal Attention Mechanism publication-title: J. Beijing Univ. Chem. Technol. – ident: ref_36 – volume: 6 start-page: 21 year: 1999 ident: ref_38 article-title: Newspaper Economics and Management publication-title: J. Rev. – volume: 20 start-page: 36 year: 2022 ident: ref_4 article-title: Battery Life Prediction Method Based on SVM and Decision Tree publication-title: Electr. Eng. Technol. – volume: 9 start-page: 100169 year: 2022 ident: ref_11 article-title: Explainable Artificial Intelligence (XAI) Techniques for Energy and Power Systems: Review, Challenges and Opportunities publication-title: Energy AI doi: 10.1016/j.egyai.2022.100169 – volume: 1 start-page: 57 year: 2020 ident: ref_18 article-title: Graph Neural Networks: A Review of Methods and Applications publication-title: AI Open doi: 10.1016/j.aiopen.2021.01.001 – volume: 16 start-page: 44 year: 2001 ident: ref_5 article-title: Neural Networks for Short-Term Load Forecasting: A Review and Evaluation publication-title: IEEE Trans. Power Syst. doi: 10.1109/59.910780 – ident: ref_10 doi: 10.3390/en12081520 – volume: 51 start-page: 132 year: 2023 ident: ref_19 article-title: Short-Term Power Load Forecasting Method Based on Improved Transfer Learning and Multi-Scale CNN-BiLSTM-Attention publication-title: Power Syst. Prot. Control – volume: 50 start-page: 108 year: 2022 ident: ref_14 article-title: Ultra-Short-Term Power Load Forecasting Based on CNN-BiLSTM-Attention publication-title: Power Syst. Prot. Control – volume: 4 start-page: 124 year: 2002 ident: ref_35 article-title: Limit Properties and Applications of Stochastic Perturbed Discontinuous Dynamical Systems publication-title: Pract. Theory Math. |
SSID | ssj0000913865 |
Score | 2.2935205 |
Snippet | Driven by the global “double carbon” goal, the volatility of renewable energy poses a challenge to the stability of power systems. Traditional methods have... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 219 |
SubjectTerms | Accuracy Algorithms Alternative energy sources attention mechanism China Decision making Decoupling Deep learning Electric power grids Electric power systems Electrical loads Electricity Electricity pricing Feature extraction Forecasting High temperature interpretability Machine learning Modelling Neural networks power load forecasting Prediction theory Renewable energy Renewable resources Root-mean-square errors spatiotemporal feature fusion Time series Wind power |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JS8NAFB60XvQgrlg35iB4CmabSeYkrbSIqIgLeBtmFaE2tU1B_73vpVMXUK9JSELe8n3v5S2EHAEHL7UH-04tKyNshYwUS1TEbay1zbXgDLuRr675-UN-8cgeQ8JtEsoq5z6xcdS2MpgjPwHFywRgf1mejl4j3BqFf1fDCo1FsgQuuCxbZKnbu765_cyy4NTLkrNZz1wG8f1JPc9YQyAK_psDxokfmNSM7v_LQTeo018jq4Eu0s5MvutkwQ03yMq3IYKb5K1DsRjwnVZD-lVCqAeO9poVN8-GXlbKUlzCadQEy5wpbkAbUMzB0rumpDpMqBpQpITTsaP9KabRaBdAzuKdO3U9K4ykVw6bhZ8nL1vkod-7PzuPwj6FyAAu11GihLcpzxLPcicw0kpiVVgAbCWc1nGqMsEy71gqADlzHxsRM5bizHuXFFZk26Q1rIZuh1AbW-sFN0C_dM59oQtnDbcF57lwcZ61STT_onI0G5shIdxACcjfJNAmXfzsn9fi0OvmQDV-ksGGpHMe2IgHisNMnmoO3NbEiU6s8cYnFh56jEKTaJr1WBkVOgzglXHIleyUoIsFUBzeJvtzucpgsxP5pWG7_5_eI8spbgFucjH7pFWPp-4AqEmtD4P-fQA8y-an priority: 102 providerName: ProQuest |
Title | A Study on Interpretable Electric Load Forecasting Model with Spatiotemporal Feature Fusion Based on Attention Mechanism |
URI | https://www.proquest.com/docview/3223942388 https://doaj.org/article/eef124f5095c42b6999c01b1dcfcf1d3 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NaxsxEB2a9JIcSr9C3bhGh0JOS1a7K-3qaAe7oTShpA3kJvQJAdcO9hqSf58Z7bp1IaGXXs1ihGY0780w8wbgM3LwxkZ834UXTUajkJkR3GTS59b6yiopaBr54lKeX1dfb8TNzqov6gnr5IG7izsNISIERcQ14arCSiQ0LueWexdd5D7pfCLm7SRTKQYrTsssu1m5EvP603ZbqcYEFOO2RGxTf2FRkux_LjAntJm9hlc9TWTj7nhv4EVYvIXDHfHAd3A_ZtQE-MCWC_anddDOA5um1Ta3jn1bGs9o-aYza2pvZrT5bM6o9sp-pFbqXplqzogKblaBzTZUPmMTBDdP_zxu264hkl0EGhK-Xf96D9ez6c-z86zfo5A5xOM240ZFX8iSR1EFRRkWz03tEaiNCtbmhSmVKGMQhULErGLuVC5EQVr3gddelUewv1guwgdgPvc-KumQdtlKxtrWwTvpaykrFfKqHEC2vVF918llaEwzyAL6KQsMYELX_vtbErtOP6AL6N4F9L9cYAAnZDRNT7JdGWf6yQI8Molb6XGDPlgjtZEDGG7tqvu3utYY0kqFrLJpPv6P0xzDQUE7glOlZgj77WoTPiFxae0I9prZlxG8nEwvv1-Nksc-AmY88RM |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiKdYKOADiFNUx7Gd-IDQFrps6W4vtFJvxk9UadmU3aygf4rfyEweLUjArdc4SiLPeL5vJvMg5CVw8MolON88yCrDUsjMytxmKjDngnBaSaxGnh-p6Yn4eCpPt8jPoRYG0yoHm9ga6lB7jJHvguIVGrC_qt6ef8twahT-XR1GaHRqcRgvvoPLtn5z8B7k-4rzyf7xu2nWTxXIPKBTk-VWp8BVkScpokZ_I2e2DABbVkfnGLeFlkWKkmvAD5GY10xKjp3fY14GbL4EJv-GKADJsTJ98uEypoM9Nisluwo9WGe7zRAfB7cX0EIBouo_ELAdFPAvOGgxbnKX3OnJKR132nSPbMXlfXL7t5aFD8iPMcXUwwtaL-lVwqJbRLrfDtQ583RW20Bx5Ke3a0yqpjhvbUEx4ks_tQncfT-sBUUCullFOtlg0I7uAaQGfPK4abo0TDqPWJp8tv76kJxcyz4_ItvLehkfExpYCEkrD2TPCZVKV8bgVSiVEjoyUYxINuyoOe-adBhwblAC5m8SGJE93PbLe7HFdnuhXn0x_Yk1MSbgPgkIlfSCOwVM2rPc5cEnn_IAL32NQjNoCJqV9bavZ4BPxpZaZlyB5pdAqNSI7AxyNb2FWJsrfX7y_-UX5Ob0eD4zs4Ojw6fkFsf5w20UaIdsN6tNfAakqHHPW02k5PN1q_4vjB0hBg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqVEJwQDxFaAs-gDit6vWuvfGhQkmbqKVtVAGVejN-VpVCtiQbQf9af11n9tGCBNx6TaIk8ozn-2Z25htC3gEHH9gI95t7MUhwFDIxIjWJ9Mxan1slBU4jH0_l_mn-6UycrZHrbhYG2yq7mFgHal86rJFvg-NlCrAfErbYtkWc7E0-Xv5IcIMUPmnt1mk0LnIYrn5C-rbcOdgDW7_nfDL-uruftBsGEgdIVSWpUdFzmaVR5EFh7pEyU3iAMKOCtYybTIksBsEVYEkemVNMCI4q8CEtPAoxQfhfLzAr6pH10Xh68vm2woOKmwMpmnm9LFNsu-qq5ZAEA3ZIwFf1Bx7WawP-BQ414k2ekMctVaXDxreekrUwf0Ye_SZg-Jz8GlJsRLyi5ZzetS_aWaDjer3OhaNHpfEUF4A6s8QWa4rb12YU67_0S93O3apjzSjS0dUi0MkKS3h0BADr8ZuHVdU0ZdLjgIPKF8vvL8jpvZz0S9Kbl_PwilDPvI9KOqB-NpexsEXwTvpCylwFlmd9knQnqi8byQ4NqQ5aQP_NAn0ywmO__SwKbtcvlItz3d5fHUIEJhSBXgmXcyuBVzuW2tS76GLq4Uc_oNE0hoVqYZxppxvgL6PAlh4O4B4UQK9kn2x2dtVtvFjqO-9-_f-335IH4Pb66GB6uEEeclxGXJeENkmvWqzCFjCkyr5pXZGSb_ft_TeT_CaY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Study+on+Interpretable+Electric+Load+Forecasting+Model+with+Spatiotemporal+Feature+Fusion+Based+on+Attention+Mechanism&rft.jtitle=Technologies+%28Basel%29&rft.au=Shuaishuai+Li&rft.au=Weizhen+Chen&rft.date=2025-06-01&rft.pub=MDPI+AG&rft.eissn=2227-7080&rft.volume=13&rft.issue=6&rft.spage=219&rft_id=info:doi/10.3390%2Ftechnologies13060219&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_eef124f5095c42b6999c01b1dcfcf1d3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7080&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7080&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7080&client=summon |