One-Pot Synthesis of Chloromethylated Mesoporous Silica Nanoparticles as Multifunctional Fillers in Hybrid Anion Exchange Membranes

Chloromethylated mesoporous silica nanoparticles (CM MSN) were synthesized through co-condensation of tetraethoxysilane and (chloro) phenyltrimethoxysilane precursors using hexadecyl trimethyl ammonium bromide as template.With the addition of the particles into chloromethylated poly (ether ether ket...

Full description

Saved in:
Bibliographic Details
Published inChinese journal of chemistry Vol. 35; no. 5; pp. 673 - 680
Main Authors He, Xueyi, Gang, Mingyue, He, Guangwei, Yin, Yongheng, Cao, Li, Wu, Hong, Jiang, Zhongyi
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag GmbH & Co. KGaA 01.05.2017
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Chloromethylated mesoporous silica nanoparticles (CM MSN) were synthesized through co-condensation of tetraethoxysilane and (chloro) phenyltrimethoxysilane precursors using hexadecyl trimethyl ammonium bromide as template.With the addition of the particles into chloromethylated poly (ether ether ketone) (PEEK),the hybrid membranes were prepared by a solution-casting method after complete quatemization of the casting solution.The successful synthesis of the particles was verified by transmission electron microscopy,X-ray diffraction and Fourier transform infrared spectroscopy while the effect of CM MSN incorporation on membrane performance including thermal stability,mechanical strength and hydroxide conductivity was investigated by thermal gravimetric analysis,electronic stretching machine,alternating-current impedance and so on.Owing to the large pore volume and high surface area of the particles,the hybrid membranes exhibited enhanced hydroxide conductivity (88.7% increase at 60 ℃,100% RH with 5.0 wt% filling content) due to an increase in ion concentration and optimization of the channel morphology.Besides,higher mechanical strength,thermal and dimensional stability of hybrid membranes were obtained compared with those of the imidazolium PEEK membrane.
AbstractList Chloromethylated mesoporous silica nanoparticles (CM MSN) were synthesized through co-condensation of tetraethoxysilane and (chloro) phenyltrimethoxysilane precursors using hexadecyl trimethyl ammonium bromide as template. With the addition of the particles into chloromethylated poly (ether ether ketone) (PEEK), the hybrid membranes were prepared by a solution-casting method after complete quaternization of the casting solution. The successful synthesis of the particles was verified by transmission electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy while the effect of CM MSN incorporation on membrane performance including thermal stability, mechanical strength and hydroxide conductivity was investigated by thermal gravimetric analysis, electronic stretching machine, alternating-current impedance and so on. Owing to the large pore volume and high surface area of the particles, the hybrid membranes exhibited enhanced hydroxide conductivity (88.7% increase at 60°C, 100% RH with 5.0wt% filling content) due to an increase in ion concentration and optimization of the channel morphology. Besides, higher mechanical strength, thermal and dimensional stability of hybrid membranes were obtained compared with those of the imidazolium PEEK membrane.
Chloromethylated mesoporous silica nanoparticles (CM MSN) were synthesized through co‐condensation of tetraethoxysilane and (chloro) phenyltrimethoxysilane precursors using hexadecyl trimethyl ammonium bromide as template. With the addition of the particles into chloromethylated poly (ether ether ketone) (PEEK), the hybrid membranes were prepared by a solution‐casting method after complete quaternization of the casting solution. The successful synthesis of the particles was verified by transmission electron microscopy, X‐ray diffraction and Fourier transform infrared spectroscopy while the effect of CM MSN incorporation on membrane performance including thermal stability, mechanical strength and hydroxide conductivity was investigated by thermal gravimetric analysis, electronic stretching machine, alternating‐current impedance and so on. Owing to the large pore volume and high surface area of the particles, the hybrid membranes exhibited enhanced hydroxide conductivity (88.7% increase at 60 °C, 100% RH with 5.0 wt% filling content) due to an increase in ion concentration and optimization of the channel morphology. Besides, higher mechanical strength, thermal and dimensional stability of hybrid membranes were obtained compared with those of the imidazolium PEEK membrane. Chloromethylated mesoporous silica nanoparticles (CM MSN) were synthesized by a single step process and incorporated into chloromethylated poly (ether ether ketone) to prepare hybrid anion exchange membranes after synchronous quaternization. The hybrid membranes exhibited good performance in ion conducting process as well as enhanced mechanical strength, thermal and dimensional stability.
Chloromethylated mesoporous silica nanoparticles (CM MSN) were synthesized through co-condensation of tetraethoxysilane and (chloro) phenyltrimethoxysilane precursors using hexadecyl trimethyl ammonium bromide as template.With the addition of the particles into chloromethylated poly (ether ether ketone) (PEEK),the hybrid membranes were prepared by a solution-casting method after complete quatemization of the casting solution.The successful synthesis of the particles was verified by transmission electron microscopy,X-ray diffraction and Fourier transform infrared spectroscopy while the effect of CM MSN incorporation on membrane performance including thermal stability,mechanical strength and hydroxide conductivity was investigated by thermal gravimetric analysis,electronic stretching machine,alternating-current impedance and so on.Owing to the large pore volume and high surface area of the particles,the hybrid membranes exhibited enhanced hydroxide conductivity (88.7% increase at 60 ℃,100% RH with 5.0 wt% filling content) due to an increase in ion concentration and optimization of the channel morphology.Besides,higher mechanical strength,thermal and dimensional stability of hybrid membranes were obtained compared with those of the imidazolium PEEK membrane.
Chloromethylated mesoporous silica nanoparticles ( CM MSN ) were synthesized through co‐condensation of tetraethoxysilane and (chloro) phenyltrimethoxysilane precursors using hexadecyl trimethyl ammonium bromide as template. With the addition of the particles into chloromethylated poly (ether ether ketone) ( PEEK ), the hybrid membranes were prepared by a solution‐casting method after complete quaternization of the casting solution. The successful synthesis of the particles was verified by transmission electron microscopy, X‐ray diffraction and Fourier transform infrared spectroscopy while the effect of CM MSN incorporation on membrane performance including thermal stability, mechanical strength and hydroxide conductivity was investigated by thermal gravimetric analysis, electronic stretching machine, alternating‐current impedance and so on. Owing to the large pore volume and high surface area of the particles, the hybrid membranes exhibited enhanced hydroxide conductivity (88.7% increase at 60 °C, 100% RH with 5.0 wt% filling content) due to an increase in ion concentration and optimization of the channel morphology. Besides, higher mechanical strength, thermal and dimensional stability of hybrid membranes were obtained compared with those of the imidazolium PEEK membrane.
Author Xueyi He Mingyue Gang Guangwei He Yongheng Yin Li Cao Hong Wu Zhongyi Jiang
AuthorAffiliation Key Laboratory for Green Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China Collaborative Innovation Center of Chemical Sctence and Engineering (Tianjin), Tianjin 300072, China
Author_xml – sequence: 1
  givenname: Xueyi
  surname: He
  fullname: He, Xueyi
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 2
  givenname: Mingyue
  surname: Gang
  fullname: Gang, Mingyue
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 3
  givenname: Guangwei
  surname: He
  fullname: He, Guangwei
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 4
  givenname: Yongheng
  surname: Yin
  fullname: Yin, Yongheng
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 5
  givenname: Li
  surname: Cao
  fullname: Cao, Li
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 6
  givenname: Hong
  surname: Wu
  fullname: Wu, Hong
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 7
  givenname: Zhongyi
  surname: Jiang
  fullname: Jiang, Zhongyi
  email: zhyjiang@tju.edu.cn
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
BookMark eNqFkM1r3DAQxUVJoUnaa8-iPXurkWV5fQwmnyTdQFLozciytNailTaSTOtz_vFo2RBKofQ0w8z7zRveCTpy3imEPgNZACH0m9x4uaAEOCFVXb9Dx8CBFTXh1VHuCYGCE_bzAzqJcZP1dU35MXpeOVXc-4QfZpdGFU3EXuN2tD74rUrjbEVSA75T0e_yaIr4wVgjBf4unN-JkIy0KmIR8d1kk9GTk8l4Jyy-MNaqELFx-GrugxnwmcsbfP5bjsKtVb657YNwKn5E77WwUX16rafox8X5Y3tV3K4ur9uz20KWS6gLvVR9qQXjzdAA6-tq6BugPVDBBwnAKJRV0xPGmOR0yUE1rNJaUqIJr1VmT9HXw91d8E-Tiqnb-CnkX2MHDQFGeNlAVi0OKhl8jEHpbhfMVoS5A9Ltg-72QXdvQWeA_QVIk8Q-hRSEsf_GmgP2y1g1_8eka29W7Z_sl1fL0bv1k3HrN57XJaVVRVn5At98on8
CitedBy_id crossref_primary_10_1002_cjoc_201800032
crossref_primary_10_1016_j_memsci_2018_11_070
crossref_primary_10_1002_pc_24894
crossref_primary_10_1080_10601325_2018_1504612
Cites_doi 10.1016/j.addr.2008.03.012
10.1002/polb.23395
10.1016/j.memsci.2009.04.012
10.1021/am302844x
10.1016/j.memsci.2014.07.004
10.1039/C5TA10452A
10.1016/j.jpowsour.2012.09.080
10.1021/jacs.5b02879
10.1002/adma.200903091
10.1016/S1872-2067(15)60836-1
10.1039/C5TA01123J
10.1016/j.micromeso.2004.10.004
10.1039/C5RA04144A
10.1016/0927-6513(96)00016-8
10.1002/adma.201104763
10.5012/bkcs.2009.30.3.561
10.1039/C4EE01303D
10.1002/anie.200604488
10.1016/S1872-2067(15)61103-2
10.1039/c1cs15246g
10.1002/smll.200901789
10.1002/adma.19970090317
10.1016/j.jpowsour.2014.07.135
10.1016/S1872-2067(15)60924-X
10.1039/C3EE43275K
10.1039/C6RA06363B
10.1002/cjoc.201200649
10.1039/c3nr00294b
10.1016/j.jpowsour.2015.04.112
10.1016/j.memsci.2016.02.004
10.1021/ar600032u
10.1021/ja9638824
10.1016/j.memsci.2008.07.039
10.1038/srep13417
10.1016/j.jpowsour.2008.08.094
10.1016/j.progpolymsci.2011.04.004
10.1016/j.jpowsour.2012.08.053
10.1002/adma.201501406
10.1021/ma901538c
10.1016/j.memsci.2015.03.077
10.1016/j.memsci.2015.10.005
10.1021/jp201250r
10.1016/j.molstruc.2008.08.025
10.1016/j.memsci.2010.04.024
ContentType Journal Article
Copyright 2017 SIOC, CAS, Shanghai, & WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 SIOC, CAS, Shanghai & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 SIOC, CAS, Shanghai, & WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 SIOC, CAS, Shanghai & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
DOI 10.1002/cjoc.201600577
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库- 镜像站点
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList


CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
DocumentTitleAlternate One-Pot Synthesis of Chloromethylated Mesoporous Silica Nanoparticles as Multifunctional Fillers in Hybrid Anion Exchange Membranes
EISSN 1614-7065
EndPage 680
ExternalDocumentID 10_1002_cjoc_201600577
CJOC201600577
673225524
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
29B
2RA
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VR
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
92L
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABHUG
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFUIB
AFVGU
AGJLS
AHBTC
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
BZXJU
CCEZO
CDRFL
CHBEP
CQIGP
CS3
CW9
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
FA0
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZ~
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
P2W
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RK2
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
W8V
W99
WBFHL
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WA
~WT
-SB
-S~
5XA
5XC
AAHQN
AAMNL
AANHP
AAXDM
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
AITYG
ALVPJ
CAJEB
HGLYW
OIG
Q--
U1G
U5L
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
TGP
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c3817-f8eb3fa469d914b75db912b12a6dc11421359b0444c62861e945ffc20f067eeb3
IEDL.DBID DR2
ISSN 1001-604X
IngestDate Fri Jul 25 12:27:03 EDT 2025
Tue Jul 01 03:35:18 EDT 2025
Thu Apr 24 23:01:59 EDT 2025
Wed Jan 22 16:45:45 EST 2025
Wed Feb 14 09:57:13 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3817-f8eb3fa469d914b75db912b12a6dc11421359b0444c62861e945ffc20f067eeb3
Notes anion exchange membrane, chloromethylated mesoporous silica, imidazolium poly (ether ether ke-tone), hydroxide conductivity
31-1547/O6
Chloromethylated mesoporous silica nanoparticles (CM MSN) were synthesized through co-condensation of tetraethoxysilane and (chloro) phenyltrimethoxysilane precursors using hexadecyl trimethyl ammonium bromide as template.With the addition of the particles into chloromethylated poly (ether ether ketone) (PEEK),the hybrid membranes were prepared by a solution-casting method after complete quatemization of the casting solution.The successful synthesis of the particles was verified by transmission electron microscopy,X-ray diffraction and Fourier transform infrared spectroscopy while the effect of CM MSN incorporation on membrane performance including thermal stability,mechanical strength and hydroxide conductivity was investigated by thermal gravimetric analysis,electronic stretching machine,alternating-current impedance and so on.Owing to the large pore volume and high surface area of the particles,the hybrid membranes exhibited enhanced hydroxide conductivity (88.7% increase at 60 ℃,100% RH with 5.0 wt% filling content) due to an increase in ion concentration and optimization of the channel morphology.Besides,higher mechanical strength,thermal and dimensional stability of hybrid membranes were obtained compared with those of the imidazolium PEEK membrane.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1901406391
PQPubID 986331
PageCount 8
ParticipantIDs proquest_journals_1901406391
crossref_primary_10_1002_cjoc_201600577
crossref_citationtrail_10_1002_cjoc_201600577
wiley_primary_10_1002_cjoc_201600577_CJOC201600577
chongqing_primary_673225524
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May, 2017
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: May, 2017
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Shanghai
PublicationTitle Chinese journal of chemistry
PublicationTitleAlternate Chinese Journal of Chemistry
PublicationYear 2017
Publisher WILEY-VCH Verlag GmbH & Co. KGaA
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag GmbH & Co. KGaA
– name: Wiley Subscription Services, Inc
References 2011; 115
2009; 919
2015; 36
2015; 5
1997; 119
2015; 3
2009; 42
2015; 487
2015; 288
2016; 507
2013; 221
2013; 224
2008; 325
2011; 36
2014; 270
2009; 338
2013; 5
2015; 7
2016; 37
1997; 9
2008; 185
2012; 30
2016; 4
2007; 28
2010; 22
2016; 6
2014; 469
2009; 30
2015; 27
2015; 137
2013; 51
2010; 357
2016; 498
2007; 40
2012; 24
2014; 7
2008; 60
2007; 46
2010; 6
2005; 78
2012; 41
1996; 6
Shen Y. (e_1_2_1_39_1) 2007; 28
e_1_2_1_42_1
e_1_2_1_20_1
e_1_2_1_41_1
e_1_2_1_40_1
e_1_2_1_23_1
e_1_2_1_46_1
e_1_2_1_24_1
e_1_2_1_45_1
e_1_2_1_21_1
e_1_2_1_44_1
e_1_2_1_22_1
e_1_2_1_43_1
e_1_2_1_27_1
e_1_2_1_28_1
e_1_2_1_25_1
e_1_2_1_26_1
e_1_2_1_47_1
e_1_2_1_29_1
Ye S. (e_1_2_1_15_1) 2015; 7
e_1_2_1_7_1
e_1_2_1_31_1
e_1_2_1_8_1
e_1_2_1_30_1
e_1_2_1_5_1
e_1_2_1_6_1
e_1_2_1_3_1
e_1_2_1_12_1
e_1_2_1_35_1
e_1_2_1_4_1
e_1_2_1_13_1
e_1_2_1_34_1
e_1_2_1_10_1
e_1_2_1_33_1
e_1_2_1_2_1
e_1_2_1_11_1
e_1_2_1_32_1
e_1_2_1_16_1
e_1_2_1_17_1
e_1_2_1_38_1
e_1_2_1_14_1
e_1_2_1_37_1
e_1_2_1_36_1
e_1_2_1_9_1
e_1_2_1_18_1
e_1_2_1_19_1
References_xml – volume: 487
  start-page: 99
  year: 2015
  publication-title: J. Membr. Sci.
– volume: 40
  start-page: 846
  year: 2007
  publication-title: Acc. Chem. Res.
– volume: 498
  start-page: 242
  year: 2016
  publication-title: J. Membr. Sci.
– volume: 36
  start-page: 1035
  year: 2015
  publication-title: Chin. J. Catal.
– volume: 919
  start-page: 140
  year: 2009
  publication-title: J. Mol. Struct.
– volume: 22
  start-page: 971
  year: 2010
  publication-title: Adv. Mater.
– volume: 51
  start-page: 1727
  year: 2013
  publication-title: Polym. Sci., Part B: Polym. Phys
– volume: 288
  start-page: 384
  year: 2015
  publication-title: J. Power Sources
– volume: 5
  start-page: 1414
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 338
  start-page: 51
  year: 2009
  publication-title: J. Membr. Sci.
– volume: 7
  start-page: 867
  year: 2015
  publication-title: Acta Polym. Sin.
– volume: 6
  start-page: 1952
  year: 2010
  publication-title: Small
– volume: 60
  start-page: 1278
  year: 2008
  publication-title: Adv. Drug Deliver. Rev.
– volume: 119
  start-page: 4090
  year: 1997
  publication-title: J. Am. Chem. Soc.
– volume: 30
  start-page: 561
  year: 2009
  publication-title: Bull. Korean Chem. Soc.
– volume: 325
  start-page: 252
  year: 2008
  publication-title: J. Membr. Sci.
– volume: 507
  start-page: 1
  year: 2016
  publication-title: J. Membr. Sci.
– volume: 42
  start-page: 8316
  year: 2009
  publication-title: J. Macromolecules
– volume: 28
  start-page: 580
  year: 2007
  publication-title: Chem. J. Chin. Univ.
– volume: 469
  start-page: 418
  year: 2014
  publication-title: J. Membrane Sci.
– volume: 5
  start-page: 13417
  year: 2015
  publication-title: Sci. Rep.
– volume: 115
  start-page: 11854
  year: 2011
  publication-title: J. Phys. Chem. C
– volume: 37
  start-page: 971
  year: 2016
  publication-title: Chin. J. Catal.
– volume: 137
  start-page: 8730
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 46
  start-page: 7548
  year: 2007
  publication-title: Angew. Chem., Int. Ed
– volume: 3
  start-page: 8571
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 30
  start-page: 2241
  year: 2012
  publication-title: Chin. J. Chem.
– volume: 6
  start-page: 375
  year: 1996
  publication-title: Microporous Mater.
– volume: 221
  start-page: 247
  year: 2013
  publication-title: J. Power Sources
– volume: 36
  start-page: 1686
  year: 2015
  publication-title: Chin. J. Catal.
– volume: 7
  start-page: 354
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 185
  start-page: 664
  year: 2008
  publication-title: J. Power Sources
– volume: 4
  start-page: 2340
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 42828
  year: 2015
  publication-title: RSC Adv.
– volume: 41
  start-page: 2590
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 270
  start-page: 292
  year: 2014
  publication-title: J. Power Sources
– volume: 357
  start-page: 199
  year: 2010
  publication-title: J. Membrane Sci.
– volume: 27
  start-page: 5280
  year: 2015
  publication-title: Adv. Mater.
– volume: 7
  start-page: 3135
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 254
  year: 1997
  publication-title: Adv. Mater.
– volume: 78
  start-page: 139
  year: 2005
  publication-title: Microporous Mesoporous Mater.
– volume: 24
  start-page: 1504
  year: 2012
  publication-title: Adv. Mater.
– volume: 5
  start-page: 4291
  year: 2013
  publication-title: Nanoscale
– volume: 6
  start-page: 51057
  year: 2016
  publication-title: RSC Adv.
– volume: 224
  start-page: 28
  year: 2013
  publication-title: J. Power Sources
– volume: 36
  start-page: 1521
  year: 2011
  publication-title: Prog. Polym. Sci.
– ident: e_1_2_1_32_1
  doi: 10.1016/j.addr.2008.03.012
– ident: e_1_2_1_3_1
  doi: 10.1002/polb.23395
– ident: e_1_2_1_12_1
  doi: 10.1016/j.memsci.2009.04.012
– ident: e_1_2_1_19_1
  doi: 10.1021/am302844x
– ident: e_1_2_1_25_1
  doi: 10.1016/j.memsci.2014.07.004
– ident: e_1_2_1_8_1
  doi: 10.1039/C5TA10452A
– volume: 28
  start-page: 580
  year: 2007
  ident: e_1_2_1_39_1
  publication-title: Chem. J. Chin. Univ.
– ident: e_1_2_1_45_1
  doi: 10.1016/j.jpowsour.2012.09.080
– ident: e_1_2_1_47_1
  doi: 10.1021/jacs.5b02879
– ident: e_1_2_1_30_1
  doi: 10.1002/adma.200903091
– ident: e_1_2_1_37_1
  doi: 10.1016/S1872-2067(15)60836-1
– ident: e_1_2_1_11_1
  doi: 10.1039/C5TA01123J
– ident: e_1_2_1_42_1
  doi: 10.1016/j.micromeso.2004.10.004
– ident: e_1_2_1_14_1
  doi: 10.1039/C5RA04144A
– ident: e_1_2_1_35_1
  doi: 10.1016/0927-6513(96)00016-8
– ident: e_1_2_1_23_1
  doi: 10.1002/adma.201104763
– ident: e_1_2_1_40_1
  doi: 10.5012/bkcs.2009.30.3.561
– ident: e_1_2_1_4_1
  doi: 10.1039/C4EE01303D
– ident: e_1_2_1_22_1
  doi: 10.1002/anie.200604488
– ident: e_1_2_1_20_1
  doi: 10.1016/S1872-2067(15)61103-2
– ident: e_1_2_1_34_1
  doi: 10.1039/c1cs15246g
– ident: e_1_2_1_24_1
  doi: 10.1002/smll.200901789
– ident: e_1_2_1_36_1
  doi: 10.1002/adma.19970090317
– ident: e_1_2_1_26_1
  doi: 10.1016/j.jpowsour.2014.07.135
– ident: e_1_2_1_21_1
  doi: 10.1016/S1872-2067(15)60924-X
– ident: e_1_2_1_10_1
  doi: 10.1039/C3EE43275K
– ident: e_1_2_1_13_1
  doi: 10.1039/C6RA06363B
– ident: e_1_2_1_16_1
  doi: 10.1002/cjoc.201200649
– ident: e_1_2_1_33_1
  doi: 10.1039/c3nr00294b
– ident: e_1_2_1_6_1
  doi: 10.1016/j.jpowsour.2015.04.112
– ident: e_1_2_1_43_1
  doi: 10.1016/j.memsci.2016.02.004
– ident: e_1_2_1_31_1
  doi: 10.1021/ar600032u
– ident: e_1_2_1_41_1
  doi: 10.1021/ja9638824
– ident: e_1_2_1_29_1
  doi: 10.1016/j.memsci.2008.07.039
– ident: e_1_2_1_5_1
  doi: 10.1038/srep13417
– ident: e_1_2_1_44_1
  doi: 10.1016/j.jpowsour.2008.08.094
– ident: e_1_2_1_2_1
  doi: 10.1016/j.progpolymsci.2011.04.004
– ident: e_1_2_1_7_1
  doi: 10.1016/j.jpowsour.2012.08.053
– volume: 7
  start-page: 867
  year: 2015
  ident: e_1_2_1_15_1
  publication-title: Acta Polym. Sin.
– ident: e_1_2_1_9_1
  doi: 10.1002/adma.201501406
– ident: e_1_2_1_46_1
  doi: 10.1021/ma901538c
– ident: e_1_2_1_18_1
  doi: 10.1016/j.memsci.2015.03.077
– ident: e_1_2_1_17_1
  doi: 10.1016/j.memsci.2015.10.005
– ident: e_1_2_1_28_1
  doi: 10.1021/jp201250r
– ident: e_1_2_1_38_1
  doi: 10.1016/j.molstruc.2008.08.025
– ident: e_1_2_1_27_1
  doi: 10.1016/j.memsci.2010.04.024
SSID ssj0027726
Score 2.114173
Snippet Chloromethylated mesoporous silica nanoparticles (CM MSN) were synthesized through co-condensation of tetraethoxysilane and (chloro) phenyltrimethoxysilane...
Chloromethylated mesoporous silica nanoparticles (CM MSN) were synthesized through co‐condensation of tetraethoxysilane and (chloro) phenyltrimethoxysilane...
Chloromethylated mesoporous silica nanoparticles ( CM MSN ) were synthesized through co‐condensation of tetraethoxysilane and (chloro) phenyltrimethoxysilane...
Chloromethylated mesoporous silica nanoparticles (CM MSN) were synthesized through co-condensation of tetraethoxysilane and (chloro) phenyltrimethoxysilane...
SourceID proquest
crossref
wiley
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 673
SubjectTerms Ammonium
Anion exchange
anion exchange membrane
Anion exchanging
Cetyltrimethylammonium bromide
Channel morphology
chloromethylated mesoporous silica
Conductivity
Dimensional stability
Fourier transforms
Gravimetric analysis
hydroxide conductivity
imidazolium poly (ether ether ketone)
Infrared spectroscopy
Ion concentration
Mechanical properties
Membranes
Nanoparticles
Polyether ether ketones
Silica
Silicon dioxide
Synthesis
Tetraethoxysilane
Tetraethyl orthosilicate
Thermal stability
Transmission electron microscopy
X-ray diffraction
Title One-Pot Synthesis of Chloromethylated Mesoporous Silica Nanoparticles as Multifunctional Fillers in Hybrid Anion Exchange Membranes
URI http://lib.cqvip.com/qk/84126X/201705/673225524.html
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcjoc.201600577
https://www.proquest.com/docview/1901406391
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hONBL6VPdQpEPlXoKrB0nJMclsFohUVAp0t6i2LHL8khKsyt1e-LCnd_IL-mM81ioVCG1xyi2lcT2zDfOfN8AfOz7yviZjTwtYuVJ-nsYBZToKq2faR5Z7rLdDz-Ho1N5MA7GD1j8tT5Ed-BGO8PZa9rgmaq2F6Kh-rwkCUIeEp-S6OSUsEWo6ItYRFw7rt4a6Qx5YV-OW9XGvth-3J2UFc7K4ts1-ovHHmoBOx-CV-d9hmuQtc9dJ51cbM2makv_-kPS8X9e7AU8b6ApG9Rr6SUsmeIVrCZtRbjXcHtUmPubu-Nyyk7mBSLHalKx0rLkDIP-kmpRzy8Ruubs0FQl4vpyVrGTCZ0KMjTiGJ03SXgsq5gj_pJTrc8i2dBxEis2KdhoTiwyNijwDtv_WVOTccwrfCk0zG_gdLj_NRl5TRkHT5P8n2cjDNhthnF4HnOpdoJcxVwoLrIw10Tl5X4QK9Kt08ST5SaWgbVa9C16UoN938JyURbmHTAeGiqnJQK0TJL-USqjRO4bHXIro9j0YL2bxvR7LddBmWtotAIhe-C1E5vqRgGdCnFcprV2s0jp06fdp-_Bp659O9jfWm606yRtbECVEtSShAB5D4Sb8CdGSZODo6S7ev8vndbhmSDc4TIyN2B5-mNmPiBqmqpNWBns7u0ON90O-Q2iGRE6
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcigX3qhLC_gA4pR27TjZ5MChSrvaPrZFtJX2FmLHpgtLUsiuYDlx4c5f4a_wE_glzOS1FAkhIfXAMUpsRfY8vrFnvgF43HWVcRMbOFqEypF0exh4lOgqrZtoHlheZrsPD_3BqdwbeaMl-NbUwlT8EO2BG2lGaa9JwelAenPBGqpf58RByH0qqOzVeZX7Zv4Bo7bi2e42bvETIfo7J9HAqRsLOJoI6RwbYAhpE4wM05BL1fNSFXKhuEj8VFNxKXe9UBGTmqbKTW5C6VmrRdeibTc4Fue9AlepjTjR9W-_EIsYr1d2eCNmI8fvylHDE9kVmxf_l7gczvLs1Tv0UBd94gLo_gqXS3_XvwHfm5Wq0lzebMymakN_-o1E8r9ayptwvUbfbKtSl1uwZLLbsBI1Te_uwJejzPz4_PV5PmXH8wzBcTEuWG5ZdDbJidgBxXqC6DxlQ1PkGLrks4Idj-ngk6Gfys-bPEOWFKysbSbcUB23sn5ZdlmwccYGcyqUY1sZvmE7H6vqa5zzLa4i-p67cHopq3APlrM8M6vAuG-oY5jw0PhKuoZVRonUNdrnVgah6cBaKzfxecVIQsl5aJc9ITvgNJIU65rknXqNTOKKnlrEtNVxu9UdeNp-30z2py_XG8GMazNXxIQmJYFc3gFRSthfZomjvaOofbr_L4MewcrgZHgQH-we7q_BNUEwq0xAXYfl6fuZeYAgcaoelmrJ4OVlC-9P7Zpsbw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIgEX3oilBXwAcUobO042OXCosl1tW_oQpdLewtqx6cKSLGRXsJy4cOen8Ff4C_wSZvJaioSQkHrgGCW2Inse39gz3wA8cj1lvJENHS0i5Ui6PQx9SnSV1htpHlpeZrvvHwSDE7k79Icr8K2phan4IdoDN9KM0l6Tgk9Tu7kkDdWvc6Ig5AHVU3brtMo9s_iAQVvxdKeHO_xYiP72i3jg1H0FHE18dI4NMYK0IwwM04hL1fVTFXGhuBgFqabaUu75kSIiNU2Fm9xE0rdWC9eiaTc4Fue9ABdl4EbULKL3XCxDvG7Z4I2IjZzAlcOGJtIVm2f_l6gcTvPs1Tt0UGdd4hLn_oqWS3fXvwbfm4WqslzebMxnakN_-o1D8n9ayetwtcbebKtSlhuwYrKbcDluWt7dgi-Hmfnx-etRPmPHiwyhcTEuWG5ZfDrJidYBhXqC2Dxl-6bIMXDJ5wU7HtOxJ0MvlU-bLEM2KlhZ2UyooTpsZf2y6LJg44wNFlQmx7YyfMO2P1a11zjnW1xE9Dy34eRcVuEOrGZ5Zu4C44GhfmHCR9Mr6RJWGSVSz-iAWxlGpgNrrdgk04qPhFLz0Cr7QnbAaQQp0TXFO3UamSQVObVIaKuTdqs78KT9vpnsT1-uN3KZ1EauSAhLSoK4vAOiFLC_zJLEu4dx-3TvXwY9hEtHvX7ybOdgbw2uCMJYZfbpOqzO3s_NfUSIM_WgVEoGL89bdn8CHmJrHg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One-Pot+Synthesis+of+Chloromethylated+Mesoporous+Silica+Nanoparticles+as+Multifunctional+Fillers+in+Hybrid+Anion+Exchange+Membranes&rft.jtitle=%E4%B8%AD%E5%9B%BD%E5%8C%96%E5%AD%A6%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=Xueyi+He+Mingyue+Gang+Guangwei+He+Yongheng+Yin+Li+Cao+Hong+Wu+Zhongyi+Jiang&rft.date=2017-05-01&rft.issn=1001-604X&rft.eissn=1614-7065&rft.volume=35&rft.issue=5&rft.spage=673&rft.epage=680&rft_id=info:doi/10.1002%2Fcjoc.201600577&rft.externalDocID=673225524
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84126X%2F84126X.jpg