Automated generation of 0D and 1D reduced‐order models of patient‐specific blood flow

Three‐dimensional (3D) cardiovascular fluid dynamics simulations typically require hours to days of computing time on a high‐performance computing cluster. One‐dimensional (1D) and lumped‐parameter zero‐dimensional (0D) models show great promise for accurately predicting blood bulk flow and pressure...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for numerical methods in biomedical engineering Vol. 38; no. 10; pp. e3639 - n/a
Main Authors Pfaller, Martin R., Pham, Jonathan, Verma, Aekaansh, Pegolotti, Luca, Wilson, Nathan M., Parker, David W., Yang, Weiguang, Marsden, Alison L.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.10.2022
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN2040-7939
2040-7947
2040-7947
DOI10.1002/cnm.3639

Cover

Loading…
Abstract Three‐dimensional (3D) cardiovascular fluid dynamics simulations typically require hours to days of computing time on a high‐performance computing cluster. One‐dimensional (1D) and lumped‐parameter zero‐dimensional (0D) models show great promise for accurately predicting blood bulk flow and pressure waveforms with only a fraction of the cost. They can also accelerate uncertainty quantification, optimization, and design parameterization studies. Despite several prior studies generating 1D and 0D models and comparing them to 3D solutions, these were typically limited to either 1D or 0D and a singular category of vascular anatomies. This work proposes a fully automated and openly available framework to generate and simulate 1D and 0D models from 3D patient‐specific geometries, automatically detecting vessel junctions and stenosis segments. Our only input is the 3D geometry; we do not use any prior knowledge from 3D simulations. All computational tools presented in this work are implemented in the open‐source software platform SimVascular. We demonstrate the reduced‐order approximation quality against rigid‐wall 3D solutions in a comprehensive comparison with N = 72 publicly available models from various anatomies, vessel types, and disease conditions. Relative average approximation errors of flows and pressures typically ranged from 1% to 10% for both 1D and 0D models, measured at the outlets of terminal vessel branches. In general, 0D model errors were only slightly higher than 1D model errors despite requiring only a third of the 1D runtime. Automatically generated ROMs can significantly speed up model development and shift the computational load from high‐performance machines to personal computers. We present an open‐source framework to automatically generate 1D and 0D reduced‐order fluid dynamics models from 3D geometries. We demonstrate the robustness of the framework and the quality of the 1D and 0D approximations in a comprehensive comparison of N = 72 subject‐specific models against 3D fluid dynamics. Despite their significantly reduced computational effort, 1D and 0D models show good agreement with 3D models even in severely stenosed cases.
AbstractList Three-dimensional (3D) cardiovascular fluid dynamics simulations typically require hours to days of computing time on a high-performance computing cluster. One-dimensional (1D) and lumped-parameter zero-dimensional (0D) models show great promise for accurately predicting blood bulk flow and pressure waveforms with only a fraction of the cost. They can also accelerate uncertainty quantification, optimization, and design parameterization studies. Despite several prior studies generating 1D and 0D models and comparing them to 3D solutions, these were typically limited to either 1D or 0D and a singular category of vascular anatomies. This work proposes a fully automated and openly available framework to generate and simulate 1D and 0D models from 3D patient-specific geometries, automatically detecting vessel junctions and stenosis segments. Our only input is the 3D geometry; we do not use any prior knowledge from 3D simulations. All computational tools presented in this work are implemented in the open-source software platform SimVascular. We demonstrate the reduced-order approximation quality against rigid-wall 3D solutions in a comprehensive comparison with N = 72 publicly available models from various anatomies, vessel types, and disease conditions. Relative average approximation errors of flows and pressures typically ranged from 1% to 10% for both 1D and 0D models, measured at the outlets of terminal vessel branches. In general, 0D model errors were only slightly higher than 1D model errors despite requiring only a third of the 1D runtime. Automatically generated ROMs can significantly speed up model development and shift the computational load from high-performance machines to personal computers.Three-dimensional (3D) cardiovascular fluid dynamics simulations typically require hours to days of computing time on a high-performance computing cluster. One-dimensional (1D) and lumped-parameter zero-dimensional (0D) models show great promise for accurately predicting blood bulk flow and pressure waveforms with only a fraction of the cost. They can also accelerate uncertainty quantification, optimization, and design parameterization studies. Despite several prior studies generating 1D and 0D models and comparing them to 3D solutions, these were typically limited to either 1D or 0D and a singular category of vascular anatomies. This work proposes a fully automated and openly available framework to generate and simulate 1D and 0D models from 3D patient-specific geometries, automatically detecting vessel junctions and stenosis segments. Our only input is the 3D geometry; we do not use any prior knowledge from 3D simulations. All computational tools presented in this work are implemented in the open-source software platform SimVascular. We demonstrate the reduced-order approximation quality against rigid-wall 3D solutions in a comprehensive comparison with N = 72 publicly available models from various anatomies, vessel types, and disease conditions. Relative average approximation errors of flows and pressures typically ranged from 1% to 10% for both 1D and 0D models, measured at the outlets of terminal vessel branches. In general, 0D model errors were only slightly higher than 1D model errors despite requiring only a third of the 1D runtime. Automatically generated ROMs can significantly speed up model development and shift the computational load from high-performance machines to personal computers.
Three‐dimensional (3D) cardiovascular fluid dynamics simulations typically require hours to days of computing time on a high‐performance computing cluster. One‐dimensional (1D) and lumped‐parameter zero‐dimensional (0D) models show great promise for accurately predicting blood bulk flow and pressure waveforms with only a fraction of the cost. They can also accelerate uncertainty quantification, optimization, and design parameterization studies. Despite several prior studies generating 1D and 0D models and comparing them to 3D solutions, these were typically limited to either 1D or 0D and a singular category of vascular anatomies. This work proposes a fully automated and openly available framework to generate and simulate 1D and 0D models from 3D patient‐specific geometries, automatically detecting vessel junctions and stenosis segments. Our only input is the 3D geometry; we do not use any prior knowledge from 3D simulations. All computational tools presented in this work are implemented in the open‐source software platform SimVascular. We demonstrate the reduced‐order approximation quality against rigid‐wall 3D solutions in a comprehensive comparison with N = 72 publicly available models from various anatomies, vessel types, and disease conditions. Relative average approximation errors of flows and pressures typically ranged from 1% to 10% for both 1D and 0D models, measured at the outlets of terminal vessel branches. In general, 0D model errors were only slightly higher than 1D model errors despite requiring only a third of the 1D runtime. Automatically generated ROMs can significantly speed up model development and shift the computational load from high‐performance machines to personal computers.
Three‐dimensional (3D) cardiovascular fluid dynamics simulations typically require hours to days of computing time on a high‐performance computing cluster. One‐dimensional (1D) and lumped‐parameter zero‐dimensional (0D) models show great promise for accurately predicting blood bulk flow and pressure waveforms with only a fraction of the cost. They can also accelerate uncertainty quantification, optimization, and design parameterization studies. Despite several prior studies generating 1D and 0D models and comparing them to 3D solutions, these were typically limited to either 1D or 0D and a singular category of vascular anatomies. This work proposes a fully automated and openly available framework to generate and simulate 1D and 0D models from 3D patient‐specific geometries, automatically detecting vessel junctions and stenosis segments. Our only input is the 3D geometry; we do not use any prior knowledge from 3D simulations. All computational tools presented in this work are implemented in the open‐source software platform SimVascular. We demonstrate the reduced‐order approximation quality against rigid‐wall 3D solutions in a comprehensive comparison with N  = 72 publicly available models from various anatomies, vessel types, and disease conditions. Relative average approximation errors of flows and pressures typically ranged from 1% to 10% for both 1D and 0D models, measured at the outlets of terminal vessel branches. In general, 0D model errors were only slightly higher than 1D model errors despite requiring only a third of the 1D runtime. Automatically generated ROMs can significantly speed up model development and shift the computational load from high‐performance machines to personal computers.
Three-dimensional (3D) cardiovascular fluid dynamics simulations typically require hours to days of computing time on a high-performance computing cluster. One-dimensional (1D) and lumped-parameter zero-dimensional (0D) models show great promise for accurately predicting blood bulk flow and pressure waveforms with only a fraction of the cost. They can also accelerate uncertainty quantification, optimization, and design parameterization studies. Despite several prior studies generating 1D and 0D models and comparing them to 3D solutions, these were typically limited to either 1D or 0D and a singular category of vascular anatomies. This work proposes a fully automated and openly available framework to generate and simulate 1D and 0D models from 3D patient-specific geometries, automatically detecting vessel junctions and stenosis segments. Our only input is the 3D geometry; we do not use any prior knowledge from 3D simulations. All computational tools presented in this work are implemented in the open-source software platform SimVascular . We demonstrate the reduced-order approximation quality against rigid-wall 3D solutions in a comprehensive comparison with N = 72 publicly available models from various anatomies, vessel types, and disease conditions. Relative average approximation errors of flows and pressures typically ranged from 1% to 10% for both 1D and 0D models, measured at the outlets of terminal vessel branches. In general, 0D model errors were only slightly higher than 1D model errors despite requiring only a third of the 1D runtime. Automatically generated ROMs can significantly speed up model development and shift the computational load from high-performance machines to personal computers. We present an open-source framework to automatically generate 1D and 0D reduced-order fluid dynamics models from 3D geometries. We demonstrate the robustness of the framework and the quality of the 1D and 0D approximations in a comprehensive comparison of N=72 subject-specific models against 3D fluid dynamics. Despite their significantly reduced computational effort, 1D and 0D models show good agreement with 3D models even in severely stenosed cases.
Three‐dimensional (3D) cardiovascular fluid dynamics simulations typically require hours to days of computing time on a high‐performance computing cluster. One‐dimensional (1D) and lumped‐parameter zero‐dimensional (0D) models show great promise for accurately predicting blood bulk flow and pressure waveforms with only a fraction of the cost. They can also accelerate uncertainty quantification, optimization, and design parameterization studies. Despite several prior studies generating 1D and 0D models and comparing them to 3D solutions, these were typically limited to either 1D or 0D and a singular category of vascular anatomies. This work proposes a fully automated and openly available framework to generate and simulate 1D and 0D models from 3D patient‐specific geometries, automatically detecting vessel junctions and stenosis segments. Our only input is the 3D geometry; we do not use any prior knowledge from 3D simulations. All computational tools presented in this work are implemented in the open‐source software platform SimVascular. We demonstrate the reduced‐order approximation quality against rigid‐wall 3D solutions in a comprehensive comparison with N = 72 publicly available models from various anatomies, vessel types, and disease conditions. Relative average approximation errors of flows and pressures typically ranged from 1% to 10% for both 1D and 0D models, measured at the outlets of terminal vessel branches. In general, 0D model errors were only slightly higher than 1D model errors despite requiring only a third of the 1D runtime. Automatically generated ROMs can significantly speed up model development and shift the computational load from high‐performance machines to personal computers. We present an open‐source framework to automatically generate 1D and 0D reduced‐order fluid dynamics models from 3D geometries. We demonstrate the robustness of the framework and the quality of the 1D and 0D approximations in a comprehensive comparison of N = 72 subject‐specific models against 3D fluid dynamics. Despite their significantly reduced computational effort, 1D and 0D models show good agreement with 3D models even in severely stenosed cases.
Author Marsden, Alison L.
Pham, Jonathan
Verma, Aekaansh
Wilson, Nathan M.
Pfaller, Martin R.
Parker, David W.
Yang, Weiguang
Pegolotti, Luca
AuthorAffiliation 1 Pediatric Cardiology, Stanford University, CA, USA
6 Stanford Research Computing, Stanford University, CA, USA
5 Open Source Medical Software Corporation, CA, USA
2 Institute for Computational and Mathematical Engineering, Stanford University, CA, USA
3 Cardiovascular Institute, Stanford University, CA, USA
7 Bioengineering, Stanford University, CA, USA
4 Mechanical Engineering, Stanford University, CA, USA
AuthorAffiliation_xml – name: 7 Bioengineering, Stanford University, CA, USA
– name: 2 Institute for Computational and Mathematical Engineering, Stanford University, CA, USA
– name: 6 Stanford Research Computing, Stanford University, CA, USA
– name: 5 Open Source Medical Software Corporation, CA, USA
– name: 1 Pediatric Cardiology, Stanford University, CA, USA
– name: 3 Cardiovascular Institute, Stanford University, CA, USA
– name: 4 Mechanical Engineering, Stanford University, CA, USA
Author_xml – sequence: 1
  givenname: Martin R.
  orcidid: 0000-0001-5760-2617
  surname: Pfaller
  fullname: Pfaller, Martin R.
  email: pfaller@stanford.edu
  organization: Stanford University
– sequence: 2
  givenname: Jonathan
  orcidid: 0000-0002-5676-6561
  surname: Pham
  fullname: Pham, Jonathan
  organization: Stanford University
– sequence: 3
  givenname: Aekaansh
  surname: Verma
  fullname: Verma, Aekaansh
  organization: Stanford University
– sequence: 4
  givenname: Luca
  orcidid: 0000-0002-4290-6391
  surname: Pegolotti
  fullname: Pegolotti, Luca
  organization: Stanford University
– sequence: 5
  givenname: Nathan M.
  surname: Wilson
  fullname: Wilson, Nathan M.
  organization: Open Source Medical Software Corporation
– sequence: 6
  givenname: David W.
  surname: Parker
  fullname: Parker, David W.
  organization: Stanford University
– sequence: 7
  givenname: Weiguang
  orcidid: 0000-0003-3324-4346
  surname: Yang
  fullname: Yang, Weiguang
  organization: Stanford University
– sequence: 8
  givenname: Alison L.
  orcidid: 0000-0003-1902-171X
  surname: Marsden
  fullname: Marsden, Alison L.
  organization: Stanford University
BookMark eNp1kc9qFTEUxoO02Hot-AgBN27mmn8zk2yEcus_aOtGF65CJjlTUzLJNZmxdOcj-Iw-ibltabFoOJDA-Z2PL-d7hvZiioDQC0rWlBD22sZpzTuunqBDRgRpeiX6vfs3VwfoqJRLUg9TSvX8KTrgrex3dYi-Hi9zmswMDl9AhGxmnyJOIyYn2ESH6QnO4BYL7vfPXyk7yHhKDkLZMdtKQ5xrp2zB-tFbPISUHB5DunqO9kcTChzd3Sv05d3bz5sPzemn9x83x6eN5ZKqxjA7UENGQbmyY0tGOjijOjk4LlknjeyACsEGYwkXlZVW9EQw4Fz2SgLwFXpzq7tdhgmcrYayCXqb_WTytU7G67870X_TF-mHVm1HSV3QCr26E8jp-wJl1pMvFkIwEdJSNOuUELSyrKIvH6GXacmxfk-zntUQuraVD4I2p1IyjPdmKNG7yHSNTO8iq-j6EWr9fJNBterDvwaa24ErH-D6v8J6c352w_8B8BSpFw
CitedBy_id crossref_primary_10_1002_cnm_3751
crossref_primary_10_1002_cnm_70026
crossref_primary_10_1109_TBME_2024_3469289
crossref_primary_10_1002_cnm_70020
crossref_primary_10_1002_cnm_3836
crossref_primary_10_1063_5_0139085
crossref_primary_10_1016_j_bbe_2024_08_005
crossref_primary_10_3389_fphy_2023_1256462
crossref_primary_10_1017_flo_2024_5
crossref_primary_10_3390_bioengineering9110601
crossref_primary_10_1016_j_biosystems_2024_105160
crossref_primary_10_3390_fluids7060197
crossref_primary_10_1098_rsta_2024_0221
crossref_primary_10_3390_jcdd10060240
crossref_primary_10_3390_math10214058
crossref_primary_10_1038_s44303_024_00014_6
crossref_primary_10_1016_j_eswa_2024_125079
crossref_primary_10_1098_rsta_2024_0223
crossref_primary_10_1137_23M1554230
crossref_primary_10_1016_j_cma_2024_117259
crossref_primary_10_1007_s10439_024_03457_5
crossref_primary_10_1002_cnm_3820
crossref_primary_10_1016_j_echo_2022_09_006
crossref_primary_10_3389_fcvm_2024_1398290
crossref_primary_10_1016_j_compbiomed_2024_109420
crossref_primary_10_1063_5_0180162
crossref_primary_10_3389_fbioe_2025_1438253
crossref_primary_10_1007_s11831_023_10013_2
crossref_primary_10_1016_j_compbiomed_2024_109644
crossref_primary_10_1109_TCI_2024_3497775
crossref_primary_10_1016_j_avsg_2024_04_015
crossref_primary_10_1007_s00246_024_03569_8
crossref_primary_10_1007_s12046_024_02589_7
crossref_primary_10_1016_j_compbiomed_2023_107718
crossref_primary_10_1016_j_compbiomed_2025_109849
crossref_primary_10_1371_journal_pone_0307890
crossref_primary_10_1038_s44161_022_00114_9
crossref_primary_10_1016_j_brain_2023_100081
crossref_primary_10_1109_TBME_2024_3355307
crossref_primary_10_1063_5_0101128
crossref_primary_10_1016_j_compbiomed_2023_107676
crossref_primary_10_1063_5_0236378
crossref_primary_10_1109_ACCESS_2024_3491112
crossref_primary_10_1007_s13239_024_00752_z
crossref_primary_10_1109_TBME_2024_3406416
crossref_primary_10_1063_5_0109400
crossref_primary_10_1007_s10237_024_01850_6
crossref_primary_10_1113_JP286193
Cites_doi 10.1007/s10237‐011‐0361‐8
10.1080/13873954.2020.1786841
10.1016/j.compfluid.2016.05.015
10.1002/cnm.2737
10.1016/j.cma.2005.04.014
10.1002/cnm.3351
10.1016/0045‐7825(92)90041‐h
10.1115/1.4005377
10.1109/tbme.2003.812201
10.1016/j.medengphy.2012.08.009
10.1002/cnm.2732
10.1115/1.4004996
10.1007/s11517‐008‐0420‐1
10.1007/s10404‐020‐2319‐6
10.1007/s13239‐021‐00580‐5
10.1016/j.jcp.2012.07.035
10.1007/s13239‐012‐0112‐8
10.1002/cnm.2808
10.1007/s10439‐015‐1544‐8
10.1115/1.4006814
10.1111/j.1747‐0803.2010.00383.x
10.1002/cnm.2908
10.1115/1.4042184
10.1051/m2an:2004036
10.1016/j.jbiomech.2012.10.023
10.1007/s10439‐020‐02545‐6
10.1016/j.finel.2010.01.007
10.1007/s10439‐012‐0579‐3
10.1016/j.wavemoti.2003.12.009
10.1115/1.1894350
10.1007/s10554‐013‐0271‐1
10.1002/nme.6704
10.1109/tmi.2009.2021652
10.1007/s10439‐016‐1762‐8
10.1080/10255840903413565
10.1615/int.j.uncertaintyquantification.2020033068
10.1007/s10439‐010‐0132‐1
10.1115/1.4025983
10.1016/j.jbiomech.2016.12.004
10.1016/j.jbiomech.2019.109595
10.1007/s10237‐019‐01182‐w
10.1002/cnm.3246
10.1016/j.jbiomech.2005.02.021
10.1002/cnm.2717
10.1007/s10439‐021‐02780‐5
10.1016/s0045‐7825(98)80008‐x
10.1137/1.9781611971392
10.1016/j.jbiomech.2011.05.041
10.1002/cnm.2598
10.1007/s10237‐020‐01298‐4
10.1016/j.cma.2021.113762
10.1016/j.cma.2019.112623
10.1007/s11081‐020‐09483‐1
10.1016/j.cma.2005.11.011
10.1007/s10439‐021‐02796‐x
10.1016/s0045‐7825(00)00203‐6
10.1016/j.cma.2016.01.007
10.1109/38.865875
10.1016/j.cma.2018.10.032
10.1007/s00466‐013‐0868‐1
10.1002/1097-0363(20010115)35:1<93::aid-fld85>3.0.co;2-g
10.1007/s13239‐011‐0047‐5
10.1111/j.1747‐0803.2011.00553.x
10.1152/ajpheart.1999.276.1.h257
10.1080/10255840290010670
10.1007/bf02441895
10.1016/j.cma.2019.112626
10.1016/j.jbiomech.2014.03.028
10.1038/s41598‐018‐35344‐0
10.1016/j.jbiomech.2012.07.020
10.1002/cnm.3532
10.1002/cnm.1465
10.1002/cnm.2799
10.1016/j.jbiomech.2007.05.027
10.1152/ajpheart.00037.2009
10.1016/j.cma.2021.113892
10.1002/cnm.2622
10.1016/j.cma.2020.113030
10.3109/10929080500230445
10.1007/s10439‐010‐0083‐6
10.1007/s13239‐018‐00388‐w
10.1016/0021‐9290(92)90060‐e
10.1016/j.vascn.2011.10.003
10.1016/0025‐5564(73)90027‐8
10.1007/s10439‐012‐0715‐0
ContentType Journal Article
Copyright 2022 John Wiley & Sons Ltd.
2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons Ltd.
– notice: 2022 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7QO
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
DOI 10.1002/cnm.3639
DatabaseName CrossRef
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Civil Engineering Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Civil Engineering Abstracts
CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2040-7947
EndPage n/a
ExternalDocumentID PMC9561079
10_1002_cnm_3639
CNM3639
Genre article
GrantInformation_xml – fundername: National Institute of Biomedical Imaging and Bioengineering
  funderid: R01EB029362
– fundername: National Library of Medicine
  funderid: R01LM013120
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
31~
33P
3SF
4.4
50Z
51W
51X
52N
52O
52P
52S
52T
52U
52W
52X
53G
66C
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
ML~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WRC
WXSBR
WYISQ
XG1
XV2
~IA
~WT
1OB
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
7QO
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
ID FETCH-LOGICAL-c3819-a2cb1a0f4139cf50f1bda968bd38268a86e1442bac0342cb8c47042e338798ee3
IEDL.DBID DR2
ISSN 2040-7939
2040-7947
IngestDate Thu Aug 21 18:36:18 EDT 2025
Fri Jul 11 16:13:25 EDT 2025
Wed Aug 13 04:24:03 EDT 2025
Sun Aug 24 03:22:19 EDT 2025
Thu Apr 24 22:58:26 EDT 2025
Wed Jan 22 16:24:14 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3819-a2cb1a0f4139cf50f1bda968bd38268a86e1442bac0342cb8c47042e338798ee3
Notes Funding information
National Library of Medicine, Grant/Award Number: R01LM013120; National Institute of Biomedical Imaging and Bioengineering, Grant/Award Number: R01EB029362
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4290-6391
0000-0003-3324-4346
0000-0003-1902-171X
0000-0001-5760-2617
0000-0002-5676-6561
PMID 35875875
PQID 2723636558
PQPubID 2034586
PageCount 23
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9561079
proquest_miscellaneous_2694416102
proquest_journals_2723636558
crossref_primary_10_1002_cnm_3639
crossref_citationtrail_10_1002_cnm_3639
wiley_primary_10_1002_cnm_3639_CNM3639
PublicationCentury 2000
PublicationDate October 2022
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Chichester
PublicationTitle International journal for numerical methods in biomedical engineering
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2013; 29
2004; 127
2010; 13
2015; 31
2006; 39
2015; 32
2013; 244
1973; 18
2011; 11
2019; 18
2020; 365
1998; 158
2021; 122
2016; 302
2020; 10
2013; 7
2003; 50
1992; 99
2020; 19
2016; 33
2018; 9
2021; 38
2018; 8
2012; 134
2004; 38
2004; 39
2015; 44
2017; 34
2013; 52
2020; 48
2011; 65
2011; 28
2010; 5
2016; 45
2021; 49
2010; 38
2011; 2
2013; 46
2010; 39
2002; 5
2019; 37
2000; 20
2021; 380
2009; 297
1998
2006; 195
2019; 344
2014; 47
2020; 36
2021; 384
2020; 100
2019; 141
2011; 6
2000; 190
2011; 133
2009; 28
2017; 51
2021; 13
2012; 3
2010; 46
1980; 18
2013; 35
2020
2013; 30
2020; 358
2011; 44
2020; 26
2008; 46
2005; 10
2020; 24
1992; 25
1999; 276
2017; 142
2007; 40
2020; 21
2014; 30
2012; 45
2001; 35
2012; 41
2012; 40
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_79_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_80_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_82_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_86_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_38_1
References_xml – volume: 41
  start-page: 669
  issue: 4
  year: 2012
  end-page: 681
  article-title: Non‐invasive hemodynamic assessment of aortic coarctation: validation with in vivo measurements
  publication-title: Ann Biomed Eng
– volume: 18
  start-page: 1867
  issue: 6
  year: 2019
  end-page: 1881
  article-title: Reduced‐order modeling of blood flow for noninvasive functional evaluation of coronary artery disease
  publication-title: Biomech Model Mechanobiol
– volume: 35
  start-page: 784
  issue: 6
  year: 2013
  end-page: 791
  article-title: Physiological simulation of blood flow in the aorta: comparison of hemodynamic indices as predicted by 3‐D FSI, 3‐D rigid wall and 1‐D models
  publication-title: Med Eng Phys
– volume: 99
  start-page: 209
  year: 1992
  end-page: 233
  article-title: Stabilized finite element methods: II. The incompressible Navier‐stokes equations
  publication-title: Comput Methods Appl Mech Eng
– volume: 100
  year: 2020
  article-title: Computational hemodynamics in arteries with the one‐dimensional augmented fluid‐structure interaction system: viscoelastic parameters estimation and comparison with in‐vivo data
  publication-title: J Biomech
– volume: 19
  start-page: 1663
  year: 2020
  end-page: 1678
  article-title: On the anatomical definition of arterial networks in blood flow simulations: comparison of detailed and simplified models
  publication-title: Biomech Model Mechanobiol
– volume: 44
  start-page: 2250
  issue: 12
  year: 2011
  end-page: 2258
  article-title: Pulse wave propagation in a model human arterial network: assessment of 1‐D visco‐elastic simulations against in vitro measurements
  publication-title: J Biomech
– volume: 358
  year: 2020
  article-title: Propagating uncertainties in large‐scale hemodynamics models via network uncertainty quantification and reduced‐order modeling
  publication-title: Comput Methods Appl Mech Eng
– volume: 28
  start-page: 1141
  issue: 8
  year: 2009
  end-page: 1155
  article-title: A framework for geometric analysis of vascular structures: application to cerebral aneurysms
  publication-title: IEEE Trans Med Imaging
– volume: 5
  start-page: 104
  issue: 2
  year: 2010
  end-page: 117
  article-title: A new multiparameter approach to computational simulation for Fontan assessment and redesign
  publication-title: Congenit Heart Dis
– volume: 36
  issue: 8
  year: 2020
  article-title: The effects of clinically‐derived parametric data uncertainty in patient‐specific coronary simulations with deformable walls
  publication-title: Int J Numer Method Biomed Eng
– volume: 133
  issue: 9
  year: 2011
  article-title: Computational simulations for aortic coarctation: representative results from a sampling of patients
  publication-title: J Biomech Eng
– volume: 46
  start-page: 514
  issue: 6
  year: 2010
  end-page: 525
  article-title: Developing computational methods for three‐dimensional finite element simulations of coronary blood flow
  publication-title: Finite Elem Anal Des
– volume: 30
  start-page: 681
  issue: 7
  year: 2014
  end-page: 725
  article-title: A global multiscale mathematical model for the human circulation with emphasis on the venous system
  publication-title: Int J Numer Method Biomed Eng
– volume: 40
  start-page: 3476
  issue: 15
  year: 2007
  end-page: 3486
  article-title: Pulse wave propagation in a model human arterial network: assessment of 1‐D numerical simulations against in vitro measurements
  publication-title: J Biomech
– volume: 5
  start-page: 195
  issue: 3
  year: 2002
  end-page: 206
  article-title: A one‐dimensional finite element method for simulation‐based medical planning for cardiovascular disease
  publication-title: Comput Methods Biomech Biomed Engin
– volume: 34
  issue: 1
  year: 2017
  article-title: Estimating the accuracy of a reduced‐order model for the calculation of fractional flow reserve (FFR)
  publication-title: Int J Numer Method Biomed Eng
– volume: 35
  start-page: 93
  issue: 1
  year: 2001
  end-page: 116
  article-title: A stabilized finite element method for the incompressible Navier‐stokes equations using a hierarchical basis
  publication-title: Int J Numer Methods Fluids
– volume: 302
  start-page: 193
  year: 2016
  end-page: 252
  article-title: Geometric multiscale modeling of the cardiovascular system, between theory and practice
  publication-title: Comput Methods Appl Mech Eng
– volume: 51
  start-page: 83
  year: 2017
  end-page: 88
  article-title: Improved reduced‐order modelling of cerebrovascular flow distribution by accounting for arterial bifurcation pressure drops
  publication-title: J Biomech
– volume: 39
  start-page: 361
  issue: 4
  year: 2004
  end-page: 374
  article-title: Outflow boundary conditions for one‐dimensional finite element modeling of blood flow and pressure waves in arteries
  publication-title: Wave Motion
– volume: 344
  start-page: 734
  year: 2019
  end-page: 765
  article-title: Towards fast hemodynamic simulations in large‐scale circulatory networks
  publication-title: Comput Methods Appl Mech Eng
– volume: 47
  start-page: 1810
  issue: 8
  year: 2014
  end-page: 1815
  article-title: Geometry‐based pressure drop prediction in mildly diseased human coronary arteries
  publication-title: J Biomech
– volume: 13
  start-page: 625
  issue: 5
  year: 2010
  end-page: 640
  article-title: Outflow boundary conditions for 3D simulations of non‐periodic blood flow and pressure fields in deformable arteries
  publication-title: Comput Methods Biomech Biomed Engin
– volume: 46
  start-page: 423
  issue: 2
  year: 2013
  end-page: 429
  article-title: Predictive modeling of the virtual hemi‐Fontan operation for second stage single ventricle palliation: two patient‐specific cases
  publication-title: J Biomech
– volume: 195
  start-page: 3776
  issue: 29–32
  year: 2006
  end-page: 3796
  article-title: Outflow boundary conditions for three‐dimensional finite element modeling of blood flow and pressure in arteries
  publication-title: Comput Methods Appl Mech Eng
– volume: 26
  start-page: 409
  issue: 5
  year: 2020
  end-page: 433
  article-title: Fluid‐structure port‐Hamiltonian model for incompressible flows in tubes with time varying geometries
  publication-title: Math Comput Model Dyn Syst
– year: 1998
– volume: 2
  start-page: 212
  issue: 3
  year: 2011
  article-title: Optical coherence tomography for patient‐specific 3D artery reconstruction and evaluation of wall shear stress in a left circumflex coronary artery
  publication-title: Cardiovasc Eng Technol
– volume: 24
  issue: 2
  year: 2020
  article-title: Impact of inertia and channel angles on flow distribution in microfluidic junctions
  publication-title: Microfluid Nanofluid
– volume: 21
  start-page: 1487
  issue: 4
  year: 2020
  end-page: 1536
  article-title: A concurrent implementation of the surrogate management framework with application to cardiovascular shape optimization
  publication-title: Optim Eng
– volume: 142
  start-page: 128
  year: 2017
  end-page: 138
  article-title: Automated tuning for parameter identification and uncertainty quantification in multi‐scale coronary simulations
  publication-title: Comput Fluids
– volume: 31
  issue: 10
  year: 2015
  article-title: A benchmark study of numerical schemes for one‐dimensional arterial blood flow modelling
  publication-title: Int J Numer Method Biomed Eng
– volume: 358
  year: 2020
  article-title: Machine learning in cardiovascular flows modeling: predicting arterial blood pressure from non‐invasive 4D flow MRI data using physics‐informed neural networks
  publication-title: Comput Methods Appl Mech Eng
– volume: 3
  start-page: 450
  issue: 4
  year: 2012
  end-page: 461
  article-title: Fluid mechanics of mixing in the vertebrobasilar system: comparison of simulation and MRI
  publication-title: Cardiovasc Eng Technol
– volume: 39
  start-page: 297
  issue: 1
  year: 2010
  end-page: 309
  article-title: Modeling blood flow circulation in intracranial arterial networks: a comparative 3D/1D simulation study
  publication-title: Ann Biomed Eng
– volume: 276
  start-page: H257
  issue: 1
  year: 1999
  end-page: H268
  article-title: Structured tree outflow condition for blood flow in larger systemic arteries
  publication-title: Am J Phys Heart Circ Phys
– volume: 46
  start-page: 1097
  issue: 11
  year: 2008
  end-page: 1112
  article-title: An image‐based modeling framework for patient‐specific computational hemodynamics
  publication-title: Med Biol Eng Comput
– volume: 133
  start-page: 111006
  issue: 11
  year: 2011
  article-title: Three‐dimensional simulations in Glenn patients: clinically based boundary conditions, hemodynamic results and sensitivity to input data
  publication-title: J Biomech Eng
– volume: 50
  start-page: 649
  issue: 6
  year: 2003
  end-page: 656
  article-title: In vivo validation of a one‐dimensional finite‐element method for predicting blood flow in cardiovascular bypass grafts
  publication-title: IEEE Trans Biomed Eng
– volume: 33
  issue: 4
  year: 2016
  article-title: Transversally enriched pipe element method (TEPEM): an effective numerical approach for blood flow modeling
  publication-title: Int J Numer Method Biomed Eng
– volume: 141
  issue: 3
  year: 2019
  article-title: Reduced order models for Transstenotic pressure drop in the coronary arteries
  publication-title: J Biomech Eng
– volume: 20
  start-page: 20
  issue: 5
  year: 2000
  end-page: 27
  article-title: Visualizing with VTK: a tutorial
  publication-title: IEEE Comput Graph Appl
– volume: 30
  start-page: 204
  issue: 2
  year: 2013
  end-page: 231
  article-title: A systematic comparison between 1‐D and 3‐D hemodynamics in compliant arterial models
  publication-title: Int J Numer Method Biomed Eng
– volume: 39
  start-page: 1010
  issue: 6
  year: 2006
  end-page: 1020
  article-title: Multiscale modelling in biofluidynamics: application to reconstructive paediatric cardiac surgery
  publication-title: J Biomech
– volume: 65
  start-page: 18
  issue: 1
  year: 2011
  end-page: 28
  article-title: A coupled experimental and computational approach to quantify deleterious hemodynamics, vascular alterations, and mechanisms of long‐term morbidity in response to aortic coarctation
  publication-title: J Pharmacol Toxicol Methods
– volume: 13
  start-page: 331
  year: 2021
  end-page: 342
  article-title: A 1D‐3D hybrid model of patient‐specific coronary hemodynamics
  publication-title: Cardiovasc Eng Technol
– volume: 45
  start-page: 525
  issue: 3
  year: 2016
  end-page: 541
  article-title: SimVascular: an open source pipeline for cardiovascular simulation
  publication-title: Ann Biomed Eng
– volume: 29
  start-page: 1847
  issue: 8
  year: 2013
  end-page: 1859
  article-title: Automatic segmentation, detection and quantification of coronary artery stenoses on CTA
  publication-title: Int J Cardiovasc Imaging
– volume: 25
  start-page: 1477
  issue: 12
  year: 1992
  end-page: 1488
  article-title: Computer simulation of arterial flow with applications to arterial and aortic stenoses
  publication-title: J Biomech
– volume: 49
  start-page: 2365
  year: 2021
  end-page: 2376
  article-title: Accelerated estimation of pulmonary artery stenosis pressure gradients with distributed lumped parameter modeling vs. 3D CFD with instantaneous adaptive mesh refinement: experimental validation in swine
  publication-title: Ann Biomed Eng
– volume: 158
  start-page: 155
  issue: 1–2
  year: 1998
  end-page: 196
  article-title: Finite element modeling of blood flow in arteries
  publication-title: Comput Methods Appl Mech Eng
– volume: 48
  start-page: 2870
  year: 2020
  end-page: 2886
  article-title: A distributed lumped parameter model of blood flow
  publication-title: Ann Biomed Eng
– volume: 384
  year: 2021
  article-title: Machine learning augmented reduced‐order models for FFR‐prediction
  publication-title: Comput Methods Appl Mech Eng
– volume: 244
  start-page: 63
  year: 2013
  end-page: 79
  article-title: A modular numerical method for implicit 0D/3D coupling in cardiovascular finite element simulations
  publication-title: J Comput Phys
– volume: 134
  issue: 5
  year: 2012
  article-title: Optimization of shunt placement for the Norwood surgery using multi‐domain modeling
  publication-title: J Biomech Eng
– volume: 127
  start-page: 440
  issue: 3
  year: 2004
  end-page: 449
  article-title: One‐dimensional and three‐dimensional models of cerebrovascular flow
  publication-title: J Biomech Eng
– volume: 18
  start-page: 161
  issue: 1–2
  year: 1973
  end-page: 170
  article-title: On the one‐dimensional theory of blood flow in the larger vessels
  publication-title: Math Biosci
– volume: 190
  start-page: 305
  issue: 3–4
  year: 2000
  end-page: 319
  article-title: A generalized‐alpha method for integrating the filtered Navier–stokes equations with a stabilized finite element method
  publication-title: Comput Methods Appl Mech Eng
– volume: 10
  start-page: 449
  issue: 5
  year: 2020
  end-page: 466
  article-title: Multifidelity estimators for coronary circulation models under clinically informed data uncertainty
  publication-title: Int J Uncertain Quantif
– volume: 38
  start-page: 613
  issue: 4
  year: 2004
  end-page: 632
  article-title: Analysis of lumped parameter models for blood flow simulations and their relation with 1D models
  publication-title: ESAIM: Math Model Numer Anal
– volume: 33
  issue: 3
  year: 2016
  article-title: Patient‐specific parameter estimation in single‐ventricle lumped circulation models under uncertainty
  publication-title: Int J Numer Method Biomed Eng
– volume: 297
  start-page: H208
  issue: 1
  year: 2009
  end-page: H222
  article-title: Validation of a one‐dimensional model of the systemic arterial tree
  publication-title: Am J Phys Heart Circ Phys
– volume: 10
  start-page: 257
  issue: 4
  year: 2005
  end-page: 277
  article-title: Predicting changes in blood flow in patient‐specific operative plans for treating aortoiliac occlusive disease
  publication-title: Comput Aided Surg
– volume: 11
  start-page: 915
  issue: 6
  year: 2011
  end-page: 932
  article-title: Image‐based modeling of hemodynamics in coronary artery aneurysms caused by Kawasaki disease
  publication-title: Biomech Model Mechanobiol
– volume: 8
  issue: 1
  year: 2018
  article-title: Comparison of 1D and 3D models for the estimation of fractional flow reserve
  publication-title: Sci Rep
– volume: 31
  issue: 7
  year: 2015
  article-title: A unified method for estimating pressure losses at vascular junctions
  publication-title: Int J Numer Method Biomed Eng
– volume: 380
  year: 2021
  article-title: Model order reduction of flow based on a modular geometrical approximation of blood vessels
  publication-title: Comput Methods Appl Mech Eng
– volume: 38
  start-page: 3195
  issue: 10
  year: 2010
  end-page: 3209
  article-title: Patient‐specific modeling of blood flow and pressure in human coronary arteries
  publication-title: Ann Biomed Eng
– volume: 122
  start-page: 4313
  year: 2021
  end-page: 4332
  article-title: Computationally efficient finite element formulation for blood flow analysis in multi‐layered aorta modeled as viscoelastic material
  publication-title: Int J Numer Methods Eng
– volume: 49
  start-page: 3574
  year: 2021
  end-page: 3592
  article-title: On the periodicity of cardiovascular fluid dynamics simulations
  publication-title: Ann Biomed Eng
– volume: 37
  issue: 11
  year: 2019
  article-title: Impact of baseline coronary flow and its distribution on fractional flow reserve prediction
  publication-title: Int J Numer Method Biomed Eng
– volume: 44
  start-page: 2351
  issue: 8
  year: 2015
  end-page: 2363
  article-title: Development of a numerical method for patient‐specific cerebral circulation using 1D–0D simulation of the entire cardiovascular system with SPECT data
  publication-title: Ann Biomed Eng
– volume: 9
  start-page: 597
  issue: 4
  year: 2018
  end-page: 622
  article-title: Uncertainty quantification and sensitivity analysis for computational FFR estimation in stable coronary artery disease
  publication-title: Cardiovasc Eng Technol
– volume: 32
  issue: 3
  year: 2015
  article-title: Uncertainty quantification in virtual surgery hemodynamics predictions for single ventricle palliation
  publication-title: Int J Numer Method Biomed Eng
– volume: 28
  start-page: 604
  issue: 6–7
  year: 2011
  end-page: 625
  article-title: Model reduction techniques for fast blood flow simulation in parametrized geometries
  publication-title: Int J Numer Method Biomed Eng
– volume: 38
  issue: 1
  year: 2021
  article-title: Cerebrospinal fluid dynamics coupled to the global circulation in holistic setting: mathematical models, numerical methods and applications
  publication-title: Int J Numer Method Biomed Eng
– volume: 45
  start-page: 2499
  issue: 15
  year: 2012
  end-page: 2505
  article-title: Patient‐specific mean pressure drop in the systemic arterial tree, a comparison between 1‐D and 3‐D models
  publication-title: J Biomech
– year: 2020
– volume: 18
  start-page: 709
  issue: 6
  year: 1980
  end-page: 718
  article-title: Multi‐branched model of the human arterial system
  publication-title: Med Biol Eng Comput
– volume: 365
  year: 2020
  article-title: Multilevel and multifidelity uncertainty quantification for cardiovascular hemodynamics
  publication-title: Comput Methods Appl Mech Eng
– volume: 40
  start-page: 2228
  issue: 10
  year: 2012
  end-page: 2242
  article-title: Patient‐specific multiscale modeling of blood flow for coronary artery bypass graft surgery
  publication-title: Ann Biomed Eng
– volume: 52
  start-page: 1141
  issue: 5
  year: 2013
  end-page: 1152
  article-title: A new preconditioning technique for implicitly coupled multidomain simulations with applications to hemodynamics
  publication-title: Comput Mech
– volume: 6
  start-page: 432
  issue: 5
  year: 2011
  end-page: 443
  article-title: Computational simulations demonstrate Altered Wall shear stress in aortic Coarctation patients treated by resection with end‐to‐end anastomosis
  publication-title: Congenit Heart Dis
– volume: 7
  issue: 4
  year: 2013
  article-title: The vascular model repository: a public resource of medical imaging data and blood flow simulation results
  publication-title: J Med Device
– volume: 195
  start-page: 5685
  issue: 41–43
  year: 2006
  end-page: 5706
  article-title: A coupled momentum method for modeling blood flow in three‐dimensional deformable arteries
  publication-title: Comput Methods Appl Mech Eng
– ident: e_1_2_7_80_1
  doi: 10.1007/s10237‐011‐0361‐8
– ident: e_1_2_7_87_1
  doi: 10.1080/13873954.2020.1786841
– ident: e_1_2_7_30_1
  doi: 10.1016/j.compfluid.2016.05.015
– ident: e_1_2_7_28_1
  doi: 10.1002/cnm.2737
– ident: e_1_2_7_58_1
  doi: 10.1016/j.cma.2005.04.014
– ident: e_1_2_7_21_1
  doi: 10.1002/cnm.3351
– ident: e_1_2_7_59_1
  doi: 10.1016/0045‐7825(92)90041‐h
– ident: e_1_2_7_81_1
  doi: 10.1115/1.4005377
– ident: e_1_2_7_48_1
  doi: 10.1109/tbme.2003.812201
– ident: e_1_2_7_38_1
  doi: 10.1016/j.medengphy.2012.08.009
– ident: e_1_2_7_45_1
  doi: 10.1002/cnm.2732
– ident: e_1_2_7_77_1
  doi: 10.1115/1.4004996
– ident: e_1_2_7_71_1
  doi: 10.1007/s11517‐008‐0420‐1
– ident: e_1_2_7_86_1
  doi: 10.1007/s10404‐020‐2319‐6
– ident: e_1_2_7_22_1
  doi: 10.1007/s13239‐021‐00580‐5
– ident: e_1_2_7_61_1
  doi: 10.1016/j.jcp.2012.07.035
– ident: e_1_2_7_74_1
  doi: 10.1007/s13239‐012‐0112‐8
– ident: e_1_2_7_9_1
  doi: 10.1002/cnm.2808
– ident: e_1_2_7_26_1
  doi: 10.1007/s10439‐015‐1544‐8
– ident: e_1_2_7_54_1
  doi: 10.1115/1.4006814
– ident: e_1_2_7_75_1
  doi: 10.1111/j.1747‐0803.2010.00383.x
– ident: e_1_2_7_13_1
  doi: 10.1002/cnm.2908
– ident: e_1_2_7_66_1
  doi: 10.1115/1.4042184
– ident: e_1_2_7_65_1
  doi: 10.1051/m2an:2004036
– ident: e_1_2_7_23_1
  doi: 10.1016/j.jbiomech.2012.10.023
– ident: e_1_2_7_36_1
  doi: 10.1007/s10439‐020‐02545‐6
– ident: e_1_2_7_19_1
  doi: 10.1016/j.finel.2010.01.007
– ident: e_1_2_7_55_1
  doi: 10.1007/s10439‐012‐0579‐3
– ident: e_1_2_7_64_1
  doi: 10.1016/j.wavemoti.2003.12.009
– ident: e_1_2_7_39_1
  doi: 10.1115/1.1894350
– ident: e_1_2_7_15_1
  doi: 10.1007/s10554‐013‐0271‐1
– ident: e_1_2_7_42_1
  doi: 10.1002/nme.6704
– ident: e_1_2_7_72_1
  doi: 10.1109/tmi.2009.2021652
– ident: e_1_2_7_51_1
  doi: 10.1007/s10439‐016‐1762‐8
– ident: e_1_2_7_83_1
  doi: 10.1080/10255840903413565
– ident: e_1_2_7_5_1
  doi: 10.1615/int.j.uncertaintyquantification.2020033068
– ident: e_1_2_7_40_1
  doi: 10.1007/s10439‐010‐0132‐1
– ident: e_1_2_7_52_1
  doi: 10.1115/1.4025983
– ident: e_1_2_7_32_1
  doi: 10.1016/j.jbiomech.2016.12.004
– ident: e_1_2_7_46_1
  doi: 10.1016/j.jbiomech.2019.109595
– ident: e_1_2_7_7_1
  doi: 10.1007/s10237‐019‐01182‐w
– ident: e_1_2_7_17_1
  doi: 10.1002/cnm.3246
– ident: e_1_2_7_18_1
  doi: 10.1016/j.jbiomech.2005.02.021
– ident: e_1_2_7_33_1
  doi: 10.1002/cnm.2717
– ident: e_1_2_7_35_1
  doi: 10.1007/s10439‐021‐02780‐5
– ident: e_1_2_7_57_1
  doi: 10.1016/s0045‐7825(98)80008‐x
– ident: e_1_2_7_68_1
  doi: 10.1137/1.9781611971392
– ident: e_1_2_7_50_1
  doi: 10.1016/j.jbiomech.2011.05.041
– ident: e_1_2_7_41_1
  doi: 10.1002/cnm.2598
– ident: e_1_2_7_47_1
  doi: 10.1007/s10237‐020‐01298‐4
– ident: e_1_2_7_8_1
  doi: 10.1016/j.cma.2021.113762
– ident: e_1_2_7_11_1
  doi: 10.1016/j.cma.2019.112623
– ident: e_1_2_7_3_1
  doi: 10.1007/s11081‐020‐09483‐1
– ident: e_1_2_7_84_1
  doi: 10.1016/j.cma.2005.11.011
– ident: e_1_2_7_2_1
  doi: 10.1007/s10439‐021‐02796‐x
– ident: e_1_2_7_70_1
  doi: 10.1016/s0045‐7825(00)00203‐6
– ident: e_1_2_7_53_1
  doi: 10.1016/j.cma.2016.01.007
– ident: e_1_2_7_73_1
  doi: 10.1109/38.865875
– ident: e_1_2_7_10_1
  doi: 10.1016/j.cma.2018.10.032
– ident: e_1_2_7_62_1
  doi: 10.1007/s00466‐013‐0868‐1
– ident: e_1_2_7_60_1
  doi: 10.1002/1097-0363(20010115)35:1<93::aid-fld85>3.0.co;2-g
– ident: e_1_2_7_76_1
  doi: 10.1007/s13239‐011‐0047‐5
– ident: e_1_2_7_78_1
  doi: 10.1111/j.1747‐0803.2011.00553.x
– ident: e_1_2_7_24_1
  doi: 10.1152/ajpheart.1999.276.1.h257
– ident: e_1_2_7_37_1
  doi: 10.1080/10255840290010670
– ident: e_1_2_7_27_1
  doi: 10.1007/bf02441895
– ident: e_1_2_7_31_1
  doi: 10.1016/j.cma.2019.112626
– ident: e_1_2_7_34_1
  doi: 10.1016/j.jbiomech.2014.03.028
– ident: e_1_2_7_14_1
  doi: 10.1038/s41598‐018‐35344‐0
– ident: e_1_2_7_44_1
  doi: 10.1016/j.jbiomech.2012.07.020
– ident: e_1_2_7_56_1
  doi: 10.1002/cnm.3532
– ident: e_1_2_7_6_1
  doi: 10.1002/cnm.1465
– ident: e_1_2_7_69_1
– ident: e_1_2_7_29_1
  doi: 10.1002/cnm.2799
– ident: e_1_2_7_49_1
  doi: 10.1016/j.jbiomech.2007.05.027
– ident: e_1_2_7_43_1
  doi: 10.1152/ajpheart.00037.2009
– ident: e_1_2_7_12_1
  doi: 10.1016/j.cma.2021.113892
– ident: e_1_2_7_25_1
  doi: 10.1002/cnm.2622
– ident: e_1_2_7_4_1
  doi: 10.1016/j.cma.2020.113030
– ident: e_1_2_7_82_1
  doi: 10.3109/10929080500230445
– ident: e_1_2_7_20_1
  doi: 10.1007/s10439‐010‐0083‐6
– ident: e_1_2_7_16_1
  doi: 10.1007/s13239‐018‐00388‐w
– ident: e_1_2_7_85_1
  doi: 10.1016/0021‐9290(92)90060‐e
– ident: e_1_2_7_79_1
  doi: 10.1016/j.vascn.2011.10.003
– ident: e_1_2_7_63_1
  doi: 10.1016/0025‐5564(73)90027‐8
– ident: e_1_2_7_67_1
  doi: 10.1007/s10439‐012‐0715‐0
SSID ssj0000299973
Score 2.508037
Snippet Three‐dimensional (3D) cardiovascular fluid dynamics simulations typically require hours to days of computing time on a high‐performance computing cluster....
Three-dimensional (3D) cardiovascular fluid dynamics simulations typically require hours to days of computing time on a high-performance computing cluster....
SourceID pubmedcentral
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e3639
SubjectTerms Approximation
Automation
Blood flow
Blood pressure
Blood vessels
cardiovascular fluid dynamics
Computer applications
Computers
Computing time
Design optimization
Design parameters
Errors
Fluid dynamics
Hydrodynamics
lumped‐parameter networks
One dimensional models
one‐dimensional blood flow
Open source software
Parameterization
Personal computers
reduced‐order models
Simulation
Stenosis
Three dimensional flow
Three dimensional models
Waveforms
zero‐dimensional blood flow
Title Automated generation of 0D and 1D reduced‐order models of patient‐specific blood flow
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcnm.3639
https://www.proquest.com/docview/2723636558
https://www.proquest.com/docview/2694416102
https://pubmed.ncbi.nlm.nih.gov/PMC9561079
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELYquPRSfgrqUlgZqSqnLImdjZPjLssKVYJDVSSqHiJ77LRVIanYXSFx4hF4Rp6EGeeHLqJS1VOkeKJxPJ7xjD3zmbEPVqMPopIsKHByBDEABEYaGwgrTBJB6rSjfcjTs-TkPP50MbxosiqpFqbGh-g23EgzvL0mBddmdvgEGgrl1UDi-orml1K1yB_6LLrtlRDNbObPl4XPmctk1kLPhuKw_XZ5MXryMJ_nR_7pt_qFZ7rGvrVdrvNNfg0WczOA22dojv_3T-vsTeOP8lE9gTbYK1dusrXGN-WN5s_esq-jxbxC7xZffvdI1SRQXhU8nHBdWh5N-DWhwDr7cHfv8Ty5v2RnRjQNeCu2UGEnJSdxnzDPi8vqZoudT4-_HJ0EzbUMAVB4F2gBJtJhgctfBsUwLCJjdZakxkqMVVKdJg6jNGE0ELwgmBRihabBYTCsstQ5uc1Wyqp07xgHkE5qq4rUQRyB1EoijzQJlXUF2r8eO2jlk0ODWU5XZ1zmNdqyyHHEchqxHtvvKH_XOB0v0Oy2Is4bTZ3lQglsS4ZDZLbfNaOO0cGJLl21QJokiykQDEWPqaWp0fEilO7llvLnD4_WTZXDoULmH73k_9q7_OjslJ47_0r4nr0WVIvhMwt32cr8euH20EOamz5bHY0n42nf68Qj60YTFg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcoALLQXULX24UlVO2SZ2Nk7UU9WHFujuoWqlIiFFfgUQJam6u0LixE_gN_JLOuM82q1AQpwixRONY3vGM-OZzwA7VqENIpMsKHBxBLExJtBC24BbrpPIpE45ikOOxsnwIn53ObhcgP22FqbGh-gCbiQZXl-TgFNAeu8ONdSU3_oCN9hH8Jgu9Pb-1BnvAiwhKtrMnzBznzWXiawFnw35Xvvx_HZ0Z2M-zJC8b7n6redkCT62na4zTr72Z1PdNz8e4Dn-518tw7PGJGUH9Rp6DguuXIGlxjxljfBPXsCHg9m0QgMXX37yYNU0p6wqWHjEVGlZdMRuCAjW2d8_f3lIT-bv2ZkQTYPfii1U20n5ScznzLPiqvr-Ei5Ojs8Ph0FzM0NgyMMLFDc6UmGBO2BmikFYRNqqLEm1FeiupCpNHDpqXCtDCINGpyaWqB0c-sMyS50Tr2CxrEq3CswY4YSyskidiSMjlBTII01CaV2BKrAHb9oJyk0DW063Z1zlNeAyz3HEchqxHmx3lNc1VMcfaNbbOc4bYZ3kXHJsSwYDZLbdNaOY0dmJKl01Q5oki8kXDHkP5Nza6HgRUPd8S_nlswfspuLhUCLzXT_1f-1dfjge0XPtXwm34MnwfHSan74dv38NTzmVZvhEw3VYnN7M3AYaTFO96QXjFkzdFb8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA5aQXyxXulq1RREn2abSWaTzGPputRLFxELFR-GXFWsM6W7i-CTP8Hf6C_xnMylblEQnwYmZ0gm55JzknO-EPLYG_BBlCyzCMKRFc65zArrM-65lbnTwQTchzycy4Oj4sXx5LjLqsRamBYfYthwQ81I9hoV_NTH3XPQUFd_GQtYXy-TK4VkGiV6-oYP-ysM7GyZDph5SporRdljzzK-23-8vhqdu5gXEyR_d1zTyjPbJO_7MbcJJ5_Hq6Udu28X4Bz_76dukOudQ0r3Wgm6SS6F-hbZ7JxT2qn-4jZ5t7daNuDewssPCaoaOUqbSNmUmtrTfErPEAY2-J_ffyRAT5pu2VkgTYfeCi1Y2YnZSTRlzNN40ny9Q45mz97uH2TdvQyZw_guM9zZ3LAI61_p4oTF3HpTSm29gGBFGy0DhGncGof4gs5qVyiwDQGiYVXqEMRdslE3ddgi1DkRhPEq6uCK3AmjBPShJVM-RDCAI_K050_lOtByvDvjpGrhlnkFM1bhjI3IzkB52gJ1_IFmu2dx1anqouKKQ5ucTKCznaEZlAxPTkwdmhXQyLLASJDxEVFrojH0hTDd6y31p48JrhtLh5mCzp8kzv91dNX-_BCf9_6V8BG5-no6q149n7-8T65xrMtIWYbbZGN5tgoPwFta2odJLX4BKc0Udw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+generation+of+0D+and+1D+reduced-order+models+of+patient-specific+blood+flow&rft.jtitle=International+journal+for+numerical+methods+in+biomedical+engineering&rft.au=Pfaller%2C+Martin+R.&rft.au=Pham%2C+Jonathan&rft.au=Verma%2C+Aekaansh&rft.au=Pegolotti%2C+Luca&rft.date=2022-10-01&rft.issn=2040-7939&rft.eissn=2040-7947&rft.volume=38&rft.issue=10&rft.spage=e3639&rft.epage=e3639&rft_id=info:doi/10.1002%2Fcnm.3639&rft_id=info%3Apmid%2F35875875&rft.externalDocID=PMC9561079
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-7939&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-7939&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-7939&client=summon