One-Pot Synthesis of Chloromethylated Mesoporous Silica Nanoparticles as Multifunctional Fillers in Hybrid Anion Exchange Membranes
Chloromethylated mesoporous silica nanoparticles (CM MSN) were synthesized through co-condensation of tetraethoxysilane and (chloro) phenyltrimethoxysilane precursors using hexadecyl trimethyl ammonium bromide as template.With the addition of the particles into chloromethylated poly (ether ether ket...
Saved in:
Published in | Chinese journal of chemistry Vol. 35; no. 5; pp. 673 - 680 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag GmbH & Co. KGaA
01.05.2017
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Chloromethylated mesoporous silica nanoparticles (CM MSN) were synthesized through co-condensation of tetraethoxysilane and (chloro) phenyltrimethoxysilane precursors using hexadecyl trimethyl ammonium bromide as template.With the addition of the particles into chloromethylated poly (ether ether ketone) (PEEK),the hybrid membranes were prepared by a solution-casting method after complete quatemization of the casting solution.The successful synthesis of the particles was verified by transmission electron microscopy,X-ray diffraction and Fourier transform infrared spectroscopy while the effect of CM MSN incorporation on membrane performance including thermal stability,mechanical strength and hydroxide conductivity was investigated by thermal gravimetric analysis,electronic stretching machine,alternating-current impedance and so on.Owing to the large pore volume and high surface area of the particles,the hybrid membranes exhibited enhanced hydroxide conductivity (88.7% increase at 60 ℃,100% RH with 5.0 wt% filling content) due to an increase in ion concentration and optimization of the channel morphology.Besides,higher mechanical strength,thermal and dimensional stability of hybrid membranes were obtained compared with those of the imidazolium PEEK membrane. |
---|---|
AbstractList | Chloromethylated mesoporous silica nanoparticles (CM MSN) were synthesized through co-condensation of tetraethoxysilane and (chloro) phenyltrimethoxysilane precursors using hexadecyl trimethyl ammonium bromide as template. With the addition of the particles into chloromethylated poly (ether ether ketone) (PEEK), the hybrid membranes were prepared by a solution-casting method after complete quaternization of the casting solution. The successful synthesis of the particles was verified by transmission electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy while the effect of CM MSN incorporation on membrane performance including thermal stability, mechanical strength and hydroxide conductivity was investigated by thermal gravimetric analysis, electronic stretching machine, alternating-current impedance and so on. Owing to the large pore volume and high surface area of the particles, the hybrid membranes exhibited enhanced hydroxide conductivity (88.7% increase at 60°C, 100% RH with 5.0wt% filling content) due to an increase in ion concentration and optimization of the channel morphology. Besides, higher mechanical strength, thermal and dimensional stability of hybrid membranes were obtained compared with those of the imidazolium PEEK membrane. Chloromethylated mesoporous silica nanoparticles (CM MSN) were synthesized through co‐condensation of tetraethoxysilane and (chloro) phenyltrimethoxysilane precursors using hexadecyl trimethyl ammonium bromide as template. With the addition of the particles into chloromethylated poly (ether ether ketone) (PEEK), the hybrid membranes were prepared by a solution‐casting method after complete quaternization of the casting solution. The successful synthesis of the particles was verified by transmission electron microscopy, X‐ray diffraction and Fourier transform infrared spectroscopy while the effect of CM MSN incorporation on membrane performance including thermal stability, mechanical strength and hydroxide conductivity was investigated by thermal gravimetric analysis, electronic stretching machine, alternating‐current impedance and so on. Owing to the large pore volume and high surface area of the particles, the hybrid membranes exhibited enhanced hydroxide conductivity (88.7% increase at 60 °C, 100% RH with 5.0 wt% filling content) due to an increase in ion concentration and optimization of the channel morphology. Besides, higher mechanical strength, thermal and dimensional stability of hybrid membranes were obtained compared with those of the imidazolium PEEK membrane. Chloromethylated mesoporous silica nanoparticles (CM MSN) were synthesized by a single step process and incorporated into chloromethylated poly (ether ether ketone) to prepare hybrid anion exchange membranes after synchronous quaternization. The hybrid membranes exhibited good performance in ion conducting process as well as enhanced mechanical strength, thermal and dimensional stability. Chloromethylated mesoporous silica nanoparticles (CM MSN) were synthesized through co-condensation of tetraethoxysilane and (chloro) phenyltrimethoxysilane precursors using hexadecyl trimethyl ammonium bromide as template.With the addition of the particles into chloromethylated poly (ether ether ketone) (PEEK),the hybrid membranes were prepared by a solution-casting method after complete quatemization of the casting solution.The successful synthesis of the particles was verified by transmission electron microscopy,X-ray diffraction and Fourier transform infrared spectroscopy while the effect of CM MSN incorporation on membrane performance including thermal stability,mechanical strength and hydroxide conductivity was investigated by thermal gravimetric analysis,electronic stretching machine,alternating-current impedance and so on.Owing to the large pore volume and high surface area of the particles,the hybrid membranes exhibited enhanced hydroxide conductivity (88.7% increase at 60 ℃,100% RH with 5.0 wt% filling content) due to an increase in ion concentration and optimization of the channel morphology.Besides,higher mechanical strength,thermal and dimensional stability of hybrid membranes were obtained compared with those of the imidazolium PEEK membrane. Chloromethylated mesoporous silica nanoparticles ( CM MSN ) were synthesized through co‐condensation of tetraethoxysilane and (chloro) phenyltrimethoxysilane precursors using hexadecyl trimethyl ammonium bromide as template. With the addition of the particles into chloromethylated poly (ether ether ketone) ( PEEK ), the hybrid membranes were prepared by a solution‐casting method after complete quaternization of the casting solution. The successful synthesis of the particles was verified by transmission electron microscopy, X‐ray diffraction and Fourier transform infrared spectroscopy while the effect of CM MSN incorporation on membrane performance including thermal stability, mechanical strength and hydroxide conductivity was investigated by thermal gravimetric analysis, electronic stretching machine, alternating‐current impedance and so on. Owing to the large pore volume and high surface area of the particles, the hybrid membranes exhibited enhanced hydroxide conductivity (88.7% increase at 60 °C, 100% RH with 5.0 wt% filling content) due to an increase in ion concentration and optimization of the channel morphology. Besides, higher mechanical strength, thermal and dimensional stability of hybrid membranes were obtained compared with those of the imidazolium PEEK membrane. |
Author | Xueyi He Mingyue Gang Guangwei He Yongheng Yin Li Cao Hong Wu Zhongyi Jiang |
AuthorAffiliation | Key Laboratory for Green Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China Collaborative Innovation Center of Chemical Sctence and Engineering (Tianjin), Tianjin 300072, China |
Author_xml | – sequence: 1 givenname: Xueyi surname: He fullname: He, Xueyi organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 2 givenname: Mingyue surname: Gang fullname: Gang, Mingyue organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 3 givenname: Guangwei surname: He fullname: He, Guangwei organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 4 givenname: Yongheng surname: Yin fullname: Yin, Yongheng organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 5 givenname: Li surname: Cao fullname: Cao, Li organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 6 givenname: Hong surname: Wu fullname: Wu, Hong organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 7 givenname: Zhongyi surname: Jiang fullname: Jiang, Zhongyi email: zhyjiang@tju.edu.cn organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) |
BookMark | eNqFkM1r3DAQxUVJoUnaa8-iPXurkWV5fQwmnyTdQFLozciytNailTaSTOtz_vFo2RBKofQ0w8z7zRveCTpy3imEPgNZACH0m9x4uaAEOCFVXb9Dx8CBFTXh1VHuCYGCE_bzAzqJcZP1dU35MXpeOVXc-4QfZpdGFU3EXuN2tD74rUrjbEVSA75T0e_yaIr4wVgjBf4unN-JkIy0KmIR8d1kk9GTk8l4Jyy-MNaqELFx-GrugxnwmcsbfP5bjsKtVb657YNwKn5E77WwUX16rafox8X5Y3tV3K4ur9uz20KWS6gLvVR9qQXjzdAA6-tq6BugPVDBBwnAKJRV0xPGmOR0yUE1rNJaUqIJr1VmT9HXw91d8E-Tiqnb-CnkX2MHDQFGeNlAVi0OKhl8jEHpbhfMVoS5A9Ltg-72QXdvQWeA_QVIk8Q-hRSEsf_GmgP2y1g1_8eka29W7Z_sl1fL0bv1k3HrN57XJaVVRVn5At98on8 |
CitedBy_id | crossref_primary_10_1002_cjoc_201800032 crossref_primary_10_1016_j_memsci_2018_11_070 crossref_primary_10_1002_pc_24894 crossref_primary_10_1080_10601325_2018_1504612 |
Cites_doi | 10.1016/j.addr.2008.03.012 10.1002/polb.23395 10.1016/j.memsci.2009.04.012 10.1021/am302844x 10.1016/j.memsci.2014.07.004 10.1039/C5TA10452A 10.1016/j.jpowsour.2012.09.080 10.1021/jacs.5b02879 10.1002/adma.200903091 10.1016/S1872-2067(15)60836-1 10.1039/C5TA01123J 10.1016/j.micromeso.2004.10.004 10.1039/C5RA04144A 10.1016/0927-6513(96)00016-8 10.1002/adma.201104763 10.5012/bkcs.2009.30.3.561 10.1039/C4EE01303D 10.1002/anie.200604488 10.1016/S1872-2067(15)61103-2 10.1039/c1cs15246g 10.1002/smll.200901789 10.1002/adma.19970090317 10.1016/j.jpowsour.2014.07.135 10.1016/S1872-2067(15)60924-X 10.1039/C3EE43275K 10.1039/C6RA06363B 10.1002/cjoc.201200649 10.1039/c3nr00294b 10.1016/j.jpowsour.2015.04.112 10.1016/j.memsci.2016.02.004 10.1021/ar600032u 10.1021/ja9638824 10.1016/j.memsci.2008.07.039 10.1038/srep13417 10.1016/j.jpowsour.2008.08.094 10.1016/j.progpolymsci.2011.04.004 10.1016/j.jpowsour.2012.08.053 10.1002/adma.201501406 10.1021/ma901538c 10.1016/j.memsci.2015.03.077 10.1016/j.memsci.2015.10.005 10.1021/jp201250r 10.1016/j.molstruc.2008.08.025 10.1016/j.memsci.2010.04.024 |
ContentType | Journal Article |
Copyright | 2017 SIOC, CAS, Shanghai, & WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 SIOC, CAS, Shanghai & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 SIOC, CAS, Shanghai, & WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 SIOC, CAS, Shanghai & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION |
DOI | 10.1002/cjoc.201600577 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库- 镜像站点 CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
DocumentTitleAlternate | One-Pot Synthesis of Chloromethylated Mesoporous Silica Nanoparticles as Multifunctional Fillers in Hybrid Anion Exchange Membranes |
EISSN | 1614-7065 |
EndPage | 680 |
ExternalDocumentID | 10_1002_cjoc_201600577 CJOC201600577 673225524 |
Genre | article |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 29B 2RA 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VR 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 92L AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABHUG ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFUIB AFVGU AGJLS AHBTC AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 BZXJU CCEZO CDRFL CHBEP CQIGP CS3 CW9 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 FA0 FEDTE G-S G.N GODZA H.T H.X HF~ HVGLF HZ~ IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- P2W P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RK2 RNS ROL RWI RX1 RYL SAMSI SUPJJ W8V W99 WBFHL WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WA ~WT -SB -S~ 5XA 5XC AAHQN AAMNL AANHP AAXDM AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ AITYG ALVPJ CAJEB HGLYW OIG Q-- U1G U5L AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION TGP AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c3817-f8eb3fa469d914b75db912b12a6dc11421359b0444c62861e945ffc20f067eeb3 |
IEDL.DBID | DR2 |
ISSN | 1001-604X |
IngestDate | Fri Jul 25 12:27:03 EDT 2025 Tue Jul 01 03:35:18 EDT 2025 Thu Apr 24 23:01:59 EDT 2025 Wed Jan 22 16:45:45 EST 2025 Wed Feb 14 09:57:13 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3817-f8eb3fa469d914b75db912b12a6dc11421359b0444c62861e945ffc20f067eeb3 |
Notes | anion exchange membrane, chloromethylated mesoporous silica, imidazolium poly (ether ether ke-tone), hydroxide conductivity 31-1547/O6 Chloromethylated mesoporous silica nanoparticles (CM MSN) were synthesized through co-condensation of tetraethoxysilane and (chloro) phenyltrimethoxysilane precursors using hexadecyl trimethyl ammonium bromide as template.With the addition of the particles into chloromethylated poly (ether ether ketone) (PEEK),the hybrid membranes were prepared by a solution-casting method after complete quatemization of the casting solution.The successful synthesis of the particles was verified by transmission electron microscopy,X-ray diffraction and Fourier transform infrared spectroscopy while the effect of CM MSN incorporation on membrane performance including thermal stability,mechanical strength and hydroxide conductivity was investigated by thermal gravimetric analysis,electronic stretching machine,alternating-current impedance and so on.Owing to the large pore volume and high surface area of the particles,the hybrid membranes exhibited enhanced hydroxide conductivity (88.7% increase at 60 ℃,100% RH with 5.0 wt% filling content) due to an increase in ion concentration and optimization of the channel morphology.Besides,higher mechanical strength,thermal and dimensional stability of hybrid membranes were obtained compared with those of the imidazolium PEEK membrane. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1901406391 |
PQPubID | 986331 |
PageCount | 8 |
ParticipantIDs | proquest_journals_1901406391 crossref_primary_10_1002_cjoc_201600577 crossref_citationtrail_10_1002_cjoc_201600577 wiley_primary_10_1002_cjoc_201600577_CJOC201600577 chongqing_primary_673225524 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May, 2017 |
PublicationDateYYYYMMDD | 2017-05-01 |
PublicationDate_xml | – month: 05 year: 2017 text: May, 2017 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Shanghai |
PublicationTitle | Chinese journal of chemistry |
PublicationTitleAlternate | Chinese Journal of Chemistry |
PublicationYear | 2017 |
Publisher | WILEY-VCH Verlag GmbH & Co. KGaA Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY-VCH Verlag GmbH & Co. KGaA – name: Wiley Subscription Services, Inc |
References | 2011; 115 2009; 919 2015; 36 2015; 5 1997; 119 2015; 3 2009; 42 2015; 487 2015; 288 2016; 507 2013; 221 2013; 224 2008; 325 2011; 36 2014; 270 2009; 338 2013; 5 2015; 7 2016; 37 1997; 9 2008; 185 2012; 30 2016; 4 2007; 28 2010; 22 2016; 6 2014; 469 2009; 30 2015; 27 2015; 137 2013; 51 2010; 357 2016; 498 2007; 40 2012; 24 2014; 7 2008; 60 2007; 46 2010; 6 2005; 78 2012; 41 1996; 6 Shen Y. (e_1_2_1_39_1) 2007; 28 e_1_2_1_42_1 e_1_2_1_20_1 e_1_2_1_41_1 e_1_2_1_40_1 e_1_2_1_23_1 e_1_2_1_46_1 e_1_2_1_24_1 e_1_2_1_45_1 e_1_2_1_21_1 e_1_2_1_44_1 e_1_2_1_22_1 e_1_2_1_43_1 e_1_2_1_27_1 e_1_2_1_28_1 e_1_2_1_25_1 e_1_2_1_26_1 e_1_2_1_47_1 e_1_2_1_29_1 Ye S. (e_1_2_1_15_1) 2015; 7 e_1_2_1_7_1 e_1_2_1_31_1 e_1_2_1_8_1 e_1_2_1_30_1 e_1_2_1_5_1 e_1_2_1_6_1 e_1_2_1_3_1 e_1_2_1_12_1 e_1_2_1_35_1 e_1_2_1_4_1 e_1_2_1_13_1 e_1_2_1_34_1 e_1_2_1_10_1 e_1_2_1_33_1 e_1_2_1_2_1 e_1_2_1_11_1 e_1_2_1_32_1 e_1_2_1_16_1 e_1_2_1_17_1 e_1_2_1_38_1 e_1_2_1_14_1 e_1_2_1_37_1 e_1_2_1_36_1 e_1_2_1_9_1 e_1_2_1_18_1 e_1_2_1_19_1 |
References_xml | – volume: 487 start-page: 99 year: 2015 publication-title: J. Membr. Sci. – volume: 40 start-page: 846 year: 2007 publication-title: Acc. Chem. Res. – volume: 498 start-page: 242 year: 2016 publication-title: J. Membr. Sci. – volume: 36 start-page: 1035 year: 2015 publication-title: Chin. J. Catal. – volume: 919 start-page: 140 year: 2009 publication-title: J. Mol. Struct. – volume: 22 start-page: 971 year: 2010 publication-title: Adv. Mater. – volume: 51 start-page: 1727 year: 2013 publication-title: Polym. Sci., Part B: Polym. Phys – volume: 288 start-page: 384 year: 2015 publication-title: J. Power Sources – volume: 5 start-page: 1414 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 338 start-page: 51 year: 2009 publication-title: J. Membr. Sci. – volume: 7 start-page: 867 year: 2015 publication-title: Acta Polym. Sin. – volume: 6 start-page: 1952 year: 2010 publication-title: Small – volume: 60 start-page: 1278 year: 2008 publication-title: Adv. Drug Deliver. Rev. – volume: 119 start-page: 4090 year: 1997 publication-title: J. Am. Chem. Soc. – volume: 30 start-page: 561 year: 2009 publication-title: Bull. Korean Chem. Soc. – volume: 325 start-page: 252 year: 2008 publication-title: J. Membr. Sci. – volume: 507 start-page: 1 year: 2016 publication-title: J. Membr. Sci. – volume: 42 start-page: 8316 year: 2009 publication-title: J. Macromolecules – volume: 28 start-page: 580 year: 2007 publication-title: Chem. J. Chin. Univ. – volume: 469 start-page: 418 year: 2014 publication-title: J. Membrane Sci. – volume: 5 start-page: 13417 year: 2015 publication-title: Sci. Rep. – volume: 115 start-page: 11854 year: 2011 publication-title: J. Phys. Chem. C – volume: 37 start-page: 971 year: 2016 publication-title: Chin. J. Catal. – volume: 137 start-page: 8730 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 46 start-page: 7548 year: 2007 publication-title: Angew. Chem., Int. Ed – volume: 3 start-page: 8571 year: 2015 publication-title: J. Mater. Chem. A – volume: 30 start-page: 2241 year: 2012 publication-title: Chin. J. Chem. – volume: 6 start-page: 375 year: 1996 publication-title: Microporous Mater. – volume: 221 start-page: 247 year: 2013 publication-title: J. Power Sources – volume: 36 start-page: 1686 year: 2015 publication-title: Chin. J. Catal. – volume: 7 start-page: 354 year: 2014 publication-title: Energy Environ. Sci. – volume: 185 start-page: 664 year: 2008 publication-title: J. Power Sources – volume: 4 start-page: 2340 year: 2016 publication-title: J. Mater. Chem. A – volume: 5 start-page: 42828 year: 2015 publication-title: RSC Adv. – volume: 41 start-page: 2590 year: 2012 publication-title: Chem. Soc. Rev. – volume: 270 start-page: 292 year: 2014 publication-title: J. Power Sources – volume: 357 start-page: 199 year: 2010 publication-title: J. Membrane Sci. – volume: 27 start-page: 5280 year: 2015 publication-title: Adv. Mater. – volume: 7 start-page: 3135 year: 2014 publication-title: Energy Environ. Sci. – volume: 9 start-page: 254 year: 1997 publication-title: Adv. Mater. – volume: 78 start-page: 139 year: 2005 publication-title: Microporous Mesoporous Mater. – volume: 24 start-page: 1504 year: 2012 publication-title: Adv. Mater. – volume: 5 start-page: 4291 year: 2013 publication-title: Nanoscale – volume: 6 start-page: 51057 year: 2016 publication-title: RSC Adv. – volume: 224 start-page: 28 year: 2013 publication-title: J. Power Sources – volume: 36 start-page: 1521 year: 2011 publication-title: Prog. Polym. Sci. – ident: e_1_2_1_32_1 doi: 10.1016/j.addr.2008.03.012 – ident: e_1_2_1_3_1 doi: 10.1002/polb.23395 – ident: e_1_2_1_12_1 doi: 10.1016/j.memsci.2009.04.012 – ident: e_1_2_1_19_1 doi: 10.1021/am302844x – ident: e_1_2_1_25_1 doi: 10.1016/j.memsci.2014.07.004 – ident: e_1_2_1_8_1 doi: 10.1039/C5TA10452A – volume: 28 start-page: 580 year: 2007 ident: e_1_2_1_39_1 publication-title: Chem. J. Chin. Univ. – ident: e_1_2_1_45_1 doi: 10.1016/j.jpowsour.2012.09.080 – ident: e_1_2_1_47_1 doi: 10.1021/jacs.5b02879 – ident: e_1_2_1_30_1 doi: 10.1002/adma.200903091 – ident: e_1_2_1_37_1 doi: 10.1016/S1872-2067(15)60836-1 – ident: e_1_2_1_11_1 doi: 10.1039/C5TA01123J – ident: e_1_2_1_42_1 doi: 10.1016/j.micromeso.2004.10.004 – ident: e_1_2_1_14_1 doi: 10.1039/C5RA04144A – ident: e_1_2_1_35_1 doi: 10.1016/0927-6513(96)00016-8 – ident: e_1_2_1_23_1 doi: 10.1002/adma.201104763 – ident: e_1_2_1_40_1 doi: 10.5012/bkcs.2009.30.3.561 – ident: e_1_2_1_4_1 doi: 10.1039/C4EE01303D – ident: e_1_2_1_22_1 doi: 10.1002/anie.200604488 – ident: e_1_2_1_20_1 doi: 10.1016/S1872-2067(15)61103-2 – ident: e_1_2_1_34_1 doi: 10.1039/c1cs15246g – ident: e_1_2_1_24_1 doi: 10.1002/smll.200901789 – ident: e_1_2_1_36_1 doi: 10.1002/adma.19970090317 – ident: e_1_2_1_26_1 doi: 10.1016/j.jpowsour.2014.07.135 – ident: e_1_2_1_21_1 doi: 10.1016/S1872-2067(15)60924-X – ident: e_1_2_1_10_1 doi: 10.1039/C3EE43275K – ident: e_1_2_1_13_1 doi: 10.1039/C6RA06363B – ident: e_1_2_1_16_1 doi: 10.1002/cjoc.201200649 – ident: e_1_2_1_33_1 doi: 10.1039/c3nr00294b – ident: e_1_2_1_6_1 doi: 10.1016/j.jpowsour.2015.04.112 – ident: e_1_2_1_43_1 doi: 10.1016/j.memsci.2016.02.004 – ident: e_1_2_1_31_1 doi: 10.1021/ar600032u – ident: e_1_2_1_41_1 doi: 10.1021/ja9638824 – ident: e_1_2_1_29_1 doi: 10.1016/j.memsci.2008.07.039 – ident: e_1_2_1_5_1 doi: 10.1038/srep13417 – ident: e_1_2_1_44_1 doi: 10.1016/j.jpowsour.2008.08.094 – ident: e_1_2_1_2_1 doi: 10.1016/j.progpolymsci.2011.04.004 – ident: e_1_2_1_7_1 doi: 10.1016/j.jpowsour.2012.08.053 – volume: 7 start-page: 867 year: 2015 ident: e_1_2_1_15_1 publication-title: Acta Polym. Sin. – ident: e_1_2_1_9_1 doi: 10.1002/adma.201501406 – ident: e_1_2_1_46_1 doi: 10.1021/ma901538c – ident: e_1_2_1_18_1 doi: 10.1016/j.memsci.2015.03.077 – ident: e_1_2_1_17_1 doi: 10.1016/j.memsci.2015.10.005 – ident: e_1_2_1_28_1 doi: 10.1021/jp201250r – ident: e_1_2_1_38_1 doi: 10.1016/j.molstruc.2008.08.025 – ident: e_1_2_1_27_1 doi: 10.1016/j.memsci.2010.04.024 |
SSID | ssj0027726 |
Score | 2.114173 |
Snippet | Chloromethylated mesoporous silica nanoparticles (CM MSN) were synthesized through co-condensation of tetraethoxysilane and (chloro) phenyltrimethoxysilane... Chloromethylated mesoporous silica nanoparticles (CM MSN) were synthesized through co‐condensation of tetraethoxysilane and (chloro) phenyltrimethoxysilane... Chloromethylated mesoporous silica nanoparticles ( CM MSN ) were synthesized through co‐condensation of tetraethoxysilane and (chloro) phenyltrimethoxysilane... Chloromethylated mesoporous silica nanoparticles (CM MSN) were synthesized through co-condensation of tetraethoxysilane and (chloro) phenyltrimethoxysilane... |
SourceID | proquest crossref wiley chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 673 |
SubjectTerms | Ammonium Anion exchange anion exchange membrane Anion exchanging Cetyltrimethylammonium bromide Channel morphology chloromethylated mesoporous silica Conductivity Dimensional stability Fourier transforms Gravimetric analysis hydroxide conductivity imidazolium poly (ether ether ketone) Infrared spectroscopy Ion concentration Mechanical properties Membranes Nanoparticles Polyether ether ketones Silica Silicon dioxide Synthesis Tetraethoxysilane Tetraethyl orthosilicate Thermal stability Transmission electron microscopy X-ray diffraction |
Title | One-Pot Synthesis of Chloromethylated Mesoporous Silica Nanoparticles as Multifunctional Fillers in Hybrid Anion Exchange Membranes |
URI | http://lib.cqvip.com/qk/84126X/201705/673225524.html https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcjoc.201600577 https://www.proquest.com/docview/1901406391 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hONBL6VPdQpEPlXoKrB0nJMclsFohUVAp0t6i2LHL8khKsyt1e-LCnd_IL-mM81ioVCG1xyi2lcT2zDfOfN8AfOz7yviZjTwtYuVJ-nsYBZToKq2faR5Z7rLdDz-Ho1N5MA7GD1j8tT5Ed-BGO8PZa9rgmaq2F6Kh-rwkCUIeEp-S6OSUsEWo6ItYRFw7rt4a6Qx5YV-OW9XGvth-3J2UFc7K4ts1-ovHHmoBOx-CV-d9hmuQtc9dJ51cbM2makv_-kPS8X9e7AU8b6ApG9Rr6SUsmeIVrCZtRbjXcHtUmPubu-Nyyk7mBSLHalKx0rLkDIP-kmpRzy8Ruubs0FQl4vpyVrGTCZ0KMjTiGJ03SXgsq5gj_pJTrc8i2dBxEis2KdhoTiwyNijwDtv_WVOTccwrfCk0zG_gdLj_NRl5TRkHT5P8n2cjDNhthnF4HnOpdoJcxVwoLrIw10Tl5X4QK9Kt08ST5SaWgbVa9C16UoN938JyURbmHTAeGiqnJQK0TJL-USqjRO4bHXIro9j0YL2bxvR7LddBmWtotAIhe-C1E5vqRgGdCnFcprV2s0jp06fdp-_Bp659O9jfWm606yRtbECVEtSShAB5D4Sb8CdGSZODo6S7ev8vndbhmSDc4TIyN2B5-mNmPiBqmqpNWBns7u0ON90O-Q2iGRE6 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcigX3qhLC_gA4pR27TjZ5MChSrvaPrZFtJX2FmLHpgtLUsiuYDlx4c5f4a_wE_glzOS1FAkhIfXAMUpsRfY8vrFnvgF43HWVcRMbOFqEypF0exh4lOgqrZtoHlheZrsPD_3BqdwbeaMl-NbUwlT8EO2BG2lGaa9JwelAenPBGqpf58RByH0qqOzVeZX7Zv4Bo7bi2e42bvETIfo7J9HAqRsLOJoI6RwbYAhpE4wM05BL1fNSFXKhuEj8VFNxKXe9UBGTmqbKTW5C6VmrRdeibTc4Fue9AlepjTjR9W-_EIsYr1d2eCNmI8fvylHDE9kVmxf_l7gczvLs1Tv0UBd94gLo_gqXS3_XvwHfm5Wq0lzebMymakN_-o1E8r9ayptwvUbfbKtSl1uwZLLbsBI1Te_uwJejzPz4_PV5PmXH8wzBcTEuWG5ZdDbJidgBxXqC6DxlQ1PkGLrks4Idj-ngk6Gfys-bPEOWFKysbSbcUB23sn5ZdlmwccYGcyqUY1sZvmE7H6vqa5zzLa4i-p67cHopq3APlrM8M6vAuG-oY5jw0PhKuoZVRonUNdrnVgah6cBaKzfxecVIQsl5aJc9ITvgNJIU65rknXqNTOKKnlrEtNVxu9UdeNp-30z2py_XG8GMazNXxIQmJYFc3gFRSthfZomjvaOofbr_L4MewcrgZHgQH-we7q_BNUEwq0xAXYfl6fuZeYAgcaoelmrJ4OVlC-9P7Zpsbw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIgEX3oilBXwAcUobO042OXCosl1tW_oQpdLewtqx6cKSLGRXsJy4cOen8Ff4C_wSZvJaioSQkHrgGCW2Inse39gz3wA8cj1lvJENHS0i5Ui6PQx9SnSV1htpHlpeZrvvHwSDE7k79Icr8K2phan4IdoDN9KM0l6Tgk9Tu7kkDdWvc6Ig5AHVU3brtMo9s_iAQVvxdKeHO_xYiP72i3jg1H0FHE18dI4NMYK0IwwM04hL1fVTFXGhuBgFqabaUu75kSIiNU2Fm9xE0rdWC9eiaTc4Fue9ABdl4EbULKL3XCxDvG7Z4I2IjZzAlcOGJtIVm2f_l6gcTvPs1Tt0UGdd4hLn_oqWS3fXvwbfm4WqslzebMxnakN_-o1D8n9ayetwtcbebKtSlhuwYrKbcDluWt7dgi-Hmfnx-etRPmPHiwyhcTEuWG5ZfDrJidYBhXqC2Dxl-6bIMXDJ5wU7HtOxJ0MvlU-bLEM2KlhZ2UyooTpsZf2y6LJg44wNFlQmx7YyfMO2P1a11zjnW1xE9Dy34eRcVuEOrGZ5Zu4C44GhfmHCR9Mr6RJWGSVSz-iAWxlGpgNrrdgk04qPhFLz0Cr7QnbAaQQp0TXFO3UamSQVObVIaKuTdqs78KT9vpnsT1-uN3KZ1EauSAhLSoK4vAOiFLC_zJLEu4dx-3TvXwY9hEtHvX7ybOdgbw2uCMJYZfbpOqzO3s_NfUSIM_WgVEoGL89bdn8CHmJrHg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One-Pot+Synthesis+of+Chloromethylated+Mesoporous+Silica+Nanoparticles+as+Multifunctional+Fillers+in+Hybrid+Anion+Exchange+Membranes&rft.jtitle=%E4%B8%AD%E5%9B%BD%E5%8C%96%E5%AD%A6%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=Xueyi+He+Mingyue+Gang+Guangwei+He+Yongheng+Yin+Li+Cao+Hong+Wu+Zhongyi+Jiang&rft.date=2017-05-01&rft.issn=1001-604X&rft.eissn=1614-7065&rft.volume=35&rft.issue=5&rft.spage=673&rft.epage=680&rft_id=info:doi/10.1002%2Fcjoc.201600577&rft.externalDocID=673225524 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84126X%2F84126X.jpg |