Automated generation of 0D and 1D reduced‐order models of patient‐specific blood flow
Three‐dimensional (3D) cardiovascular fluid dynamics simulations typically require hours to days of computing time on a high‐performance computing cluster. One‐dimensional (1D) and lumped‐parameter zero‐dimensional (0D) models show great promise for accurately predicting blood bulk flow and pressure...
Saved in:
Published in | International journal for numerical methods in biomedical engineering Vol. 38; no. 10; pp. e3639 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.10.2022
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 2040-7939 2040-7947 2040-7947 |
DOI | 10.1002/cnm.3639 |
Cover
Loading…
Abstract | Three‐dimensional (3D) cardiovascular fluid dynamics simulations typically require hours to days of computing time on a high‐performance computing cluster. One‐dimensional (1D) and lumped‐parameter zero‐dimensional (0D) models show great promise for accurately predicting blood bulk flow and pressure waveforms with only a fraction of the cost. They can also accelerate uncertainty quantification, optimization, and design parameterization studies. Despite several prior studies generating 1D and 0D models and comparing them to 3D solutions, these were typically limited to either 1D or 0D and a singular category of vascular anatomies. This work proposes a fully automated and openly available framework to generate and simulate 1D and 0D models from 3D patient‐specific geometries, automatically detecting vessel junctions and stenosis segments. Our only input is the 3D geometry; we do not use any prior knowledge from 3D simulations. All computational tools presented in this work are implemented in the open‐source software platform SimVascular. We demonstrate the reduced‐order approximation quality against rigid‐wall 3D solutions in a comprehensive comparison with N = 72 publicly available models from various anatomies, vessel types, and disease conditions. Relative average approximation errors of flows and pressures typically ranged from 1% to 10% for both 1D and 0D models, measured at the outlets of terminal vessel branches. In general, 0D model errors were only slightly higher than 1D model errors despite requiring only a third of the 1D runtime. Automatically generated ROMs can significantly speed up model development and shift the computational load from high‐performance machines to personal computers.
We present an open‐source framework to automatically generate 1D and 0D reduced‐order fluid dynamics models from 3D geometries. We demonstrate the robustness of the framework and the quality of the 1D and 0D approximations in a comprehensive comparison of N = 72 subject‐specific models against 3D fluid dynamics. Despite their significantly reduced computational effort, 1D and 0D models show good agreement with 3D models even in severely stenosed cases. |
---|---|
AbstractList | Three-dimensional (3D) cardiovascular fluid dynamics simulations typically require hours to days of computing time on a high-performance computing cluster. One-dimensional (1D) and lumped-parameter zero-dimensional (0D) models show great promise for accurately predicting blood bulk flow and pressure waveforms with only a fraction of the cost. They can also accelerate uncertainty quantification, optimization, and design parameterization studies. Despite several prior studies generating 1D and 0D models and comparing them to 3D solutions, these were typically limited to either 1D or 0D and a singular category of vascular anatomies. This work proposes a fully automated and openly available framework to generate and simulate 1D and 0D models from 3D patient-specific geometries, automatically detecting vessel junctions and stenosis segments. Our only input is the 3D geometry; we do not use any prior knowledge from 3D simulations. All computational tools presented in this work are implemented in the open-source software platform SimVascular. We demonstrate the reduced-order approximation quality against rigid-wall 3D solutions in a comprehensive comparison with N = 72 publicly available models from various anatomies, vessel types, and disease conditions. Relative average approximation errors of flows and pressures typically ranged from 1% to 10% for both 1D and 0D models, measured at the outlets of terminal vessel branches. In general, 0D model errors were only slightly higher than 1D model errors despite requiring only a third of the 1D runtime. Automatically generated ROMs can significantly speed up model development and shift the computational load from high-performance machines to personal computers.Three-dimensional (3D) cardiovascular fluid dynamics simulations typically require hours to days of computing time on a high-performance computing cluster. One-dimensional (1D) and lumped-parameter zero-dimensional (0D) models show great promise for accurately predicting blood bulk flow and pressure waveforms with only a fraction of the cost. They can also accelerate uncertainty quantification, optimization, and design parameterization studies. Despite several prior studies generating 1D and 0D models and comparing them to 3D solutions, these were typically limited to either 1D or 0D and a singular category of vascular anatomies. This work proposes a fully automated and openly available framework to generate and simulate 1D and 0D models from 3D patient-specific geometries, automatically detecting vessel junctions and stenosis segments. Our only input is the 3D geometry; we do not use any prior knowledge from 3D simulations. All computational tools presented in this work are implemented in the open-source software platform SimVascular. We demonstrate the reduced-order approximation quality against rigid-wall 3D solutions in a comprehensive comparison with N = 72 publicly available models from various anatomies, vessel types, and disease conditions. Relative average approximation errors of flows and pressures typically ranged from 1% to 10% for both 1D and 0D models, measured at the outlets of terminal vessel branches. In general, 0D model errors were only slightly higher than 1D model errors despite requiring only a third of the 1D runtime. Automatically generated ROMs can significantly speed up model development and shift the computational load from high-performance machines to personal computers. Three‐dimensional (3D) cardiovascular fluid dynamics simulations typically require hours to days of computing time on a high‐performance computing cluster. One‐dimensional (1D) and lumped‐parameter zero‐dimensional (0D) models show great promise for accurately predicting blood bulk flow and pressure waveforms with only a fraction of the cost. They can also accelerate uncertainty quantification, optimization, and design parameterization studies. Despite several prior studies generating 1D and 0D models and comparing them to 3D solutions, these were typically limited to either 1D or 0D and a singular category of vascular anatomies. This work proposes a fully automated and openly available framework to generate and simulate 1D and 0D models from 3D patient‐specific geometries, automatically detecting vessel junctions and stenosis segments. Our only input is the 3D geometry; we do not use any prior knowledge from 3D simulations. All computational tools presented in this work are implemented in the open‐source software platform SimVascular. We demonstrate the reduced‐order approximation quality against rigid‐wall 3D solutions in a comprehensive comparison with N = 72 publicly available models from various anatomies, vessel types, and disease conditions. Relative average approximation errors of flows and pressures typically ranged from 1% to 10% for both 1D and 0D models, measured at the outlets of terminal vessel branches. In general, 0D model errors were only slightly higher than 1D model errors despite requiring only a third of the 1D runtime. Automatically generated ROMs can significantly speed up model development and shift the computational load from high‐performance machines to personal computers. Three‐dimensional (3D) cardiovascular fluid dynamics simulations typically require hours to days of computing time on a high‐performance computing cluster. One‐dimensional (1D) and lumped‐parameter zero‐dimensional (0D) models show great promise for accurately predicting blood bulk flow and pressure waveforms with only a fraction of the cost. They can also accelerate uncertainty quantification, optimization, and design parameterization studies. Despite several prior studies generating 1D and 0D models and comparing them to 3D solutions, these were typically limited to either 1D or 0D and a singular category of vascular anatomies. This work proposes a fully automated and openly available framework to generate and simulate 1D and 0D models from 3D patient‐specific geometries, automatically detecting vessel junctions and stenosis segments. Our only input is the 3D geometry; we do not use any prior knowledge from 3D simulations. All computational tools presented in this work are implemented in the open‐source software platform SimVascular. We demonstrate the reduced‐order approximation quality against rigid‐wall 3D solutions in a comprehensive comparison with N = 72 publicly available models from various anatomies, vessel types, and disease conditions. Relative average approximation errors of flows and pressures typically ranged from 1% to 10% for both 1D and 0D models, measured at the outlets of terminal vessel branches. In general, 0D model errors were only slightly higher than 1D model errors despite requiring only a third of the 1D runtime. Automatically generated ROMs can significantly speed up model development and shift the computational load from high‐performance machines to personal computers. Three-dimensional (3D) cardiovascular fluid dynamics simulations typically require hours to days of computing time on a high-performance computing cluster. One-dimensional (1D) and lumped-parameter zero-dimensional (0D) models show great promise for accurately predicting blood bulk flow and pressure waveforms with only a fraction of the cost. They can also accelerate uncertainty quantification, optimization, and design parameterization studies. Despite several prior studies generating 1D and 0D models and comparing them to 3D solutions, these were typically limited to either 1D or 0D and a singular category of vascular anatomies. This work proposes a fully automated and openly available framework to generate and simulate 1D and 0D models from 3D patient-specific geometries, automatically detecting vessel junctions and stenosis segments. Our only input is the 3D geometry; we do not use any prior knowledge from 3D simulations. All computational tools presented in this work are implemented in the open-source software platform SimVascular . We demonstrate the reduced-order approximation quality against rigid-wall 3D solutions in a comprehensive comparison with N = 72 publicly available models from various anatomies, vessel types, and disease conditions. Relative average approximation errors of flows and pressures typically ranged from 1% to 10% for both 1D and 0D models, measured at the outlets of terminal vessel branches. In general, 0D model errors were only slightly higher than 1D model errors despite requiring only a third of the 1D runtime. Automatically generated ROMs can significantly speed up model development and shift the computational load from high-performance machines to personal computers. We present an open-source framework to automatically generate 1D and 0D reduced-order fluid dynamics models from 3D geometries. We demonstrate the robustness of the framework and the quality of the 1D and 0D approximations in a comprehensive comparison of N=72 subject-specific models against 3D fluid dynamics. Despite their significantly reduced computational effort, 1D and 0D models show good agreement with 3D models even in severely stenosed cases. Three‐dimensional (3D) cardiovascular fluid dynamics simulations typically require hours to days of computing time on a high‐performance computing cluster. One‐dimensional (1D) and lumped‐parameter zero‐dimensional (0D) models show great promise for accurately predicting blood bulk flow and pressure waveforms with only a fraction of the cost. They can also accelerate uncertainty quantification, optimization, and design parameterization studies. Despite several prior studies generating 1D and 0D models and comparing them to 3D solutions, these were typically limited to either 1D or 0D and a singular category of vascular anatomies. This work proposes a fully automated and openly available framework to generate and simulate 1D and 0D models from 3D patient‐specific geometries, automatically detecting vessel junctions and stenosis segments. Our only input is the 3D geometry; we do not use any prior knowledge from 3D simulations. All computational tools presented in this work are implemented in the open‐source software platform SimVascular. We demonstrate the reduced‐order approximation quality against rigid‐wall 3D solutions in a comprehensive comparison with N = 72 publicly available models from various anatomies, vessel types, and disease conditions. Relative average approximation errors of flows and pressures typically ranged from 1% to 10% for both 1D and 0D models, measured at the outlets of terminal vessel branches. In general, 0D model errors were only slightly higher than 1D model errors despite requiring only a third of the 1D runtime. Automatically generated ROMs can significantly speed up model development and shift the computational load from high‐performance machines to personal computers. We present an open‐source framework to automatically generate 1D and 0D reduced‐order fluid dynamics models from 3D geometries. We demonstrate the robustness of the framework and the quality of the 1D and 0D approximations in a comprehensive comparison of N = 72 subject‐specific models against 3D fluid dynamics. Despite their significantly reduced computational effort, 1D and 0D models show good agreement with 3D models even in severely stenosed cases. |
Author | Marsden, Alison L. Pham, Jonathan Verma, Aekaansh Wilson, Nathan M. Pfaller, Martin R. Parker, David W. Yang, Weiguang Pegolotti, Luca |
AuthorAffiliation | 1 Pediatric Cardiology, Stanford University, CA, USA 6 Stanford Research Computing, Stanford University, CA, USA 5 Open Source Medical Software Corporation, CA, USA 2 Institute for Computational and Mathematical Engineering, Stanford University, CA, USA 3 Cardiovascular Institute, Stanford University, CA, USA 7 Bioengineering, Stanford University, CA, USA 4 Mechanical Engineering, Stanford University, CA, USA |
AuthorAffiliation_xml | – name: 7 Bioengineering, Stanford University, CA, USA – name: 2 Institute for Computational and Mathematical Engineering, Stanford University, CA, USA – name: 6 Stanford Research Computing, Stanford University, CA, USA – name: 5 Open Source Medical Software Corporation, CA, USA – name: 1 Pediatric Cardiology, Stanford University, CA, USA – name: 3 Cardiovascular Institute, Stanford University, CA, USA – name: 4 Mechanical Engineering, Stanford University, CA, USA |
Author_xml | – sequence: 1 givenname: Martin R. orcidid: 0000-0001-5760-2617 surname: Pfaller fullname: Pfaller, Martin R. email: pfaller@stanford.edu organization: Stanford University – sequence: 2 givenname: Jonathan orcidid: 0000-0002-5676-6561 surname: Pham fullname: Pham, Jonathan organization: Stanford University – sequence: 3 givenname: Aekaansh surname: Verma fullname: Verma, Aekaansh organization: Stanford University – sequence: 4 givenname: Luca orcidid: 0000-0002-4290-6391 surname: Pegolotti fullname: Pegolotti, Luca organization: Stanford University – sequence: 5 givenname: Nathan M. surname: Wilson fullname: Wilson, Nathan M. organization: Open Source Medical Software Corporation – sequence: 6 givenname: David W. surname: Parker fullname: Parker, David W. organization: Stanford University – sequence: 7 givenname: Weiguang orcidid: 0000-0003-3324-4346 surname: Yang fullname: Yang, Weiguang organization: Stanford University – sequence: 8 givenname: Alison L. orcidid: 0000-0003-1902-171X surname: Marsden fullname: Marsden, Alison L. organization: Stanford University |
BookMark | eNp1kc9qFTEUxoO02Hot-AgBN27mmn8zk2yEcus_aOtGF65CJjlTUzLJNZmxdOcj-Iw-ibltabFoOJDA-Z2PL-d7hvZiioDQC0rWlBD22sZpzTuunqBDRgRpeiX6vfs3VwfoqJRLUg9TSvX8KTrgrex3dYi-Hi9zmswMDl9AhGxmnyJOIyYn2ESH6QnO4BYL7vfPXyk7yHhKDkLZMdtKQ5xrp2zB-tFbPISUHB5DunqO9kcTChzd3Sv05d3bz5sPzemn9x83x6eN5ZKqxjA7UENGQbmyY0tGOjijOjk4LlknjeyACsEGYwkXlZVW9EQw4Fz2SgLwFXpzq7tdhgmcrYayCXqb_WTytU7G67870X_TF-mHVm1HSV3QCr26E8jp-wJl1pMvFkIwEdJSNOuUELSyrKIvH6GXacmxfk-zntUQuraVD4I2p1IyjPdmKNG7yHSNTO8iq-j6EWr9fJNBterDvwaa24ErH-D6v8J6c352w_8B8BSpFw |
CitedBy_id | crossref_primary_10_1002_cnm_3751 crossref_primary_10_1002_cnm_70026 crossref_primary_10_1109_TBME_2024_3469289 crossref_primary_10_1002_cnm_70020 crossref_primary_10_1002_cnm_3836 crossref_primary_10_1063_5_0139085 crossref_primary_10_1016_j_bbe_2024_08_005 crossref_primary_10_3389_fphy_2023_1256462 crossref_primary_10_1017_flo_2024_5 crossref_primary_10_3390_bioengineering9110601 crossref_primary_10_1016_j_biosystems_2024_105160 crossref_primary_10_3390_fluids7060197 crossref_primary_10_1098_rsta_2024_0221 crossref_primary_10_3390_jcdd10060240 crossref_primary_10_3390_math10214058 crossref_primary_10_1038_s44303_024_00014_6 crossref_primary_10_1016_j_eswa_2024_125079 crossref_primary_10_1098_rsta_2024_0223 crossref_primary_10_1137_23M1554230 crossref_primary_10_1016_j_cma_2024_117259 crossref_primary_10_1007_s10439_024_03457_5 crossref_primary_10_1002_cnm_3820 crossref_primary_10_1016_j_echo_2022_09_006 crossref_primary_10_3389_fcvm_2024_1398290 crossref_primary_10_1016_j_compbiomed_2024_109420 crossref_primary_10_1063_5_0180162 crossref_primary_10_3389_fbioe_2025_1438253 crossref_primary_10_1007_s11831_023_10013_2 crossref_primary_10_1016_j_compbiomed_2024_109644 crossref_primary_10_1109_TCI_2024_3497775 crossref_primary_10_1016_j_avsg_2024_04_015 crossref_primary_10_1007_s00246_024_03569_8 crossref_primary_10_1007_s12046_024_02589_7 crossref_primary_10_1016_j_compbiomed_2023_107718 crossref_primary_10_1016_j_compbiomed_2025_109849 crossref_primary_10_1371_journal_pone_0307890 crossref_primary_10_1038_s44161_022_00114_9 crossref_primary_10_1016_j_brain_2023_100081 crossref_primary_10_1109_TBME_2024_3355307 crossref_primary_10_1063_5_0101128 crossref_primary_10_1016_j_compbiomed_2023_107676 crossref_primary_10_1063_5_0236378 crossref_primary_10_1109_ACCESS_2024_3491112 crossref_primary_10_1007_s13239_024_00752_z crossref_primary_10_1109_TBME_2024_3406416 crossref_primary_10_1063_5_0109400 crossref_primary_10_1007_s10237_024_01850_6 crossref_primary_10_1113_JP286193 |
Cites_doi | 10.1007/s10237‐011‐0361‐8 10.1080/13873954.2020.1786841 10.1016/j.compfluid.2016.05.015 10.1002/cnm.2737 10.1016/j.cma.2005.04.014 10.1002/cnm.3351 10.1016/0045‐7825(92)90041‐h 10.1115/1.4005377 10.1109/tbme.2003.812201 10.1016/j.medengphy.2012.08.009 10.1002/cnm.2732 10.1115/1.4004996 10.1007/s11517‐008‐0420‐1 10.1007/s10404‐020‐2319‐6 10.1007/s13239‐021‐00580‐5 10.1016/j.jcp.2012.07.035 10.1007/s13239‐012‐0112‐8 10.1002/cnm.2808 10.1007/s10439‐015‐1544‐8 10.1115/1.4006814 10.1111/j.1747‐0803.2010.00383.x 10.1002/cnm.2908 10.1115/1.4042184 10.1051/m2an:2004036 10.1016/j.jbiomech.2012.10.023 10.1007/s10439‐020‐02545‐6 10.1016/j.finel.2010.01.007 10.1007/s10439‐012‐0579‐3 10.1016/j.wavemoti.2003.12.009 10.1115/1.1894350 10.1007/s10554‐013‐0271‐1 10.1002/nme.6704 10.1109/tmi.2009.2021652 10.1007/s10439‐016‐1762‐8 10.1080/10255840903413565 10.1615/int.j.uncertaintyquantification.2020033068 10.1007/s10439‐010‐0132‐1 10.1115/1.4025983 10.1016/j.jbiomech.2016.12.004 10.1016/j.jbiomech.2019.109595 10.1007/s10237‐019‐01182‐w 10.1002/cnm.3246 10.1016/j.jbiomech.2005.02.021 10.1002/cnm.2717 10.1007/s10439‐021‐02780‐5 10.1016/s0045‐7825(98)80008‐x 10.1137/1.9781611971392 10.1016/j.jbiomech.2011.05.041 10.1002/cnm.2598 10.1007/s10237‐020‐01298‐4 10.1016/j.cma.2021.113762 10.1016/j.cma.2019.112623 10.1007/s11081‐020‐09483‐1 10.1016/j.cma.2005.11.011 10.1007/s10439‐021‐02796‐x 10.1016/s0045‐7825(00)00203‐6 10.1016/j.cma.2016.01.007 10.1109/38.865875 10.1016/j.cma.2018.10.032 10.1007/s00466‐013‐0868‐1 10.1002/1097-0363(20010115)35:1<93::aid-fld85>3.0.co;2-g 10.1007/s13239‐011‐0047‐5 10.1111/j.1747‐0803.2011.00553.x 10.1152/ajpheart.1999.276.1.h257 10.1080/10255840290010670 10.1007/bf02441895 10.1016/j.cma.2019.112626 10.1016/j.jbiomech.2014.03.028 10.1038/s41598‐018‐35344‐0 10.1016/j.jbiomech.2012.07.020 10.1002/cnm.3532 10.1002/cnm.1465 10.1002/cnm.2799 10.1016/j.jbiomech.2007.05.027 10.1152/ajpheart.00037.2009 10.1016/j.cma.2021.113892 10.1002/cnm.2622 10.1016/j.cma.2020.113030 10.3109/10929080500230445 10.1007/s10439‐010‐0083‐6 10.1007/s13239‐018‐00388‐w 10.1016/0021‐9290(92)90060‐e 10.1016/j.vascn.2011.10.003 10.1016/0025‐5564(73)90027‐8 10.1007/s10439‐012‐0715‐0 |
ContentType | Journal Article |
Copyright | 2022 John Wiley & Sons Ltd. 2022 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2022 John Wiley & Sons Ltd. – notice: 2022 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7QO 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
DOI | 10.1002/cnm.3639 |
DatabaseName | CrossRef Biotechnology Research Abstracts Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Civil Engineering Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Civil Engineering Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2040-7947 |
EndPage | n/a |
ExternalDocumentID | PMC9561079 10_1002_cnm_3639 CNM3639 |
Genre | article |
GrantInformation_xml | – fundername: National Institute of Biomedical Imaging and Bioengineering funderid: R01EB029362 – fundername: National Library of Medicine funderid: R01LM013120 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 31~ 33P 3SF 4.4 50Z 51W 51X 52N 52O 52P 52S 52T 52U 52W 52X 53G 66C 7PT 8-0 8-1 8-3 8-4 8-5 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABDBF ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACRPL ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ I-F IX1 J0M JPC KQQ LATKE LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ ML~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI SUPJJ TUS UB1 V2E W8V W99 WBKPD WIH WIK WLBEL WOHZO WRC WXSBR WYISQ XG1 XV2 ~IA ~WT 1OB AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION 7QO 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
ID | FETCH-LOGICAL-c3819-a2cb1a0f4139cf50f1bda968bd38268a86e1442bac0342cb8c47042e338798ee3 |
IEDL.DBID | DR2 |
ISSN | 2040-7939 2040-7947 |
IngestDate | Thu Aug 21 18:36:18 EDT 2025 Fri Jul 11 16:13:25 EDT 2025 Wed Aug 13 04:24:03 EDT 2025 Sun Aug 24 03:22:19 EDT 2025 Thu Apr 24 22:58:26 EDT 2025 Wed Jan 22 16:24:14 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3819-a2cb1a0f4139cf50f1bda968bd38268a86e1442bac0342cb8c47042e338798ee3 |
Notes | Funding information National Library of Medicine, Grant/Award Number: R01LM013120; National Institute of Biomedical Imaging and Bioengineering, Grant/Award Number: R01EB029362 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4290-6391 0000-0003-3324-4346 0000-0003-1902-171X 0000-0001-5760-2617 0000-0002-5676-6561 |
PMID | 35875875 |
PQID | 2723636558 |
PQPubID | 2034586 |
PageCount | 23 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9561079 proquest_miscellaneous_2694416102 proquest_journals_2723636558 crossref_primary_10_1002_cnm_3639 crossref_citationtrail_10_1002_cnm_3639 wiley_primary_10_1002_cnm_3639_CNM3639 |
PublicationCentury | 2000 |
PublicationDate | October 2022 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: October 2022 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Chichester |
PublicationTitle | International journal for numerical methods in biomedical engineering |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2013; 29 2004; 127 2010; 13 2015; 31 2006; 39 2015; 32 2013; 244 1973; 18 2011; 11 2019; 18 2020; 365 1998; 158 2021; 122 2016; 302 2020; 10 2013; 7 2003; 50 1992; 99 2020; 19 2016; 33 2018; 9 2021; 38 2018; 8 2012; 134 2004; 38 2004; 39 2015; 44 2017; 34 2013; 52 2020; 48 2011; 65 2011; 28 2010; 5 2016; 45 2021; 49 2010; 38 2011; 2 2013; 46 2010; 39 2002; 5 2019; 37 2000; 20 2021; 380 2009; 297 1998 2006; 195 2019; 344 2014; 47 2020; 36 2021; 384 2020; 100 2019; 141 2011; 6 2000; 190 2011; 133 2009; 28 2017; 51 2021; 13 2012; 3 2010; 46 1980; 18 2013; 35 2020 2013; 30 2020; 358 2011; 44 2020; 26 2008; 46 2005; 10 2020; 24 1992; 25 1999; 276 2017; 142 2007; 40 2020; 21 2014; 30 2012; 45 2001; 35 2012; 41 2012; 40 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_79_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_80_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_82_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_86_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_38_1 |
References_xml | – volume: 41 start-page: 669 issue: 4 year: 2012 end-page: 681 article-title: Non‐invasive hemodynamic assessment of aortic coarctation: validation with in vivo measurements publication-title: Ann Biomed Eng – volume: 18 start-page: 1867 issue: 6 year: 2019 end-page: 1881 article-title: Reduced‐order modeling of blood flow for noninvasive functional evaluation of coronary artery disease publication-title: Biomech Model Mechanobiol – volume: 35 start-page: 784 issue: 6 year: 2013 end-page: 791 article-title: Physiological simulation of blood flow in the aorta: comparison of hemodynamic indices as predicted by 3‐D FSI, 3‐D rigid wall and 1‐D models publication-title: Med Eng Phys – volume: 99 start-page: 209 year: 1992 end-page: 233 article-title: Stabilized finite element methods: II. The incompressible Navier‐stokes equations publication-title: Comput Methods Appl Mech Eng – volume: 100 year: 2020 article-title: Computational hemodynamics in arteries with the one‐dimensional augmented fluid‐structure interaction system: viscoelastic parameters estimation and comparison with in‐vivo data publication-title: J Biomech – volume: 19 start-page: 1663 year: 2020 end-page: 1678 article-title: On the anatomical definition of arterial networks in blood flow simulations: comparison of detailed and simplified models publication-title: Biomech Model Mechanobiol – volume: 44 start-page: 2250 issue: 12 year: 2011 end-page: 2258 article-title: Pulse wave propagation in a model human arterial network: assessment of 1‐D visco‐elastic simulations against in vitro measurements publication-title: J Biomech – volume: 358 year: 2020 article-title: Propagating uncertainties in large‐scale hemodynamics models via network uncertainty quantification and reduced‐order modeling publication-title: Comput Methods Appl Mech Eng – volume: 28 start-page: 1141 issue: 8 year: 2009 end-page: 1155 article-title: A framework for geometric analysis of vascular structures: application to cerebral aneurysms publication-title: IEEE Trans Med Imaging – volume: 5 start-page: 104 issue: 2 year: 2010 end-page: 117 article-title: A new multiparameter approach to computational simulation for Fontan assessment and redesign publication-title: Congenit Heart Dis – volume: 36 issue: 8 year: 2020 article-title: The effects of clinically‐derived parametric data uncertainty in patient‐specific coronary simulations with deformable walls publication-title: Int J Numer Method Biomed Eng – volume: 133 issue: 9 year: 2011 article-title: Computational simulations for aortic coarctation: representative results from a sampling of patients publication-title: J Biomech Eng – volume: 46 start-page: 514 issue: 6 year: 2010 end-page: 525 article-title: Developing computational methods for three‐dimensional finite element simulations of coronary blood flow publication-title: Finite Elem Anal Des – volume: 30 start-page: 681 issue: 7 year: 2014 end-page: 725 article-title: A global multiscale mathematical model for the human circulation with emphasis on the venous system publication-title: Int J Numer Method Biomed Eng – volume: 40 start-page: 3476 issue: 15 year: 2007 end-page: 3486 article-title: Pulse wave propagation in a model human arterial network: assessment of 1‐D numerical simulations against in vitro measurements publication-title: J Biomech – volume: 5 start-page: 195 issue: 3 year: 2002 end-page: 206 article-title: A one‐dimensional finite element method for simulation‐based medical planning for cardiovascular disease publication-title: Comput Methods Biomech Biomed Engin – volume: 34 issue: 1 year: 2017 article-title: Estimating the accuracy of a reduced‐order model for the calculation of fractional flow reserve (FFR) publication-title: Int J Numer Method Biomed Eng – volume: 35 start-page: 93 issue: 1 year: 2001 end-page: 116 article-title: A stabilized finite element method for the incompressible Navier‐stokes equations using a hierarchical basis publication-title: Int J Numer Methods Fluids – volume: 302 start-page: 193 year: 2016 end-page: 252 article-title: Geometric multiscale modeling of the cardiovascular system, between theory and practice publication-title: Comput Methods Appl Mech Eng – volume: 51 start-page: 83 year: 2017 end-page: 88 article-title: Improved reduced‐order modelling of cerebrovascular flow distribution by accounting for arterial bifurcation pressure drops publication-title: J Biomech – volume: 39 start-page: 361 issue: 4 year: 2004 end-page: 374 article-title: Outflow boundary conditions for one‐dimensional finite element modeling of blood flow and pressure waves in arteries publication-title: Wave Motion – volume: 344 start-page: 734 year: 2019 end-page: 765 article-title: Towards fast hemodynamic simulations in large‐scale circulatory networks publication-title: Comput Methods Appl Mech Eng – volume: 47 start-page: 1810 issue: 8 year: 2014 end-page: 1815 article-title: Geometry‐based pressure drop prediction in mildly diseased human coronary arteries publication-title: J Biomech – volume: 13 start-page: 625 issue: 5 year: 2010 end-page: 640 article-title: Outflow boundary conditions for 3D simulations of non‐periodic blood flow and pressure fields in deformable arteries publication-title: Comput Methods Biomech Biomed Engin – volume: 46 start-page: 423 issue: 2 year: 2013 end-page: 429 article-title: Predictive modeling of the virtual hemi‐Fontan operation for second stage single ventricle palliation: two patient‐specific cases publication-title: J Biomech – volume: 195 start-page: 3776 issue: 29–32 year: 2006 end-page: 3796 article-title: Outflow boundary conditions for three‐dimensional finite element modeling of blood flow and pressure in arteries publication-title: Comput Methods Appl Mech Eng – volume: 26 start-page: 409 issue: 5 year: 2020 end-page: 433 article-title: Fluid‐structure port‐Hamiltonian model for incompressible flows in tubes with time varying geometries publication-title: Math Comput Model Dyn Syst – year: 1998 – volume: 2 start-page: 212 issue: 3 year: 2011 article-title: Optical coherence tomography for patient‐specific 3D artery reconstruction and evaluation of wall shear stress in a left circumflex coronary artery publication-title: Cardiovasc Eng Technol – volume: 24 issue: 2 year: 2020 article-title: Impact of inertia and channel angles on flow distribution in microfluidic junctions publication-title: Microfluid Nanofluid – volume: 21 start-page: 1487 issue: 4 year: 2020 end-page: 1536 article-title: A concurrent implementation of the surrogate management framework with application to cardiovascular shape optimization publication-title: Optim Eng – volume: 142 start-page: 128 year: 2017 end-page: 138 article-title: Automated tuning for parameter identification and uncertainty quantification in multi‐scale coronary simulations publication-title: Comput Fluids – volume: 31 issue: 10 year: 2015 article-title: A benchmark study of numerical schemes for one‐dimensional arterial blood flow modelling publication-title: Int J Numer Method Biomed Eng – volume: 358 year: 2020 article-title: Machine learning in cardiovascular flows modeling: predicting arterial blood pressure from non‐invasive 4D flow MRI data using physics‐informed neural networks publication-title: Comput Methods Appl Mech Eng – volume: 3 start-page: 450 issue: 4 year: 2012 end-page: 461 article-title: Fluid mechanics of mixing in the vertebrobasilar system: comparison of simulation and MRI publication-title: Cardiovasc Eng Technol – volume: 39 start-page: 297 issue: 1 year: 2010 end-page: 309 article-title: Modeling blood flow circulation in intracranial arterial networks: a comparative 3D/1D simulation study publication-title: Ann Biomed Eng – volume: 276 start-page: H257 issue: 1 year: 1999 end-page: H268 article-title: Structured tree outflow condition for blood flow in larger systemic arteries publication-title: Am J Phys Heart Circ Phys – volume: 46 start-page: 1097 issue: 11 year: 2008 end-page: 1112 article-title: An image‐based modeling framework for patient‐specific computational hemodynamics publication-title: Med Biol Eng Comput – volume: 133 start-page: 111006 issue: 11 year: 2011 article-title: Three‐dimensional simulations in Glenn patients: clinically based boundary conditions, hemodynamic results and sensitivity to input data publication-title: J Biomech Eng – volume: 50 start-page: 649 issue: 6 year: 2003 end-page: 656 article-title: In vivo validation of a one‐dimensional finite‐element method for predicting blood flow in cardiovascular bypass grafts publication-title: IEEE Trans Biomed Eng – volume: 33 issue: 4 year: 2016 article-title: Transversally enriched pipe element method (TEPEM): an effective numerical approach for blood flow modeling publication-title: Int J Numer Method Biomed Eng – volume: 141 issue: 3 year: 2019 article-title: Reduced order models for Transstenotic pressure drop in the coronary arteries publication-title: J Biomech Eng – volume: 20 start-page: 20 issue: 5 year: 2000 end-page: 27 article-title: Visualizing with VTK: a tutorial publication-title: IEEE Comput Graph Appl – volume: 30 start-page: 204 issue: 2 year: 2013 end-page: 231 article-title: A systematic comparison between 1‐D and 3‐D hemodynamics in compliant arterial models publication-title: Int J Numer Method Biomed Eng – volume: 39 start-page: 1010 issue: 6 year: 2006 end-page: 1020 article-title: Multiscale modelling in biofluidynamics: application to reconstructive paediatric cardiac surgery publication-title: J Biomech – volume: 65 start-page: 18 issue: 1 year: 2011 end-page: 28 article-title: A coupled experimental and computational approach to quantify deleterious hemodynamics, vascular alterations, and mechanisms of long‐term morbidity in response to aortic coarctation publication-title: J Pharmacol Toxicol Methods – volume: 13 start-page: 331 year: 2021 end-page: 342 article-title: A 1D‐3D hybrid model of patient‐specific coronary hemodynamics publication-title: Cardiovasc Eng Technol – volume: 45 start-page: 525 issue: 3 year: 2016 end-page: 541 article-title: SimVascular: an open source pipeline for cardiovascular simulation publication-title: Ann Biomed Eng – volume: 29 start-page: 1847 issue: 8 year: 2013 end-page: 1859 article-title: Automatic segmentation, detection and quantification of coronary artery stenoses on CTA publication-title: Int J Cardiovasc Imaging – volume: 25 start-page: 1477 issue: 12 year: 1992 end-page: 1488 article-title: Computer simulation of arterial flow with applications to arterial and aortic stenoses publication-title: J Biomech – volume: 49 start-page: 2365 year: 2021 end-page: 2376 article-title: Accelerated estimation of pulmonary artery stenosis pressure gradients with distributed lumped parameter modeling vs. 3D CFD with instantaneous adaptive mesh refinement: experimental validation in swine publication-title: Ann Biomed Eng – volume: 158 start-page: 155 issue: 1–2 year: 1998 end-page: 196 article-title: Finite element modeling of blood flow in arteries publication-title: Comput Methods Appl Mech Eng – volume: 48 start-page: 2870 year: 2020 end-page: 2886 article-title: A distributed lumped parameter model of blood flow publication-title: Ann Biomed Eng – volume: 384 year: 2021 article-title: Machine learning augmented reduced‐order models for FFR‐prediction publication-title: Comput Methods Appl Mech Eng – volume: 244 start-page: 63 year: 2013 end-page: 79 article-title: A modular numerical method for implicit 0D/3D coupling in cardiovascular finite element simulations publication-title: J Comput Phys – volume: 134 issue: 5 year: 2012 article-title: Optimization of shunt placement for the Norwood surgery using multi‐domain modeling publication-title: J Biomech Eng – volume: 127 start-page: 440 issue: 3 year: 2004 end-page: 449 article-title: One‐dimensional and three‐dimensional models of cerebrovascular flow publication-title: J Biomech Eng – volume: 18 start-page: 161 issue: 1–2 year: 1973 end-page: 170 article-title: On the one‐dimensional theory of blood flow in the larger vessels publication-title: Math Biosci – volume: 190 start-page: 305 issue: 3–4 year: 2000 end-page: 319 article-title: A generalized‐alpha method for integrating the filtered Navier–stokes equations with a stabilized finite element method publication-title: Comput Methods Appl Mech Eng – volume: 10 start-page: 449 issue: 5 year: 2020 end-page: 466 article-title: Multifidelity estimators for coronary circulation models under clinically informed data uncertainty publication-title: Int J Uncertain Quantif – volume: 38 start-page: 613 issue: 4 year: 2004 end-page: 632 article-title: Analysis of lumped parameter models for blood flow simulations and their relation with 1D models publication-title: ESAIM: Math Model Numer Anal – volume: 33 issue: 3 year: 2016 article-title: Patient‐specific parameter estimation in single‐ventricle lumped circulation models under uncertainty publication-title: Int J Numer Method Biomed Eng – volume: 297 start-page: H208 issue: 1 year: 2009 end-page: H222 article-title: Validation of a one‐dimensional model of the systemic arterial tree publication-title: Am J Phys Heart Circ Phys – volume: 10 start-page: 257 issue: 4 year: 2005 end-page: 277 article-title: Predicting changes in blood flow in patient‐specific operative plans for treating aortoiliac occlusive disease publication-title: Comput Aided Surg – volume: 11 start-page: 915 issue: 6 year: 2011 end-page: 932 article-title: Image‐based modeling of hemodynamics in coronary artery aneurysms caused by Kawasaki disease publication-title: Biomech Model Mechanobiol – volume: 8 issue: 1 year: 2018 article-title: Comparison of 1D and 3D models for the estimation of fractional flow reserve publication-title: Sci Rep – volume: 31 issue: 7 year: 2015 article-title: A unified method for estimating pressure losses at vascular junctions publication-title: Int J Numer Method Biomed Eng – volume: 380 year: 2021 article-title: Model order reduction of flow based on a modular geometrical approximation of blood vessels publication-title: Comput Methods Appl Mech Eng – volume: 38 start-page: 3195 issue: 10 year: 2010 end-page: 3209 article-title: Patient‐specific modeling of blood flow and pressure in human coronary arteries publication-title: Ann Biomed Eng – volume: 122 start-page: 4313 year: 2021 end-page: 4332 article-title: Computationally efficient finite element formulation for blood flow analysis in multi‐layered aorta modeled as viscoelastic material publication-title: Int J Numer Methods Eng – volume: 49 start-page: 3574 year: 2021 end-page: 3592 article-title: On the periodicity of cardiovascular fluid dynamics simulations publication-title: Ann Biomed Eng – volume: 37 issue: 11 year: 2019 article-title: Impact of baseline coronary flow and its distribution on fractional flow reserve prediction publication-title: Int J Numer Method Biomed Eng – volume: 44 start-page: 2351 issue: 8 year: 2015 end-page: 2363 article-title: Development of a numerical method for patient‐specific cerebral circulation using 1D–0D simulation of the entire cardiovascular system with SPECT data publication-title: Ann Biomed Eng – volume: 9 start-page: 597 issue: 4 year: 2018 end-page: 622 article-title: Uncertainty quantification and sensitivity analysis for computational FFR estimation in stable coronary artery disease publication-title: Cardiovasc Eng Technol – volume: 32 issue: 3 year: 2015 article-title: Uncertainty quantification in virtual surgery hemodynamics predictions for single ventricle palliation publication-title: Int J Numer Method Biomed Eng – volume: 28 start-page: 604 issue: 6–7 year: 2011 end-page: 625 article-title: Model reduction techniques for fast blood flow simulation in parametrized geometries publication-title: Int J Numer Method Biomed Eng – volume: 38 issue: 1 year: 2021 article-title: Cerebrospinal fluid dynamics coupled to the global circulation in holistic setting: mathematical models, numerical methods and applications publication-title: Int J Numer Method Biomed Eng – volume: 45 start-page: 2499 issue: 15 year: 2012 end-page: 2505 article-title: Patient‐specific mean pressure drop in the systemic arterial tree, a comparison between 1‐D and 3‐D models publication-title: J Biomech – year: 2020 – volume: 18 start-page: 709 issue: 6 year: 1980 end-page: 718 article-title: Multi‐branched model of the human arterial system publication-title: Med Biol Eng Comput – volume: 365 year: 2020 article-title: Multilevel and multifidelity uncertainty quantification for cardiovascular hemodynamics publication-title: Comput Methods Appl Mech Eng – volume: 40 start-page: 2228 issue: 10 year: 2012 end-page: 2242 article-title: Patient‐specific multiscale modeling of blood flow for coronary artery bypass graft surgery publication-title: Ann Biomed Eng – volume: 52 start-page: 1141 issue: 5 year: 2013 end-page: 1152 article-title: A new preconditioning technique for implicitly coupled multidomain simulations with applications to hemodynamics publication-title: Comput Mech – volume: 6 start-page: 432 issue: 5 year: 2011 end-page: 443 article-title: Computational simulations demonstrate Altered Wall shear stress in aortic Coarctation patients treated by resection with end‐to‐end anastomosis publication-title: Congenit Heart Dis – volume: 7 issue: 4 year: 2013 article-title: The vascular model repository: a public resource of medical imaging data and blood flow simulation results publication-title: J Med Device – volume: 195 start-page: 5685 issue: 41–43 year: 2006 end-page: 5706 article-title: A coupled momentum method for modeling blood flow in three‐dimensional deformable arteries publication-title: Comput Methods Appl Mech Eng – ident: e_1_2_7_80_1 doi: 10.1007/s10237‐011‐0361‐8 – ident: e_1_2_7_87_1 doi: 10.1080/13873954.2020.1786841 – ident: e_1_2_7_30_1 doi: 10.1016/j.compfluid.2016.05.015 – ident: e_1_2_7_28_1 doi: 10.1002/cnm.2737 – ident: e_1_2_7_58_1 doi: 10.1016/j.cma.2005.04.014 – ident: e_1_2_7_21_1 doi: 10.1002/cnm.3351 – ident: e_1_2_7_59_1 doi: 10.1016/0045‐7825(92)90041‐h – ident: e_1_2_7_81_1 doi: 10.1115/1.4005377 – ident: e_1_2_7_48_1 doi: 10.1109/tbme.2003.812201 – ident: e_1_2_7_38_1 doi: 10.1016/j.medengphy.2012.08.009 – ident: e_1_2_7_45_1 doi: 10.1002/cnm.2732 – ident: e_1_2_7_77_1 doi: 10.1115/1.4004996 – ident: e_1_2_7_71_1 doi: 10.1007/s11517‐008‐0420‐1 – ident: e_1_2_7_86_1 doi: 10.1007/s10404‐020‐2319‐6 – ident: e_1_2_7_22_1 doi: 10.1007/s13239‐021‐00580‐5 – ident: e_1_2_7_61_1 doi: 10.1016/j.jcp.2012.07.035 – ident: e_1_2_7_74_1 doi: 10.1007/s13239‐012‐0112‐8 – ident: e_1_2_7_9_1 doi: 10.1002/cnm.2808 – ident: e_1_2_7_26_1 doi: 10.1007/s10439‐015‐1544‐8 – ident: e_1_2_7_54_1 doi: 10.1115/1.4006814 – ident: e_1_2_7_75_1 doi: 10.1111/j.1747‐0803.2010.00383.x – ident: e_1_2_7_13_1 doi: 10.1002/cnm.2908 – ident: e_1_2_7_66_1 doi: 10.1115/1.4042184 – ident: e_1_2_7_65_1 doi: 10.1051/m2an:2004036 – ident: e_1_2_7_23_1 doi: 10.1016/j.jbiomech.2012.10.023 – ident: e_1_2_7_36_1 doi: 10.1007/s10439‐020‐02545‐6 – ident: e_1_2_7_19_1 doi: 10.1016/j.finel.2010.01.007 – ident: e_1_2_7_55_1 doi: 10.1007/s10439‐012‐0579‐3 – ident: e_1_2_7_64_1 doi: 10.1016/j.wavemoti.2003.12.009 – ident: e_1_2_7_39_1 doi: 10.1115/1.1894350 – ident: e_1_2_7_15_1 doi: 10.1007/s10554‐013‐0271‐1 – ident: e_1_2_7_42_1 doi: 10.1002/nme.6704 – ident: e_1_2_7_72_1 doi: 10.1109/tmi.2009.2021652 – ident: e_1_2_7_51_1 doi: 10.1007/s10439‐016‐1762‐8 – ident: e_1_2_7_83_1 doi: 10.1080/10255840903413565 – ident: e_1_2_7_5_1 doi: 10.1615/int.j.uncertaintyquantification.2020033068 – ident: e_1_2_7_40_1 doi: 10.1007/s10439‐010‐0132‐1 – ident: e_1_2_7_52_1 doi: 10.1115/1.4025983 – ident: e_1_2_7_32_1 doi: 10.1016/j.jbiomech.2016.12.004 – ident: e_1_2_7_46_1 doi: 10.1016/j.jbiomech.2019.109595 – ident: e_1_2_7_7_1 doi: 10.1007/s10237‐019‐01182‐w – ident: e_1_2_7_17_1 doi: 10.1002/cnm.3246 – ident: e_1_2_7_18_1 doi: 10.1016/j.jbiomech.2005.02.021 – ident: e_1_2_7_33_1 doi: 10.1002/cnm.2717 – ident: e_1_2_7_35_1 doi: 10.1007/s10439‐021‐02780‐5 – ident: e_1_2_7_57_1 doi: 10.1016/s0045‐7825(98)80008‐x – ident: e_1_2_7_68_1 doi: 10.1137/1.9781611971392 – ident: e_1_2_7_50_1 doi: 10.1016/j.jbiomech.2011.05.041 – ident: e_1_2_7_41_1 doi: 10.1002/cnm.2598 – ident: e_1_2_7_47_1 doi: 10.1007/s10237‐020‐01298‐4 – ident: e_1_2_7_8_1 doi: 10.1016/j.cma.2021.113762 – ident: e_1_2_7_11_1 doi: 10.1016/j.cma.2019.112623 – ident: e_1_2_7_3_1 doi: 10.1007/s11081‐020‐09483‐1 – ident: e_1_2_7_84_1 doi: 10.1016/j.cma.2005.11.011 – ident: e_1_2_7_2_1 doi: 10.1007/s10439‐021‐02796‐x – ident: e_1_2_7_70_1 doi: 10.1016/s0045‐7825(00)00203‐6 – ident: e_1_2_7_53_1 doi: 10.1016/j.cma.2016.01.007 – ident: e_1_2_7_73_1 doi: 10.1109/38.865875 – ident: e_1_2_7_10_1 doi: 10.1016/j.cma.2018.10.032 – ident: e_1_2_7_62_1 doi: 10.1007/s00466‐013‐0868‐1 – ident: e_1_2_7_60_1 doi: 10.1002/1097-0363(20010115)35:1<93::aid-fld85>3.0.co;2-g – ident: e_1_2_7_76_1 doi: 10.1007/s13239‐011‐0047‐5 – ident: e_1_2_7_78_1 doi: 10.1111/j.1747‐0803.2011.00553.x – ident: e_1_2_7_24_1 doi: 10.1152/ajpheart.1999.276.1.h257 – ident: e_1_2_7_37_1 doi: 10.1080/10255840290010670 – ident: e_1_2_7_27_1 doi: 10.1007/bf02441895 – ident: e_1_2_7_31_1 doi: 10.1016/j.cma.2019.112626 – ident: e_1_2_7_34_1 doi: 10.1016/j.jbiomech.2014.03.028 – ident: e_1_2_7_14_1 doi: 10.1038/s41598‐018‐35344‐0 – ident: e_1_2_7_44_1 doi: 10.1016/j.jbiomech.2012.07.020 – ident: e_1_2_7_56_1 doi: 10.1002/cnm.3532 – ident: e_1_2_7_6_1 doi: 10.1002/cnm.1465 – ident: e_1_2_7_69_1 – ident: e_1_2_7_29_1 doi: 10.1002/cnm.2799 – ident: e_1_2_7_49_1 doi: 10.1016/j.jbiomech.2007.05.027 – ident: e_1_2_7_43_1 doi: 10.1152/ajpheart.00037.2009 – ident: e_1_2_7_12_1 doi: 10.1016/j.cma.2021.113892 – ident: e_1_2_7_25_1 doi: 10.1002/cnm.2622 – ident: e_1_2_7_4_1 doi: 10.1016/j.cma.2020.113030 – ident: e_1_2_7_82_1 doi: 10.3109/10929080500230445 – ident: e_1_2_7_20_1 doi: 10.1007/s10439‐010‐0083‐6 – ident: e_1_2_7_16_1 doi: 10.1007/s13239‐018‐00388‐w – ident: e_1_2_7_85_1 doi: 10.1016/0021‐9290(92)90060‐e – ident: e_1_2_7_79_1 doi: 10.1016/j.vascn.2011.10.003 – ident: e_1_2_7_63_1 doi: 10.1016/0025‐5564(73)90027‐8 – ident: e_1_2_7_67_1 doi: 10.1007/s10439‐012‐0715‐0 |
SSID | ssj0000299973 |
Score | 2.508037 |
Snippet | Three‐dimensional (3D) cardiovascular fluid dynamics simulations typically require hours to days of computing time on a high‐performance computing cluster.... Three-dimensional (3D) cardiovascular fluid dynamics simulations typically require hours to days of computing time on a high-performance computing cluster.... |
SourceID | pubmedcentral proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e3639 |
SubjectTerms | Approximation Automation Blood flow Blood pressure Blood vessels cardiovascular fluid dynamics Computer applications Computers Computing time Design optimization Design parameters Errors Fluid dynamics Hydrodynamics lumped‐parameter networks One dimensional models one‐dimensional blood flow Open source software Parameterization Personal computers reduced‐order models Simulation Stenosis Three dimensional flow Three dimensional models Waveforms zero‐dimensional blood flow |
Title | Automated generation of 0D and 1D reduced‐order models of patient‐specific blood flow |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcnm.3639 https://www.proquest.com/docview/2723636558 https://www.proquest.com/docview/2694416102 https://pubmed.ncbi.nlm.nih.gov/PMC9561079 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELYquPRSfgrqUlgZqSqnLImdjZPjLssKVYJDVSSqHiJ77LRVIanYXSFx4hF4Rp6EGeeHLqJS1VOkeKJxPJ7xjD3zmbEPVqMPopIsKHByBDEABEYaGwgrTBJB6rSjfcjTs-TkPP50MbxosiqpFqbGh-g23EgzvL0mBddmdvgEGgrl1UDi-orml1K1yB_6LLrtlRDNbObPl4XPmctk1kLPhuKw_XZ5MXryMJ_nR_7pt_qFZ7rGvrVdrvNNfg0WczOA22dojv_3T-vsTeOP8lE9gTbYK1dusrXGN-WN5s_esq-jxbxC7xZffvdI1SRQXhU8nHBdWh5N-DWhwDr7cHfv8Ty5v2RnRjQNeCu2UGEnJSdxnzDPi8vqZoudT4-_HJ0EzbUMAVB4F2gBJtJhgctfBsUwLCJjdZakxkqMVVKdJg6jNGE0ELwgmBRihabBYTCsstQ5uc1Wyqp07xgHkE5qq4rUQRyB1EoijzQJlXUF2r8eO2jlk0ODWU5XZ1zmNdqyyHHEchqxHtvvKH_XOB0v0Oy2Is4bTZ3lQglsS4ZDZLbfNaOO0cGJLl21QJokiykQDEWPqaWp0fEilO7llvLnD4_WTZXDoULmH73k_9q7_OjslJ47_0r4nr0WVIvhMwt32cr8euH20EOamz5bHY0n42nf68Qj60YTFg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcoALLQXULX24UlVO2SZ2Nk7UU9WHFujuoWqlIiFFfgUQJam6u0LixE_gN_JLOuM82q1AQpwixRONY3vGM-OZzwA7VqENIpMsKHBxBLExJtBC24BbrpPIpE45ikOOxsnwIn53ObhcgP22FqbGh-gCbiQZXl-TgFNAeu8ONdSU3_oCN9hH8Jgu9Pb-1BnvAiwhKtrMnzBznzWXiawFnw35Xvvx_HZ0Z2M-zJC8b7n6redkCT62na4zTr72Z1PdNz8e4Dn-518tw7PGJGUH9Rp6DguuXIGlxjxljfBPXsCHg9m0QgMXX37yYNU0p6wqWHjEVGlZdMRuCAjW2d8_f3lIT-bv2ZkQTYPfii1U20n5ScznzLPiqvr-Ei5Ojs8Ph0FzM0NgyMMLFDc6UmGBO2BmikFYRNqqLEm1FeiupCpNHDpqXCtDCINGpyaWqB0c-sMyS50Tr2CxrEq3CswY4YSyskidiSMjlBTII01CaV2BKrAHb9oJyk0DW063Z1zlNeAyz3HEchqxHmx3lNc1VMcfaNbbOc4bYZ3kXHJsSwYDZLbdNaOY0dmJKl01Q5oki8kXDHkP5Nza6HgRUPd8S_nlswfspuLhUCLzXT_1f-1dfjge0XPtXwm34MnwfHSan74dv38NTzmVZvhEw3VYnN7M3AYaTFO96QXjFkzdFb8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA5aQXyxXulq1RREn2abSWaTzGPputRLFxELFR-GXFWsM6W7i-CTP8Hf6C_xnMylblEQnwYmZ0gm55JzknO-EPLYG_BBlCyzCMKRFc65zArrM-65lbnTwQTchzycy4Oj4sXx5LjLqsRamBYfYthwQ81I9hoV_NTH3XPQUFd_GQtYXy-TK4VkGiV6-oYP-ysM7GyZDph5SporRdljzzK-23-8vhqdu5gXEyR_d1zTyjPbJO_7MbcJJ5_Hq6Udu28X4Bz_76dukOudQ0r3Wgm6SS6F-hbZ7JxT2qn-4jZ5t7daNuDewssPCaoaOUqbSNmUmtrTfErPEAY2-J_ffyRAT5pu2VkgTYfeCi1Y2YnZSTRlzNN40ny9Q45mz97uH2TdvQyZw_guM9zZ3LAI61_p4oTF3HpTSm29gGBFGy0DhGncGof4gs5qVyiwDQGiYVXqEMRdslE3ddgi1DkRhPEq6uCK3AmjBPShJVM-RDCAI_K050_lOtByvDvjpGrhlnkFM1bhjI3IzkB52gJ1_IFmu2dx1anqouKKQ5ucTKCznaEZlAxPTkwdmhXQyLLASJDxEVFrojH0hTDd6y31p48JrhtLh5mCzp8kzv91dNX-_BCf9_6V8BG5-no6q149n7-8T65xrMtIWYbbZGN5tgoPwFta2odJLX4BKc0Udw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+generation+of+0D+and+1D+reduced-order+models+of+patient-specific+blood+flow&rft.jtitle=International+journal+for+numerical+methods+in+biomedical+engineering&rft.au=Pfaller%2C+Martin+R.&rft.au=Pham%2C+Jonathan&rft.au=Verma%2C+Aekaansh&rft.au=Pegolotti%2C+Luca&rft.date=2022-10-01&rft.issn=2040-7939&rft.eissn=2040-7947&rft.volume=38&rft.issue=10&rft.spage=e3639&rft.epage=e3639&rft_id=info:doi/10.1002%2Fcnm.3639&rft_id=info%3Apmid%2F35875875&rft.externalDocID=PMC9561079 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-7939&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-7939&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-7939&client=summon |