A roadmap for high‐throughput sequencing studies of wild animal populations using noninvasive samples and hybridization capture

Large‐scale genomic studies of wild animal populations are often limited by access to high‐quality DNA. Although noninvasive samples, such as faeces, can be readily collected, DNA from the sample producers is usually present in low quantities, fragmented, and contaminated by microorganism and dietar...

Full description

Saved in:
Bibliographic Details
Published inMolecular ecology resources Vol. 19; no. 3; pp. 609 - 622
Main Authors White, Lauren C., Fontsere, Claudia, Lizano, Esther, Hughes, David A., Angedakin, Samuel, Arandjelovic, Mimi, Granjon, Anne‐Céline, Hans, Jörg B., Lester, Jack D., Rabanus‐Wallace, M. Timothy, Rowney, Carolyn, Städele, Veronika, Marques‐Bonet, Tomas, Langergraber, Kevin E., Vigilant, Linda
Format Journal Article
LanguageEnglish
Published Oxford Wiley Subscription Services, Inc 01.05.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Large‐scale genomic studies of wild animal populations are often limited by access to high‐quality DNA. Although noninvasive samples, such as faeces, can be readily collected, DNA from the sample producers is usually present in low quantities, fragmented, and contaminated by microorganism and dietary DNAs. Hybridization capture can help to overcome these impediments by increasing the proportion of subject DNA prior to high‐throughput sequencing. Here we evaluate a key design variable for hybridization capture, the number of rounds of capture, by testing whether one or two rounds are most appropriate, given varying sample quality (as measured by the ratios of subject to total DNA). We used a set of 1,780 quality‐assessed wild chimpanzee (Pan troglodytes schweinfurthii) faecal samples and chose 110 samples of varying quality for exome capture and sequencing. We used multiple regression to assess the effects of the ratio of subject to total DNA (sample quality), rounds of capture and sequencing effort on the number of unique exome reads sequenced. We not only show that one round of capture is preferable when the proportion of subject DNA in a sample is above ~2%–3%, but also explore various types of bias introduced by capture, and develop a model that predicts the sequencing effort necessary for a desired data yield from samples of a given quality. Thus, our results provide a useful guide and pave a methodological way forward for researchers wishing to plan similar hybridization capture studies.
AbstractList Large‐scale genomic studies of wild animal populations are often limited by access to high‐quality DNA. Although noninvasive samples, such as faeces, can be readily collected, DNA from the sample producers is usually present in low quantities, fragmented, and contaminated by microorganism and dietary DNAs. Hybridization capture can help to overcome these impediments by increasing the proportion of subject DNA prior to high‐throughput sequencing. Here we evaluate a key design variable for hybridization capture, the number of rounds of capture, by testing whether one or two rounds are most appropriate, given varying sample quality (as measured by the ratios of subject to total DNA). We used a set of 1,780 quality‐assessed wild chimpanzee (Pan troglodytes schweinfurthii) faecal samples and chose 110 samples of varying quality for exome capture and sequencing. We used multiple regression to assess the effects of the ratio of subject to total DNA (sample quality), rounds of capture and sequencing effort on the number of unique exome reads sequenced. We not only show that one round of capture is preferable when the proportion of subject DNA in a sample is above ~2%–3%, but also explore various types of bias introduced by capture, and develop a model that predicts the sequencing effort necessary for a desired data yield from samples of a given quality. Thus, our results provide a useful guide and pave a methodological way forward for researchers wishing to plan similar hybridization capture studies.
Large-scale genomic studies of wild animal populations are often limited by access to high-quality DNA. Although noninvasive samples, such as faeces, can be readily collected, DNA from the sample producers is usually present in low quantities, fragmented, and contaminated by microorganism and dietary DNAs. Hybridization capture can help to overcome these impediments by increasing the proportion of subject DNA prior to high-throughput sequencing. Here we evaluate a key design variable for hybridization capture, the number of rounds of capture, by testing whether one or two rounds are most appropriate, given varying sample quality (as measured by the ratios of subject to total DNA). We used a set of 1,780 quality-assessed wild chimpanzee (Pan troglodytes schweinfurthii) faecal samples and chose 110 samples of varying quality for exome capture and sequencing. We used multiple regression to assess the effects of the ratio of subject to total DNA (sample quality), rounds of capture and sequencing effort on the number of unique exome reads sequenced. We not only show that one round of capture is preferable when the proportion of subject DNA in a sample is above ~2%-3%, but also explore various types of bias introduced by capture, and develop a model that predicts the sequencing effort necessary for a desired data yield from samples of a given quality. Thus, our results provide a useful guide and pave a methodological way forward for researchers wishing to plan similar hybridization capture studies.Large-scale genomic studies of wild animal populations are often limited by access to high-quality DNA. Although noninvasive samples, such as faeces, can be readily collected, DNA from the sample producers is usually present in low quantities, fragmented, and contaminated by microorganism and dietary DNAs. Hybridization capture can help to overcome these impediments by increasing the proportion of subject DNA prior to high-throughput sequencing. Here we evaluate a key design variable for hybridization capture, the number of rounds of capture, by testing whether one or two rounds are most appropriate, given varying sample quality (as measured by the ratios of subject to total DNA). We used a set of 1,780 quality-assessed wild chimpanzee (Pan troglodytes schweinfurthii) faecal samples and chose 110 samples of varying quality for exome capture and sequencing. We used multiple regression to assess the effects of the ratio of subject to total DNA (sample quality), rounds of capture and sequencing effort on the number of unique exome reads sequenced. We not only show that one round of capture is preferable when the proportion of subject DNA in a sample is above ~2%-3%, but also explore various types of bias introduced by capture, and develop a model that predicts the sequencing effort necessary for a desired data yield from samples of a given quality. Thus, our results provide a useful guide and pave a methodological way forward for researchers wishing to plan similar hybridization capture studies.
Large‐scale genomic studies of wild animal populations are often limited by access to high‐quality DNA. Although noninvasive samples, such as faeces, can be readily collected, DNA from the sample producers is usually present in low quantities, fragmented, and contaminated by microorganism and dietary DNAs. Hybridization capture can help to overcome these impediments by increasing the proportion of subject DNA prior to high‐throughput sequencing. Here we evaluate a key design variable for hybridization capture, the number of rounds of capture, by testing whether one or two rounds are most appropriate, given varying sample quality (as measured by the ratios of subject to total DNA). We used a set of 1,780 quality‐assessed wild chimpanzee ( Pan troglodytes schweinfurthii ) faecal samples and chose 110 samples of varying quality for exome capture and sequencing. We used multiple regression to assess the effects of the ratio of subject to total DNA (sample quality), rounds of capture and sequencing effort on the number of unique exome reads sequenced. We not only show that one round of capture is preferable when the proportion of subject DNA in a sample is above ~2%–3%, but also explore various types of bias introduced by capture, and develop a model that predicts the sequencing effort necessary for a desired data yield from samples of a given quality. Thus, our results provide a useful guide and pave a methodological way forward for researchers wishing to plan similar hybridization capture studies.
Author Rowney, Carolyn
Angedakin, Samuel
Vigilant, Linda
Hans, Jörg B.
Fontsere, Claudia
Rabanus‐Wallace, M. Timothy
Hughes, David A.
Lizano, Esther
Arandjelovic, Mimi
White, Lauren C.
Städele, Veronika
Marques‐Bonet, Tomas
Langergraber, Kevin E.
Granjon, Anne‐Céline
Lester, Jack D.
Author_xml – sequence: 1
  givenname: Lauren C.
  orcidid: 0000-0001-8085-9293
  surname: White
  fullname: White, Lauren C.
  email: lauren_white@eva.mpg.de
  organization: Max Planck Institute for Evolutionary Anthropology
– sequence: 2
  givenname: Claudia
  orcidid: 0000-0003-2233-6026
  surname: Fontsere
  fullname: Fontsere, Claudia
  organization: Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas‐Universitat Pompeu Fabra), Barcelona Biomedical Research Park
– sequence: 3
  givenname: Esther
  surname: Lizano
  fullname: Lizano, Esther
  organization: Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas‐Universitat Pompeu Fabra), Barcelona Biomedical Research Park
– sequence: 4
  givenname: David A.
  surname: Hughes
  fullname: Hughes, David A.
  organization: University of Bristol
– sequence: 5
  givenname: Samuel
  surname: Angedakin
  fullname: Angedakin, Samuel
  organization: Max Planck Institute for Evolutionary Anthropology
– sequence: 6
  givenname: Mimi
  surname: Arandjelovic
  fullname: Arandjelovic, Mimi
  organization: Max Planck Institute for Evolutionary Anthropology
– sequence: 7
  givenname: Anne‐Céline
  surname: Granjon
  fullname: Granjon, Anne‐Céline
  organization: Max Planck Institute for Evolutionary Anthropology
– sequence: 8
  givenname: Jörg B.
  surname: Hans
  fullname: Hans, Jörg B.
  organization: Max Planck Institute for Evolutionary Anthropology
– sequence: 9
  givenname: Jack D.
  surname: Lester
  fullname: Lester, Jack D.
  organization: Max Planck Institute for Evolutionary Anthropology
– sequence: 10
  givenname: M. Timothy
  surname: Rabanus‐Wallace
  fullname: Rabanus‐Wallace, M. Timothy
  organization: Leibniz‐Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK)
– sequence: 11
  givenname: Carolyn
  surname: Rowney
  fullname: Rowney, Carolyn
  organization: Max Planck Institute for Evolutionary Anthropology
– sequence: 12
  givenname: Veronika
  surname: Städele
  fullname: Städele, Veronika
  organization: Max Planck Institute for Evolutionary Anthropology
– sequence: 13
  givenname: Tomas
  surname: Marques‐Bonet
  fullname: Marques‐Bonet, Tomas
  organization: Universitat Autònoma de Barcelona
– sequence: 14
  givenname: Kevin E.
  surname: Langergraber
  fullname: Langergraber, Kevin E.
  organization: Arizona State University
– sequence: 15
  givenname: Linda
  surname: Vigilant
  fullname: Vigilant, Linda
  organization: Max Planck Institute for Evolutionary Anthropology
BookMark eNqFkctOAyEUhompide1WxI3blphgLksTVMviZeNJu4IwzAdmimMMNTUlb6Bz-iTSFvThZuygZDvO3DOfwQGxhoFwBlGIxzXJc4YG6KiyEc4KQqyBw63N4PtOX89AEfezxBKUZHRQ_B1BZ0V1Vx0sLYONnra_Hx-942zYdp0oYdevQVlpDZT6PtQaeWhreG7bisojJ6LFna2C63otTUeBr8C48-0WQivFwp6Me_aKAlTwWZZOl3pjzUMpej64NQJ2K9F69Xp334MXq4nz-Pb4f3Tzd346n4oSY7JMMuxpKisKSEKlykrhSRSsgqxIqGkqkmFkpTSJFW1pGlJsUoJyZUQJSnzkgpyDC42dTtnY0u-53PtpWpbYZQNnicEMRwrRG0nirOCsDi_NKLn_9CZDc7ERniSYMxIwWgWqcsNJZ313qmady7Ozi05RnyVHl_lw1dZ8XV60WD_DKn79dx6J3S724sJqeWuZ_jD5HHj_QLVBrIj
CitedBy_id crossref_primary_10_1111_1755_0998_13260
crossref_primary_10_1002_ajp_23363
crossref_primary_10_1371_journal_pone_0234385
crossref_primary_10_1111_1755_0998_13168
crossref_primary_10_1111_1755_0998_13300
crossref_primary_10_1126_science_adn7954
crossref_primary_10_3390_genes14050985
crossref_primary_10_1360_SSV_2024_0303
crossref_primary_10_3390_genes12111672
crossref_primary_10_1186_s12864_020_06904_4
crossref_primary_10_1016_j_xgen_2022_100133
crossref_primary_10_1007_s12686_023_01298_3
crossref_primary_10_1098_rsos_230967
crossref_primary_10_3389_fevo_2022_970249
crossref_primary_10_1007_s00251_019_01148_3
crossref_primary_10_1007_s12686_022_01259_2
crossref_primary_10_1038_s41598_024_84163_z
crossref_primary_10_1126_science_adj3210
crossref_primary_10_1111_1755_0998_13552
crossref_primary_10_1093_gbe_evab117
crossref_primary_10_1111_mec_15720
crossref_primary_10_1111_1755_0998_13317
crossref_primary_10_1016_j_gde_2020_06_006
crossref_primary_10_1073_pnas_2401106122
crossref_primary_10_1146_annurev_animal_061220_023138
Cites_doi 10.1016/j.ajhg.2013.10.002
10.1093/bioinformatics/btv509
10.1093/bioinformatics/btq033
10.1111/1755-0998.12541
10.1111/1755-0998.12449
10.1111/j.1095-8312.1999.tb01157.x
10.1111/1755-0998.12420
10.1093/bib/bbs038
10.2144/000113809
10.1073/pnas.1318934111
10.1038/nature12228
10.1534/g3.117.044198
10.1111/j.2041-210X.2010.00012.x
10.1111/j.2041-210X.2009.00001.x
10.7171/jbt.13-2402-002
10.1186/1471-2105-15-247
10.1002/ece3.2346
10.2144/000114114
10.1371/journal.pone.0040637
10.1016/j.biocon.2010.04.030
10.1534/genetics.118.301336
10.1111/1755-0998.12699
10.1186/s12859-014-0356-4
10.1016/j.tree.2017.09.004
10.1534/genetics.116.187492
10.1111/1755-0998.12595
10.1007/978-3-0348-7527-1_10
10.1101/gr.120196.111
10.1126/science.7915048
10.1017/CBO9780511806384
10.1093/bioinformatics/btp352
10.1111/j.1755-0998.2008.02387.x
10.1371/journal.pone.0009419
10.1111/j.1365-294X.1994.tb00127.x
10.1073/pnas.1701582114
10.1186/gb-2011-12-9-r87
10.1186/s13059-015-0776-0
10.1038/s41467-018-03722-x
10.1073/pnas.0611449104
10.1111/1755-0998.12728
10.1002/jwmg.21190
10.1093/bioinformatics/btr507
10.1007/s00265-010-1038-5
10.1038/nbt.1975
10.1038/nmeth.2375
10.1111/1755-0998.12593
10.1111/1755-0998.12538
10.1111/mec.13684
10.1046/j.0962-1083.2001.01308.x
10.1371/journal.pgen.1005972
10.1111/2041-210X.12353
10.1186/s12864-018-4945-x
10.1111/2041-210X.12871
10.1093/molbev/msu074
10.1111/j.1365-294X.2004.02207.x
10.1093/bioinformatics/btw212
10.1111/j.1365-294X.2010.04888.x
10.1038/nrg3642
ContentType Journal Article
Copyright 2019 John Wiley & Sons Ltd
Copyright © 2019 John Wiley & Sons Ltd
2019 John Wiley & Sons Ltd.
Copyright_xml – notice: 2019 John Wiley & Sons Ltd
– notice: Copyright © 2019 John Wiley & Sons Ltd
– notice: 2019 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/1755-0998.12993
DatabaseName CrossRef
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Entomology Abstracts
AGRICOLA
MEDLINE - Academic

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
EISSN 1755-0998
EndPage 622
ExternalDocumentID 10_1111_1755_0998_12993
MEN12993
Genre article
GrantInformation_xml – fundername: Max Planck Society
– fundername: President's Strategic Initiative Fund of ASU
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
ESX
F00
F01
F04
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SN
7SS
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c3813-781c40bf433e1b65bac3cc5d059243df3d0264426efc46b41e6338eaab3b8b4a3
IEDL.DBID DR2
ISSN 1755-098X
1755-0998
IngestDate Fri Jul 11 18:31:12 EDT 2025
Fri Jul 11 13:35:53 EDT 2025
Fri Jul 25 10:29:12 EDT 2025
Thu Apr 24 22:52:42 EDT 2025
Tue Jul 01 01:18:57 EDT 2025
Wed Jan 22 16:24:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3813-781c40bf433e1b65bac3cc5d059243df3d0264426efc46b41e6338eaab3b8b4a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8085-9293
0000-0003-2233-6026
PQID 2211539547
PQPubID 1096410
PageCount 14
ParticipantIDs proquest_miscellaneous_2305164463
proquest_miscellaneous_2179359746
proquest_journals_2211539547
crossref_primary_10_1111_1755_0998_12993
crossref_citationtrail_10_1111_1755_0998_12993
wiley_primary_10_1111_1755_0998_12993_MEN12993
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2019
2019-05-00
20190501
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: May 2019
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Molecular ecology resources
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 104
2017; 7
2017; 81
2010; 19
2013; 24
2015; 31
2010; 143
2016; 32
2011; 12
2017; 114
2017; 9
2012; 52
2018; 9
2018; 210
1994; 265
2013; 14
2010; 26
2010; 1
2013; 55
2013; 10
2017; 32
2014; 15
2011; 65
2011; 21
2011; 27
2010; 5
2011; 29
2001; 10
2009; 25
2015; 6
2015; 16
1999; 68
2013; 93
1994
2016; 203
2002
2014; 111
2016; 16
2016; 12
2018; 19
2018; 18
2016; 6
2017; 17
2002; 23
2004; 13
2009; 9
2013; 499
2017
2012; 7
1994; 3
2016; 25
2014; 31
e_1_2_9_31_1
e_1_2_9_52_1
Korneliussen T. S. (e_1_2_9_25_1) 2015; 31
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
Watts D. P. (e_1_2_9_60_1) 2002; 23
e_1_2_9_26_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
Schott R. K. (e_1_2_9_49_1) 2017; 9
Johnston S. E. (e_1_2_9_23_1) 2017; 7
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
R Core Team (e_1_2_9_45_1) 2017
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 81
  start-page: 279
  issue: 2
  year: 2017
  end-page: 288
  article-title: Evaluating genetic capture‐recapture using a chimpanzee population of known size
  publication-title: The Journal of Wildlife Management
– volume: 21
  start-page: 1695
  issue: 10
  year: 2011
  end-page: 1704
  article-title: Efficient cross‐species capture hybridization and next‐generation sequencing of mitochondrial genomes from noninvasively sampled museum specimens
  publication-title: Genome Research
– volume: 16
  start-page: 42
  issue: 1
  year: 2016
  end-page: 55
  article-title: Impact of enrichment conditions on cross‐species capture of fresh and degraded DNA
  publication-title: Molecular Ecology Resources
– volume: 16
  start-page: 224
  issue: 1
  year: 2015
  article-title: Schmutzi: Estimation of contamination and endogenous mitochondrial consensus calling for ancient DNA
  publication-title: Genome Biology
– volume: 15
  start-page: 356
  issue: 1
  year: 2014
  article-title: ANGSD: Analysis of next generation sequencing data
  publication-title: BMC Bioinformatics
– volume: 29
  start-page: 908
  issue: 10
  year: 2011
  end-page: 914
  article-title: Performance comparison of exome DNA sequencing technologies
  publication-title: Nature Biotechnology
– volume: 3
  start-page: 489
  issue: 5
  year: 1994
  end-page: 495
  article-title: Microsatellite analysis of genetic‐variation in black bear populations
  publication-title: Molecular Ecology
– volume: 6
  start-page: 6107
  issue: 17
  year: 2016
  end-page: 6120
  article-title: Strategies for determining kinship in wild populations using genetic data
  publication-title: Ecology and Evolution
– volume: 7
  start-page: e40637
  issue: 7
  year: 2012
  article-title: An effort to use human‐based exome capture methods to analyze chimpanzee and macaque exomes
  publication-title: PLoS ONE
– volume: 32
  start-page: 2096
  issue: 14
  year: 2016
  end-page: 2102
  article-title: Estimating IBD tracts from low coverage NGS data
  publication-title: Bioinformatics
– volume: 52
  start-page: 87
  issue: 2
  year: 2012
  end-page: 94
  article-title: Length and GC‐biases during sequencing library amplification: A comparison of various polymerase‐buffer systems with ancient and modern DNA sequencing libraries
  publication-title: BioTechniques
– volume: 19
  start-page: 5332
  issue: 24
  year: 2010
  end-page: 5344
  article-title: Genomic‐scale capture and sequencing of endogenous DNA from feces
  publication-title: Molecular Ecology
– volume: 16
  start-page: 1059
  issue: 5
  year: 2016
  end-page: 1068
  article-title: Exon capture phylogenomics: Efficacy across scales of divergence
  publication-title: Molecular Ecology Resources
– volume: 12
  start-page: e1005972
  issue: 4
  year: 2016
  article-title: Joint estimation of contamination, error and demography for nuclear DNA from ancient humans
  publication-title: PLoS Genetics
– volume: 9
  start-page: 410
  issue: 2
  year: 2018
  end-page: 419
  article-title: Single‐tube library preparation for degraded DNA
  publication-title: Methods in Ecology and Evolution
– volume: 203
  start-page: 699
  issue: 2
  year: 2016
  end-page: 714
  article-title: Efficient genome‐wide sequencing and low coverage pedigree analysis from non‐invasively collected samples
  publication-title: Genetics
– volume: 18
  start-page: 319
  issue: 2
  year: 2018
  end-page: 333
  article-title: The impact of endogenous content, replicates and pooling on genome capture from faecal samples
  publication-title: Molecular Ecology Resources
– volume: 9
  start-page: 28
  issue: 1
  year: 2009
  end-page: 36
  article-title: Two‐step multiplex polymerase chain reaction improves the speed and accuracy of genotyping using DNA from noninvasive and museum samples
  publication-title: Molecular Ecology Resources
– volume: 14
  start-page: 144
  issue: 2
  year: 2013
  end-page: 161
  article-title: The UCSC genome browser and associated tools
  publication-title: Briefings in Bioinformatics
– volume: 55
  start-page: 300
  issue: 6
  year: 2013
  end-page: 309
  article-title: Quantitative PCR as a predictor of aligned ancient DNA read counts following targeted enrichment
  publication-title: BioTechniques
– volume: 104
  start-page: 7786
  issue: 19
  year: 2007
  end-page: 7790
  article-title: The limited impact of kinship on cooperation in wild chimpanzees
  publication-title: Proceedings of the National Academy of Sciences
– volume: 1
  start-page: 103
  issue: 2
  year: 2010
  end-page: 113
  article-title: Simple means to improve the interpretability of regression coefficients
  publication-title: Methods in Ecology and Evolution
– volume: 10
  start-page: 325
  issue: 4
  year: 2013
  end-page: 327
  article-title: Predicting the molecular complexity of sequencing libraries
  publication-title: Nature Methods
– volume: 17
  start-page: 194
  issue: 2
  year: 2017
  end-page: 208
  article-title: Practical low‐coverage genomewide sequencing of hundreds of individually barcoded samples for population and evolutionary genomics in nonmodel species
  publication-title: Molecular Ecology Resources
– volume: 65
  start-page: 47
  issue: 1
  year: 2011
  end-page: 55
  article-title: Cryptic multiple hypotheses testing in linear models: Overestimated effect sizes and the winner's curse
  publication-title: Behavioral Ecology and Sociobiology
– volume: 25
  start-page: 2078
  issue: 16
  year: 2009
  end-page: 2079
  article-title: The sequence alignment/map format and SAMtools
  publication-title: Bioinformatics
– volume: 265
  start-page: 1193
  issue: 5176
  year: 1994
  end-page: 1201
  article-title: Kin selection, social structure, gene flow, and the evolution of chimpanzees
  publication-title: Science
– volume: 13
  start-page: 2089
  issue: 7
  year: 2004
  end-page: 2094
  article-title: Factors affecting the amount of genomic DNA extracted from ape faeces and the identification of an improved sample storage method
  publication-title: Molecular Ecology
– volume: 15
  start-page: 247
  issue: 1
  year: 2014
  article-title: Variant detection sensitivity and biases in whole genome and exome sequencing
  publication-title: BMC Bioinformatics
– volume: 19
  start-page: 608
  issue: 1
  year: 2018
  article-title: In‐solution Y‐chromosome capture‐enrichment on ancient DNA libraries
  publication-title: BMC Genomics
– volume: 111
  start-page: 2229
  issue: 6
  year: 2014
  end-page: 2234
  article-title: Separating endogenous ancient DNA from modern day contamination in a Siberian Neandertal
  publication-title: Proceedings of the National Academy of Sciences
– volume: 17
  start-page: e111
  issue: 6
  year: 2017
  end-page: e121
  article-title: Whole mitochondrial genome capture from faecal samples and museum‐preserved specimens
  publication-title: Molecular Ecology Resources
– volume: 1
  start-page: 3
  issue: 1
  year: 2010
  end-page: 622
  article-title: A protocol for data exploration to avoid common statistical problems
  publication-title: Methods in Ecology and Evolution
– volume: 25
  start-page: 3469
  issue: 14
  year: 2016
  end-page: 3483
  article-title: Genomewide ancestry and divergence patterns from low‐coverage sequencing data reveal a complex history of admixture in wild baboons
  publication-title: Molecular Ecology
– volume: 9
  start-page: 398
  issue: 2
  year: 2017
  end-page: 414
  article-title: Targeted capture of complete coding regions across divergent species
  publication-title: Genome Biology and Evolution
– volume: 68
  start-page: 41
  issue: 1–2
  year: 1999
  end-page: 55
  article-title: Non‐invasive genetic sampling and individual identification
  publication-title: Biological Journal of the Linnean Society
– volume: 15
  start-page: 121
  issue: 2
  year: 2014
  end-page: 132
  article-title: Sequencing depth and coverage: Key considerations in genomic analyses
  publication-title: Nature Reviews Genetics
– volume: 143
  start-page: 1780
  issue: 7
  year: 2010
  end-page: 1791
  article-title: Effective non‐invasive genetic monitoring of multiple wild western gorilla groups
  publication-title: Biological Conservation
– volume: 9
  start-page: 1276
  issue: 1
  year: 2018
  article-title: Population genomics of finless porpoises reveal an incipient cetacean species adapted to freshwater
  publication-title: Nature Communications
– volume: 23
  start-page: 609
  issue: 1
  year: 2002
  end-page: 28
  article-title: Hunting behavior of chimpanzees at Ngogo, Kibale National Park
  publication-title: Uganda. International Journal of Primatology
– volume: 17
  start-page: 508
  issue: 3
  year: 2017
  end-page: 522
  article-title: Experimental conditions improving in‐solution target enrichment for ancient DNA
  publication-title: Molecular Ecology Resources
– volume: 210
  start-page: 719
  issue: 2
  year: 2018
  end-page: 731
  article-title: Inferring population structure and admixture proportions in low‐depth NGS data
  publication-title: Genetics
– volume: 10
  start-page: 1835
  issue: 7
  year: 2001
  end-page: 1844
  article-title: Quantitative polymerase chain reaction analysis of DNA from noninvasive samples for accurate microsatellite genotyping of wild chimpanzees ( )
  publication-title: Molecular Ecology
– volume: 32
  start-page: 897
  issue: 12
  year: 2017
  end-page: 908
  article-title: Genomic quantitative genetics to study evolution in the wild
  publication-title: Trends in Ecology & Evolution
– volume: 24
  start-page: 73
  issue: 2
  year: 2013
  end-page: 86
  article-title: Comparison of commercially available target Enrichment methods for next‐generation sequencing
  publication-title: Journal of Biomolecular Techniques
– volume: 114
  start-page: 7337
  issue: 28
  year: 2017
  end-page: 7342
  article-title: Group augmentation, collective action, and territorial boundary patrols by male chimpanzees
  publication-title: Proceedings of the National Academy of Sciences
– volume: 93
  start-page: 852
  issue: 5
  year: 2013
  end-page: 864
  article-title: Pulling out the 1%: Whole‐genome capture for the targeted enrichment of ancient DNA sequencing libraries
  publication-title: The American Journal of Human Genetics
– volume: 5
  start-page: e9419
  issue: 2
  year: 2010
  article-title: Vertebrate DNA in fecal samples from bonobos and gorillas: Evidence for meat consumption or artefact?
  publication-title: PLoS ONE
– volume: 6
  start-page: 725
  issue: 6
  year: 2015
  end-page: 734
  article-title: Comparative performance of two whole‐genome capture methodologies on ancient DNA Illumina libraries
  publication-title: Methods in Ecology and Evolution
– volume: 499
  start-page: 471
  issue: 7459
  year: 2013
  end-page: 475
  article-title: Great ape genetic diversity and population history
  publication-title: Nature
– year: 2002
– volume: 7
  start-page: 2859
  issue: 8
  year: 2017
  end-page: 2870
  article-title: A high density linkage map reveals sexual dimorphism in recombination landscapes in red deer ( )
  publication-title: G3: Genes, Genomes, Genetics
– volume: 26
  start-page: 841
  issue: 6
  year: 2010
  end-page: 842
  article-title: BEDTools: A flexible suite of utilities for comparing genomic features
  publication-title: Bioinformatics
– start-page: 185
  year: 1994
  end-page: 201
– volume: 31
  start-page: 4009
  issue: 24
  year: 2015
  end-page: 4011
  article-title: NgsRelate: A software tool for estimating pairwise relatedness from next‐generation sequencing data
  publication-title: Bioinformatics
– volume: 31
  start-page: 1292
  issue: 5
  year: 2014
  end-page: 1294
  article-title: Ancient whole genome enrichment using baits built from modern DNA
  publication-title: Molecular Biology and Evolution
– volume: 27
  start-page: 2957
  issue: 21
  year: 2011
  end-page: 2963
  article-title: FLASH: Fast length adjustment of short reads to improve genome assemblies
  publication-title: Bioinformatics
– volume: 16
  start-page: 1084
  issue: 5
  year: 2016
  end-page: 1094
  article-title: Exon capture optimization in amphibians with large genomes
  publication-title: Molecular Ecology Resources
– year: 2017
– volume: 16
  start-page: 1069
  issue: 5
  year: 2016
  end-page: 1083
  article-title: An evaluation of transcriptome‐based exon capture for frog phylogenomics across multiple scales of divergence (Class: Amphibia, Order: Anura)
  publication-title: Molecular Ecology Resources
– volume: 12
  start-page: R87
  issue: 9
  year: 2011
  article-title: Expanding whole exome resequencing into non‐human primates
  publication-title: Genome Biology
– ident: e_1_2_9_9_1
  doi: 10.1016/j.ajhg.2013.10.002
– volume: 31
  start-page: 4009
  issue: 24
  year: 2015
  ident: e_1_2_9_25_1
  article-title: NgsRelate: A software tool for estimating pairwise relatedness from next‐generation sequencing data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv509
– ident: e_1_2_9_43_1
  doi: 10.1093/bioinformatics/btq033
– ident: e_1_2_9_41_1
  doi: 10.1111/1755-0998.12541
– ident: e_1_2_9_7_1
  doi: 10.1111/1755-0998.12449
– ident: e_1_2_9_54_1
  doi: 10.1111/j.1095-8312.1999.tb01157.x
– ident: e_1_2_9_39_1
  doi: 10.1111/1755-0998.12420
– ident: e_1_2_9_26_1
  doi: 10.1093/bib/bbs038
– ident: e_1_2_9_13_1
  doi: 10.2144/000113809
– ident: e_1_2_9_51_1
  doi: 10.1073/pnas.1318934111
– ident: e_1_2_9_42_1
  doi: 10.1038/nature12228
– volume: 7
  start-page: 2859
  issue: 8
  year: 2017
  ident: e_1_2_9_23_1
  article-title: A high density linkage map reveals sexual dimorphism in recombination landscapes in red deer (Cervus elaphus)
  publication-title: G3: Genes, Genomes, Genetics
  doi: 10.1534/g3.117.044198
– ident: e_1_2_9_48_1
  doi: 10.1111/j.2041-210X.2010.00012.x
– volume-title: R: A language and environment for statistical computing
  year: 2017
  ident: e_1_2_9_45_1
– ident: e_1_2_9_62_1
  doi: 10.1111/j.2041-210X.2009.00001.x
– ident: e_1_2_9_6_1
  doi: 10.7171/jbt.13-2402-002
– ident: e_1_2_9_34_1
  doi: 10.1186/1471-2105-15-247
– ident: e_1_2_9_53_1
  doi: 10.1002/ece3.2346
– ident: e_1_2_9_16_1
  doi: 10.2144/000114114
– ident: e_1_2_9_22_1
  doi: 10.1371/journal.pone.0040637
– ident: e_1_2_9_3_1
  doi: 10.1016/j.biocon.2010.04.030
– ident: e_1_2_9_33_1
  doi: 10.1534/genetics.118.301336
– ident: e_1_2_9_56_1
  doi: 10.1111/1755-0998.12699
– ident: e_1_2_9_24_1
  doi: 10.1186/s12859-014-0356-4
– ident: e_1_2_9_18_1
  doi: 10.1016/j.tree.2017.09.004
– ident: e_1_2_9_52_1
  doi: 10.1534/genetics.116.187492
– ident: e_1_2_9_11_1
  doi: 10.1111/1755-0998.12595
– ident: e_1_2_9_4_1
  doi: 10.1007/978-3-0348-7527-1_10
– ident: e_1_2_9_31_1
  doi: 10.1101/gr.120196.111
– ident: e_1_2_9_36_1
  doi: 10.1126/science.7915048
– ident: e_1_2_9_44_1
  doi: 10.1017/CBO9780511806384
– volume: 9
  start-page: 398
  issue: 2
  year: 2017
  ident: e_1_2_9_49_1
  article-title: Targeted capture of complete coding regions across divergent species
  publication-title: Genome Biology and Evolution
– ident: e_1_2_9_29_1
  doi: 10.1093/bioinformatics/btp352
– ident: e_1_2_9_2_1
  doi: 10.1111/j.1755-0998.2008.02387.x
– ident: e_1_2_9_21_1
  doi: 10.1371/journal.pone.0009419
– ident: e_1_2_9_38_1
  doi: 10.1111/j.1365-294X.1994.tb00127.x
– ident: e_1_2_9_28_1
  doi: 10.1073/pnas.1701582114
– ident: e_1_2_9_57_1
  doi: 10.1186/gb-2011-12-9-r87
– ident: e_1_2_9_47_1
  doi: 10.1186/s13059-015-0776-0
– ident: e_1_2_9_61_1
  doi: 10.1038/s41467-018-03722-x
– ident: e_1_2_9_27_1
  doi: 10.1073/pnas.0611449104
– ident: e_1_2_9_20_1
  doi: 10.1111/1755-0998.12728
– ident: e_1_2_9_19_1
  doi: 10.1002/jwmg.21190
– ident: e_1_2_9_30_1
  doi: 10.1093/bioinformatics/btr507
– volume: 23
  start-page: 609
  issue: 1
  year: 2002
  ident: e_1_2_9_60_1
  article-title: Hunting behavior of chimpanzees at Ngogo, Kibale National Park
  publication-title: Uganda. International Journal of Primatology
– ident: e_1_2_9_17_1
  doi: 10.1007/s00265-010-1038-5
– ident: e_1_2_9_10_1
  doi: 10.1038/nbt.1975
– ident: e_1_2_9_14_1
  doi: 10.1038/nmeth.2375
– ident: e_1_2_9_55_1
  doi: 10.1111/1755-0998.12593
– ident: e_1_2_9_32_1
  doi: 10.1111/1755-0998.12538
– ident: e_1_2_9_59_1
  doi: 10.1111/mec.13684
– ident: e_1_2_9_35_1
  doi: 10.1046/j.0962-1083.2001.01308.x
– ident: e_1_2_9_46_1
  doi: 10.1371/journal.pgen.1005972
– ident: e_1_2_9_5_1
  doi: 10.1111/2041-210X.12353
– ident: e_1_2_9_12_1
  doi: 10.1186/s12864-018-4945-x
– ident: e_1_2_9_8_1
  doi: 10.1111/2041-210X.12871
– ident: e_1_2_9_15_1
  doi: 10.1093/molbev/msu074
– ident: e_1_2_9_37_1
  doi: 10.1111/j.1365-294X.2004.02207.x
– ident: e_1_2_9_58_1
  doi: 10.1093/bioinformatics/btw212
– ident: e_1_2_9_40_1
  doi: 10.1111/j.1365-294X.2010.04888.x
– ident: e_1_2_9_50_1
  doi: 10.1038/nrg3642
SSID ssj0060974
Score 2.3917277
Snippet Large‐scale genomic studies of wild animal populations are often limited by access to high‐quality DNA. Although noninvasive samples, such as faeces, can be...
Large-scale genomic studies of wild animal populations are often limited by access to high-quality DNA. Although noninvasive samples, such as faeces, can be...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 609
SubjectTerms Animal populations
chimpanzees
conservation genomics
Deoxyribonucleic acid
DNA
DNA sequencing
faecal samples
feces
genomics
high-throughput nucleotide sequencing
Hybridization
nucleic acid hybridization
Pan troglodytes
population genomics
Populations
Quality
Quality assessment
regression analysis
target enrichment
wild animals
Title A roadmap for high‐throughput sequencing studies of wild animal populations using noninvasive samples and hybridization capture
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1755-0998.12993
https://www.proquest.com/docview/2211539547
https://www.proquest.com/docview/2179359746
https://www.proquest.com/docview/2305164463
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS9xAFB6KIPjipbZ0vTEFH_qSJclcMnkU2WUR9KFU8C3MLVpad4PZFfRJ_4G_0V_iOckkWsGW4lsgZ5LJZM6c78x88w0h-67kRunERx7Ca8RLG0dKKh6JzKZW2LTMPG5wPj6Rk1N-dCY6NiHuhWn1IfoJN_SMZrxGB9emfuHkEPdEBPhGDSFk5aj3iYwthEXfewEpGeeNDnOwVWdB3Ae5PK_K_xmXnsHmS8jaxJzxGjFdbVuqya_hYm6G9vaVkOO7PmedrAZESg_aLrRBPvjpR7I8atSsbzbJ_QG9mml3qSsK-JaivPHj3UM43qdazGkgY0MIpHVLSqSzkkIlHNXTn5fw6Ko_JKymyLM_p1OcBL7WSJ2ntUaB4hqMHb24wQ1kYWsotbrC9Y1P5HQ8-nE4icK5DZGF-M-iTCWWx6bkjPnESGG0ZdYKB0gu5cyVzMUIw1LpS8ul4YmXkCh7rQ0zynDNPpMlqIf_Qmis00zkzgpAfdwkSsfMS2eTNIXYrpQZkGH31wobRM3xbI3fRZfcYLsW2K5F064D8q0vULV6Hm-b7nTdoAiOXRcpJMyC5YJnA_K1vw0uiesseupnC7DBQQ8TNfkXGxhnIVPlEl7T9ot_Vac4Hp00F1v_W2CbrADMy1ua5g5Zml8t_C5AqbnZa7zlCawOFgg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagCNFLW17q0lKMxIFLVkn8iHOsqq22j90DaqW9RX6FIuhu1OwilRP9B_xGfklnEm9YKgFCvUXKOHEcj-cbe-YbQt65khulEx95MK8RL20cKal4JDKbWmHTMvOY4Dway-E5P56IyUouTMsP0W24oWY06zUqOG5Ir2g5GD4RAcBRfbBZOXtIHmFd78at-tBRSMk4b5iYg7CaBHofjOa584DfLdMvuLkKWhurc7hJ7LK_bbDJ5_5ibvr22x0qx_t90BbZCKCU7rez6Cl54KfPyONBQ2h9_Zzc7NOrmXaXuqIAcSkyHP_8_iNU-KkWcxriscEK0rqNS6SzkkIvHNXTT5fw6KqrE1ZTDLX_SKe4D_xVY_Q8rTVyFNcg7OjFNeaQhexQanWFRxwvyPnh4OxgGIXSDZEFCMCiTCWWx6bkjPnESGG0ZdYKB2Au5cyVzMWIxFLpS8ul4YmX4Ct7rQ0zynDNXpI16IffJjTWaSZyZwUAP24SpWPmpbNJmoJ5V8r0SH_52wobeM2xvMaXYunf4LgWOK5FM6498r5rULWUHn8W3V3OgyLodl2k4DMLlgue9cjb7jZoJR616KmfLUAG1z301eRfZGCpBWeVS3hNOzH-1Z1iNBg3F6_-t8Eb8mR4NjotTo_GJztkHVBf3kZt7pK1-dXCvwZkNTd7jercAgOHGiM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BEYgLb8RCASNx4JJVEj_iHCu6q_LoCiEq9Rb5FUDQ3ajZRSon-Af8Rn4JM4kTSiVAiFukjJOJ4_F8Y4-_AXjsa2G1yUIS0L0monZpopUWiSxc7qTL6yLQAef9hdo7EM8P5ZBNSGdhen6IccGNLKObr8nAG1-fMnL0ezJBfKOn6LJKfh4uCJVqGti7r0cGKZWWHRFzFNaHkd2HknnOPOBXx_QTbZ7GrJ3TmV8FO6jb55p8mG7Wduo-n2Fy_K_vuQZXIiRlO_0Yug7nwvIGXJx1dNYnN-HrDjteGX9kGoYAlxG_8fcv32J9n2azZjEbG30ga_usRLaqGSrhmVm-P8JHN2OVsJZRov1btqRV4E-GcudZa4ihuEVhz96d0AmyeDaUOdPQBsctOJjP3jzdS2LhhsQhAOBJoTMnUlsLzkNmlbTGceekRyiXC-5r7lPCYbkKtRPKiiwojJSDMZZbbYXht2EL9Qh3gKUmL2TpnUTYJ2ymTcqD8i7Lc3TuWtsJTIe_VrnIak7FNT5WQ3RD_VpRv1Zdv07gydig6Qk9fi-6PQyDKlp2W-UYMUteSlFM4NF4G22SNlrMMqw2KEOzHkVq6g8yONFiqCoUvqYfF39Tp9qfLbqLu__a4CFcerU7r14-W7y4B5cR8pV9yuY2bK2PN-E-wqq1fdAZzg-4GRjb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+roadmap+for+high%E2%80%90throughput+sequencing+studies+of+wild+animal+populations+using+noninvasive+samples+and+hybridization+capture&rft.jtitle=Molecular+ecology+resources&rft.au=White%2C+Lauren+C&rft.au=Fontsere%2C+Claudia&rft.au=Lizano%2C+Esther&rft.au=Hughes%2C+David+A&rft.date=2019-05-01&rft.issn=1755-098X&rft.volume=19&rft.issue=3+p.609-622&rft.spage=609&rft.epage=622&rft_id=info:doi/10.1111%2F1755-0998.12993&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-098X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-098X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-098X&client=summon