An Introduction to Multilevel Modeling for Anesthesiologists

In population-based research, subjects are frequently in clusters with shared features or demographic characteristics, such as age range, neighborhood, who they have for a physician, and common comorbidities. Classification into clusters also applies at broader levels. Physicians are classified by p...

Full description

Saved in:
Bibliographic Details
Published inAnesthesia and analgesia Vol. 113; no. 4; pp. 877 - 887
Main Authors Glaser, Dale, Hastings, Randolph H.
Format Journal Article
LanguageEnglish
Published Hagerstown, MD International Anesthesia Research Society 01.10.2011
Lippincott Williams & Wilkins
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In population-based research, subjects are frequently in clusters with shared features or demographic characteristics, such as age range, neighborhood, who they have for a physician, and common comorbidities. Classification into clusters also applies at broader levels. Physicians are classified by physician group or by practice site; hospitals can be characterized by size, location, or demographics. Hierarchical, nested structures pose unique challenges in the conduct of research. Data from nested structures may be interdependent because of similarities among subjects in a cluster, while nesting at multiple levels makes it difficult to know whether findings should be applied to the individual or to the larger group. Statistical tools, known variously as hierarchical linear modeling, multilevel modeling, mixed linear modeling, and other terms, have been developed in the education and social science fields to deal effectively with these issues. Our goal in this article is to review the implications of hierarchical, nested data organization and to provide a step-by-step tutorial of how multilevel modeling could be applied to a problem in anesthesia research using current, commercially available software.
AbstractList In population-based research, subjects are frequently in clusters with shared features or demographic characteristics, such as age range, neighborhood, who they have for a physician, and common comorbidities. Classification into clusters also applies at broader levels. Physicians are classified by physician group or by practice site; hospitals can be characterized by size, location, or demographics. Hierarchical, nested structures pose unique challenges in the conduct of research. Data from nested structures may be interdependent because of similarities among subjects in a cluster, while nesting at multiple levels makes it difficult to know whether findings should be applied to the individual or to the larger group. Statistical tools, known variously as hierarchical linear modeling, multilevel modeling, mixed linear modeling, and other terms, have been developed in the education and social science fields to deal effectively with these issues. Our goal in this article is to review the implications of hierarchical, nested data organization and to provide a step-by-step tutorial of how multilevel modeling could be applied to a problem in anesthesia research using current, commercially available software.In population-based research, subjects are frequently in clusters with shared features or demographic characteristics, such as age range, neighborhood, who they have for a physician, and common comorbidities. Classification into clusters also applies at broader levels. Physicians are classified by physician group or by practice site; hospitals can be characterized by size, location, or demographics. Hierarchical, nested structures pose unique challenges in the conduct of research. Data from nested structures may be interdependent because of similarities among subjects in a cluster, while nesting at multiple levels makes it difficult to know whether findings should be applied to the individual or to the larger group. Statistical tools, known variously as hierarchical linear modeling, multilevel modeling, mixed linear modeling, and other terms, have been developed in the education and social science fields to deal effectively with these issues. Our goal in this article is to review the implications of hierarchical, nested data organization and to provide a step-by-step tutorial of how multilevel modeling could be applied to a problem in anesthesia research using current, commercially available software.
In population-based research, subjects are frequently in clusters with shared features or demographic characteristics, such as age range, neighborhood, who they have for a physician, and common comorbidities. Classification into clusters also applies at broader levels. Physicians are classified by physician group or by practice site; hospitals can be characterized by size, location, or demographics. Hierarchical, nested structures pose unique challenges in the conduct of research. Data from nested structures may be interdependent because of similarities among subjects in a cluster, while nesting at multiple levels makes it difficult to know whether findings should be applied to the individual or to the larger group. Statistical tools, known variously as hierarchical linear modeling, multilevel modeling, mixed linear modeling, and other terms, have been developed in the education and social science fields to deal effectively with these issues. Our goal in this article is to review the implications of hierarchical, nested data organization and to provide a step-by-step tutorial of how multilevel modeling could be applied to a problem in anesthesia research using current, commercially available software.
Author Glaser, Dale
Hastings, Randolph H.
AuthorAffiliation From the School of Nursing, University of San Diego; and Anesthesiology Service, VA San Diego Healthcare System, San Diego, California
AuthorAffiliation_xml – name: From the School of Nursing, University of San Diego; and Anesthesiology Service, VA San Diego Healthcare System, San Diego, California
Author_xml – sequence: 1
  givenname: Dale
  surname: Glaser
  fullname: Glaser, Dale
  organization: From the School of Nursing, University of San Diego; and Anesthesiology Service, VA San Diego Healthcare System, San Diego, California
– sequence: 2
  givenname: Randolph
  surname: Hastings
  middlename: H.
  fullname: Hastings, Randolph H.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25330785$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21680861$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFvFSEQx4mpsa_Vb2DMXoynbRnYXcB4eWmqNmntpZ4Jy5vtQ3lQgW3jt5dNn5r00rkwk_n9B-bPETkIMSAhb4GeAAN-uv52fkJHChw5SAZKGgovyAp6NrSiV_KArCilvGVKqUNylPOPWgKVwytyyGCQNYMV-bQOzUUoKW5mW1wMTYnN1eyL83iPvrmKG_Qu3DZTTM06YC5bzC76eOtyya_Jy8n4jG_25zH5_vn85uxre3n95eJsfdlaLoG3sreDEEJyJsa-Y8JMSLmwnTQdbqwwoIxElGBqVw3Ixp6aQU2TGA2MEiU_Jh8e596l-Guuj9A7ly16bwLGOWupOgndwKGS7_bkPO5wo--S25n0W_9duALv94DJ1vgpmWBd_s_1nFMh-8p1j5xNMeeE0z8EqF7819V__dT_Kvv4RGZdMYuxJRnnnxPv73yIvmDKP_38gElv0fiy1XSJnquWUQBYinb5X87_APg9mWo
CODEN AACRAT
CitedBy_id crossref_primary_10_3389_fpubh_2024_1423108
crossref_primary_10_1007_s10877_014_9582_6
crossref_primary_10_1016_j_ijantimicag_2023_106817
crossref_primary_10_14367_kjhep_2020_37_3_39
crossref_primary_10_1080_19496591_2017_1338573
crossref_primary_10_1016_j_kscej_2024_100112
crossref_primary_10_1371_journal_pone_0300294
crossref_primary_10_1097_ALN_0000000000000360
crossref_primary_10_1007_s00540_024_03408_3
crossref_primary_10_1080_09500693_2023_2230534
crossref_primary_10_1016_j_conbuildmat_2017_12_039
crossref_primary_10_1213_ANE_0000000000005884
crossref_primary_10_1213_ANE_0000000000006754
crossref_primary_10_1213_ANE_0000000000001341
crossref_primary_10_1097_ALN_0000000000000617
crossref_primary_10_1097_CORR_0000000000000729
crossref_primary_10_1213_ANE_0000000000000033
crossref_primary_10_1213_ANE_0000000000006696
crossref_primary_10_1111_pan_15034
crossref_primary_10_1016_j_heliyon_2024_e40935
crossref_primary_10_20879_kjjcs_2021_65_2_002
crossref_primary_10_1213_ANE_0b013e31828b3813
crossref_primary_10_5114_hpr_2020_99002
crossref_primary_10_1213_ANE_0b013e31822ddc69
crossref_primary_10_1016_j_outlook_2017_07_005
crossref_primary_10_1080_07420528_2017_1373118
crossref_primary_10_1002_pst_1787
crossref_primary_10_1016_j_apmr_2012_11_018
crossref_primary_10_1016_j_puhe_2024_01_015
crossref_primary_10_1021_acs_analchem_8b04033
crossref_primary_10_1213_ANE_0000000000000679
crossref_primary_10_1016_j_agee_2015_04_011
crossref_primary_10_1038_s41598_024_65497_0
Cites_doi 10.1037/1082-989X.7.2.147
10.1007/BF02294359
10.2307/2983404
10.1213/ANE.0b013e3181fe758b
10.1016/j.jsp.2009.09.002
10.1159/000131102
10.2307/2983328
10.1080/01621459.1993.10594284
10.2307/2529876
10.1097/ALN.0b013e3181b786d4
10.1097/01.psy.0000221275.75056.d8
10.1093/biomet/78.1.45
10.1186/1471-2253-10-5
10.1037/0022-3514.83.1.126
10.1037/0033-2909.119.1.138
ContentType Journal Article
Copyright International Anesthesia Research Society
2015 INIST-CNRS
Copyright_xml – notice: International Anesthesia Research Society
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1213/ANE.0b013e3182198a01
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 1526-7598
EndPage 887
ExternalDocumentID 21680861
25330785
10_1213_ANE_0b013e3182198a01
00000539-201110000-00033
Genre Research Support, U.S. Gov't, Non-P.H.S
Review
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.-D
.55
.XZ
.Z2
01R
026
0R~
1J1
23M
2WC
40H
4Q1
4Q2
4Q3
5GY
5RE
5VS
71W
77Y
7O~
AAAAV
AAAXR
AAGIX
AAHPQ
AAIQE
AAJCS
AAMOA
AAMTA
AARTV
AASOK
AAUEB
AAWTL
AAXQO
ABBUW
ABDIG
ABJNI
ABOCM
ABPPZ
ABPXF
ABXVJ
ABZAD
ACCJW
ACDDN
ACDOF
ACEWG
ACGFO
ACGFS
ACILI
ACWDW
ACWRI
ACXNZ
ACZKN
ADBBV
ADGGA
ADHPY
ADNKB
AE6
AEETU
AENEX
AFDTB
AFEXH
AFMFG
AFNMH
AFUWQ
AGINI
AHOMT
AHQNM
AHVBC
AHXIK
AIJEX
AINUH
AJCLO
AJIOK
AJNWD
AJNYG
AJZMW
ALKUP
ALMA_UNASSIGNED_HOLDINGS
AMJPA
AMNEI
BAWUL
BOYCO
BQLVK
C1A
C45
CS3
DIWNM
DUNZO
E.X
E3Z
EBS
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
FL-
FRP
FW0
GX1
H0~
HZ~
IKREB
IKYAY
IN~
JF9
JG8
JK3
JK8
K8S
KD2
KMI
L-C
L7B
MZP
N9A
N~7
N~B
O9-
OAG
OAH
OB4
ODMTH
OHYEH
OK1
OL1
OLG
OLH
OLL
OLU
OLV
OLY
OLZ
OPUJH
OUVQU
OVD
OVDNE
OVIDH
OVLEI
OVOZU
OWBYB
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P2P
PONUX
RLZ
S4R
S4S
TEORI
TR2
V2I
VVN
W3M
W8F
WOQ
WOW
X3V
X3W
X7M
XXN
XYM
YFH
YOC
ZFV
ZZMQN
.GJ
1CY
3O-
53G
AAFWJ
AAQKA
AAQQT
AASCR
AAYXX
ABASU
ABKPX
ABVCZ
ABXYN
ABZZY
ACLDA
ACLED
ACXJB
ADFPA
ADSXY
AE3
AEBDS
AFBFQ
AFFNX
AFMBP
AFSOK
AHQVU
AHRYX
AJRGT
AKCTQ
AKULP
ALMTX
AMKUR
AOHHW
AOQMC
BS7
CITATION
EEVPB
EJD
ERAAH
GNXGY
GQDEL
HLJTE
IPNFZ
J5H
M18
N4W
N~M
OCUKA
ODA
ORVUJ
P-K
R58
RIG
TSPGW
YQJ
ZGI
ZXP
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c3813-85c67778327b5427afe037c48a4edc7a19a8ee81ab5496e2b50a69ff7ba1b8e83
ISSN 0003-2999
1526-7598
IngestDate Fri Jul 11 16:51:05 EDT 2025
Mon Jul 21 05:52:25 EDT 2025
Mon Jul 21 09:13:34 EDT 2025
Thu Apr 24 22:54:51 EDT 2025
Tue Aug 12 03:57:38 EDT 2025
Fri May 16 03:49:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Anesthesia
Modeling
Anesthesiologist
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3813-85c67778327b5427afe037c48a4edc7a19a8ee81ab5496e2b50a69ff7ba1b8e83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 21680861
PQID 894814631
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_894814631
pubmed_primary_21680861
pascalfrancis_primary_25330785
crossref_primary_10_1213_ANE_0b013e3182198a01
crossref_citationtrail_10_1213_ANE_0b013e3182198a01
wolterskluwer_health_00000539-201110000-00033
PublicationCentury 2000
PublicationDate 2011-October-01
PublicationDateYYYYMMDD 2011-10-01
PublicationDate_xml – month: 10
  year: 2011
  text: 2011-October-01
  day: 01
PublicationDecade 2010
PublicationPlace Hagerstown, MD
PublicationPlace_xml – name: Hagerstown, MD
– name: United States
PublicationTitle Anesthesia and analgesia
PublicationTitleAlternate Anesth Analg
PublicationYear 2011
Publisher International Anesthesia Research Society
Lippincott Williams & Wilkins
Publisher_xml – name: International Anesthesia Research Society
– name: Lippincott Williams & Wilkins
References Holden (R28-33-20210902) 2008; 28
Goldstein (R25-33-20210902) 1996; 159
Laird (R18-33-20210902) 1982; 38
Akaike (R23-33-20210902) 1987; 52
Peugh (R29-33-20210902) 2010; 48
Hofmann (R17-33-20210902) 1998; 24
Kenny (R3-33-20210902) 2002; 83
Schafer (R8-33-20210902) 2002; 7
Stuttmann (R13-33-20210902) 2010; 10
Wong (R11-33-20210902) 2011; 113
Enders (R15-33-20210902) 2006; 68
Alharbi (R12-33-20210902) 2009; 111
Goldstein (R26-33-20210902) 1991; 78
Rodriguez (R24-33-20210902) 1995; 158
Breslow (R27-33-20210902) 1993; 88
Kenny (R2-33-20210902) 1996; 119
References_xml – volume: 7
  start-page: 147
  year: 2002
  ident: R8-33-20210902
  article-title: Missing data: our view of the state of the art.
  publication-title: Psychol Methods
  doi: 10.1037/1082-989X.7.2.147
– volume: 52
  start-page: 317
  year: 1987
  ident: R23-33-20210902
  article-title: Factor analysis and AIC.
  publication-title: Psychometrika
  doi: 10.1007/BF02294359
– volume: 158
  start-page: 73
  year: 1995
  ident: R24-33-20210902
  article-title: An assessment of estimation procedures for multilevel models with binary responses.
  publication-title: J R Stat Soc A
  doi: 10.2307/2983404
– volume: 113
  start-page: 862
  year: 2011
  ident: R11-33-20210902
  article-title: The effect of cross-training with adjustable airway model anatomies on laryngoscopy skill transfer.
  publication-title: Anesth Analg
  doi: 10.1213/ANE.0b013e3181fe758b
– volume: 48
  start-page: 85
  year: 2010
  ident: R29-33-20210902
  article-title: A practical guide to multilevel modeling.
  publication-title: J Sch Psychol
  doi: 10.1016/j.jsp.2009.09.002
– volume: 28
  start-page: 792
  year: 2008
  ident: R28-33-20210902
  article-title: Analyzing change: a primer on multilevel models with applications to nephrology.
  publication-title: Am J Nephrol
  doi: 10.1159/000131102
– volume: 159
  start-page: 505
  year: 1996
  ident: R25-33-20210902
  article-title: Improved approximations for multilevel models with binary responses.
  publication-title: J R Stat Soc A
  doi: 10.2307/2983328
– volume: 88
  start-page: 9
  year: 1993
  ident: R27-33-20210902
  article-title: Approximate inference in generalized linear mixed models.
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1993.10594284
– volume: 38
  start-page: 963
  year: 1982
  ident: R18-33-20210902
  article-title: Random-effects models for longitudinal data.
  publication-title: Biometrics
  doi: 10.2307/2529876
– volume: 111
  start-page: 734
  year: 2009
  ident: R12-33-20210902
  article-title: A population-based analysis of outpatient colonoscopy in adults assisted by an anesthesiologist.
  publication-title: Anesthesiology
  doi: 10.1097/ALN.0b013e3181b786d4
– volume: 68
  start-page: 427
  year: 2006
  ident: R15-33-20210902
  article-title: A primer on the use of modern missing-data methods in psychosomatic medicine research.
  publication-title: Psychosom Med
  doi: 10.1097/01.psy.0000221275.75056.d8
– volume: 78
  start-page: 45
  year: 1991
  ident: R26-33-20210902
  article-title: Nonlinear multilevel models, with an application to discrete response data.
  publication-title: Biometrika
  doi: 10.1093/biomet/78.1.45
– volume: 10
  start-page: 5
  year: 2010
  ident: R13-33-20210902
  article-title: Recovery index, attentiveness and state of memory after xenon or isoflurane anaesthesia: a randomized controlled trial.
  publication-title: BMC Anesthesiol
  doi: 10.1186/1471-2253-10-5
– volume: 24
  start-page: 623
  year: 1998
  ident: R17-33-20210902
  article-title: Centering decisions in hierarchical linear models: implications for research in organizations.
  publication-title: J Manage
– volume: 83
  start-page: 126
  year: 2002
  ident: R3-33-20210902
  article-title: The statistical analysis of data from small groups.
  publication-title: J Pers Soc Psychol
  doi: 10.1037/0022-3514.83.1.126
– volume: 119
  start-page: 138
  year: 1996
  ident: R2-33-20210902
  article-title: A general procedure for the estimation of interdependence.
  publication-title: Psychol Bull
  doi: 10.1037/0033-2909.119.1.138
SSID ssj0001086
Score 2.1892128
SecondaryResourceType review_article
Snippet In population-based research, subjects are frequently in clusters with shared features or demographic characteristics, such as age range, neighborhood, who...
SourceID proquest
pubmed
pascalfrancis
crossref
wolterskluwer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 877
SubjectTerms Anesthesia
Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy
Anesthesiology - statistics & numerical data
Biological and medical sciences
Cluster Analysis
Data Interpretation, Statistical
Humans
Least-Squares Analysis
Linear Models
Medical sciences
Models, Statistical
Nonlinear Dynamics
Software
Title An Introduction to Multilevel Modeling for Anesthesiologists
URI https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00000539-201110000-00033
https://www.ncbi.nlm.nih.gov/pubmed/21680861
https://www.proquest.com/docview/894814631
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9RAEG50vQgiiq_xseTgTbIm6WfAy6Crg-CedmFuobung2KYDJtZBH-9Vd2dlzui6yUMSXe6p75KpapSD0Je19xooRxNeW5NyjaWpjqrXVrW2oq6tlIbNBS_nInVBfu85uux3ZHPLtmbE_vzYF7J_6AK5wBXzJK9AbLDTeEE_AZ84QgIw_GfMA4evVCzFWEEPdIn1DYYCeTbnDV9oOQSRBroep3PTgFou6lWOlzUsXYrNv_ovg0S-xOo2AHaD7oZOUF3GDMdXDUwr212X9-sTqZ-hBjINvoR5g7Iybp9BGAfRjqTptgHLjQ4GqRpSC2NbMMmslHFfi3xNRves9ckeJH7ShJnp6OLFoSq0nGr89rY3sThtEzxD_kvFZglT-ltcqcAs8Enf6_HkB_sKtV3UMR9x1RKWPLtoQVnqsq9ne7gqalDu5ND9giM-dFiiEP33Wc4TPSU8wfkfjQwkmXglofklts-Iu-W22TKKcm-TUZOSXpOSYBTkmuc8phcfDw9f79KY9-M1IL-RVPFrZBSgqyWhrNC6tplVFqmNHMbePryUivnVK7hailcYXimBfrujc6Ncoo-IUfbduuekSTLNkBaXhaFyxhzwljJNoJTKesis9ItCO1JVNlYVB57mzQVGpdA2AoIW_1O2AVJh1m7UFTlL-OPZ9QfJhUYGy0VX5Ckh6MC8YjfvPTWtVddpbAaERMU7vE0wDROzrHtjMDdzHCrQgZy9Sfmen7D8S_I3fF5e0mO9pdX7hVosntz7NnzF9l8l9U
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Introduction+to+Multilevel+Modeling+for+Anesthesiologists&rft.jtitle=Anesthesia+and+analgesia&rft.au=Glaser%2C+Dale&rft.au=Hastings%2C+Randolph+H.&rft.date=2011-10-01&rft.pub=International+Anesthesia+Research+Society&rft.issn=0003-2999&rft.volume=113&rft.issue=4&rft.spage=877&rft.epage=887&rft_id=info:doi/10.1213%2FANE.0b013e3182198a01&rft.externalDocID=00000539-201110000-00033
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2999&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2999&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2999&client=summon