Synthesis, Structure and Photophysical Properties of Silole-Oxadiazole Copolymers

A new conjugated copolymer (PTST-DyOXD) derived from 1,1-dimethyl-3,4-diphenyl-2,5-bis(5-bromo-2- thienyl)-silole (TST) and 2,5-bis(4-ethynylphenyl)-l,3,4-oxadiazole (DyOXD) was synthesized by Pd(0)-catalyzed Sonogashira coupling reaction. For comparison, another copolymer without acetenyl group (PT...

Full description

Saved in:
Bibliographic Details
Published inChinese journal of chemistry Vol. 31; no. 6; pp. 779 - 786
Main Authors Zhang, Tingting, Zhu, Chaoqiang, Ma, Yuwen, Wang, Chengyun, Shen, Yongjia
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 01.06.2013
WILEY‐VCH Verlag
Wiley
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A new conjugated copolymer (PTST-DyOXD) derived from 1,1-dimethyl-3,4-diphenyl-2,5-bis(5-bromo-2- thienyl)-silole (TST) and 2,5-bis(4-ethynylphenyl)-l,3,4-oxadiazole (DyOXD) was synthesized by Pd(0)-catalyzed Sonogashira coupling reaction. For comparison, another copolymer without acetenyl group (PTST-OXD) was also synthesized by Pd(0)-catalyzed Suzuki coupling reaction. Chemical structures and optoelectronic properties of the copolymers were characterized by IH NMR, 13C NMR, IR, UV-vis absorption, photoluminescence and cyclic voltammetry. The number-average molecular weight (Mn) is 4010 Da for PTST-DyOXD and 3890 Da for PTST-OXD, respectively. The thermogravimetric analysis (TGA) measurements show that they have good thermal stability with decomposition temperature at 312 and 318 ~C, respectively. The optical band gap is 2.21 eV for PTST-DyOXD and 2.10 eV for PTST-OXD based on the absorption onset. CV analysis revealed the LUMO level of PTST-DyOXD is -3.04 eV, lower than that of PTST-OXD (about -2.89 eV), which is attributed to the introduction of acetylene group in PTST-DyOXD, increasing the system of the conjugate chain length.
Bibliography:31-1547/O6
A new conjugated copolymer (PTST-DyOXD) derived from 1,1-dimethyl-3,4-diphenyl-2,5-bis(5-bromo-2- thienyl)-silole (TST) and 2,5-bis(4-ethynylphenyl)-l,3,4-oxadiazole (DyOXD) was synthesized by Pd(0)-catalyzed Sonogashira coupling reaction. For comparison, another copolymer without acetenyl group (PTST-OXD) was also synthesized by Pd(0)-catalyzed Suzuki coupling reaction. Chemical structures and optoelectronic properties of the copolymers were characterized by IH NMR, 13C NMR, IR, UV-vis absorption, photoluminescence and cyclic voltammetry. The number-average molecular weight (Mn) is 4010 Da for PTST-DyOXD and 3890 Da for PTST-OXD, respectively. The thermogravimetric analysis (TGA) measurements show that they have good thermal stability with decomposition temperature at 312 and 318 ~C, respectively. The optical band gap is 2.21 eV for PTST-DyOXD and 2.10 eV for PTST-OXD based on the absorption onset. CV analysis revealed the LUMO level of PTST-DyOXD is -3.04 eV, lower than that of PTST-OXD (about -2.89 eV), which is attributed to the introduction of acetylene group in PTST-DyOXD, increasing the system of the conjugate chain length.
2,5-bis(5-bromo-2-thienyl)silole, 2,5-bis(4-ethynylphenyl)-1,3,4-oxadiazole, Sonogashira reaction, Suzuki reaction, conjugated polymer
the National Natural Science Foundation of China - No. 20872035, 21076078
istex:F6CFFDA89F0EA79766891D99BB30DDCFE706FD14
ark:/67375/WNG-MMXMQBM9-X
the East China University of Science and Technology
ArticleID:CJOC201300121
ISSN:1001-604X
1614-7065
DOI:10.1002/cjoc.201300121