Measure of non-compactness for nonlocal boundary value problems via $ (k, \psi) $-Riemann-Liouville derivative on unbounded domain

In this paper, we investigate the existence result for $ (k, \psi) $-Riemann-Liouville fractional differential equations via nonlocal conditions on unbounded domain. The main result is proved by applying a fixed-point theorem for Meir-Keeler condensing operators with a measure of noncompactness. Fin...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 8; no. 9; pp. 20018 - 20047
Main Authors Aphithana, Aphirak, Sudsutad, Weerawat, Kongson, Jutarat, Thaiprayoon, Chatthai
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we investigate the existence result for $ (k, \psi) $-Riemann-Liouville fractional differential equations via nonlocal conditions on unbounded domain. The main result is proved by applying a fixed-point theorem for Meir-Keeler condensing operators with a measure of noncompactness. Finally, two numerical examples are also demonstrated to confirm the usefulness and applicability of our theoretical results.
AbstractList In this paper, we investigate the existence result for $ (k, \psi) $-Riemann-Liouville fractional differential equations via nonlocal conditions on unbounded domain. The main result is proved by applying a fixed-point theorem for Meir-Keeler condensing operators with a measure of noncompactness. Finally, two numerical examples are also demonstrated to confirm the usefulness and applicability of our theoretical results.
Author Thaiprayoon, Chatthai
Sudsutad, Weerawat
Kongson, Jutarat
Aphithana, Aphirak
Author_xml – sequence: 1
  givenname: Aphirak
  surname: Aphithana
  fullname: Aphithana, Aphirak
  organization: Faculty of Engineering Science and Technology, Suvarnabhumi Institute of Technology, Samut Prakan 10540, Thailand
– sequence: 2
  givenname: Weerawat
  surname: Sudsutad
  fullname: Sudsutad, Weerawat
  organization: Theoretical and Applied Data Integration Innovations Group, Department of Statistics, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
– sequence: 3
  givenname: Jutarat
  surname: Kongson
  fullname: Kongson, Jutarat
  organization: Research Group of Theoretical and Computational Applied Science, Department of Mathematics, Faculty of Science, Burapha University, Chonburi 20131, Thailand
– sequence: 4
  givenname: Chatthai
  surname: Thaiprayoon
  fullname: Thaiprayoon, Chatthai
  organization: Research Group of Theoretical and Computational Applied Science, Department of Mathematics, Faculty of Science, Burapha University, Chonburi 20131, Thailand
BookMark eNptkctrVTEQxoO0YG27dJ9FFwqeNo_zSJZSqhauFER3Qpi8NDUnuSTnHHDrX25ua0HEzczwMfObGb4X6Cjl5BB6Sckll7y_mmH5fskI45Qw8gydsH7i3SiFOPqrfo7Oa70nhDDKejb1J-jXRwd1LQ5njxuxM3neg1mSqxX7XA5azAYi1nlNFspPvEFcHd6XrKObK94C4Av86scb_HVfw2t80X0KboaUul3I6xZidNi6EjZYwtbWJLymB5az2OYZQjpDxx5ided_8in68u7m8_WHbnf3_vb67a4zXNClo2zSEjS31lM_2oFSPg3aauBcMMkJ5144KXQLnI6GjZTI1iNp7xiXzPJTdPvItRnu1b6Eub2jMgT1IOTyTUFZgolODZM2bIBRS0F7YQR4Zwbg06RbIfzUWPyRZUqutTivTFjahzktBUJUlKiDK-rginpypU11_0w9XfH__t-r-JHz
CitedBy_id crossref_primary_10_3934_math_20241622
crossref_primary_10_1186_s13661_024_01903_w
Cites_doi 10.4064/FM-15-1-301-309
10.1016/j.na.2011.01.006
10.1142/3779
10.31197/atnaa.706292
10.3390/math9243292
10.1186/s13660-022-02764-6
10.1016/j.chaos.2021.111335
10.3390/fractalfract5040177
10.3390/math8010126
10.1007/s12215-020-00484-8
10.1155/S0161171203301486
10.3390/fractalfract5040195
10.1016/j.mcm.2011.04.004
10.31197/atnaa.973992
10.1002/mma.5819
10.1080/00036819008839989
10.1017/S0004972714000550
10.48550/arXiv.math/0405596
10.22436/jnsa.010.05.27
10.1016/j.amc.2011.03.062
10.2298/FIL1705331Z
10.48550/arXiv.1106.0965
10.3934/math.2020017
10.46793/KgJMat2405.755B
10.1016/j.aml.2015.03.003
10.3390/sym13101937
10.1016/S0252-9602(12)60211-2
10.1016/j.na.2009.06.106
10.31197/atnaa.579701
10.1186/s13661-017-0867-9
10.3390/sym14081581
10.24193/fpt-ro.2018.1.08
10.2306/scienceasia1513-1874.2018.44.118
10.7153/dea-2022-14-06
10.3934/math.2022438
10.1109/ACCESS.2018.2878266
10.1615/critrevbiomedeng.v32.i1.10
10.1016/S0252-9602(15)30003-5
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.20231020
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 20047
ExternalDocumentID oai_doaj_org_article_57bc25a6b98148c8afec5a377bfec8f7
10_3934_math_20231020
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c381t-127b9ab3ddf1f6d511375bdba338293033f8e98b8e9316c26109113914e2392d3
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:27:21 EDT 2025
Tue Jul 01 03:57:03 EDT 2025
Thu Apr 24 22:57:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c381t-127b9ab3ddf1f6d511375bdba338293033f8e98b8e9316c26109113914e2392d3
OpenAccessLink https://doaj.org/article/57bc25a6b98148c8afec5a377bfec8f7
PageCount 30
ParticipantIDs doaj_primary_oai_doaj_org_article_57bc25a6b98148c8afec5a377bfec8f7
crossref_citationtrail_10_3934_math_20231020
crossref_primary_10_3934_math_20231020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2023
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.20231020-24
key-10.3934/math.20231020-46
key-10.3934/math.20231020-25
key-10.3934/math.20231020-47
key-10.3934/math.20231020-26
key-10.3934/math.20231020-27
key-10.3934/math.20231020-20
key-10.3934/math.20231020-42
key-10.3934/math.20231020-21
key-10.3934/math.20231020-43
key-10.3934/math.20231020-22
key-10.3934/math.20231020-44
key-10.3934/math.20231020-23
key-10.3934/math.20231020-45
key-10.3934/math.20231020-28
key-10.3934/math.20231020-29
key-10.3934/math.20231020-40
key-10.3934/math.20231020-1
key-10.3934/math.20231020-41
key-10.3934/math.20231020-6
key-10.3934/math.20231020-13
key-10.3934/math.20231020-35
key-10.3934/math.20231020-7
key-10.3934/math.20231020-14
key-10.3934/math.20231020-36
key-10.3934/math.20231020-8
key-10.3934/math.20231020-15
key-10.3934/math.20231020-37
key-10.3934/math.20231020-9
key-10.3934/math.20231020-16
key-10.3934/math.20231020-38
key-10.3934/math.20231020-2
key-10.3934/math.20231020-31
key-10.3934/math.20231020-3
key-10.3934/math.20231020-10
key-10.3934/math.20231020-32
key-10.3934/math.20231020-4
key-10.3934/math.20231020-11
key-10.3934/math.20231020-33
key-10.3934/math.20231020-5
key-10.3934/math.20231020-12
key-10.3934/math.20231020-34
key-10.3934/math.20231020-17
key-10.3934/math.20231020-39
key-10.3934/math.20231020-18
key-10.3934/math.20231020-19
key-10.3934/math.20231020-30
References_xml – ident: key-10.3934/math.20231020-24
  doi: 10.4064/FM-15-1-301-309
– ident: key-10.3934/math.20231020-28
  doi: 10.1016/j.na.2011.01.006
– ident: key-10.3934/math.20231020-22
– ident: key-10.3934/math.20231020-5
  doi: 10.1142/3779
– ident: key-10.3934/math.20231020-44
  doi: 10.31197/atnaa.706292
– ident: key-10.3934/math.20231020-43
– ident: key-10.3934/math.20231020-18
  doi: 10.3390/math9243292
– ident: key-10.3934/math.20231020-40
  doi: 10.1186/s13660-022-02764-6
– ident: key-10.3934/math.20231020-26
– ident: key-10.3934/math.20231020-11
  doi: 10.1016/j.chaos.2021.111335
– ident: key-10.3934/math.20231020-13
  doi: 10.3390/fractalfract5040177
– ident: key-10.3934/math.20231020-39
  doi: 10.3390/math8010126
– ident: key-10.3934/math.20231020-17
  doi: 10.1007/s12215-020-00484-8
– ident: key-10.3934/math.20231020-6
  doi: 10.1155/S0161171203301486
– ident: key-10.3934/math.20231020-7
– ident: key-10.3934/math.20231020-19
  doi: 10.3390/fractalfract5040195
– ident: key-10.3934/math.20231020-32
  doi: 10.1016/j.mcm.2011.04.004
– ident: key-10.3934/math.20231020-31
– ident: key-10.3934/math.20231020-12
  doi: 10.31197/atnaa.973992
– ident: key-10.3934/math.20231020-38
  doi: 10.1002/mma.5819
– ident: key-10.3934/math.20231020-21
  doi: 10.1080/00036819008839989
– ident: key-10.3934/math.20231020-33
  doi: 10.1017/S0004972714000550
– ident: key-10.3934/math.20231020-46
  doi: 10.48550/arXiv.math/0405596
– ident: key-10.3934/math.20231020-9
  doi: 10.22436/jnsa.010.05.27
– ident: key-10.3934/math.20231020-25
– ident: key-10.3934/math.20231020-10
  doi: 10.1016/j.amc.2011.03.062
– ident: key-10.3934/math.20231020-35
  doi: 10.2298/FIL1705331Z
– ident: key-10.3934/math.20231020-8
  doi: 10.48550/arXiv.1106.0965
– ident: key-10.3934/math.20231020-16
  doi: 10.3934/math.2020017
– ident: key-10.3934/math.20231020-42
– ident: key-10.3934/math.20231020-29
  doi: 10.46793/KgJMat2405.755B
– ident: key-10.3934/math.20231020-34
  doi: 10.1016/j.aml.2015.03.003
– ident: key-10.3934/math.20231020-14
  doi: 10.3390/sym13101937
– ident: key-10.3934/math.20231020-1
  doi: 10.1016/S0252-9602(12)60211-2
– ident: key-10.3934/math.20231020-27
  doi: 10.1016/j.na.2009.06.106
– ident: key-10.3934/math.20231020-23
  doi: 10.31197/atnaa.579701
– ident: key-10.3934/math.20231020-2
– ident: key-10.3934/math.20231020-15
  doi: 10.1186/s13661-017-0867-9
– ident: key-10.3934/math.20231020-41
  doi: 10.3390/sym14081581
– ident: key-10.3934/math.20231020-36
  doi: 10.24193/fpt-ro.2018.1.08
– ident: key-10.3934/math.20231020-37
  doi: 10.2306/scienceasia1513-1874.2018.44.118
– ident: key-10.3934/math.20231020-4
– ident: key-10.3934/math.20231020-30
  doi: 10.7153/dea-2022-14-06
– ident: key-10.3934/math.20231020-20
  doi: 10.3934/math.2022438
– ident: key-10.3934/math.20231020-47
  doi: 10.1109/ACCESS.2018.2878266
– ident: key-10.3934/math.20231020-3
  doi: 10.1615/critrevbiomedeng.v32.i1.10
– ident: key-10.3934/math.20231020-45
  doi: 10.1016/S0252-9602(15)30003-5
SSID ssj0002124274
Score 2.2211528
Snippet In this paper, we investigate the existence result for $ (k, \psi) $-Riemann-Liouville fractional differential equations via nonlocal conditions on unbounded...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 20018
SubjectTerms boundary value problem
fixed point theorem
k
measure of noncompactness
meir-keeler condensing operators
psi) $-riemann-liouville fractional derivative
Title Measure of non-compactness for nonlocal boundary value problems via $ (k, \psi) $-Riemann-Liouville derivative on unbounded domain
URI https://doaj.org/article/57bc25a6b98148c8afec5a377bfec8f7
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF7Ekx7EJ9YXexBR6KLJZpPsUcVSxHoQC72FfQWCmkqbFsQ_4L_zLzmzSUsu4sVLCMuwLJPJzvft4xtCTrV0MlKRY7E1QFAU0B0dyZzpmIdJqkQufLWGwWPcH0b3IzFqlfrCM2G1PHDtOCDs2oRCxVqmgNxNqnJnhOJJouElzf09csh5LTKFczBMyBHwrVpUk0seXQL-w70HhDNY27uVhFpa_T6p9DbJRoMG6XU9ii2y4sptsj5YSqlOd8jnoF7Fo-OcAlVn_tC4qXCGogA4sc3nI6p9gaTJB0X9bkebSjFTOi8UPX_pfn9dsKcCui1L9lCMZ3O8BEgtBODca3_TcUlnpe_EWWrHb6ood8mwd_d822dNxQRmIPNWLAgTLZXm1uZBHlsAUzwR2moFRBTy-hXneepkquHBg9iEqLUONjKIXAhAyfI9sgrDdvuEohAed4YLq-C_1knqeKiEUs4GwgZOd0h34cLMNHLiWNXiNQNagR7P0OPZwuMdcrY0f691NH4zvMHvsTRC-WvfAEGRNUGR_RUUB__RySFZw0HV6y1HZLWazNwxIJBKn_hg-wEpRN00
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measure+of+non-compactness+for+nonlocal+boundary+value+problems+via+%28k%2C%CF%88%29-Riemann-Liouville+derivative+on+unbounded+domain&rft.jtitle=AIMS+mathematics&rft.au=Aphirak+Aphithana&rft.au=Weerawat+Sudsutad&rft.au=Jutarat+Kongson&rft.au=Chatthai+Thaiprayoon&rft.date=2023-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=8&rft.issue=9&rft.spage=20018&rft.epage=20047&rft_id=info:doi/10.3934%2Fmath.20231020&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_57bc25a6b98148c8afec5a377bfec8f7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon