Measure of non-compactness for nonlocal boundary value problems via $ (k, \psi) $-Riemann-Liouville derivative on unbounded domain
In this paper, we investigate the existence result for $ (k, \psi) $-Riemann-Liouville fractional differential equations via nonlocal conditions on unbounded domain. The main result is proved by applying a fixed-point theorem for Meir-Keeler condensing operators with a measure of noncompactness. Fin...
Saved in:
Published in | AIMS mathematics Vol. 8; no. 9; pp. 20018 - 20047 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we investigate the existence result for $ (k, \psi) $-Riemann-Liouville fractional differential equations via nonlocal conditions on unbounded domain. The main result is proved by applying a fixed-point theorem for Meir-Keeler condensing operators with a measure of noncompactness. Finally, two numerical examples are also demonstrated to confirm the usefulness and applicability of our theoretical results. |
---|---|
AbstractList | In this paper, we investigate the existence result for $ (k, \psi) $-Riemann-Liouville fractional differential equations via nonlocal conditions on unbounded domain. The main result is proved by applying a fixed-point theorem for Meir-Keeler condensing operators with a measure of noncompactness. Finally, two numerical examples are also demonstrated to confirm the usefulness and applicability of our theoretical results. |
Author | Thaiprayoon, Chatthai Sudsutad, Weerawat Kongson, Jutarat Aphithana, Aphirak |
Author_xml | – sequence: 1 givenname: Aphirak surname: Aphithana fullname: Aphithana, Aphirak organization: Faculty of Engineering Science and Technology, Suvarnabhumi Institute of Technology, Samut Prakan 10540, Thailand – sequence: 2 givenname: Weerawat surname: Sudsutad fullname: Sudsutad, Weerawat organization: Theoretical and Applied Data Integration Innovations Group, Department of Statistics, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand – sequence: 3 givenname: Jutarat surname: Kongson fullname: Kongson, Jutarat organization: Research Group of Theoretical and Computational Applied Science, Department of Mathematics, Faculty of Science, Burapha University, Chonburi 20131, Thailand – sequence: 4 givenname: Chatthai surname: Thaiprayoon fullname: Thaiprayoon, Chatthai organization: Research Group of Theoretical and Computational Applied Science, Department of Mathematics, Faculty of Science, Burapha University, Chonburi 20131, Thailand |
BookMark | eNptkctrVTEQxoO0YG27dJ9FFwqeNo_zSJZSqhauFER3Qpi8NDUnuSTnHHDrX25ua0HEzczwMfObGb4X6Cjl5BB6Sckll7y_mmH5fskI45Qw8gydsH7i3SiFOPqrfo7Oa70nhDDKejb1J-jXRwd1LQ5njxuxM3neg1mSqxX7XA5azAYi1nlNFspPvEFcHd6XrKObK94C4Av86scb_HVfw2t80X0KboaUul3I6xZidNi6EjZYwtbWJLymB5az2OYZQjpDxx5ided_8in68u7m8_WHbnf3_vb67a4zXNClo2zSEjS31lM_2oFSPg3aauBcMMkJ5144KXQLnI6GjZTI1iNp7xiXzPJTdPvItRnu1b6Eub2jMgT1IOTyTUFZgolODZM2bIBRS0F7YQR4Zwbg06RbIfzUWPyRZUqutTivTFjahzktBUJUlKiDK-rginpypU11_0w9XfH__t-r-JHz |
CitedBy_id | crossref_primary_10_3934_math_20241622 crossref_primary_10_1186_s13661_024_01903_w |
Cites_doi | 10.4064/FM-15-1-301-309 10.1016/j.na.2011.01.006 10.1142/3779 10.31197/atnaa.706292 10.3390/math9243292 10.1186/s13660-022-02764-6 10.1016/j.chaos.2021.111335 10.3390/fractalfract5040177 10.3390/math8010126 10.1007/s12215-020-00484-8 10.1155/S0161171203301486 10.3390/fractalfract5040195 10.1016/j.mcm.2011.04.004 10.31197/atnaa.973992 10.1002/mma.5819 10.1080/00036819008839989 10.1017/S0004972714000550 10.48550/arXiv.math/0405596 10.22436/jnsa.010.05.27 10.1016/j.amc.2011.03.062 10.2298/FIL1705331Z 10.48550/arXiv.1106.0965 10.3934/math.2020017 10.46793/KgJMat2405.755B 10.1016/j.aml.2015.03.003 10.3390/sym13101937 10.1016/S0252-9602(12)60211-2 10.1016/j.na.2009.06.106 10.31197/atnaa.579701 10.1186/s13661-017-0867-9 10.3390/sym14081581 10.24193/fpt-ro.2018.1.08 10.2306/scienceasia1513-1874.2018.44.118 10.7153/dea-2022-14-06 10.3934/math.2022438 10.1109/ACCESS.2018.2878266 10.1615/critrevbiomedeng.v32.i1.10 10.1016/S0252-9602(15)30003-5 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.20231020 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 20047 |
ExternalDocumentID | oai_doaj_org_article_57bc25a6b98148c8afec5a377bfec8f7 10_3934_math_20231020 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c381t-127b9ab3ddf1f6d511375bdba338293033f8e98b8e9316c26109113914e2392d3 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:27:21 EDT 2025 Tue Jul 01 03:57:03 EDT 2025 Thu Apr 24 22:57:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c381t-127b9ab3ddf1f6d511375bdba338293033f8e98b8e9316c26109113914e2392d3 |
OpenAccessLink | https://doaj.org/article/57bc25a6b98148c8afec5a377bfec8f7 |
PageCount | 30 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_57bc25a6b98148c8afec5a377bfec8f7 crossref_citationtrail_10_3934_math_20231020 crossref_primary_10_3934_math_20231020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2023 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.20231020-24 key-10.3934/math.20231020-46 key-10.3934/math.20231020-25 key-10.3934/math.20231020-47 key-10.3934/math.20231020-26 key-10.3934/math.20231020-27 key-10.3934/math.20231020-20 key-10.3934/math.20231020-42 key-10.3934/math.20231020-21 key-10.3934/math.20231020-43 key-10.3934/math.20231020-22 key-10.3934/math.20231020-44 key-10.3934/math.20231020-23 key-10.3934/math.20231020-45 key-10.3934/math.20231020-28 key-10.3934/math.20231020-29 key-10.3934/math.20231020-40 key-10.3934/math.20231020-1 key-10.3934/math.20231020-41 key-10.3934/math.20231020-6 key-10.3934/math.20231020-13 key-10.3934/math.20231020-35 key-10.3934/math.20231020-7 key-10.3934/math.20231020-14 key-10.3934/math.20231020-36 key-10.3934/math.20231020-8 key-10.3934/math.20231020-15 key-10.3934/math.20231020-37 key-10.3934/math.20231020-9 key-10.3934/math.20231020-16 key-10.3934/math.20231020-38 key-10.3934/math.20231020-2 key-10.3934/math.20231020-31 key-10.3934/math.20231020-3 key-10.3934/math.20231020-10 key-10.3934/math.20231020-32 key-10.3934/math.20231020-4 key-10.3934/math.20231020-11 key-10.3934/math.20231020-33 key-10.3934/math.20231020-5 key-10.3934/math.20231020-12 key-10.3934/math.20231020-34 key-10.3934/math.20231020-17 key-10.3934/math.20231020-39 key-10.3934/math.20231020-18 key-10.3934/math.20231020-19 key-10.3934/math.20231020-30 |
References_xml | – ident: key-10.3934/math.20231020-24 doi: 10.4064/FM-15-1-301-309 – ident: key-10.3934/math.20231020-28 doi: 10.1016/j.na.2011.01.006 – ident: key-10.3934/math.20231020-22 – ident: key-10.3934/math.20231020-5 doi: 10.1142/3779 – ident: key-10.3934/math.20231020-44 doi: 10.31197/atnaa.706292 – ident: key-10.3934/math.20231020-43 – ident: key-10.3934/math.20231020-18 doi: 10.3390/math9243292 – ident: key-10.3934/math.20231020-40 doi: 10.1186/s13660-022-02764-6 – ident: key-10.3934/math.20231020-26 – ident: key-10.3934/math.20231020-11 doi: 10.1016/j.chaos.2021.111335 – ident: key-10.3934/math.20231020-13 doi: 10.3390/fractalfract5040177 – ident: key-10.3934/math.20231020-39 doi: 10.3390/math8010126 – ident: key-10.3934/math.20231020-17 doi: 10.1007/s12215-020-00484-8 – ident: key-10.3934/math.20231020-6 doi: 10.1155/S0161171203301486 – ident: key-10.3934/math.20231020-7 – ident: key-10.3934/math.20231020-19 doi: 10.3390/fractalfract5040195 – ident: key-10.3934/math.20231020-32 doi: 10.1016/j.mcm.2011.04.004 – ident: key-10.3934/math.20231020-31 – ident: key-10.3934/math.20231020-12 doi: 10.31197/atnaa.973992 – ident: key-10.3934/math.20231020-38 doi: 10.1002/mma.5819 – ident: key-10.3934/math.20231020-21 doi: 10.1080/00036819008839989 – ident: key-10.3934/math.20231020-33 doi: 10.1017/S0004972714000550 – ident: key-10.3934/math.20231020-46 doi: 10.48550/arXiv.math/0405596 – ident: key-10.3934/math.20231020-9 doi: 10.22436/jnsa.010.05.27 – ident: key-10.3934/math.20231020-25 – ident: key-10.3934/math.20231020-10 doi: 10.1016/j.amc.2011.03.062 – ident: key-10.3934/math.20231020-35 doi: 10.2298/FIL1705331Z – ident: key-10.3934/math.20231020-8 doi: 10.48550/arXiv.1106.0965 – ident: key-10.3934/math.20231020-16 doi: 10.3934/math.2020017 – ident: key-10.3934/math.20231020-42 – ident: key-10.3934/math.20231020-29 doi: 10.46793/KgJMat2405.755B – ident: key-10.3934/math.20231020-34 doi: 10.1016/j.aml.2015.03.003 – ident: key-10.3934/math.20231020-14 doi: 10.3390/sym13101937 – ident: key-10.3934/math.20231020-1 doi: 10.1016/S0252-9602(12)60211-2 – ident: key-10.3934/math.20231020-27 doi: 10.1016/j.na.2009.06.106 – ident: key-10.3934/math.20231020-23 doi: 10.31197/atnaa.579701 – ident: key-10.3934/math.20231020-2 – ident: key-10.3934/math.20231020-15 doi: 10.1186/s13661-017-0867-9 – ident: key-10.3934/math.20231020-41 doi: 10.3390/sym14081581 – ident: key-10.3934/math.20231020-36 doi: 10.24193/fpt-ro.2018.1.08 – ident: key-10.3934/math.20231020-37 doi: 10.2306/scienceasia1513-1874.2018.44.118 – ident: key-10.3934/math.20231020-4 – ident: key-10.3934/math.20231020-30 doi: 10.7153/dea-2022-14-06 – ident: key-10.3934/math.20231020-20 doi: 10.3934/math.2022438 – ident: key-10.3934/math.20231020-47 doi: 10.1109/ACCESS.2018.2878266 – ident: key-10.3934/math.20231020-3 doi: 10.1615/critrevbiomedeng.v32.i1.10 – ident: key-10.3934/math.20231020-45 doi: 10.1016/S0252-9602(15)30003-5 |
SSID | ssj0002124274 |
Score | 2.2211528 |
Snippet | In this paper, we investigate the existence result for $ (k, \psi) $-Riemann-Liouville fractional differential equations via nonlocal conditions on unbounded... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 20018 |
SubjectTerms | boundary value problem fixed point theorem k measure of noncompactness meir-keeler condensing operators psi) $-riemann-liouville fractional derivative |
Title | Measure of non-compactness for nonlocal boundary value problems via $ (k, \psi) $-Riemann-Liouville derivative on unbounded domain |
URI | https://doaj.org/article/57bc25a6b98148c8afec5a377bfec8f7 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF7Ekx7EJ9YXexBR6KLJZpPsUcVSxHoQC72FfQWCmkqbFsQ_4L_zLzmzSUsu4sVLCMuwLJPJzvft4xtCTrV0MlKRY7E1QFAU0B0dyZzpmIdJqkQufLWGwWPcH0b3IzFqlfrCM2G1PHDtOCDs2oRCxVqmgNxNqnJnhOJJouElzf09csh5LTKFczBMyBHwrVpUk0seXQL-w70HhDNY27uVhFpa_T6p9DbJRoMG6XU9ii2y4sptsj5YSqlOd8jnoF7Fo-OcAlVn_tC4qXCGogA4sc3nI6p9gaTJB0X9bkebSjFTOi8UPX_pfn9dsKcCui1L9lCMZ3O8BEgtBODca3_TcUlnpe_EWWrHb6ood8mwd_d822dNxQRmIPNWLAgTLZXm1uZBHlsAUzwR2moFRBTy-hXneepkquHBg9iEqLUONjKIXAhAyfI9sgrDdvuEohAed4YLq-C_1knqeKiEUs4GwgZOd0h34cLMNHLiWNXiNQNagR7P0OPZwuMdcrY0f691NH4zvMHvsTRC-WvfAEGRNUGR_RUUB__RySFZw0HV6y1HZLWazNwxIJBKn_hg-wEpRN00 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measure+of+non-compactness+for+nonlocal+boundary+value+problems+via+%28k%2C%CF%88%29-Riemann-Liouville+derivative+on+unbounded+domain&rft.jtitle=AIMS+mathematics&rft.au=Aphirak+Aphithana&rft.au=Weerawat+Sudsutad&rft.au=Jutarat+Kongson&rft.au=Chatthai+Thaiprayoon&rft.date=2023-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=8&rft.issue=9&rft.spage=20018&rft.epage=20047&rft_id=info:doi/10.3934%2Fmath.20231020&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_57bc25a6b98148c8afec5a377bfec8f7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |