A roadmap for high‐throughput sequencing studies of wild animal populations using noninvasive samples and hybridization capture
Large‐scale genomic studies of wild animal populations are often limited by access to high‐quality DNA. Although noninvasive samples, such as faeces, can be readily collected, DNA from the sample producers is usually present in low quantities, fragmented, and contaminated by microorganism and dietar...
Saved in:
Published in | Molecular ecology resources Vol. 19; no. 3; pp. 609 - 622 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Wiley Subscription Services, Inc
01.05.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Large‐scale genomic studies of wild animal populations are often limited by access to high‐quality DNA. Although noninvasive samples, such as faeces, can be readily collected, DNA from the sample producers is usually present in low quantities, fragmented, and contaminated by microorganism and dietary DNAs. Hybridization capture can help to overcome these impediments by increasing the proportion of subject DNA prior to high‐throughput sequencing. Here we evaluate a key design variable for hybridization capture, the number of rounds of capture, by testing whether one or two rounds are most appropriate, given varying sample quality (as measured by the ratios of subject to total DNA). We used a set of 1,780 quality‐assessed wild chimpanzee (Pan troglodytes schweinfurthii) faecal samples and chose 110 samples of varying quality for exome capture and sequencing. We used multiple regression to assess the effects of the ratio of subject to total DNA (sample quality), rounds of capture and sequencing effort on the number of unique exome reads sequenced. We not only show that one round of capture is preferable when the proportion of subject DNA in a sample is above ~2%–3%, but also explore various types of bias introduced by capture, and develop a model that predicts the sequencing effort necessary for a desired data yield from samples of a given quality. Thus, our results provide a useful guide and pave a methodological way forward for researchers wishing to plan similar hybridization capture studies. |
---|---|
AbstractList | Large‐scale genomic studies of wild animal populations are often limited by access to high‐quality DNA. Although noninvasive samples, such as faeces, can be readily collected, DNA from the sample producers is usually present in low quantities, fragmented, and contaminated by microorganism and dietary DNAs. Hybridization capture can help to overcome these impediments by increasing the proportion of subject DNA prior to high‐throughput sequencing. Here we evaluate a key design variable for hybridization capture, the number of rounds of capture, by testing whether one or two rounds are most appropriate, given varying sample quality (as measured by the ratios of subject to total DNA). We used a set of 1,780 quality‐assessed wild chimpanzee (Pan troglodytes schweinfurthii) faecal samples and chose 110 samples of varying quality for exome capture and sequencing. We used multiple regression to assess the effects of the ratio of subject to total DNA (sample quality), rounds of capture and sequencing effort on the number of unique exome reads sequenced. We not only show that one round of capture is preferable when the proportion of subject DNA in a sample is above ~2%–3%, but also explore various types of bias introduced by capture, and develop a model that predicts the sequencing effort necessary for a desired data yield from samples of a given quality. Thus, our results provide a useful guide and pave a methodological way forward for researchers wishing to plan similar hybridization capture studies. Large-scale genomic studies of wild animal populations are often limited by access to high-quality DNA. Although noninvasive samples, such as faeces, can be readily collected, DNA from the sample producers is usually present in low quantities, fragmented, and contaminated by microorganism and dietary DNAs. Hybridization capture can help to overcome these impediments by increasing the proportion of subject DNA prior to high-throughput sequencing. Here we evaluate a key design variable for hybridization capture, the number of rounds of capture, by testing whether one or two rounds are most appropriate, given varying sample quality (as measured by the ratios of subject to total DNA). We used a set of 1,780 quality-assessed wild chimpanzee (Pan troglodytes schweinfurthii) faecal samples and chose 110 samples of varying quality for exome capture and sequencing. We used multiple regression to assess the effects of the ratio of subject to total DNA (sample quality), rounds of capture and sequencing effort on the number of unique exome reads sequenced. We not only show that one round of capture is preferable when the proportion of subject DNA in a sample is above ~2%-3%, but also explore various types of bias introduced by capture, and develop a model that predicts the sequencing effort necessary for a desired data yield from samples of a given quality. Thus, our results provide a useful guide and pave a methodological way forward for researchers wishing to plan similar hybridization capture studies.Large-scale genomic studies of wild animal populations are often limited by access to high-quality DNA. Although noninvasive samples, such as faeces, can be readily collected, DNA from the sample producers is usually present in low quantities, fragmented, and contaminated by microorganism and dietary DNAs. Hybridization capture can help to overcome these impediments by increasing the proportion of subject DNA prior to high-throughput sequencing. Here we evaluate a key design variable for hybridization capture, the number of rounds of capture, by testing whether one or two rounds are most appropriate, given varying sample quality (as measured by the ratios of subject to total DNA). We used a set of 1,780 quality-assessed wild chimpanzee (Pan troglodytes schweinfurthii) faecal samples and chose 110 samples of varying quality for exome capture and sequencing. We used multiple regression to assess the effects of the ratio of subject to total DNA (sample quality), rounds of capture and sequencing effort on the number of unique exome reads sequenced. We not only show that one round of capture is preferable when the proportion of subject DNA in a sample is above ~2%-3%, but also explore various types of bias introduced by capture, and develop a model that predicts the sequencing effort necessary for a desired data yield from samples of a given quality. Thus, our results provide a useful guide and pave a methodological way forward for researchers wishing to plan similar hybridization capture studies. Large‐scale genomic studies of wild animal populations are often limited by access to high‐quality DNA. Although noninvasive samples, such as faeces, can be readily collected, DNA from the sample producers is usually present in low quantities, fragmented, and contaminated by microorganism and dietary DNAs. Hybridization capture can help to overcome these impediments by increasing the proportion of subject DNA prior to high‐throughput sequencing. Here we evaluate a key design variable for hybridization capture, the number of rounds of capture, by testing whether one or two rounds are most appropriate, given varying sample quality (as measured by the ratios of subject to total DNA). We used a set of 1,780 quality‐assessed wild chimpanzee ( Pan troglodytes schweinfurthii ) faecal samples and chose 110 samples of varying quality for exome capture and sequencing. We used multiple regression to assess the effects of the ratio of subject to total DNA (sample quality), rounds of capture and sequencing effort on the number of unique exome reads sequenced. We not only show that one round of capture is preferable when the proportion of subject DNA in a sample is above ~2%–3%, but also explore various types of bias introduced by capture, and develop a model that predicts the sequencing effort necessary for a desired data yield from samples of a given quality. Thus, our results provide a useful guide and pave a methodological way forward for researchers wishing to plan similar hybridization capture studies. |
Author | Rowney, Carolyn Angedakin, Samuel Vigilant, Linda Hans, Jörg B. Fontsere, Claudia Rabanus‐Wallace, M. Timothy Hughes, David A. Lizano, Esther Arandjelovic, Mimi White, Lauren C. Städele, Veronika Marques‐Bonet, Tomas Langergraber, Kevin E. Granjon, Anne‐Céline Lester, Jack D. |
Author_xml | – sequence: 1 givenname: Lauren C. orcidid: 0000-0001-8085-9293 surname: White fullname: White, Lauren C. email: lauren_white@eva.mpg.de organization: Max Planck Institute for Evolutionary Anthropology – sequence: 2 givenname: Claudia orcidid: 0000-0003-2233-6026 surname: Fontsere fullname: Fontsere, Claudia organization: Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas‐Universitat Pompeu Fabra), Barcelona Biomedical Research Park – sequence: 3 givenname: Esther surname: Lizano fullname: Lizano, Esther organization: Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas‐Universitat Pompeu Fabra), Barcelona Biomedical Research Park – sequence: 4 givenname: David A. surname: Hughes fullname: Hughes, David A. organization: University of Bristol – sequence: 5 givenname: Samuel surname: Angedakin fullname: Angedakin, Samuel organization: Max Planck Institute for Evolutionary Anthropology – sequence: 6 givenname: Mimi surname: Arandjelovic fullname: Arandjelovic, Mimi organization: Max Planck Institute for Evolutionary Anthropology – sequence: 7 givenname: Anne‐Céline surname: Granjon fullname: Granjon, Anne‐Céline organization: Max Planck Institute for Evolutionary Anthropology – sequence: 8 givenname: Jörg B. surname: Hans fullname: Hans, Jörg B. organization: Max Planck Institute for Evolutionary Anthropology – sequence: 9 givenname: Jack D. surname: Lester fullname: Lester, Jack D. organization: Max Planck Institute for Evolutionary Anthropology – sequence: 10 givenname: M. Timothy surname: Rabanus‐Wallace fullname: Rabanus‐Wallace, M. Timothy organization: Leibniz‐Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) – sequence: 11 givenname: Carolyn surname: Rowney fullname: Rowney, Carolyn organization: Max Planck Institute for Evolutionary Anthropology – sequence: 12 givenname: Veronika surname: Städele fullname: Städele, Veronika organization: Max Planck Institute for Evolutionary Anthropology – sequence: 13 givenname: Tomas surname: Marques‐Bonet fullname: Marques‐Bonet, Tomas organization: Universitat Autònoma de Barcelona – sequence: 14 givenname: Kevin E. surname: Langergraber fullname: Langergraber, Kevin E. organization: Arizona State University – sequence: 15 givenname: Linda surname: Vigilant fullname: Vigilant, Linda organization: Max Planck Institute for Evolutionary Anthropology |
BookMark | eNqFkctOAyEUhompide1WxI3blphgLksTVMviZeNJu4IwzAdmimMMNTUlb6Bz-iTSFvThZuygZDvO3DOfwQGxhoFwBlGIxzXJc4YG6KiyEc4KQqyBw63N4PtOX89AEfezxBKUZHRQ_B1BZ0V1Vx0sLYONnra_Hx-942zYdp0oYdevQVlpDZT6PtQaeWhreG7bisojJ6LFna2C63otTUeBr8C48-0WQivFwp6Me_aKAlTwWZZOl3pjzUMpej64NQJ2K9F69Xp334MXq4nz-Pb4f3Tzd346n4oSY7JMMuxpKisKSEKlykrhSRSsgqxIqGkqkmFkpTSJFW1pGlJsUoJyZUQJSnzkgpyDC42dTtnY0u-53PtpWpbYZQNnicEMRwrRG0nirOCsDi_NKLn_9CZDc7ERniSYMxIwWgWqcsNJZ313qmady7Ozi05RnyVHl_lw1dZ8XV60WD_DKn79dx6J3S724sJqeWuZ_jD5HHj_QLVBrIj |
CitedBy_id | crossref_primary_10_1111_1755_0998_13260 crossref_primary_10_1002_ajp_23363 crossref_primary_10_1371_journal_pone_0234385 crossref_primary_10_1111_1755_0998_13168 crossref_primary_10_1111_1755_0998_13300 crossref_primary_10_1126_science_adn7954 crossref_primary_10_3390_genes14050985 crossref_primary_10_1360_SSV_2024_0303 crossref_primary_10_3390_genes12111672 crossref_primary_10_1186_s12864_020_06904_4 crossref_primary_10_1016_j_xgen_2022_100133 crossref_primary_10_1007_s12686_023_01298_3 crossref_primary_10_1098_rsos_230967 crossref_primary_10_3389_fevo_2022_970249 crossref_primary_10_1007_s00251_019_01148_3 crossref_primary_10_1007_s12686_022_01259_2 crossref_primary_10_1038_s41598_024_84163_z crossref_primary_10_1126_science_adj3210 crossref_primary_10_1111_1755_0998_13552 crossref_primary_10_1093_gbe_evab117 crossref_primary_10_1111_mec_15720 crossref_primary_10_1111_1755_0998_13317 crossref_primary_10_1016_j_gde_2020_06_006 crossref_primary_10_1073_pnas_2401106122 crossref_primary_10_1146_annurev_animal_061220_023138 |
Cites_doi | 10.1016/j.ajhg.2013.10.002 10.1093/bioinformatics/btv509 10.1093/bioinformatics/btq033 10.1111/1755-0998.12541 10.1111/1755-0998.12449 10.1111/j.1095-8312.1999.tb01157.x 10.1111/1755-0998.12420 10.1093/bib/bbs038 10.2144/000113809 10.1073/pnas.1318934111 10.1038/nature12228 10.1534/g3.117.044198 10.1111/j.2041-210X.2010.00012.x 10.1111/j.2041-210X.2009.00001.x 10.7171/jbt.13-2402-002 10.1186/1471-2105-15-247 10.1002/ece3.2346 10.2144/000114114 10.1371/journal.pone.0040637 10.1016/j.biocon.2010.04.030 10.1534/genetics.118.301336 10.1111/1755-0998.12699 10.1186/s12859-014-0356-4 10.1016/j.tree.2017.09.004 10.1534/genetics.116.187492 10.1111/1755-0998.12595 10.1007/978-3-0348-7527-1_10 10.1101/gr.120196.111 10.1126/science.7915048 10.1017/CBO9780511806384 10.1093/bioinformatics/btp352 10.1111/j.1755-0998.2008.02387.x 10.1371/journal.pone.0009419 10.1111/j.1365-294X.1994.tb00127.x 10.1073/pnas.1701582114 10.1186/gb-2011-12-9-r87 10.1186/s13059-015-0776-0 10.1038/s41467-018-03722-x 10.1073/pnas.0611449104 10.1111/1755-0998.12728 10.1002/jwmg.21190 10.1093/bioinformatics/btr507 10.1007/s00265-010-1038-5 10.1038/nbt.1975 10.1038/nmeth.2375 10.1111/1755-0998.12593 10.1111/1755-0998.12538 10.1111/mec.13684 10.1046/j.0962-1083.2001.01308.x 10.1371/journal.pgen.1005972 10.1111/2041-210X.12353 10.1186/s12864-018-4945-x 10.1111/2041-210X.12871 10.1093/molbev/msu074 10.1111/j.1365-294X.2004.02207.x 10.1093/bioinformatics/btw212 10.1111/j.1365-294X.2010.04888.x 10.1038/nrg3642 |
ContentType | Journal Article |
Copyright | 2019 John Wiley & Sons Ltd Copyright © 2019 John Wiley & Sons Ltd 2019 John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2019 John Wiley & Sons Ltd – notice: Copyright © 2019 John Wiley & Sons Ltd – notice: 2019 John Wiley & Sons Ltd. |
DBID | AAYXX CITATION 7SN 7SS 8FD C1K FR3 M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1111/1755-0998.12993 |
DatabaseName | CrossRef Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Entomology Abstracts Genetics Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Entomology Abstracts AGRICOLA MEDLINE - Academic CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology |
EISSN | 1755-0998 |
EndPage | 622 |
ExternalDocumentID | 10_1111_1755_0998_12993 MEN12993 |
Genre | article |
GrantInformation_xml | – fundername: Max Planck Society – fundername: President's Strategic Initiative Fund of ASU |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS ECGQY EJD ESX F00 F01 F04 FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SUPJJ UB1 V8K W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION 7SN 7SS 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c3813-781c40bf433e1b65bac3cc5d059243df3d0264426efc46b41e6338eaab3b8b4a3 |
IEDL.DBID | DR2 |
ISSN | 1755-098X 1755-0998 |
IngestDate | Fri Jul 11 18:31:12 EDT 2025 Fri Jul 11 13:35:53 EDT 2025 Fri Jul 25 10:29:12 EDT 2025 Thu Apr 24 22:52:42 EDT 2025 Tue Jul 01 01:18:57 EDT 2025 Wed Jan 22 16:24:22 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3813-781c40bf433e1b65bac3cc5d059243df3d0264426efc46b41e6338eaab3b8b4a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8085-9293 0000-0003-2233-6026 |
PQID | 2211539547 |
PQPubID | 1096410 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2305164463 proquest_miscellaneous_2179359746 proquest_journals_2211539547 crossref_primary_10_1111_1755_0998_12993 crossref_citationtrail_10_1111_1755_0998_12993 wiley_primary_10_1111_1755_0998_12993_MEN12993 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2019 2019-05-00 20190501 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: May 2019 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Molecular ecology resources |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2007; 104 2017; 7 2017; 81 2010; 19 2013; 24 2015; 31 2010; 143 2016; 32 2011; 12 2017; 114 2017; 9 2012; 52 2018; 9 2018; 210 1994; 265 2013; 14 2010; 26 2010; 1 2013; 55 2013; 10 2017; 32 2014; 15 2011; 65 2011; 21 2011; 27 2010; 5 2011; 29 2001; 10 2009; 25 2015; 6 2015; 16 1999; 68 2013; 93 1994 2016; 203 2002 2014; 111 2016; 16 2016; 12 2018; 19 2018; 18 2016; 6 2017; 17 2002; 23 2004; 13 2009; 9 2013; 499 2017 2012; 7 1994; 3 2016; 25 2014; 31 e_1_2_9_31_1 e_1_2_9_52_1 Korneliussen T. S. (e_1_2_9_25_1) 2015; 31 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 Watts D. P. (e_1_2_9_60_1) 2002; 23 e_1_2_9_26_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 Schott R. K. (e_1_2_9_49_1) 2017; 9 Johnston S. E. (e_1_2_9_23_1) 2017; 7 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 R Core Team (e_1_2_9_45_1) 2017 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 81 start-page: 279 issue: 2 year: 2017 end-page: 288 article-title: Evaluating genetic capture‐recapture using a chimpanzee population of known size publication-title: The Journal of Wildlife Management – volume: 21 start-page: 1695 issue: 10 year: 2011 end-page: 1704 article-title: Efficient cross‐species capture hybridization and next‐generation sequencing of mitochondrial genomes from noninvasively sampled museum specimens publication-title: Genome Research – volume: 16 start-page: 42 issue: 1 year: 2016 end-page: 55 article-title: Impact of enrichment conditions on cross‐species capture of fresh and degraded DNA publication-title: Molecular Ecology Resources – volume: 16 start-page: 224 issue: 1 year: 2015 article-title: Schmutzi: Estimation of contamination and endogenous mitochondrial consensus calling for ancient DNA publication-title: Genome Biology – volume: 15 start-page: 356 issue: 1 year: 2014 article-title: ANGSD: Analysis of next generation sequencing data publication-title: BMC Bioinformatics – volume: 29 start-page: 908 issue: 10 year: 2011 end-page: 914 article-title: Performance comparison of exome DNA sequencing technologies publication-title: Nature Biotechnology – volume: 3 start-page: 489 issue: 5 year: 1994 end-page: 495 article-title: Microsatellite analysis of genetic‐variation in black bear populations publication-title: Molecular Ecology – volume: 6 start-page: 6107 issue: 17 year: 2016 end-page: 6120 article-title: Strategies for determining kinship in wild populations using genetic data publication-title: Ecology and Evolution – volume: 7 start-page: e40637 issue: 7 year: 2012 article-title: An effort to use human‐based exome capture methods to analyze chimpanzee and macaque exomes publication-title: PLoS ONE – volume: 32 start-page: 2096 issue: 14 year: 2016 end-page: 2102 article-title: Estimating IBD tracts from low coverage NGS data publication-title: Bioinformatics – volume: 52 start-page: 87 issue: 2 year: 2012 end-page: 94 article-title: Length and GC‐biases during sequencing library amplification: A comparison of various polymerase‐buffer systems with ancient and modern DNA sequencing libraries publication-title: BioTechniques – volume: 19 start-page: 5332 issue: 24 year: 2010 end-page: 5344 article-title: Genomic‐scale capture and sequencing of endogenous DNA from feces publication-title: Molecular Ecology – volume: 16 start-page: 1059 issue: 5 year: 2016 end-page: 1068 article-title: Exon capture phylogenomics: Efficacy across scales of divergence publication-title: Molecular Ecology Resources – volume: 12 start-page: e1005972 issue: 4 year: 2016 article-title: Joint estimation of contamination, error and demography for nuclear DNA from ancient humans publication-title: PLoS Genetics – volume: 9 start-page: 410 issue: 2 year: 2018 end-page: 419 article-title: Single‐tube library preparation for degraded DNA publication-title: Methods in Ecology and Evolution – volume: 203 start-page: 699 issue: 2 year: 2016 end-page: 714 article-title: Efficient genome‐wide sequencing and low coverage pedigree analysis from non‐invasively collected samples publication-title: Genetics – volume: 18 start-page: 319 issue: 2 year: 2018 end-page: 333 article-title: The impact of endogenous content, replicates and pooling on genome capture from faecal samples publication-title: Molecular Ecology Resources – volume: 9 start-page: 28 issue: 1 year: 2009 end-page: 36 article-title: Two‐step multiplex polymerase chain reaction improves the speed and accuracy of genotyping using DNA from noninvasive and museum samples publication-title: Molecular Ecology Resources – volume: 14 start-page: 144 issue: 2 year: 2013 end-page: 161 article-title: The UCSC genome browser and associated tools publication-title: Briefings in Bioinformatics – volume: 55 start-page: 300 issue: 6 year: 2013 end-page: 309 article-title: Quantitative PCR as a predictor of aligned ancient DNA read counts following targeted enrichment publication-title: BioTechniques – volume: 104 start-page: 7786 issue: 19 year: 2007 end-page: 7790 article-title: The limited impact of kinship on cooperation in wild chimpanzees publication-title: Proceedings of the National Academy of Sciences – volume: 1 start-page: 103 issue: 2 year: 2010 end-page: 113 article-title: Simple means to improve the interpretability of regression coefficients publication-title: Methods in Ecology and Evolution – volume: 10 start-page: 325 issue: 4 year: 2013 end-page: 327 article-title: Predicting the molecular complexity of sequencing libraries publication-title: Nature Methods – volume: 17 start-page: 194 issue: 2 year: 2017 end-page: 208 article-title: Practical low‐coverage genomewide sequencing of hundreds of individually barcoded samples for population and evolutionary genomics in nonmodel species publication-title: Molecular Ecology Resources – volume: 65 start-page: 47 issue: 1 year: 2011 end-page: 55 article-title: Cryptic multiple hypotheses testing in linear models: Overestimated effect sizes and the winner's curse publication-title: Behavioral Ecology and Sociobiology – volume: 25 start-page: 2078 issue: 16 year: 2009 end-page: 2079 article-title: The sequence alignment/map format and SAMtools publication-title: Bioinformatics – volume: 265 start-page: 1193 issue: 5176 year: 1994 end-page: 1201 article-title: Kin selection, social structure, gene flow, and the evolution of chimpanzees publication-title: Science – volume: 13 start-page: 2089 issue: 7 year: 2004 end-page: 2094 article-title: Factors affecting the amount of genomic DNA extracted from ape faeces and the identification of an improved sample storage method publication-title: Molecular Ecology – volume: 15 start-page: 247 issue: 1 year: 2014 article-title: Variant detection sensitivity and biases in whole genome and exome sequencing publication-title: BMC Bioinformatics – volume: 19 start-page: 608 issue: 1 year: 2018 article-title: In‐solution Y‐chromosome capture‐enrichment on ancient DNA libraries publication-title: BMC Genomics – volume: 111 start-page: 2229 issue: 6 year: 2014 end-page: 2234 article-title: Separating endogenous ancient DNA from modern day contamination in a Siberian Neandertal publication-title: Proceedings of the National Academy of Sciences – volume: 17 start-page: e111 issue: 6 year: 2017 end-page: e121 article-title: Whole mitochondrial genome capture from faecal samples and museum‐preserved specimens publication-title: Molecular Ecology Resources – volume: 1 start-page: 3 issue: 1 year: 2010 end-page: 622 article-title: A protocol for data exploration to avoid common statistical problems publication-title: Methods in Ecology and Evolution – volume: 25 start-page: 3469 issue: 14 year: 2016 end-page: 3483 article-title: Genomewide ancestry and divergence patterns from low‐coverage sequencing data reveal a complex history of admixture in wild baboons publication-title: Molecular Ecology – volume: 9 start-page: 398 issue: 2 year: 2017 end-page: 414 article-title: Targeted capture of complete coding regions across divergent species publication-title: Genome Biology and Evolution – volume: 68 start-page: 41 issue: 1–2 year: 1999 end-page: 55 article-title: Non‐invasive genetic sampling and individual identification publication-title: Biological Journal of the Linnean Society – volume: 15 start-page: 121 issue: 2 year: 2014 end-page: 132 article-title: Sequencing depth and coverage: Key considerations in genomic analyses publication-title: Nature Reviews Genetics – volume: 143 start-page: 1780 issue: 7 year: 2010 end-page: 1791 article-title: Effective non‐invasive genetic monitoring of multiple wild western gorilla groups publication-title: Biological Conservation – volume: 9 start-page: 1276 issue: 1 year: 2018 article-title: Population genomics of finless porpoises reveal an incipient cetacean species adapted to freshwater publication-title: Nature Communications – volume: 23 start-page: 609 issue: 1 year: 2002 end-page: 28 article-title: Hunting behavior of chimpanzees at Ngogo, Kibale National Park publication-title: Uganda. International Journal of Primatology – volume: 17 start-page: 508 issue: 3 year: 2017 end-page: 522 article-title: Experimental conditions improving in‐solution target enrichment for ancient DNA publication-title: Molecular Ecology Resources – volume: 210 start-page: 719 issue: 2 year: 2018 end-page: 731 article-title: Inferring population structure and admixture proportions in low‐depth NGS data publication-title: Genetics – volume: 10 start-page: 1835 issue: 7 year: 2001 end-page: 1844 article-title: Quantitative polymerase chain reaction analysis of DNA from noninvasive samples for accurate microsatellite genotyping of wild chimpanzees ( ) publication-title: Molecular Ecology – volume: 32 start-page: 897 issue: 12 year: 2017 end-page: 908 article-title: Genomic quantitative genetics to study evolution in the wild publication-title: Trends in Ecology & Evolution – volume: 24 start-page: 73 issue: 2 year: 2013 end-page: 86 article-title: Comparison of commercially available target Enrichment methods for next‐generation sequencing publication-title: Journal of Biomolecular Techniques – volume: 114 start-page: 7337 issue: 28 year: 2017 end-page: 7342 article-title: Group augmentation, collective action, and territorial boundary patrols by male chimpanzees publication-title: Proceedings of the National Academy of Sciences – volume: 93 start-page: 852 issue: 5 year: 2013 end-page: 864 article-title: Pulling out the 1%: Whole‐genome capture for the targeted enrichment of ancient DNA sequencing libraries publication-title: The American Journal of Human Genetics – volume: 5 start-page: e9419 issue: 2 year: 2010 article-title: Vertebrate DNA in fecal samples from bonobos and gorillas: Evidence for meat consumption or artefact? publication-title: PLoS ONE – volume: 6 start-page: 725 issue: 6 year: 2015 end-page: 734 article-title: Comparative performance of two whole‐genome capture methodologies on ancient DNA Illumina libraries publication-title: Methods in Ecology and Evolution – volume: 499 start-page: 471 issue: 7459 year: 2013 end-page: 475 article-title: Great ape genetic diversity and population history publication-title: Nature – year: 2002 – volume: 7 start-page: 2859 issue: 8 year: 2017 end-page: 2870 article-title: A high density linkage map reveals sexual dimorphism in recombination landscapes in red deer ( ) publication-title: G3: Genes, Genomes, Genetics – volume: 26 start-page: 841 issue: 6 year: 2010 end-page: 842 article-title: BEDTools: A flexible suite of utilities for comparing genomic features publication-title: Bioinformatics – start-page: 185 year: 1994 end-page: 201 – volume: 31 start-page: 4009 issue: 24 year: 2015 end-page: 4011 article-title: NgsRelate: A software tool for estimating pairwise relatedness from next‐generation sequencing data publication-title: Bioinformatics – volume: 31 start-page: 1292 issue: 5 year: 2014 end-page: 1294 article-title: Ancient whole genome enrichment using baits built from modern DNA publication-title: Molecular Biology and Evolution – volume: 27 start-page: 2957 issue: 21 year: 2011 end-page: 2963 article-title: FLASH: Fast length adjustment of short reads to improve genome assemblies publication-title: Bioinformatics – volume: 16 start-page: 1084 issue: 5 year: 2016 end-page: 1094 article-title: Exon capture optimization in amphibians with large genomes publication-title: Molecular Ecology Resources – year: 2017 – volume: 16 start-page: 1069 issue: 5 year: 2016 end-page: 1083 article-title: An evaluation of transcriptome‐based exon capture for frog phylogenomics across multiple scales of divergence (Class: Amphibia, Order: Anura) publication-title: Molecular Ecology Resources – volume: 12 start-page: R87 issue: 9 year: 2011 article-title: Expanding whole exome resequencing into non‐human primates publication-title: Genome Biology – ident: e_1_2_9_9_1 doi: 10.1016/j.ajhg.2013.10.002 – volume: 31 start-page: 4009 issue: 24 year: 2015 ident: e_1_2_9_25_1 article-title: NgsRelate: A software tool for estimating pairwise relatedness from next‐generation sequencing data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv509 – ident: e_1_2_9_43_1 doi: 10.1093/bioinformatics/btq033 – ident: e_1_2_9_41_1 doi: 10.1111/1755-0998.12541 – ident: e_1_2_9_7_1 doi: 10.1111/1755-0998.12449 – ident: e_1_2_9_54_1 doi: 10.1111/j.1095-8312.1999.tb01157.x – ident: e_1_2_9_39_1 doi: 10.1111/1755-0998.12420 – ident: e_1_2_9_26_1 doi: 10.1093/bib/bbs038 – ident: e_1_2_9_13_1 doi: 10.2144/000113809 – ident: e_1_2_9_51_1 doi: 10.1073/pnas.1318934111 – ident: e_1_2_9_42_1 doi: 10.1038/nature12228 – volume: 7 start-page: 2859 issue: 8 year: 2017 ident: e_1_2_9_23_1 article-title: A high density linkage map reveals sexual dimorphism in recombination landscapes in red deer (Cervus elaphus) publication-title: G3: Genes, Genomes, Genetics doi: 10.1534/g3.117.044198 – ident: e_1_2_9_48_1 doi: 10.1111/j.2041-210X.2010.00012.x – volume-title: R: A language and environment for statistical computing year: 2017 ident: e_1_2_9_45_1 – ident: e_1_2_9_62_1 doi: 10.1111/j.2041-210X.2009.00001.x – ident: e_1_2_9_6_1 doi: 10.7171/jbt.13-2402-002 – ident: e_1_2_9_34_1 doi: 10.1186/1471-2105-15-247 – ident: e_1_2_9_53_1 doi: 10.1002/ece3.2346 – ident: e_1_2_9_16_1 doi: 10.2144/000114114 – ident: e_1_2_9_22_1 doi: 10.1371/journal.pone.0040637 – ident: e_1_2_9_3_1 doi: 10.1016/j.biocon.2010.04.030 – ident: e_1_2_9_33_1 doi: 10.1534/genetics.118.301336 – ident: e_1_2_9_56_1 doi: 10.1111/1755-0998.12699 – ident: e_1_2_9_24_1 doi: 10.1186/s12859-014-0356-4 – ident: e_1_2_9_18_1 doi: 10.1016/j.tree.2017.09.004 – ident: e_1_2_9_52_1 doi: 10.1534/genetics.116.187492 – ident: e_1_2_9_11_1 doi: 10.1111/1755-0998.12595 – ident: e_1_2_9_4_1 doi: 10.1007/978-3-0348-7527-1_10 – ident: e_1_2_9_31_1 doi: 10.1101/gr.120196.111 – ident: e_1_2_9_36_1 doi: 10.1126/science.7915048 – ident: e_1_2_9_44_1 doi: 10.1017/CBO9780511806384 – volume: 9 start-page: 398 issue: 2 year: 2017 ident: e_1_2_9_49_1 article-title: Targeted capture of complete coding regions across divergent species publication-title: Genome Biology and Evolution – ident: e_1_2_9_29_1 doi: 10.1093/bioinformatics/btp352 – ident: e_1_2_9_2_1 doi: 10.1111/j.1755-0998.2008.02387.x – ident: e_1_2_9_21_1 doi: 10.1371/journal.pone.0009419 – ident: e_1_2_9_38_1 doi: 10.1111/j.1365-294X.1994.tb00127.x – ident: e_1_2_9_28_1 doi: 10.1073/pnas.1701582114 – ident: e_1_2_9_57_1 doi: 10.1186/gb-2011-12-9-r87 – ident: e_1_2_9_47_1 doi: 10.1186/s13059-015-0776-0 – ident: e_1_2_9_61_1 doi: 10.1038/s41467-018-03722-x – ident: e_1_2_9_27_1 doi: 10.1073/pnas.0611449104 – ident: e_1_2_9_20_1 doi: 10.1111/1755-0998.12728 – ident: e_1_2_9_19_1 doi: 10.1002/jwmg.21190 – ident: e_1_2_9_30_1 doi: 10.1093/bioinformatics/btr507 – volume: 23 start-page: 609 issue: 1 year: 2002 ident: e_1_2_9_60_1 article-title: Hunting behavior of chimpanzees at Ngogo, Kibale National Park publication-title: Uganda. International Journal of Primatology – ident: e_1_2_9_17_1 doi: 10.1007/s00265-010-1038-5 – ident: e_1_2_9_10_1 doi: 10.1038/nbt.1975 – ident: e_1_2_9_14_1 doi: 10.1038/nmeth.2375 – ident: e_1_2_9_55_1 doi: 10.1111/1755-0998.12593 – ident: e_1_2_9_32_1 doi: 10.1111/1755-0998.12538 – ident: e_1_2_9_59_1 doi: 10.1111/mec.13684 – ident: e_1_2_9_35_1 doi: 10.1046/j.0962-1083.2001.01308.x – ident: e_1_2_9_46_1 doi: 10.1371/journal.pgen.1005972 – ident: e_1_2_9_5_1 doi: 10.1111/2041-210X.12353 – ident: e_1_2_9_12_1 doi: 10.1186/s12864-018-4945-x – ident: e_1_2_9_8_1 doi: 10.1111/2041-210X.12871 – ident: e_1_2_9_15_1 doi: 10.1093/molbev/msu074 – ident: e_1_2_9_37_1 doi: 10.1111/j.1365-294X.2004.02207.x – ident: e_1_2_9_58_1 doi: 10.1093/bioinformatics/btw212 – ident: e_1_2_9_40_1 doi: 10.1111/j.1365-294X.2010.04888.x – ident: e_1_2_9_50_1 doi: 10.1038/nrg3642 |
SSID | ssj0060974 |
Score | 2.3917277 |
Snippet | Large‐scale genomic studies of wild animal populations are often limited by access to high‐quality DNA. Although noninvasive samples, such as faeces, can be... Large-scale genomic studies of wild animal populations are often limited by access to high-quality DNA. Although noninvasive samples, such as faeces, can be... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 609 |
SubjectTerms | Animal populations chimpanzees conservation genomics Deoxyribonucleic acid DNA DNA sequencing faecal samples feces genomics high-throughput nucleotide sequencing Hybridization nucleic acid hybridization Pan troglodytes population genomics Populations Quality Quality assessment regression analysis target enrichment wild animals |
Title | A roadmap for high‐throughput sequencing studies of wild animal populations using noninvasive samples and hybridization capture |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1755-0998.12993 https://www.proquest.com/docview/2211539547 https://www.proquest.com/docview/2179359746 https://www.proquest.com/docview/2305164463 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS9xAFB6KIPjipbZ0vTEFH_qSJclcMnkU2WUR9KFU8C3MLVpad4PZFfRJ_4G_0V_iOckkWsGW4lsgZ5LJZM6c78x88w0h-67kRunERx7Ca8RLG0dKKh6JzKZW2LTMPG5wPj6Rk1N-dCY6NiHuhWn1IfoJN_SMZrxGB9emfuHkEPdEBPhGDSFk5aj3iYwthEXfewEpGeeNDnOwVWdB3Ae5PK_K_xmXnsHmS8jaxJzxGjFdbVuqya_hYm6G9vaVkOO7PmedrAZESg_aLrRBPvjpR7I8atSsbzbJ_QG9mml3qSsK-JaivPHj3UM43qdazGkgY0MIpHVLSqSzkkIlHNXTn5fw6Ko_JKymyLM_p1OcBL7WSJ2ntUaB4hqMHb24wQ1kYWsotbrC9Y1P5HQ8-nE4icK5DZGF-M-iTCWWx6bkjPnESGG0ZdYKB0gu5cyVzMUIw1LpS8ul4YmXkCh7rQ0zynDNPpMlqIf_Qmis00zkzgpAfdwkSsfMS2eTNIXYrpQZkGH31wobRM3xbI3fRZfcYLsW2K5F064D8q0vULV6Hm-b7nTdoAiOXRcpJMyC5YJnA_K1vw0uiesseupnC7DBQQ8TNfkXGxhnIVPlEl7T9ot_Vac4Hp00F1v_W2CbrADMy1ua5g5Zml8t_C5AqbnZa7zlCawOFgg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagCNFLW17q0lKMxIFLVkn8iHOsqq22j90DaqW9RX6FIuhu1OwilRP9B_xGfklnEm9YKgFCvUXKOHEcj-cbe-YbQt65khulEx95MK8RL20cKal4JDKbWmHTMvOY4Dway-E5P56IyUouTMsP0W24oWY06zUqOG5Ir2g5GD4RAcBRfbBZOXtIHmFd78at-tBRSMk4b5iYg7CaBHofjOa584DfLdMvuLkKWhurc7hJ7LK_bbDJ5_5ibvr22x0qx_t90BbZCKCU7rez6Cl54KfPyONBQ2h9_Zzc7NOrmXaXuqIAcSkyHP_8_iNU-KkWcxriscEK0rqNS6SzkkIvHNXTT5fw6KqrE1ZTDLX_SKe4D_xVY_Q8rTVyFNcg7OjFNeaQhexQanWFRxwvyPnh4OxgGIXSDZEFCMCiTCWWx6bkjPnESGG0ZdYKB2Au5cyVzMWIxFLpS8ul4YmX4Ct7rQ0zynDNXpI16IffJjTWaSZyZwUAP24SpWPmpbNJmoJ5V8r0SH_52wobeM2xvMaXYunf4LgWOK5FM6498r5rULWUHn8W3V3OgyLodl2k4DMLlgue9cjb7jZoJR616KmfLUAG1z301eRfZGCpBWeVS3hNOzH-1Z1iNBg3F6_-t8Eb8mR4NjotTo_GJztkHVBf3kZt7pK1-dXCvwZkNTd7jercAgOHGiM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BEYgLb8RCASNx4JJVEj_iHCu6q_LoCiEq9Rb5FUDQ3ajZRSon-Af8Rn4JM4kTSiVAiFukjJOJ4_F8Y4-_AXjsa2G1yUIS0L0monZpopUWiSxc7qTL6yLQAef9hdo7EM8P5ZBNSGdhen6IccGNLKObr8nAG1-fMnL0ezJBfKOn6LJKfh4uCJVqGti7r0cGKZWWHRFzFNaHkd2HknnOPOBXx_QTbZ7GrJ3TmV8FO6jb55p8mG7Wduo-n2Fy_K_vuQZXIiRlO_0Yug7nwvIGXJx1dNYnN-HrDjteGX9kGoYAlxG_8fcv32J9n2azZjEbG30ga_usRLaqGSrhmVm-P8JHN2OVsJZRov1btqRV4E-GcudZa4ihuEVhz96d0AmyeDaUOdPQBsctOJjP3jzdS2LhhsQhAOBJoTMnUlsLzkNmlbTGceekRyiXC-5r7lPCYbkKtRPKiiwojJSDMZZbbYXht2EL9Qh3gKUmL2TpnUTYJ2ymTcqD8i7Lc3TuWtsJTIe_VrnIak7FNT5WQ3RD_VpRv1Zdv07gydig6Qk9fi-6PQyDKlp2W-UYMUteSlFM4NF4G22SNlrMMqw2KEOzHkVq6g8yONFiqCoUvqYfF39Tp9qfLbqLu__a4CFcerU7r14-W7y4B5cR8pV9yuY2bK2PN-E-wqq1fdAZzg-4GRjb |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+roadmap+for+high%E2%80%90throughput+sequencing+studies+of+wild+animal+populations+using+noninvasive+samples+and+hybridization+capture&rft.jtitle=Molecular+ecology+resources&rft.au=White%2C+Lauren+C&rft.au=Fontsere%2C+Claudia&rft.au=Lizano%2C+Esther&rft.au=Hughes%2C+David+A&rft.date=2019-05-01&rft.issn=1755-098X&rft.volume=19&rft.issue=3+p.609-622&rft.spage=609&rft.epage=622&rft_id=info:doi/10.1111%2F1755-0998.12993&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-098X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-098X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-098X&client=summon |