A Study on Interpretable Electric Load Forecasting Model with Spatiotemporal Feature Fusion Based on Attention Mechanism

Driven by the global “double carbon” goal, the volatility of renewable energy poses a challenge to the stability of power systems. Traditional methods have difficulty dealing with high-dimensional nonlinear data, and the single deep learning model has the limitations of spatiotemporal feature decoup...

Full description

Saved in:
Bibliographic Details
Published inTechnologies (Basel) Vol. 13; no. 6; p. 219
Main Authors Li, Shuaishuai, Chen, Weizhen
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.06.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Driven by the global “double carbon” goal, the volatility of renewable energy poses a challenge to the stability of power systems. Traditional methods have difficulty dealing with high-dimensional nonlinear data, and the single deep learning model has the limitations of spatiotemporal feature decoupling and being a “black box”. Aiming at the problem of insufficient accuracy and interpretability of power load forecasting in a renewable energy grid connected scenario, this study proposes an interpretable spatiotemporal feature fusion model based on an attention mechanism. Through CNN layered extraction of multi-dimensional space–time features such as meteorology and electricity price, BiLSTM bi-directional modeling time series rely on capturing the evolution rules of load series before and after, and the improved self-attention mechanism dynamically focuses on key features. Combined with the SHAP quantitative feature contribution and feature deletion experiment, a complete chain of “feature extraction time series modeling weight allocation interpretation and verification” is constructed. The experimental results show that the determination coefficient R2 of the model on the Australian electricity market data set reaches 0.9935, which is 84.6% and 59.8% higher than that of the LSTM and GRU models, respectively. The prediction error (RMSE = 105.5079) is 9.7% lower than that of TCN-LSTM model and 52.1% compared to the GNN (220.6049). Cross scenario validation shows that the generalization performance is excellent (R2 ≥ 0.9849). The interpretability analysis reveals that electricity price (average absolute value of SHAP 716.7761) is the core influencing factor, and its lack leads to a 0.76% decline in R2. The research breaks through the limitation of time–space decoupling and the unexplainable bottleneck of traditional models, provides a transparent basis for power dispatching, and has an important reference value for the construction of new power systems.
AbstractList Driven by the global “double carbon” goal, the volatility of renewable energy poses a challenge to the stability of power systems. Traditional methods have difficulty dealing with high-dimensional nonlinear data, and the single deep learning model has the limitations of spatiotemporal feature decoupling and being a “black box”. Aiming at the problem of insufficient accuracy and interpretability of power load forecasting in a renewable energy grid connected scenario, this study proposes an interpretable spatiotemporal feature fusion model based on an attention mechanism. Through CNN layered extraction of multi-dimensional space–time features such as meteorology and electricity price, BiLSTM bi-directional modeling time series rely on capturing the evolution rules of load series before and after, and the improved self-attention mechanism dynamically focuses on key features. Combined with the SHAP quantitative feature contribution and feature deletion experiment, a complete chain of “feature extraction time series modeling weight allocation interpretation and verification” is constructed. The experimental results show that the determination coefficient R2 of the model on the Australian electricity market data set reaches 0.9935, which is 84.6% and 59.8% higher than that of the LSTM and GRU models, respectively. The prediction error (RMSE = 105.5079) is 9.7% lower than that of TCN-LSTM model and 52.1% compared to the GNN (220.6049). Cross scenario validation shows that the generalization performance is excellent (R2 ≥ 0.9849). The interpretability analysis reveals that electricity price (average absolute value of SHAP 716.7761) is the core influencing factor, and its lack leads to a 0.76% decline in R2. The research breaks through the limitation of time–space decoupling and the unexplainable bottleneck of traditional models, provides a transparent basis for power dispatching, and has an important reference value for the construction of new power systems.
Driven by the global “double carbon” goal, the volatility of renewable energy poses a challenge to the stability of power systems. Traditional methods have difficulty dealing with high-dimensional nonlinear data, and the single deep learning model has the limitations of spatiotemporal feature decoupling and being a “black box”. Aiming at the problem of insufficient accuracy and interpretability of power load forecasting in a renewable energy grid connected scenario, this study proposes an interpretable spatiotemporal feature fusion model based on an attention mechanism. Through CNN layered extraction of multi-dimensional space–time features such as meteorology and electricity price, BiLSTM bi-directional modeling time series rely on capturing the evolution rules of load series before and after, and the improved self-attention mechanism dynamically focuses on key features. Combined with the SHAP quantitative feature contribution and feature deletion experiment, a complete chain of “feature extraction time series modeling weight allocation interpretation and verification” is constructed. The experimental results show that the determination coefficient R[sup.2] of the model on the Australian electricity market data set reaches 0.9935, which is 84.6% and 59.8% higher than that of the LSTM and GRU models, respectively. The prediction error (RMSE = 105.5079) is 9.7% lower than that of TCN-LSTM model and 52.1% compared to the GNN (220.6049). Cross scenario validation shows that the generalization performance is excellent (R[sup.2] ≥ 0.9849). The interpretability analysis reveals that electricity price (average absolute value of SHAP 716.7761) is the core influencing factor, and its lack leads to a 0.76% decline in R[sup.2] . The research breaks through the limitation of time–space decoupling and the unexplainable bottleneck of traditional models, provides a transparent basis for power dispatching, and has an important reference value for the construction of new power systems.
Audience Academic
Author Li, Shuaishuai
Chen, Weizhen
Author_xml – sequence: 1
  givenname: Shuaishuai
  orcidid: 0009-0007-9000-4927
  surname: Li
  fullname: Li, Shuaishuai
– sequence: 2
  givenname: Weizhen
  surname: Chen
  fullname: Chen, Weizhen
BookMark eNptkU9vEzEQxVeoSJTSb8DBEucU_1nv2sdQNSVSKg6F82rWHqeONvZiewX99nUIqjgwc5jR08xPT3rvm4sQAzbNR0ZvhND0c0HzFOIU9x4zE7SjnOk3zSXnvF_1VNGLf_Z3zXXOB1pLM6E6edn8XpPHsthnEgPZhoJpTlhgnJDcTWhK8obsIliyiQkN5OLDnjxEixP55csTeZyh-FjwOMcEE9kglCUh2SzZV-AXyGhP5HUpGMpJeqhuIfh8_NC8dTBlvP47r5ofm7vvt19Xu2_329v1bmWEYmXFQDvLO8GcbFFzpTWj0FslBWgcR8pBaCkcSq4Rbeuo0VRKTlUvkfVWi6tme-baCIdhTv4I6XmI4Ic_Qkz7AVLxZsIB0THeOkm1NC0fO621oWxk1jjjmBWV9enMmlP8uWAuwyEuKVT7g-Bc6JYLperVzflqDxXqg4slgalt8ehNDc_5qq9VK1XPJOvqQ3t-MCnmnNC92mR0OGU8_C9j8QKIBJ95
Cites_doi 10.1109/IAECST60924.2023.10502841
10.1016/j.apenergy.2023.122079
10.1007/978-3-642-24797-2
10.1016/j.oceaneng.2024.117598
10.1038/nature14539
10.1016/j.epsr.2024.110263
10.1155/2024/2403847
10.3390/app15084520
10.3390/electricity6020026
10.1016/j.apenergy.2024.123788
10.20944/preprints202405.0037.v1
10.1007/s42835-022-01161-9
10.3390/en17102312
10.1016/j.egyai.2022.100169
10.1016/j.aiopen.2021.01.001
10.1109/59.910780
10.3390/en12081520
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7X5
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
COVID
D1I
DWQXO
F28
FR3
GNUQQ
HCIFZ
JQ2
K6~
K7-
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOA
DOI 10.3390/technologies13060219
DatabaseName CrossRef
Entrepreneurship Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
Coronavirus Research Database
ProQuest Materials Science Collection
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection
Computer Science Database
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
ProQuest Entrepreneurship
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
Engineering Database
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2227-7080
ExternalDocumentID oai_doaj_org_article_eef124f5095c42b6999c01b1dcfcf1d3
A845871516
10_3390_technologies13060219
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KB.
KC.
KQ8
L6V
M7S
MODMG
M~E
OK1
P62
PDBOC
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
7X5
8FD
ABUWG
AZQEC
BEZIV
COVID
DWQXO
F28
FR3
GNUQQ
JQ2
K6~
PKEHL
PQEST
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c381t-1a9fd2631f54e9289910a7d853a9ebb02a3953fe529eed4f0c905520875e17d93
IEDL.DBID DOA
ISSN 2227-7080
IngestDate Wed Aug 27 01:16:49 EDT 2025
Fri Jul 25 09:11:49 EDT 2025
Tue Jul 22 03:42:53 EDT 2025
Sun Aug 03 02:36:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-1a9fd2631f54e9289910a7d853a9ebb02a3953fe529eed4f0c905520875e17d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0007-9000-4927
OpenAccessLink https://doaj.org/article/eef124f5095c42b6999c01b1dcfcf1d3
PQID 3223942388
PQPubID 2032323
ParticipantIDs doaj_primary_oai_doaj_org_article_eef124f5095c42b6999c01b1dcfcf1d3
proquest_journals_3223942388
gale_infotracacademiconefile_A845871516
crossref_primary_10_3390_technologies13060219
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Technologies (Basel)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Li (ref_33) 2000; 44
Wei (ref_38) 1999; 6
Machlev (ref_11) 2022; 9
LeCun (ref_12) 2015; 521
ref_36
ref_13
Ouyang (ref_19) 2023; 51
Zhuang (ref_9) 2021; 54
ref_10
Zhang (ref_35) 2002; 4
Zhao (ref_31) 2025; 38
Sun (ref_34) 2024; 301
Hasanat (ref_20) 2024; 2024
Song (ref_3) 2024; 373
ref_16
ref_15
ref_37
Cheng (ref_30) 2020; 54
Gao (ref_32) 2020; 1
Lv (ref_4) 2022; 20
Mansoor (ref_17) 2024; 230
ref_25
ref_24
ref_23
ref_21
Ye (ref_22) 2024; 353
ref_1
ref_2
Zhou (ref_18) 2020; 1
Ren (ref_14) 2022; 50
ref_28
Bao (ref_26) 2021; 48
ref_27
Hippert (ref_5) 2001; 16
Zhao (ref_8) 2024; 14
ref_7
ref_6
Lee (ref_29) 2023; 18
References_xml – ident: ref_7
– ident: ref_28
  doi: 10.1109/IAECST60924.2023.10502841
– volume: 353
  start-page: 122079
  year: 2024
  ident: ref_22
  article-title: Harnessing eXplainable Artificial Intelligence for Feature Selection in Time Series Energy Forecasting: A Comparative Analysis of Grad-CAM and SHAP
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2023.122079
– ident: ref_24
– ident: ref_13
  doi: 10.1007/978-3-642-24797-2
– volume: 14
  start-page: 169
  year: 2024
  ident: ref_8
  article-title: Short-Term Power Load Forecasting Based on SSA-CNN-LSTM
  publication-title: Mod. Ind. Econ. Inf. Technol.
– volume: 54
  start-page: 792
  year: 2020
  ident: ref_30
  article-title: Study on the Influence of Refined Meteorological Factors on Short-Term Power Load Forecasting
  publication-title: J. Cent. China Norm. Univ. (Nat. Sci.)
– volume: 38
  start-page: 990
  year: 2025
  ident: ref_31
  article-title: Analysis of Influencing Factors of PM2.5 in Shaanxi Province Based on XGBoost-SHAP Method
  publication-title: Res. Environ. Sci.
– volume: 301
  start-page: 117598
  year: 2024
  ident: ref_34
  article-title: CNN–LSTM–AM: A Power Prediction Model for Offshore Wind Turbines
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2024.117598
– ident: ref_37
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_12
  article-title: Deep Learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: ref_1
– volume: 54
  start-page: 46
  year: 2021
  ident: ref_9
  article-title: A Short-Term Power Load Forecasting Method Based on Multi-Model Fusion of CNN-LSTM-XGBoost
  publication-title: Electr. Power China
– ident: ref_6
– volume: 230
  start-page: 110263
  year: 2024
  ident: ref_17
  article-title: Graph Convolutional Networks Based Short-Term Load Forecasting: Leveraging Spatial Information for Improved Accuracy
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2024.110263
– volume: 2024
  start-page: 2403847
  year: 2024
  ident: ref_20
  article-title: Enhancing Load Forecasting Accuracy in Smart Grids: A Novel Parallel Multichannel Network Approach Using 1D CNN and Bi-LSTM Models
  publication-title: Int. J. Energy Res.
  doi: 10.1155/2024/2403847
– ident: ref_25
– ident: ref_2
– volume: 44
  start-page: 5
  year: 2000
  ident: ref_33
  article-title: The Qualities and Image of an Ideal Librarian and Information Specialist
  publication-title: Libr. Inf. Serv.
– volume: 1
  start-page: 135
  year: 2020
  ident: ref_32
  article-title: Solutions for Information Processing and Library Management Systems in the Internet Environment
  publication-title: China Flights
– ident: ref_16
  doi: 10.3390/app15084520
– ident: ref_21
  doi: 10.3390/electricity6020026
– volume: 373
  start-page: 123788
  year: 2024
  ident: ref_3
  article-title: Multi-Energy Load Forecasting via Hierarchical Multi-Task Learning and Spatiotemporal Attention
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2024.123788
– ident: ref_23
  doi: 10.20944/preprints202405.0037.v1
– ident: ref_15
– volume: 18
  start-page: 579
  year: 2023
  ident: ref_29
  article-title: SHAP Value-Based Feature Importance Analysis for Short-Term Load Forecasting
  publication-title: J. Electr. Eng. Technol.
  doi: 10.1007/s42835-022-01161-9
– ident: ref_27
  doi: 10.3390/en17102312
– volume: 48
  start-page: 1495
  year: 2021
  ident: ref_26
  article-title: A Prediction Model for COVID-19 Epidemic Based on Spatiotemporal Attention Mechanism
  publication-title: J. Beijing Univ. Chem. Technol.
– ident: ref_36
– volume: 6
  start-page: 21
  year: 1999
  ident: ref_38
  article-title: Newspaper Economics and Management
  publication-title: J. Rev.
– volume: 20
  start-page: 36
  year: 2022
  ident: ref_4
  article-title: Battery Life Prediction Method Based on SVM and Decision Tree
  publication-title: Electr. Eng. Technol.
– volume: 9
  start-page: 100169
  year: 2022
  ident: ref_11
  article-title: Explainable Artificial Intelligence (XAI) Techniques for Energy and Power Systems: Review, Challenges and Opportunities
  publication-title: Energy AI
  doi: 10.1016/j.egyai.2022.100169
– volume: 1
  start-page: 57
  year: 2020
  ident: ref_18
  article-title: Graph Neural Networks: A Review of Methods and Applications
  publication-title: AI Open
  doi: 10.1016/j.aiopen.2021.01.001
– volume: 16
  start-page: 44
  year: 2001
  ident: ref_5
  article-title: Neural Networks for Short-Term Load Forecasting: A Review and Evaluation
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.910780
– ident: ref_10
  doi: 10.3390/en12081520
– volume: 51
  start-page: 132
  year: 2023
  ident: ref_19
  article-title: Short-Term Power Load Forecasting Method Based on Improved Transfer Learning and Multi-Scale CNN-BiLSTM-Attention
  publication-title: Power Syst. Prot. Control
– volume: 50
  start-page: 108
  year: 2022
  ident: ref_14
  article-title: Ultra-Short-Term Power Load Forecasting Based on CNN-BiLSTM-Attention
  publication-title: Power Syst. Prot. Control
– volume: 4
  start-page: 124
  year: 2002
  ident: ref_35
  article-title: Limit Properties and Applications of Stochastic Perturbed Discontinuous Dynamical Systems
  publication-title: Pract. Theory Math.
SSID ssj0000913865
Score 2.2935205
Snippet Driven by the global “double carbon” goal, the volatility of renewable energy poses a challenge to the stability of power systems. Traditional methods have...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 219
SubjectTerms Accuracy
Algorithms
Alternative energy sources
attention mechanism
China
Decision making
Decoupling
Deep learning
Electric power grids
Electric power systems
Electrical loads
Electricity
Electricity pricing
Feature extraction
Forecasting
High temperature
interpretability
Machine learning
Modelling
Neural networks
power load forecasting
Prediction theory
Renewable energy
Renewable resources
Root-mean-square errors
spatiotemporal feature fusion
Time series
Wind power
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JS8NAFB60XvQgrlg35iB4CmabSeYkrbSIqIgLeBtmFaE2tU1B_73vpVMXUK9JSELe8n3v5S2EHAEHL7UH-04tKyNshYwUS1TEbay1zbXgDLuRr675-UN-8cgeQ8JtEsoq5z6xcdS2MpgjPwHFywRgf1mejl4j3BqFf1fDCo1FsgQuuCxbZKnbu765_cyy4NTLkrNZz1wG8f1JPc9YQyAK_psDxokfmNSM7v_LQTeo018jq4Eu0s5MvutkwQ03yMq3IYKb5K1DsRjwnVZD-lVCqAeO9poVN8-GXlbKUlzCadQEy5wpbkAbUMzB0rumpDpMqBpQpITTsaP9KabRaBdAzuKdO3U9K4ykVw6bhZ8nL1vkod-7PzuPwj6FyAAu11GihLcpzxLPcicw0kpiVVgAbCWc1nGqMsEy71gqADlzHxsRM5bizHuXFFZk26Q1rIZuh1AbW-sFN0C_dM59oQtnDbcF57lwcZ61STT_onI0G5shIdxACcjfJNAmXfzsn9fi0OvmQDV-ksGGpHMe2IgHisNMnmoO3NbEiU6s8cYnFh56jEKTaJr1WBkVOgzglXHIleyUoIsFUBzeJvtzucpgsxP5pWG7_5_eI8spbgFucjH7pFWPp-4AqEmtD4P-fQA8y-an
  priority: 102
  providerName: ProQuest
Title A Study on Interpretable Electric Load Forecasting Model with Spatiotemporal Feature Fusion Based on Attention Mechanism
URI https://www.proquest.com/docview/3223942388
https://doaj.org/article/eef124f5095c42b6999c01b1dcfcf1d3
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NaxsxEB2a9JIcSr9C3bhGh0JOS1a7K-3qaAe7oTShpA3kJvQJAdcO9hqSf58Z7bp1IaGXXs1ihGY0780w8wbgM3LwxkZ834UXTUajkJkR3GTS59b6yiopaBr54lKeX1dfb8TNzqov6gnr5IG7izsNISIERcQ14arCSiQ0LueWexdd5D7pfCLm7SRTKQYrTsssu1m5EvP603ZbqcYEFOO2RGxTf2FRkux_LjAntJm9hlc9TWTj7nhv4EVYvIXDHfHAd3A_ZtQE-MCWC_anddDOA5um1Ta3jn1bGs9o-aYza2pvZrT5bM6o9sp-pFbqXplqzogKblaBzTZUPmMTBDdP_zxu264hkl0EGhK-Xf96D9ez6c-z86zfo5A5xOM240ZFX8iSR1EFRRkWz03tEaiNCtbmhSmVKGMQhULErGLuVC5EQVr3gddelUewv1guwgdgPvc-KumQdtlKxtrWwTvpaykrFfKqHEC2vVF918llaEwzyAL6KQsMYELX_vtbErtOP6AL6N4F9L9cYAAnZDRNT7JdGWf6yQI8Molb6XGDPlgjtZEDGG7tqvu3utYY0kqFrLJpPv6P0xzDQUE7glOlZgj77WoTPiFxae0I9prZlxG8nEwvv1-Nksc-AmY88RM
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiKdYKOADiFNUx7Gd-IDQFrps6W4vtFJvxk9UadmU3aygf4rfyEweLUjArdc4SiLPeL5vJvMg5CVw8MolON88yCrDUsjMytxmKjDngnBaSaxGnh-p6Yn4eCpPt8jPoRYG0yoHm9ga6lB7jJHvguIVGrC_qt6ef8twahT-XR1GaHRqcRgvvoPLtn5z8B7k-4rzyf7xu2nWTxXIPKBTk-VWp8BVkScpokZ_I2e2DABbVkfnGLeFlkWKkmvAD5GY10xKjp3fY14GbL4EJv-GKADJsTJ98uEypoM9Nisluwo9WGe7zRAfB7cX0EIBouo_ELAdFPAvOGgxbnKX3OnJKR132nSPbMXlfXL7t5aFD8iPMcXUwwtaL-lVwqJbRLrfDtQ583RW20Bx5Ke3a0yqpjhvbUEx4ks_tQncfT-sBUUCullFOtlg0I7uAaQGfPK4abo0TDqPWJp8tv76kJxcyz4_ItvLehkfExpYCEkrD2TPCZVKV8bgVSiVEjoyUYxINuyoOe-adBhwblAC5m8SGJE93PbLe7HFdnuhXn0x_Yk1MSbgPgkIlfSCOwVM2rPc5cEnn_IAL32NQjNoCJqV9bavZ4BPxpZaZlyB5pdAqNSI7AxyNb2FWJsrfX7y_-UX5Ob0eD4zs4Ojw6fkFsf5w20UaIdsN6tNfAakqHHPW02k5PN1q_4vjB0hBg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqVEJwQDxFaAs-gDit6vWuvfGhQkmbqKVtVAGVejN-VpVCtiQbQf9af11n9tGCBNx6TaIk8ozn-2Z25htC3gEHH9gI95t7MUhwFDIxIjWJ9Mxan1slBU4jH0_l_mn-6UycrZHrbhYG2yq7mFgHal86rJFvg-NlCrAfErbYtkWc7E0-Xv5IcIMUPmnt1mk0LnIYrn5C-rbcOdgDW7_nfDL-uruftBsGEgdIVSWpUdFzmaVR5EFh7pEyU3iAMKOCtYybTIksBsEVYEkemVNMCI4q8CEtPAoxQfhfLzAr6pH10Xh68vm2woOKmwMpmnm9LFNsu-qq5ZAEA3ZIwFf1Bx7WawP-BQ414k2ekMctVaXDxreekrUwf0Ye_SZg-Jz8GlJsRLyi5ZzetS_aWaDjer3OhaNHpfEUF4A6s8QWa4rb12YU67_0S93O3apjzSjS0dUi0MkKS3h0BADr8ZuHVdU0ZdLjgIPKF8vvL8jpvZz0S9Kbl_PwilDPvI9KOqB-NpexsEXwTvpCylwFlmd9knQnqi8byQ4NqQ5aQP_NAn0ywmO__SwKbtcvlItz3d5fHUIEJhSBXgmXcyuBVzuW2tS76GLq4Uc_oNE0hoVqYZxppxvgL6PAlh4O4B4UQK9kn2x2dtVtvFjqO-9-_f-335IH4Pb66GB6uEEeclxGXJeENkmvWqzCFjCkyr5pXZGSb_ft_TeT_CaY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Study+on+Interpretable+Electric+Load+Forecasting+Model+with+Spatiotemporal+Feature+Fusion+Based+on+Attention+Mechanism&rft.jtitle=Technologies+%28Basel%29&rft.au=Shuaishuai+Li&rft.au=Weizhen+Chen&rft.date=2025-06-01&rft.pub=MDPI+AG&rft.eissn=2227-7080&rft.volume=13&rft.issue=6&rft.spage=219&rft_id=info:doi/10.3390%2Ftechnologies13060219&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_eef124f5095c42b6999c01b1dcfcf1d3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7080&client=summon