Cyclical hydraulic pressure pulses reduce breakdown pressure and initiate staged fracture growth in PMMA

Using unique experimental equipment on large bench-scale samples of Polymethylmethacrylate, used in the literature as an analogue for shale, we investigate the potential benefits of applying cyclical hydraulic pressure pulses to enhance the near-well connectivity through hydraulic fracturing treatme...

Full description

Saved in:
Bibliographic Details
Published inGeomechanics and geophysics for geo-energy and geo-resources. Vol. 10; no. 1; pp. 1 - 20
Main Authors Mouli-Castillo, Julien, Kendrick, Jackie E., Lightbody, Alexander, Fraser-Harris, Andrew, Edlmann, Katriona, McDermott, Christopher Ian, Shipton, Zoe Kai
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.12.2024
Springer Nature B.V
Springer
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Using unique experimental equipment on large bench-scale samples of Polymethylmethacrylate, used in the literature as an analogue for shale, we investigate the potential benefits of applying cyclical hydraulic pressure pulses to enhance the near-well connectivity through hydraulic fracturing treatment. Under unconfined and confined stresses, equivalent to a depth of up to 530 m, we use dynamic high-resolution strain measurements from fibre optic cables, complemented by optical recordings of fracture development, and investigate the impact of cyclical hydraulic pressure pulses on the number of cycles to failure in Polymethylmethacrylate at different temperatures. Our results indicate that a significant reduction in breakdown pressure can be achieved. This suggests that cyclic pressure pulses could require lower power consumption, as well as reduced fluid injection volumes and injection rates during stimulation, which could minimise the occurrence of the largest induced seismic events. Our results show that fractures develop in stages under repeated pressure cycles. This suggests that Cyclic Fluid Pressurization Systems could be effective in managing damage build-up and increasing permeability. This is achieved by forming numerous small fractures and reducing the size and occurrence of large fracturing events that produce large seismic events. Our results offer new insight into cyclical hydraulic fracturing treatments and provide a unique data set for benchmarking numerical models of fracture initiation and propagation. Article Highlights Cyclical Hydraulic Pressure Pulses (CHPP) can reduce the breakdown pressure required to fracture PMMA. CHPP have potential to reduce peak power consumption to achieve failure and increase permeability of a rock, with positive implications for geothermal applications. CHPP induced multi-staged fracture propagation, implying an enhanced ability to control damage initiation by hydraulic fracturing.
AbstractList Using unique experimental equipment on large bench-scale samples of Polymethylmethacrylate, used in the literature as an analogue for shale, we investigate the potential benefits of applying cyclical hydraulic pressure pulses to enhance the near-well connectivity through hydraulic fracturing treatment. Under unconfined and confined stresses, equivalent to a depth of up to 530 m, we use dynamic high-resolution strain measurements from fibre optic cables, complemented by optical recordings of fracture development, and investigate the impact of cyclical hydraulic pressure pulses on the number of cycles to failure in Polymethylmethacrylate at different temperatures. Our results indicate that a significant reduction in breakdown pressure can be achieved. This suggests that cyclic pressure pulses could require lower power consumption, as well as reduced fluid injection volumes and injection rates during stimulation, which could minimise the occurrence of the largest induced seismic events. Our results show that fractures develop in stages under repeated pressure cycles. This suggests that Cyclic Fluid Pressurization Systems could be effective in managing damage build-up and increasing permeability. This is achieved by forming numerous small fractures and reducing the size and occurrence of large fracturing events that produce large seismic events. Our results offer new insight into cyclical hydraulic fracturing treatments and provide a unique data set for benchmarking numerical models of fracture initiation and propagation.Article HighlightsCyclical Hydraulic Pressure Pulses (CHPP) can reduce the breakdown pressure required to fracture PMMA.CHPP have potential to reduce peak power consumption to achieve failure and increase permeability of a rock, with positive implications for geothermal applications.CHPP induced multi-staged fracture propagation, implying an enhanced ability to control damage initiation by hydraulic fracturing.
Abstract Using unique experimental equipment on large bench-scale samples of Polymethylmethacrylate, used in the literature as an analogue for shale, we investigate the potential benefits of applying cyclical hydraulic pressure pulses to enhance the near-well connectivity through hydraulic fracturing treatment. Under unconfined and confined stresses, equivalent to a depth of up to 530 m, we use dynamic high-resolution strain measurements from fibre optic cables, complemented by optical recordings of fracture development, and investigate the impact of cyclical hydraulic pressure pulses on the number of cycles to failure in Polymethylmethacrylate at different temperatures. Our results indicate that a significant reduction in breakdown pressure can be achieved. This suggests that cyclic pressure pulses could require lower power consumption, as well as reduced fluid injection volumes and injection rates during stimulation, which could minimise the occurrence of the largest induced seismic events. Our results show that fractures develop in stages under repeated pressure cycles. This suggests that Cyclic Fluid Pressurization Systems could be effective in managing damage build-up and increasing permeability. This is achieved by forming numerous small fractures and reducing the size and occurrence of large fracturing events that produce large seismic events. Our results offer new insight into cyclical hydraulic fracturing treatments and provide a unique data set for benchmarking numerical models of fracture initiation and propagation.
Abstract Using unique experimental equipment on large bench-scale samples of Polymethylmethacrylate, used in the literature as an analogue for shale, we investigate the potential benefits of applying cyclical hydraulic pressure pulses to enhance the near-well connectivity through hydraulic fracturing treatment. Under unconfined and confined stresses, equivalent to a depth of up to 530 m, we use dynamic high-resolution strain measurements from fibre optic cables, complemented by optical recordings of fracture development, and investigate the impact of cyclical hydraulic pressure pulses on the number of cycles to failure in Polymethylmethacrylate at different temperatures. Our results indicate that a significant reduction in breakdown pressure can be achieved. This suggests that cyclic pressure pulses could require lower power consumption, as well as reduced fluid injection volumes and injection rates during stimulation, which could minimise the occurrence of the largest induced seismic events. Our results show that fractures develop in stages under repeated pressure cycles. This suggests that Cyclic Fluid Pressurization Systems could be effective in managing damage build-up and increasing permeability. This is achieved by forming numerous small fractures and reducing the size and occurrence of large fracturing events that produce large seismic events. Our results offer new insight into cyclical hydraulic fracturing treatments and provide a unique data set for benchmarking numerical models of fracture initiation and propagation.
Using unique experimental equipment on large bench-scale samples of Polymethylmethacrylate, used in the literature as an analogue for shale, we investigate the potential benefits of applying cyclical hydraulic pressure pulses to enhance the near-well connectivity through hydraulic fracturing treatment. Under unconfined and confined stresses, equivalent to a depth of up to 530 m, we use dynamic high-resolution strain measurements from fibre optic cables, complemented by optical recordings of fracture development, and investigate the impact of cyclical hydraulic pressure pulses on the number of cycles to failure in Polymethylmethacrylate at different temperatures. Our results indicate that a significant reduction in breakdown pressure can be achieved. This suggests that cyclic pressure pulses could require lower power consumption, as well as reduced fluid injection volumes and injection rates during stimulation, which could minimise the occurrence of the largest induced seismic events. Our results show that fractures develop in stages under repeated pressure cycles. This suggests that Cyclic Fluid Pressurization Systems could be effective in managing damage build-up and increasing permeability. This is achieved by forming numerous small fractures and reducing the size and occurrence of large fracturing events that produce large seismic events. Our results offer new insight into cyclical hydraulic fracturing treatments and provide a unique data set for benchmarking numerical models of fracture initiation and propagation. Article Highlights Cyclical Hydraulic Pressure Pulses (CHPP) can reduce the breakdown pressure required to fracture PMMA. CHPP have potential to reduce peak power consumption to achieve failure and increase permeability of a rock, with positive implications for geothermal applications. CHPP induced multi-staged fracture propagation, implying an enhanced ability to control damage initiation by hydraulic fracturing.
ArticleNumber 65
Author Lightbody, Alexander
Fraser-Harris, Andrew
McDermott, Christopher Ian
Shipton, Zoe Kai
Mouli-Castillo, Julien
Edlmann, Katriona
Kendrick, Jackie E.
Author_xml – sequence: 1
  givenname: Julien
  orcidid: 0000-0003-0811-6780
  surname: Mouli-Castillo
  fullname: Mouli-Castillo, Julien
  email: Julien.mouli-castillo@glasgow.ac.uk
  organization: School of Earth Sciences, The University of Edinburgh, James Watt School of Engineering, The University of Glasgow
– sequence: 2
  givenname: Jackie E.
  orcidid: 0000-0001-5106-3587
  surname: Kendrick
  fullname: Kendrick, Jackie E.
  organization: School of Earth Sciences, The University of Edinburgh, Department of Earth and Environmental Science, Ludwig-Maximilians-Universtität München
– sequence: 3
  givenname: Alexander
  surname: Lightbody
  fullname: Lightbody, Alexander
  organization: School of Earth Sciences, The University of Edinburgh
– sequence: 4
  givenname: Andrew
  orcidid: 0000-0002-8917-8117
  surname: Fraser-Harris
  fullname: Fraser-Harris, Andrew
  organization: School of Earth Sciences, The University of Edinburgh
– sequence: 5
  givenname: Katriona
  orcidid: 0000-0001-5787-2502
  surname: Edlmann
  fullname: Edlmann, Katriona
  organization: School of Earth Sciences, The University of Edinburgh
– sequence: 6
  givenname: Christopher Ian
  orcidid: 0000-0001-6158-5063
  surname: McDermott
  fullname: McDermott, Christopher Ian
  email: christopher.mcdermott@ed.ac.uk
  organization: School of Earth Sciences, The University of Edinburgh
– sequence: 7
  givenname: Zoe Kai
  orcidid: 0000-0002-2268-7750
  surname: Shipton
  fullname: Shipton, Zoe Kai
  organization: Department of Civil and Environmental Engineering, University of Strathclyde
BookMark eNp9kctOwzAQRS0EElD4AVaWWAf8SmwvUcVLAsEC1tbEjzZQ4mInQuXrcQmCHauZ8dx7xtI9RLt97D1CJ5ScUULkeRZEC1URJqoycl197qADxhteKcHk7m9P9T46zrlrCaes4YKyA7Scb-yqs7DCy41LMJYer5PPeUwer8dV9hkn70brcZs8vLr40f8JoHe467uhg8HjPMDCOxwS2GG7XKT4MSzLHj_e318cob0ABXf8U2fo-eryaX5T3T1c384v7irLFRmqwFsRWimIY1IJSwKjWjuqiW4crb0Cb6UiTRBEKkpq7mgLPPhWA29raTWfoduJ6yK8mHXq3iBtTITOfD_EtDCQhs6uvJG0bpUUtBGghQ0MHKmpZA0LCqyoVWGdTqx1iu-jz4N5iWPqy_cN05ILXlMmiopNKptizsmH36uUmG1AZgrIlIDMd0Dms5j4ZMpF3C98-kP_4_oCURKVzQ
Cites_doi 10.1016/j.polymertesting.2016.12.016
10.1007/s00603-017-1337-5
10.1016/0148-9062(93)90014-5
10.1007/s12665-012-1546-x
10.1038/s41598-021-86094-5
10.1186/s40517-018-0114-3
10.1038/s41598-018-32753-z
10.1029/2005JB003815
10.1029/2020JB020044
10.1016/j.engfracmech.2018.03.009
10.1680/jgele.18.00129
10.1016/j.prostr.2018.12.303
10.1007/s10853-006-0506-9
10.1007/s00603-020-02170-8
10.1016/j.egypro.2017.03.1713
10.1016/j.ijsolstr.2010.12.001
10.1016/j.matlet.2004.07.022
10.1144/1470-9236/06-018
10.1155/2014/352676
10.1007/s13369-019-04122-z
10.1007/s13369-018-3263-6
10.1007/s13369-018-3306-z
10.1016/j.petrol.2015.01.011
10.3390/en13061411
10.1016/j.msea.2008.03.042
10.1007/s00603-018-1499-9
10.1007/s00289-020-03300-6
10.1016/j.prostr.2019.08.079
10.5301/JABB.2011.8917
10.1007/s00603-018-1467-4
10.1117/12.734931
10.1002/nme.2579
10.2118/189901-ms
10.1002/adv.22146
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7TN
F1W
H96
L.G
DOA
DOI 10.1007/s40948-024-00739-z
DatabaseName SpringerOpen
CrossRef
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 2363-8427
EndPage 20
ExternalDocumentID oai_doaj_org_article_715b874164a94cf2ad0517262f8ac458
10_1007_s40948_024_00739_z
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council
  grantid: EP/S005560/1
  funderid: http://dx.doi.org/10.13039/501100000266
GroupedDBID -EM
203
AAFGU
AAHNG
AAIAL
AAJSJ
AAKKN
AANZL
AARHV
AARTL
AASML
AATVU
AAUYE
AAYQN
AAYZJ
ABDZT
ABECU
ABEEZ
ABFGW
ABFTV
ABJNI
ABJOX
ABKAS
ABKCH
ABMQK
ABQBU
ABTMW
ABXPI
ACACY
ACBMV
ACBRV
ACBYP
ACGFS
ACIGE
ACIPQ
ACIWK
ACMLO
ACOKC
ACTTH
ACULB
ACVWB
ACWMK
ACZOJ
ADHHG
ADINQ
ADKNI
ADMDM
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEFTE
AEJRE
AEOHA
AEPYU
AESTI
AEVTX
AEXYK
AFBBN
AFGXO
AFNRJ
AFQWF
AGAYW
AGDGC
AGGBP
AGMZJ
AGQMX
AHBYD
AHKAY
AHSBF
AIAKS
AILAN
AIMYW
AITGF
AJDOV
AJRNO
AJZVZ
AKQUC
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ASPBG
AUKKA
AVWKF
AVXWI
AXYYD
BGNMA
C6C
DNIVK
EBLON
EBS
EIOEI
EJD
FERAY
FINBP
FNLPD
FSGXE
GGCAI
GJIRD
GROUPED_DOAJ
IKXTQ
IWAJR
J-C
JZLTJ
KOV
M4Y
NQJWS
NU0
O9J
RLLFE
RSV
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
Z5O
0R~
AAYXX
C24
CITATION
ZMTXR
7TN
F1W
H96
L.G
ID FETCH-LOGICAL-c380t-f3b4fb740d2784c0f2199d19096d15e8aec7806f40781053d1ba3feb9a3b57c93
IEDL.DBID DOA
ISSN 2363-8419
IngestDate Tue Oct 22 15:16:33 EDT 2024
Thu Oct 10 17:36:35 EDT 2024
Thu Sep 12 17:53:58 EDT 2024
Sat Mar 23 01:27:41 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Keywords Pulsed pumping
Geo-energy
Geothermal
Breakdown pressure
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c380t-f3b4fb740d2784c0f2199d19096d15e8aec7806f40781053d1ba3feb9a3b57c93
ORCID 0000-0002-8917-8117
0000-0002-2268-7750
0000-0001-5106-3587
0000-0001-6158-5063
0000-0003-0811-6780
0000-0001-5787-2502
OpenAccessLink https://doaj.org/article/715b874164a94cf2ad0517262f8ac458
PQID 2973435124
PQPubID 2044450
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_715b874164a94cf2ad0517262f8ac458
proquest_journals_2973435124
crossref_primary_10_1007_s40948_024_00739_z
springer_journals_10_1007_s40948_024_00739_z
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Geomechanics and geophysics for geo-energy and geo-resources.
PublicationTitleAbbrev Geomech. Geophys. Geo-energ. Geo-resour
PublicationYear 2024
Publisher Springer International Publishing
Springer Nature B.V
Springer
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: Springer
References CR19
Zimmermann, Zang, Stephansson, Klee, Semiková (CR43) 2019; 52
Ibanez, Kronenberg (CR20) 1993; 30
CR16
CR38
CR15
Carnelli, Villa, Gastaldi, Pennati (CR3) 2011; 9
Liu, Gao, Yue (CR24) 2008; 492
Molina, Vilarrasa, Zeidouni (CR29) 2017; 114
CR13
Cheng, Zhang (CR5) 2020
CR12
CR11
Okeke, Thite, Durodola, Greenrod (CR31) 2019; 17
CR33
Abdel-Wahab, Ataya, Silberschmidt (CR1) 2017; 58
Roshankhah, Marshall, Tengattini, Ando, Rubino, Rosakis, Viggiani, Andrade (CR32) 2018; 8
Cerfontaine, Collin (CR4) 2018; 51
Guo, Yang, Wang, Xu (CR14) 2018; 43
Cobbing, Dochartaigh (CR6) 2007; 40
Fraser-Harris, McDermott, Couples, Edlmann, Lightbody, Cartwright-Taylor, Kendrick, Brondolo, Fazio, Sauter (CR8) 2020; 125
Zhuang, Jung, Diaz, Kim, Hofmann, Min, Zang, Stephansson, Zimmermann, Yoon (CR42) 2020
Lee, Jeon (CR23) 2011; 48
Mohammad, Zhang, Al Qadasi (CR28) 2018; 43
Kolditz, Bauer, Bilke, Böttcher, Delfs, Fischer, Görke, Kalbacher, Kosakowski, McDermott, Park, Radu, Rink, Shao, Shao, Sun, Sun, Singh, Taron, Walther, Wang, Watanabe, Wu, Xie, Xu, Zehner (CR22) 2012; 67
Okeke, Thite, Durodola, Greenrod (CR30) 2018; 13
Wu, Germanovich, Van Dyke, Lowell (CR37) 2007
Huang, Yao, Chen (CR18) 2014
Khadraoui, Hachemi, Allal, Rabiei, Arabi, Khodja, Lebouachera, Drouiche (CR21) 2020
Zang, Zimmermann, Hofmann, Stephansson, Min, Kim (CR39) 2019; 52
Zang, Zimmermann, Hofmann, Niemz, Kim, Diaz, Zhuang, Yoon (CR40) 2021; 11
CR9
CR27
Hofmann, Zimmermann, Zang, Min (CR17) 2018
Gan, Elsworth, Alpern, Marone, Connolly (CR10) 2015; 127
Wu, Ma, Xia (CR36) 2004; 58
CR41
(CR7) 1987
McDermott, Fraser-Harris, Sauter, Couples, Edlmann, Kolditz, Lightbody, Somerville, Wang (CR26) 2018; 8
Wanniarachchi, Ranjith, Perera, Rathnaweera, Zhang, Zhang (CR35) 2018; 194
Swallowe, Lee (CR34) 2006; 41
Bradski (CR2) 2000; 25
Liu, Lu, Sun, Tang, Shao, Weng (CR25) 2019; 44
739_CR9
GM Swallowe (739_CR34) 2006; 41
Y Guo (739_CR14) 2018; 43
W Liu (739_CR24) 2008; 492
739_CR27
WAM Wanniarachchi (739_CR35) 2018; 194
Cobbing (739_CR6) 2007; 40
AP Fraser-Harris (739_CR8) 2020; 125
739_CR41
H Hofmann (739_CR17) 2018
WD Ibanez (739_CR20) 1993; 30
A Huang (739_CR18) 2014
H Lee (739_CR23) 2011; 48
O Molina (739_CR29) 2017; 114
B Cerfontaine (739_CR4) 2018; 51
A Zang (739_CR40) 2021; 11
CI McDermott (739_CR26) 2018; 8
O Kolditz (739_CR22) 2012; 67
739_CR19
Y Cheng (739_CR5) 2020
R Mohammad (739_CR28) 2018; 43
Editorial Committee of Fatigue and Fracture Atlas of PMMA (739_CR7) 1987
739_CR15
S Roshankhah (739_CR32) 2018; 8
L Zhuang (739_CR42) 2020
G Zimmermann (739_CR43) 2019; 52
Z Liu (739_CR25) 2019; 44
739_CR16
739_CR38
739_CR11
S Khadraoui (739_CR21) 2020
739_CR33
CP Okeke (739_CR31) 2019; 17
739_CR13
Q Gan (739_CR10) 2015; 127
739_CR12
G Bradski (739_CR2) 2000; 25
AA Abdel-Wahab (739_CR1) 2017; 58
R Wu (739_CR37) 2007
CP Okeke (739_CR30) 2018; 13
H Wu (739_CR36) 2004; 58
D Carnelli (739_CR3) 2011; 9
A Zang (739_CR39) 2019; 52
References_xml – volume: 58
  start-page: 86
  year: 2017
  end-page: 95
  ident: CR1
  article-title: Temperature-dependent mechanical behaviour of PMMA: Experimental analysis and modelling
  publication-title: Polym Testing
  doi: 10.1016/j.polymertesting.2016.12.016
  contributor:
    fullname: Silberschmidt
– volume: 51
  start-page: 391
  issue: 2
  year: 2018
  end-page: 414
  ident: CR4
  article-title: Cyclic and fatigue behaviour of rock materials: review, interpretation and research perspectives
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-017-1337-5
  contributor:
    fullname: Collin
– volume: 30
  start-page: 723
  issue: 7
  year: 1993
  end-page: 734
  ident: CR20
  article-title: Experimental deformation of shale: mechanical properties and microstructural indicators of mechanisms
  publication-title: Int J Rock Mech Min Sci Geomech Abstr
  doi: 10.1016/0148-9062(93)90014-5
  contributor:
    fullname: Kronenberg
– volume: 67
  start-page: 589
  issue: 2
  year: 2012
  end-page: 599
  ident: CR22
  article-title: ‘OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-012-1546-x
  contributor:
    fullname: Zehner
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  end-page: 16
  ident: CR40
  article-title: Relaxation damage control via fatigue-hydraulic fracturing in granitic rock as inferred from laboratory-, mine-, and field-scale experiments
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-86094-5
  contributor:
    fullname: Yoon
– year: 2018
  ident: CR17
  article-title: Cyclic soft stimulation (CSS): a new fluid injection protocol and traffic light system to mitigate seismic risks of hydraulic stimulation treatments
  publication-title: Geotherm Energy
  doi: 10.1186/s40517-018-0114-3
  contributor:
    fullname: Min
– ident: CR16
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  end-page: 12
  ident: CR26
  article-title: New experimental equipment recreating geo-reservoir conditions in large, fractured, porous samples to investigate coupled thermal, hydraulic and polyaxial stress processes
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-32753-z
  contributor:
    fullname: Wang
– year: 2007
  ident: CR37
  article-title: Thermal technique for controlling hydraulic fractures
  publication-title: J Geophys Res Solid Earth
  doi: 10.1029/2005JB003815
  contributor:
    fullname: Lowell
– ident: CR12
– volume: 125
  start-page: 1
  issue: 12
  year: 2020
  end-page: 30
  ident: CR8
  article-title: Experimental investigation of hydraulic fracturing and stress sensitivity of fracture permeability under changing polyaxial stress conditions
  publication-title: J Geophys Res Solid Earth
  doi: 10.1029/2020JB020044
  contributor:
    fullname: Sauter
– volume: 194
  start-page: 117
  issue: December 2017
  year: 2018
  end-page: 135
  ident: CR35
  article-title: Investigation of effects of fracturing fluid on hydraulic fracturing and fracture permeability of reservoir rocks: an experimental study using water and foam fracturing
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2018.03.009
  contributor:
    fullname: Zhang
– volume: 8
  start-page: 316
  issue: 4
  year: 2018
  end-page: 323
  ident: CR32
  article-title: Neutron imaging: a new possibility for laboratory observation of hydraulic fractures in shale?
  publication-title: Geotech Lett
  doi: 10.1680/jgele.18.00129
  contributor:
    fullname: Andrade
– ident: CR33
– volume: 13
  start-page: 1470
  year: 2018
  end-page: 1475
  ident: CR30
  article-title: A novel test rig for measuring bending fatigue using resonant behaviour
  publication-title: Procedia Struct Integr
  doi: 10.1016/j.prostr.2018.12.303
  contributor:
    fullname: Greenrod
– volume: 41
  start-page: 6280
  issue: 19
  year: 2006
  end-page: 6289
  ident: CR34
  article-title: Quasi-static and dynamic compressive behaviour of poly(methyl methacrylate) and polystyrene at temperatures from 293 K to 363 K
  publication-title: J Mater Sci
  doi: 10.1007/s10853-006-0506-9
  contributor:
    fullname: Lee
– year: 2020
  ident: CR42
  article-title: Laboratory true triaxial hydraulic fracturing of granite under six fluid injection schemes and grain-scale fracture observations
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-020-02170-8
  contributor:
    fullname: Yoon
– year: 1987
  ident: CR7
  publication-title: Fatigue and fracture atlas of PMMA
– volume: 114
  start-page: 5748
  year: 2017
  end-page: 5760
  ident: CR29
  article-title: Geologic carbon storage for shale gas recovery
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.03.1713
  contributor:
    fullname: Zeidouni
– volume: 48
  start-page: 979
  issue: 6
  year: 2011
  end-page: 999
  ident: CR23
  article-title: An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2010.12.001
  contributor:
    fullname: Jeon
– ident: CR27
– volume: 58
  start-page: 3681
  issue: 29
  year: 2004
  end-page: 3685
  ident: CR36
  article-title: Experimental study of tensile properties of PMMA at intermediate strain rate
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2004.07.022
  contributor:
    fullname: Xia
– volume: 40
  start-page: 181
  issue: 2
  year: 2007
  ident: CR6
  article-title: Hydrofracturing water boreholes in hard rock aquifers in Scotland
  publication-title: Q J Eng Geol Hydrogeol
  doi: 10.1144/1470-9236/06-018
  contributor:
    fullname: Dochartaigh
– year: 2014
  ident: CR18
  article-title: Analysis of fatigue life of PMMA at different frequencies based on a new damage mechanics model
  publication-title: Math Probl Eng
  doi: 10.1155/2014/352676
  contributor:
    fullname: Chen
– volume: 44
  start-page: 10481
  issue: 22
  year: 2019
  end-page: 10501
  ident: CR25
  article-title: Investigation of the influence of natural cavities on hydraulic fracturing using phase field method
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-019-04122-z
  contributor:
    fullname: Weng
– volume: 43
  start-page: 6493
  issue: 11
  year: 2018
  end-page: 6508
  ident: CR14
  article-title: Study on the influence of bedding density on hydraulic fracturing in shale
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-018-3263-6
  contributor:
    fullname: Xu
– ident: CR19
– volume: 43
  start-page: 6567
  issue: 11
  year: 2018
  end-page: 6577
  ident: CR28
  article-title: Investigation of cyclic CO injection process with nanopore confinement and complex fracturing geometry in tight oil reservoirs
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-018-3306-z
  contributor:
    fullname: Al Qadasi
– ident: CR15
– ident: CR38
– volume: 127
  start-page: 329
  year: 2015
  end-page: 337
  ident: CR10
  article-title: Breakdown pressures due to infiltration and exclusion in finite length boreholes
  publication-title: J Petrol Sci Eng
  doi: 10.1016/j.petrol.2015.01.011
  contributor:
    fullname: Connolly
– year: 2020
  ident: CR5
  article-title: Experimental study of fracture propagation: the application in energy mining
  publication-title: Energies
  doi: 10.3390/en13061411
  contributor:
    fullname: Zhang
– volume: 492
  start-page: 102
  issue: 1–2
  year: 2008
  end-page: 109
  ident: CR24
  article-title: Steady ratcheting strains accumulation in varying temperature fatigue tests of PMMA
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2008.03.042
  contributor:
    fullname: Yue
– ident: CR13
– ident: CR11
– volume: 25
  start-page: 120
  year: 2000
  end-page: 123
  ident: CR2
  article-title: The OpenCV library
  publication-title: Dr. Dobb’s J Softw Tools
  contributor:
    fullname: Bradski
– ident: CR9
– volume: 52
  start-page: 495
  issue: 2
  year: 2019
  end-page: 515
  ident: CR43
  article-title: Permeability enhancement and fracture development of hydraulic in situ experiments in the Äspö Hard Rock Laboratory, Sweden
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-018-1499-9
  contributor:
    fullname: Semiková
– year: 2020
  ident: CR21
  article-title: Numerical and experimental investigation of hydraulic fracture using the synthesized PMMA
  publication-title: Polym Bull
  doi: 10.1007/s00289-020-03300-6
  contributor:
    fullname: Drouiche
– volume: 17
  start-page: 589
  year: 2019
  end-page: 595
  ident: CR31
  article-title: Fatigue life prediction of Polymethyl methacrylate (PMMA) polymer under random vibration loading
  publication-title: Procedia Struct Integr
  doi: 10.1016/j.prostr.2019.08.079
  contributor:
    fullname: Greenrod
– volume: 9
  start-page: 185
  issue: 3
  year: 2011
  end-page: 192
  ident: CR3
  article-title: Predicting fatigue life of a PMMA based knee spacer using a multiaxial fatigue criterion
  publication-title: J Appl Biomater Biomech
  doi: 10.5301/JABB.2011.8917
  contributor:
    fullname: Pennati
– ident: CR41
– volume: 52
  start-page: 475
  issue: 2
  year: 2019
  end-page: 493
  ident: CR39
  article-title: How to reduce fluid-injection-induced seismicity
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-018-1467-4
  contributor:
    fullname: Kim
– volume: 9
  start-page: 185
  issue: 3
  year: 2011
  ident: 739_CR3
  publication-title: J Appl Biomater Biomech
  doi: 10.5301/JABB.2011.8917
  contributor:
    fullname: D Carnelli
– year: 2018
  ident: 739_CR17
  publication-title: Geotherm Energy
  doi: 10.1186/s40517-018-0114-3
  contributor:
    fullname: H Hofmann
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: 739_CR40
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-86094-5
  contributor:
    fullname: A Zang
– volume-title: Fatigue and fracture atlas of PMMA
  year: 1987
  ident: 739_CR7
  contributor:
    fullname: Editorial Committee of Fatigue and Fracture Atlas of PMMA
– volume: 17
  start-page: 589
  year: 2019
  ident: 739_CR31
  publication-title: Procedia Struct Integr
  doi: 10.1016/j.prostr.2019.08.079
  contributor:
    fullname: CP Okeke
– volume: 8
  start-page: 316
  issue: 4
  year: 2018
  ident: 739_CR32
  publication-title: Geotech Lett
  doi: 10.1680/jgele.18.00129
  contributor:
    fullname: S Roshankhah
– ident: 739_CR38
– volume: 492
  start-page: 102
  issue: 1–2
  year: 2008
  ident: 739_CR24
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2008.03.042
  contributor:
    fullname: W Liu
– ident: 739_CR13
– volume: 25
  start-page: 120
  year: 2000
  ident: 739_CR2
  publication-title: Dr. Dobb’s J Softw Tools
  contributor:
    fullname: G Bradski
– volume: 40
  start-page: 181
  issue: 2
  year: 2007
  ident: 739_CR6
  publication-title: Q J Eng Geol Hydrogeol
  doi: 10.1144/1470-9236/06-018
  contributor:
    fullname: Cobbing
– ident: 739_CR19
  doi: 10.1117/12.734931
– ident: 739_CR15
– volume: 51
  start-page: 391
  issue: 2
  year: 2018
  ident: 739_CR4
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-017-1337-5
  contributor:
    fullname: B Cerfontaine
– ident: 739_CR12
  doi: 10.1002/nme.2579
– volume: 43
  start-page: 6567
  issue: 11
  year: 2018
  ident: 739_CR28
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-018-3306-z
  contributor:
    fullname: R Mohammad
– volume: 41
  start-page: 6280
  issue: 19
  year: 2006
  ident: 739_CR34
  publication-title: J Mater Sci
  doi: 10.1007/s10853-006-0506-9
  contributor:
    fullname: GM Swallowe
– year: 2007
  ident: 739_CR37
  publication-title: J Geophys Res Solid Earth
  doi: 10.1029/2005JB003815
  contributor:
    fullname: R Wu
– year: 2020
  ident: 739_CR5
  publication-title: Energies
  doi: 10.3390/en13061411
  contributor:
    fullname: Y Cheng
– volume: 194
  start-page: 117
  issue: December 2017
  year: 2018
  ident: 739_CR35
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2018.03.009
  contributor:
    fullname: WAM Wanniarachchi
– volume: 58
  start-page: 3681
  issue: 29
  year: 2004
  ident: 739_CR36
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2004.07.022
  contributor:
    fullname: H Wu
– volume: 114
  start-page: 5748
  year: 2017
  ident: 739_CR29
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.03.1713
  contributor:
    fullname: O Molina
– volume: 125
  start-page: 1
  issue: 12
  year: 2020
  ident: 739_CR8
  publication-title: J Geophys Res Solid Earth
  doi: 10.1029/2020JB020044
  contributor:
    fullname: AP Fraser-Harris
– ident: 739_CR16
– ident: 739_CR41
– volume: 52
  start-page: 475
  issue: 2
  year: 2019
  ident: 739_CR39
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-018-1467-4
  contributor:
    fullname: A Zang
– volume: 127
  start-page: 329
  year: 2015
  ident: 739_CR10
  publication-title: J Petrol Sci Eng
  doi: 10.1016/j.petrol.2015.01.011
  contributor:
    fullname: Q Gan
– ident: 739_CR27
  doi: 10.2118/189901-ms
– year: 2020
  ident: 739_CR21
  publication-title: Polym Bull
  doi: 10.1007/s00289-020-03300-6
  contributor:
    fullname: S Khadraoui
– volume: 44
  start-page: 10481
  issue: 22
  year: 2019
  ident: 739_CR25
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-019-04122-z
  contributor:
    fullname: Z Liu
– volume: 30
  start-page: 723
  issue: 7
  year: 1993
  ident: 739_CR20
  publication-title: Int J Rock Mech Min Sci Geomech Abstr
  doi: 10.1016/0148-9062(93)90014-5
  contributor:
    fullname: WD Ibanez
– volume: 67
  start-page: 589
  issue: 2
  year: 2012
  ident: 739_CR22
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-012-1546-x
  contributor:
    fullname: O Kolditz
– ident: 739_CR33
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  ident: 739_CR26
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-32753-z
  contributor:
    fullname: CI McDermott
– ident: 739_CR11
  doi: 10.1002/adv.22146
– year: 2020
  ident: 739_CR42
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-020-02170-8
  contributor:
    fullname: L Zhuang
– year: 2014
  ident: 739_CR18
  publication-title: Math Probl Eng
  doi: 10.1155/2014/352676
  contributor:
    fullname: A Huang
– volume: 48
  start-page: 979
  issue: 6
  year: 2011
  ident: 739_CR23
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2010.12.001
  contributor:
    fullname: H Lee
– volume: 13
  start-page: 1470
  year: 2018
  ident: 739_CR30
  publication-title: Procedia Struct Integr
  doi: 10.1016/j.prostr.2018.12.303
  contributor:
    fullname: CP Okeke
– ident: 739_CR9
– volume: 43
  start-page: 6493
  issue: 11
  year: 2018
  ident: 739_CR14
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-018-3263-6
  contributor:
    fullname: Y Guo
– volume: 52
  start-page: 495
  issue: 2
  year: 2019
  ident: 739_CR43
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-018-1499-9
  contributor:
    fullname: G Zimmermann
– volume: 58
  start-page: 86
  year: 2017
  ident: 739_CR1
  publication-title: Polym Testing
  doi: 10.1016/j.polymertesting.2016.12.016
  contributor:
    fullname: AA Abdel-Wahab
SSID ssib031263412
ssj0002147068
ssib053829962
ssib054421723
Score 2.3357563
Snippet Using unique experimental equipment on large bench-scale samples of Polymethylmethacrylate, used in the literature as an analogue for shale, we investigate the...
Abstract Using unique experimental equipment on large bench-scale samples of Polymethylmethacrylate, used in the literature as an analogue for shale, we...
Abstract Using unique experimental equipment on large bench-scale samples of Polymethylmethacrylate, used in the literature as an analogue for shale, we...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Publisher
StartPage 1
SubjectTerms Breakdown
Breakdown pressure
Cables
Crack initiation
Crack propagation
Earthquake damage
Earthquakes
Energy
Engineering
Environmental Science and Engineering
Fluid injection
Foundations
Fracture mechanics
Geo-energy
Geoengineering
Geophysics/Geodesy
Geotechnical Engineering & Applied Earth Sciences
Geothermal
Hydraulic fracturing
Hydraulic pressure
Hydraulics
Injection
Mathematical models
Numerical models
Optical fibres
Original Article
Permeability
Polymethyl methacrylate
Power consumption
Pressure
Pressure pulses
Pulsed pumping
Sedimentary rocks
Seismic activity
Shale
System effectiveness
Temperature effects
SummonAdditionalLinks – databaseName: SpringerOpen
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB1REFI5IAqt2EIrH3prLSWxk9hHugIhpK16KBI3y5-7VasFZXcP8OuZMdlNqcqhtyi2lGg89rzxzLwB-JSU1U0Iikedb6uc5qouIldlG6R1RHhEBc6Tb83ltby6qW-GOu6c7L6OSOaDelPrRo6I4mhSeI4u8YdXsEPggdR6PFCOi7JqhBxsNm5oPHEHTrxaSurJJDYXMdSop8glcxXFNJUsdV9c8-_PPjNgmef_GTj9K56azdTFAez3-JKdPSnEG9iK80PY-4N18BB2c9anXxzBbHzv6dLuN5vdh86u8JnlxNhVF9ndCq3mgnXE7RoZes72V0CXfZhg54H9pNwjhKsMQeY0Bpao6IoGp-jeL2c4zr5PJmdv4fri_Mf4kvetF7gXqljyJJxMrpVFoMCkLxIebDogeMCFLeuobPStKppEUUBEaCKUzooUnbbC1a3X4h1sz2_n8RhY4UuZrE5aFVEq3VjvNLHmtaqWZQxhBJ_X8jR3TwwbZsOlnKVvUPomS988jOAriXwzk9ix84vbbmr6zWbasnaKoKa0WvpU2UBMZFVToWZ6WasRnK4XzPRbdmGoiRdiR8Q7I_iyXsRh-OVfev9_00_gdUXqlFNiTmF72a3iBwQ2S_cxK_IjPFDpjA
  priority: 102
  providerName: Springer Nature
Title Cyclical hydraulic pressure pulses reduce breakdown pressure and initiate staged fracture growth in PMMA
URI https://link.springer.com/article/10.1007/s40948-024-00739-z
https://www.proquest.com/docview/2973435124
https://doaj.org/article/715b874164a94cf2ad0517262f8ac458
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZpQqGX0ifdNl106K0VtSzJlo7bpSEsbAgkgdyEntnSsgn7OCS_vjOydzcphFx6McYS2B6NPd9oZr4h5EvWzjQxapZM2a3yhmlVJaZ5G6XzSHiEBc7Tk-b4Qk4u1eW9Vl-YE9bRA3eC-95y5TXCBumMDLl2EVml6qaGuwSpujJfru45U6BJgteNkDvDDV81_HZ3xHhKSmzMJLa7Mditpyp1czUGNrXkpq-wKXV26ARpBuaMlcgWu3tgxQrZ_wOE-k9Qtdiqo1fkZQ8y6ah7uddkL83fkOcl2TMs35LZ-DbgXt0fOruNC7eGc1ryYdeLRG_WYCyXdIGUromCw-x-R_DUdxPcPNJfmHIEKJUCtrxKkWastcLBK_DqVzMYp6fT6egduTj6eT4-Zn3HBRaErlYsCy-zb2UVMR4Zqgz_MxMBM8B6cpW0S6HVVZMx-AfATETuncjJGye8aoMR78n-_HqePhBaBS6zM9noKkltGhe8QbK8VivJU4wD8nUjQXvTEWvYLYVykbcFedsib3s3ID9QyNuZSIpdLoCq2F5V7FOqMiCHmyWy_Ze6tNi7CyAjwJwB-bZZtt3w44_08X880ifyoka1Kvkxh2R_tVinz4ByVn5IDkajydlkSJ6Na4nHZjwsSv4XWl_y1g
link.rule.ids 315,786,790,870,2115,27955,27956,41152,41153,42221,42222,51609,52266
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dTxQxEJ8gxKgPBFHjKWAfeMPG3W13t33Ei-RAjvgACW9NPzmjOcl9PMBf70zZuwOiD7xttk12M512fjPT-Q3AflJWNyEoHnWOVjnNVV1Erso2SOuI8IgKnIdnzeBCnlzWlx1NDtXCPMrff5mS_6E4WhKek0r89hlsUNiCuhX0m_5Cd0RZNUKuTDXuYzxoV1R4tZTUikks4y_Un6fIlXIVpTKVLHVXU_Pvzz6wW5ne_wEmfZRGzdbpaAs2O1jJDu_04DWsxfE2vLpHNrgNz_NlTz99A6P-jadY3W82ugkTO8dnlu_DzieRXc_RWE7ZhChdI0OH2f4K6KmvJthxYD_pyhGiVIbY8ioGlqjWigav0KufjXCc_RgOD9_CxdG38_6Adx0XuBeqmPEknEyulUWgfKQvEp5nOiBmwPUs66hs9K0qmkTJPwRmIpTOihSdtsLVrdfiHayP_4zje2CFL2WyOmlVRKl0Y73TRJbXqlqWMYQeHCzkaa7viDXMkkI5S9-g9E2WvrntwVcS-XImkWLnF6grpttjpi1rpwhhSqulT5UNREBWNRUqpJe16sHOYsFMt1Onhnp3IWREmNODz4tFXA3__5c-PG36J3gxOB-emtPjs-8f4WVFqpVvxezA-mwyj7uIbWZuLyv1X_oR6Pw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagCASHCgqIhRZ84AZWk9hJ7GO7sCqPrXqgUm-Wn7sIlK6y2UP765nxZjctgkNvUWwp0Xjs-cYz8w0h76M0qvJesqDSbZVVTJZZYDKvvTAWCY-wwHl6Wp2ci68X5cWNKv6U7b4JSa5rGpClqekOFz4ebgvf0CuRDOwLS6Emdn2fPBAAbrCHwXjgH-d5UXExGHDY3XD8DgR5pRDYoIlvb2Wwa0-W6ucKDHBKkau-0ubfn71lzRLp_y2k-ldwNdmsyVOy24NNerTWjmfkXmj2yJMbFIR75GFKAXXL52Q-vnJ4g_ebzq98a1bwTFOW7KoNdLECE7qkLRK9BgputPnlwX8fJpjG05-YiATYlQLinAVPI1Zg4eAMfP1uDuP0bDo9ekHOJ59_jE9Y34eBOS6zjkVuRbS1yDxGKV0W4ZRTHpAErHJeBmmCq2VWRQwJAlzjPreGx2CV4basneIvyU5z2YRXhGYuF9GoqGQWhFSVcVYhhV4tS5EH70fkw0aeerGm29BbYuUkfQ3S10n6-npEjlHk25lIlZ1eXLYz3e88XeellYg7hVHCxcJ4pCUrqgLU1IlSjsj-ZsF0v3-XGjt6AZAE8DMiHzeLOAz__5de3236O_Lo7NNEf_9y-u0NeVygZqVUmX2y07WrcACAp7Nvk07_AbcV8SU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cyclical+hydraulic+pressure+pulses+reduce+breakdown+pressure+and+initiate+staged+fracture+growth+in+PMMA&rft.jtitle=Geomechanics+and+geophysics+for+geo-energy+and+geo-resources.&rft.au=Julien+Mouli-Castillo&rft.au=Jackie+E.+Kendrick&rft.au=Alexander+Lightbody&rft.au=Andrew+Fraser-Harris&rft.date=2024-12-01&rft.pub=Springer&rft.issn=2363-8419&rft.eissn=2363-8427&rft.volume=10&rft.issue=1&rft.spage=1&rft.epage=20&rft_id=info:doi/10.1007%2Fs40948-024-00739-z&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_715b874164a94cf2ad0517262f8ac458
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2363-8419&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2363-8419&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2363-8419&client=summon