WRKY transcription factors in plant defense
WRKY transcription factors (TFs) are transcriptional regulators in plants and have a conserved WRKY motif and various zinc-finger structures.WRKY TFs may integrate signals of pathogen-associated molecular pattern-triggered immunity and effector-triggered immunity.WRKY genes modulate transcription in...
Saved in:
Published in | Trends in genetics Vol. 39; no. 10; pp. 787 - 801 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0168-9525 |
DOI | 10.1016/j.tig.2023.07.001 |
Cover
Loading…
Abstract | WRKY transcription factors (TFs) are transcriptional regulators in plants and have a conserved WRKY motif and various zinc-finger structures.WRKY TFs may integrate signals of pathogen-associated molecular pattern-triggered immunity and effector-triggered immunity.WRKY genes modulate transcription in plant defense responses against environmental stressors like reactive oxygen species burst, Ca2+ influx, mitogen-activated protein kinase activation, phytohormone production, and epigenetic modification.WRKYs may function as master regulators to balance plant growth and stress response.WRKYs could aid the generation of stress-resilient crops by modern molecular breeding for better crop productivity in the face of climate change.
Environmental stressors caused by climate change are fundamental barriers to agricultural sustainability. Enhancing the stress resilience of crops is a key strategy in achieving global food security. Plants perceive adverse environmental conditions and initiate signaling pathways to activate precise responses that contribute to their survival. WRKY transcription factors (TFs) are essential players in several signaling cascades and regulatory networks that have crucial implications for defense responses in plants. This review summarizes advances in research concerning how WRKY TFs mediate various signaling cascades and metabolic adjustments as well as how epigenetic modifications involved in environmental stress responses in plants can modulate WRKYs and/or their downstream genes. Emerging research shows that clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas)-mediated genome editing of WRKYs could be used to improve crop resilience.
Environmental stressors caused by climate change are fundamental barriers to agricultural sustainability. Enhancing the stress resilience of crops is a key strategy in achieving global food security. Plants perceive adverse environmental conditions and initiate signaling pathways to activate precise responses that contribute to their survival. WRKY transcription factors (TFs) are essential players in several signaling cascades and regulatory networks that have crucial implications for defense responses in plants. This review summarizes advances in research concerning how WRKY TFs mediate various signaling cascades and metabolic adjustments as well as how epigenetic modifications involved in environmental stress responses in plants can modulate WRKYs and/or their downstream genes. Emerging research shows that clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas)-mediated genome editing of WRKYs could be used to improve crop resilience. |
---|---|
AbstractList | WRKY transcription factors (TFs) are transcriptional regulators in plants and have a conserved WRKY motif and various zinc-finger structures.WRKY TFs may integrate signals of pathogen-associated molecular pattern-triggered immunity and effector-triggered immunity.WRKY genes modulate transcription in plant defense responses against environmental stressors like reactive oxygen species burst, Ca2+ influx, mitogen-activated protein kinase activation, phytohormone production, and epigenetic modification.WRKYs may function as master regulators to balance plant growth and stress response.WRKYs could aid the generation of stress-resilient crops by modern molecular breeding for better crop productivity in the face of climate change.
Environmental stressors caused by climate change are fundamental barriers to agricultural sustainability. Enhancing the stress resilience of crops is a key strategy in achieving global food security. Plants perceive adverse environmental conditions and initiate signaling pathways to activate precise responses that contribute to their survival. WRKY transcription factors (TFs) are essential players in several signaling cascades and regulatory networks that have crucial implications for defense responses in plants. This review summarizes advances in research concerning how WRKY TFs mediate various signaling cascades and metabolic adjustments as well as how epigenetic modifications involved in environmental stress responses in plants can modulate WRKYs and/or their downstream genes. Emerging research shows that clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas)-mediated genome editing of WRKYs could be used to improve crop resilience.
Environmental stressors caused by climate change are fundamental barriers to agricultural sustainability. Enhancing the stress resilience of crops is a key strategy in achieving global food security. Plants perceive adverse environmental conditions and initiate signaling pathways to activate precise responses that contribute to their survival. WRKY transcription factors (TFs) are essential players in several signaling cascades and regulatory networks that have crucial implications for defense responses in plants. This review summarizes advances in research concerning how WRKY TFs mediate various signaling cascades and metabolic adjustments as well as how epigenetic modifications involved in environmental stress responses in plants can modulate WRKYs and/or their downstream genes. Emerging research shows that clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas)-mediated genome editing of WRKYs could be used to improve crop resilience. Environmental stressors caused by climate change are fundamental barriers to agricultural sustainability. Enhancing the stress resilience of crops is a key strategy in achieving global food security. Plants perceive adverse environmental conditions and initiate signaling pathways to activate precise responses that contribute to their survival. WRKY transcription factors (TFs) are essential players in several signaling cascades and regulatory networks that have crucial implications for defense responses in plants. This review summarizes advances in research concerning how WRKY TFs mediate various signaling cascades and metabolic adjustments as well as how epigenetic modifications involved in environmental stress responses in plants can modulate WRKYs and/or their downstream genes. Emerging research shows that clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas)-mediated genome editing of WRKYs could be used to improve crop resilience.Environmental stressors caused by climate change are fundamental barriers to agricultural sustainability. Enhancing the stress resilience of crops is a key strategy in achieving global food security. Plants perceive adverse environmental conditions and initiate signaling pathways to activate precise responses that contribute to their survival. WRKY transcription factors (TFs) are essential players in several signaling cascades and regulatory networks that have crucial implications for defense responses in plants. This review summarizes advances in research concerning how WRKY TFs mediate various signaling cascades and metabolic adjustments as well as how epigenetic modifications involved in environmental stress responses in plants can modulate WRKYs and/or their downstream genes. Emerging research shows that clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas)-mediated genome editing of WRKYs could be used to improve crop resilience. |
Author | Gao, San-Ji Javed, Talha |
Author_xml | – sequence: 1 givenname: Talha orcidid: 0000-0003-2986-9992 surname: Javed fullname: Javed, Talha organization: National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China – sequence: 2 givenname: San-Ji orcidid: 0000-0003-3442-8470 surname: Gao fullname: Gao, San-Ji email: gaosanji@fafu.edu.cn organization: National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China |
BookMark | eNqFkE1LAzEQhnOoYFv9Ad72KMiuk2Q_sniS4hcWBFHEU8hmZyV1m12TVOi_N6WeetDTwPA-w7zPjEzsYJGQMwoZBVperrJgPjIGjGdQZQB0QqZxL9K6YMUxmXm_AoCi4sWUXLw9P74nwSnrtTNjMINNOqXD4HxibDL2yoakxQ6txxNy1Kne4-nvnJPX25uXxX26fLp7WFwvU80FhLTjgrcsB10jNEJB23aqVAIqxZucllDURdsUNTTQaEHzUvOYymnedIw1miOfk_P93dENXxv0Qa6N19jHX3DYeMlEUYm85jWLUbqPajd477CTozNr5baSgtzJkCsZZcidDAmVjDIiUx0w2gS1ax41mP5P8mpPYmz_bdBJrw1aja1xqINsB_MnXR_QujfWaNV_4vYf9gc0zI_V |
CitedBy_id | crossref_primary_10_1016_j_plaphy_2024_109287 crossref_primary_10_1016_j_plaphy_2024_108630 crossref_primary_10_1016_j_pmpp_2024_102432 crossref_primary_10_1016_j_ijbiomac_2024_138077 crossref_primary_10_32604_phyton_2024_052704 crossref_primary_10_1093_plphys_kiae521 crossref_primary_10_3390_ijms25073592 crossref_primary_10_3390_ijms242216174 crossref_primary_10_1186_s12870_024_05718_w crossref_primary_10_1038_s42003_024_06075_y crossref_primary_10_3390_ijms25179347 crossref_primary_10_1016_j_plaphy_2025_109673 crossref_primary_10_1016_j_indcrop_2025_120492 crossref_primary_10_3390_agriculture14122109 crossref_primary_10_3390_ijms25063551 crossref_primary_10_3390_ijms252413526 crossref_primary_10_1021_acs_jafc_3c09389 crossref_primary_10_1093_hr_uhae281 crossref_primary_10_3390_ijms252413244 crossref_primary_10_3390_plants13030379 crossref_primary_10_1016_j_stress_2024_100724 crossref_primary_10_3390_ijms26052288 crossref_primary_10_1007_s10327_024_01196_y crossref_primary_10_1093_plphys_kiae479 crossref_primary_10_1186_s12864_025_11275_9 crossref_primary_10_1186_s12864_025_11218_4 crossref_primary_10_1186_s12870_024_05320_0 crossref_primary_10_1016_j_indcrop_2024_119056 crossref_primary_10_1007_s13562_024_00956_3 crossref_primary_10_3390_genes15030267 crossref_primary_10_1111_jipb_13679 crossref_primary_10_1007_s00344_024_11371_2 crossref_primary_10_1021_acs_jafc_4c01024 crossref_primary_10_1038_s42003_025_07685_w crossref_primary_10_3390_ijms25031492 crossref_primary_10_1038_s41598_024_80831_2 crossref_primary_10_1016_j_ijbiomac_2024_138606 crossref_primary_10_1016_j_jenvman_2024_123102 crossref_primary_10_1016_j_plaphy_2024_108933 crossref_primary_10_3389_fpls_2025_1570758 crossref_primary_10_1111_ppa_14083 crossref_primary_10_3390_plants13131739 crossref_primary_10_1016_j_plaphy_2024_109191 crossref_primary_10_3390_horticulturae10121244 crossref_primary_10_1038_s41598_023_44921_x crossref_primary_10_3390_plants13060862 crossref_primary_10_3390_plants12213759 crossref_primary_10_1186_s12284_024_00741_9 crossref_primary_10_1016_j_cpb_2024_100367 crossref_primary_10_1111_pce_15198 crossref_primary_10_1093_hr_uhae148 crossref_primary_10_1016_j_plaphy_2024_108671 crossref_primary_10_1016_j_gene_2024_148899 crossref_primary_10_3390_plants14010133 crossref_primary_10_3390_genes16010002 crossref_primary_10_1007_s42729_024_01733_w crossref_primary_10_1111_gtc_13179 crossref_primary_10_1016_j_jenvman_2024_120090 crossref_primary_10_3389_fpls_2024_1519039 crossref_primary_10_1111_jipb_13852 crossref_primary_10_1038_s41598_024_80143_5 crossref_primary_10_1016_j_postharvbio_2024_112774 crossref_primary_10_3390_plants13020234 crossref_primary_10_1016_j_virol_2024_110071 crossref_primary_10_1111_nph_20308 crossref_primary_10_3390_ijms25168892 crossref_primary_10_3389_fpls_2023_1289507 crossref_primary_10_3390_ijms252010952 crossref_primary_10_3389_fpls_2025_1532943 crossref_primary_10_3390_horticulturae10010096 crossref_primary_10_1016_j_gene_2024_149176 crossref_primary_10_1093_plphys_kiae159 crossref_primary_10_3390_agronomy15010069 crossref_primary_10_3390_ijms25126463 crossref_primary_10_3390_plants13192719 crossref_primary_10_1111_tpj_17115 crossref_primary_10_3390_plants14030483 crossref_primary_10_1007_s11104_024_07133_4 crossref_primary_10_3390_plants12193432 crossref_primary_10_1016_j_jare_2024_09_026 crossref_primary_10_1016_j_ijbiomac_2025_139859 crossref_primary_10_1016_j_jare_2025_01_009 crossref_primary_10_1016_j_indcrop_2024_118565 crossref_primary_10_1016_j_indcrop_2024_119655 crossref_primary_10_1002_npp2_20 crossref_primary_10_3390_plants13213036 crossref_primary_10_1007_s12374_024_09439_3 crossref_primary_10_1016_j_indcrop_2024_120138 crossref_primary_10_3390_plants13121597 crossref_primary_10_1016_j_cpb_2025_100460 crossref_primary_10_1186_s12864_024_10523_8 crossref_primary_10_1016_j_ijbiomac_2025_142519 crossref_primary_10_1007_s40415_023_00942_4 crossref_primary_10_1080_07388551_2024_2344583 crossref_primary_10_3390_agronomy14020332 crossref_primary_10_1016_j_plaphy_2025_109736 crossref_primary_10_1016_j_gene_2024_148384 crossref_primary_10_1016_j_plaphy_2024_109314 crossref_primary_10_3389_fpls_2025_1510196 |
Cites_doi | 10.1016/j.cj.2018.10.005 10.1007/s11103-022-01297-2 10.3390/cimb45040187 10.3389/fpls.2022.1042078 10.3390/genes14051015 10.1016/j.jplph.2022.153664 10.1016/j.ygeno.2021.03.035 10.1007/s42994-023-00101-z 10.1007/s11816-019-00556-x 10.1146/annurev-arplant-050718-095955 10.1007/s00299-021-02691-8 10.1007/s11033-023-08539-6 10.1038/s41559-018-0793-y 10.1093/jxb/erad142 10.1186/s12870-021-03238-5 10.1007/s00299-017-2219-8 10.1016/j.pbi.2021.102030 10.1016/j.plaphy.2023.02.006 10.1016/j.molp.2019.12.011 10.1111/nph.18329 10.3389/fpls.2021.688003 10.1111/pbi.13464 10.1016/j.semcdb.2016.06.005 10.1093/hr/uhac197 10.1016/j.envexpbot.2019.103960 10.1186/s12870-019-2132-0 10.1186/s42483-019-0022-x 10.1093/plcell/koad064 10.7554/eLife.07295 10.3389/fpls.2022.917953 10.3390/ijms231710049 10.1093/plphys/kiab492 10.1111/nph.14680 10.3390/genes12091444 10.1016/j.tplants.2020.01.004 10.3390/plants9040491 10.1016/j.tplants.2023.04.007 10.1016/j.molcel.2018.03.013 10.1038/s41596-023-00823-w 10.1038/nplants.2016.16 10.1016/j.oneear.2021.04.017 10.1105/tpc.18.00547 10.1111/j.1467-7652.2011.00634.x 10.3389/fpls.2022.986673 10.1111/nph.17891 10.1111/pbi.14008 10.1016/j.envexpbot.2021.104373 10.1016/j.plantsci.2016.12.014 10.1007/s00299-021-02727-z 10.3390/f14030486 10.1007/s00425-017-2769-6 10.1105/tpc.112.101972 10.1111/tpj.14449 10.1016/j.plantsci.2021.110833 10.1007/s00344-022-10902-z 10.3390/ijms222112091 10.1111/nph.14663 10.32604/biocell.2021.015282 10.1016/j.copbio.2022.102875 10.1038/s41438-021-00652-6 10.1016/j.molp.2021.03.008 10.1093/jxb/erac258 10.1093/plphys/kiac390 10.1186/1471-2229-11-89 10.1016/j.molp.2023.04.004 10.1186/s12870-021-03206-z 10.1002/moda.8 10.1016/j.ecoenv.2022.113274 10.1007/s00709-022-01794-7 10.3389/fpls.2022.1039329 10.1007/s00425-021-03733-x 10.1111/tpj.14173 10.1093/plphys/kiab108 10.1371/journal.pbio.3000949 10.15252/embj.2022110741 10.3390/ijms24032423 10.3389/fpls.2019.01775 10.1186/s12864-022-08378-y 10.3390/ijms24119519 10.1111/j.1744-7909.2007.00504.x 10.1146/annurev-cellbio-120219-035210 10.1016/j.tplants.2022.12.012 10.1111/pce.14596 10.3390/ijms19092716 10.1016/j.pbi.2018.07.007 10.1093/plcell/koac001 10.1186/s12870-015-0456-y 10.1016/j.isci.2019.06.009 10.1016/j.cell.2020.07.016 10.3389/fpls.2023.1133892 10.1093/hr/uhad054 10.3390/ijms23147537 10.1016/j.plantsci.2023.111770 10.1111/jipb.13064 10.1038/s41580-022-00499-2 10.1093/plphys/kiad069 10.1111/jipb.12899 10.1111/nph.18688 10.1080/07352689.2018.1441103 10.1016/j.pbi.2017.04.022 10.1111/pce.14606 10.1007/s11033-021-06802-2 10.1111/tpj.15950 10.1038/srep23632 10.1080/07388551.2022.2042481 10.1093/pcp/pcz227 10.1016/j.tplants.2022.11.001 10.2174/1389202923666220510195910 10.1111/jipb.13054 10.1016/S1360-1385(00)01600-9 10.3390/ijms221810080 10.1021/acs.jafc.0c02500 10.3390/biom11020327 10.1105/tpc.19.00971 10.15252/embr.202050442 10.1016/j.envexpbot.2018.12.015 10.1016/j.pbi.2022.102197 10.1111/pce.13952 10.1038/s41438-021-00473-7 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd Copyright © 2023 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2023 Elsevier Ltd – notice: Copyright © 2023 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1016/j.tig.2023.07.001 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EndPage | 801 |
ExternalDocumentID | 10_1016_j_tig_2023_07_001 S0168952523001592 |
GroupedDBID | --- --K --M -DZ -RU -~X .1- .FO .GJ .~1 0R~ 123 1B1 1P~ 1~. 1~5 29Q 3O- 4.4 457 4G. 53G 5VS 7-5 71M 85S 8P~ 9JM 9M8 AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAMRU AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABDPE ABFNM ABFRF ABGSF ABLJU ABMAC ABUDA ABXDB ACDAQ ACGFO ACGFS ACRLP ACVFH ADBBV ADCNI ADEZE ADUVX ADVLN ADXHL AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 D0L DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FA8 FDB FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HZ~ IH2 IHE J1W K-O KOM LX3 M41 MO0 MVM N9A O-L O9- O9. OAUVE OK~ OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SSU SSZ T5K TN5 UQL WH7 WUQ Y6R Z5R ZCA ZCG ZGI ~G- ~KM AACTN BNPGV RIG SSH AAYXX AGRNS CITATION 7X8 |
ID | FETCH-LOGICAL-c380t-f383d240c9e0b8a0ddfa6a807a3b4160595db590b0bc8146c3b8a414bf22bc3e3 |
IEDL.DBID | .~1 |
ISSN | 0168-9525 |
IngestDate | Thu Jul 10 22:56:48 EDT 2025 Thu Apr 24 22:59:46 EDT 2025 Tue Jul 01 01:43:38 EDT 2025 Sun Apr 06 06:56:35 EDT 2025 Tue Aug 26 19:13:50 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | signaling cascades molecular mechanism defense response environmental stressors WRKY transcription factors |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c380t-f383d240c9e0b8a0ddfa6a807a3b4160595db590b0bc8146c3b8a414bf22bc3e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-2986-9992 0000-0003-3442-8470 |
PQID | 2857849392 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2857849392 crossref_primary_10_1016_j_tig_2023_07_001 crossref_citationtrail_10_1016_j_tig_2023_07_001 elsevier_sciencedirect_doi_10_1016_j_tig_2023_07_001 elsevier_clinicalkey_doi_10_1016_j_tig_2023_07_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2023 2023-10-00 20231001 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: October 2023 |
PublicationDecade | 2020 |
PublicationTitle | Trends in genetics |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Li (bb0125) 2022; 13 Wang (bb0400) 2020; 21 Zheng (bb0550) 2020; 13 Hussain (bb0275) 2021; 22 Li (bb0585) 2021; 44 Eulgem (bb0100) 2020; 5 Shan (bb0330) 2021; 186 Xian (bb0435) 2023; 14 Ding (bb0420) 2021; 8 Chen (bb0110) 2019; 1 Wu (bb0345) 2023 Ahammed (bb0375) 2020; 171 Qi (bb0335) 2017; 38 Barco, Clay (bb0480) 2020; 10 Moison (bb0600) 2021; 14 Liu (bb0560) 2022; 23 Chen (bb0465) 2021; 8 Li (bb0320) 2017; 215 Ye (bb0245) 2016; 6 Huang (bb0260) 2022; 9 Yang (bb0410) 2022; 233 Hu (bb0130) 2021; 21 Xiao (bb0430) 2023; 21 Ravi (bb0355) 2023; 46 Kaya (bb0175) 2023; 196 Wang (bb0440) 2023; 237 Noh (bb0540) 2021; 12 Ding (bb0545) 2021; 24 Singh (bb0170) 2021; 40 Çelik (bb0535) 2019; 159 Sun (bb0455) 2020; 71 Xu (bb0555) 2022; 23 Wang (bb0515) 2018; 30 Xie, Duan (bb0085) 2023 Burdon (bb0015) 2020; 18 Kosakivska (bb0030) 2022; 49 Xiong (bb0215) 2019; 7 Li (bb0590) 2020; 6 Liu (bb0145) 2023; 24 Wang (bb0405) 2022; 23 Song (bb0080) 2021; 63 Khoso (bb0055) 2022; 13 Song (bb0095) 2023; 334 Wen (bb0490) 2023; 14 Yan (bb0240) 2018; 70 Zheng (bb0235) 2022; 13 Wang (bb0360) 2022; 12 Chen (bb0520) 2021; 1 Ross (bb0120) 2007; 49 Wang (bb0045) 2023; 45 Zhang (bb0460) 2022; 232 Zhao (bb0595) 2021; 113 Cui (bb0190) 2020; 68 Gu (bb0380) 2023; 14 Shigenaga, Argueso (bb0165) 2016; 56 Zhang (bb0575) 2016; 29 Wen (bb0495) 2021; 184 Gao (bb0205) 2022; 13 Yogendra (bb0475) 2017; 256 Gulzar (bb0510) 2021; 22 Kouhen (bb0610) 2023; 43 Cui (bb0580) 2019; 97 Rushton (bb0265) 2012; 10 Sun (bb0615) 2018; 19 Hu (bb0280) 2021; 21 Manna (bb0300) 2023; 46 Chen (bb0140) 2022; 255 Pan, Qi (bb0645) 2023; 18 Wei (bb0415) 2019; 100 Wang (bb0470) 2021; 45 Viana (bb0075) 2018; 45 Wang (bb0305) 2023; 16 Foyer, Noctor (bb0350) 2020; 71 Wang (bb0315) 2023; 35 Zhang (bb0630) 2022; 112 Luan, Wang (bb0395) 2021; 37 Wang (bb0220) 2023; 14 Van (bb0185) 2011; 11 Cui (bb0230) 2019; 19 Nguyen (bb0225) 2022; 67 Jiang, Ding (bb0390) 2023; 28 Hu (bb0500) 2021; 305 Wani (bb0010) 2021; 40 Joshi (bb0505) 2022; 110 Chen (bb0270) 2020; 62 Lim (bb0295) 2022; 188 Ding, Ding (bb0180) 2020; 25 Kumar, Rani (bb0530) 2023; 50 Zhou (bb0310) 2020; 32 Wang (bb0445) 2023; 24 Wang (bb0485) 2022; 236 Lopez (bb0565) 2018; 37 Kummu (bb0005) 2021; 4 Goyal (bb0035) 2023; 260 Boro (bb0325) 2022; 271 Koster (bb0385) 2022; 41 Liu (bb0635) 2023; 79 Li (bb0620) 2021; 12 Chen (bb0060) 2017; 36 Domozych, Bagdan (bb0155) 2022; 190 Chen (bb0290) 2023; 10 Singh (bb0525) 2017; 215 Sarkar (bb0210) 2018; 247 Rinerson (bb0160) 2015; 15 Li (bb0105) 2020; 61 Liu (bb0285) 2015; 4 Yuan (bb0065) 2021; 62 Zavaliev (bb0200) 2020; 182 Sharma (bb0195) 2023 Xiang (bb0370) 2021; 11 Charvin (bb0070) 2023; 192 Wang (bb0250) 2022; 73 Xu (bb0450) 2023 Ma (bb0570) 2021; 19 Hao (bb0150) 2021; 12 Wang (bb0365) 2022; 34 Dong, Lin (bb0425) 2021; 63 Wang (bb0625) 2019; 13 Zhang (bb0650) 2023; 1 Leisner (bb0020) 2022 Yan (bb0135) 2022; 13 Hou (bb0255) 2019; 16 Lee (bb0115) 2022; 23 Wang (bb0050) 2023; 28 Javed (bb0090) 2022; 13 Mittler (bb0340) 2022; 10 Javed (bb0040) 2020; 9 Savary (bb0025) 2019; 3 Ali (bb0640) 2023; 11 Cui (10.1016/j.tig.2023.07.001_bb0580) 2019; 97 Wang (10.1016/j.tig.2023.07.001_bb0400) 2020; 21 Yan (10.1016/j.tig.2023.07.001_bb0240) 2018; 70 Gao (10.1016/j.tig.2023.07.001_bb0205) 2022; 13 Mittler (10.1016/j.tig.2023.07.001_bb0340) 2022; 10 Hu (10.1016/j.tig.2023.07.001_bb0280) 2021; 21 Song (10.1016/j.tig.2023.07.001_bb0080) 2021; 63 Dong (10.1016/j.tig.2023.07.001_bb0425) 2021; 63 Moison (10.1016/j.tig.2023.07.001_bb0600) 2021; 14 Kouhen (10.1016/j.tig.2023.07.001_bb0610) 2023; 43 Li (10.1016/j.tig.2023.07.001_bb0620) 2021; 12 Wang (10.1016/j.tig.2023.07.001_bb0250) 2022; 73 Kumar (10.1016/j.tig.2023.07.001_bb0530) 2023; 50 Xian (10.1016/j.tig.2023.07.001_bb0435) 2023; 14 Sun (10.1016/j.tig.2023.07.001_bb0615) 2018; 19 Song (10.1016/j.tig.2023.07.001_bb0095) 2023; 334 Li (10.1016/j.tig.2023.07.001_bb0590) 2020; 6 Chen (10.1016/j.tig.2023.07.001_bb0060) 2017; 36 Yuan (10.1016/j.tig.2023.07.001_bb0065) 2021; 62 Shigenaga (10.1016/j.tig.2023.07.001_bb0165) 2016; 56 Ding (10.1016/j.tig.2023.07.001_bb0545) 2021; 24 Wang (10.1016/j.tig.2023.07.001_bb0360) 2022; 12 Xu (10.1016/j.tig.2023.07.001_bb0450) 2023 Xie (10.1016/j.tig.2023.07.001_bb0085) 2023 Yang (10.1016/j.tig.2023.07.001_bb0410) 2022; 233 Zhang (10.1016/j.tig.2023.07.001_bb0650) 2023; 1 Van (10.1016/j.tig.2023.07.001_bb0185) 2011; 11 Chen (10.1016/j.tig.2023.07.001_bb0270) 2020; 62 Li (10.1016/j.tig.2023.07.001_bb0105) 2020; 61 Çelik (10.1016/j.tig.2023.07.001_bb0535) 2019; 159 Manna (10.1016/j.tig.2023.07.001_bb0300) 2023; 46 Liu (10.1016/j.tig.2023.07.001_bb0560) 2022; 23 Zhao (10.1016/j.tig.2023.07.001_bb0595) 2021; 113 Goyal (10.1016/j.tig.2023.07.001_bb0035) 2023; 260 Xiong (10.1016/j.tig.2023.07.001_bb0215) 2019; 7 Koster (10.1016/j.tig.2023.07.001_bb0385) 2022; 41 Wang (10.1016/j.tig.2023.07.001_bb0050) 2023; 28 Joshi (10.1016/j.tig.2023.07.001_bb0505) 2022; 110 Cui (10.1016/j.tig.2023.07.001_bb0190) 2020; 68 Wang (10.1016/j.tig.2023.07.001_bb0440) 2023; 237 Liu (10.1016/j.tig.2023.07.001_bb0285) 2015; 4 Wang (10.1016/j.tig.2023.07.001_bb0405) 2022; 23 Charvin (10.1016/j.tig.2023.07.001_bb0070) 2023; 192 Singh (10.1016/j.tig.2023.07.001_bb0525) 2017; 215 Li (10.1016/j.tig.2023.07.001_bb0125) 2022; 13 Cui (10.1016/j.tig.2023.07.001_bb0230) 2019; 19 Wang (10.1016/j.tig.2023.07.001_bb0485) 2022; 236 Lim (10.1016/j.tig.2023.07.001_bb0295) 2022; 188 Xiao (10.1016/j.tig.2023.07.001_bb0430) 2023; 21 Xu (10.1016/j.tig.2023.07.001_bb0555) 2022; 23 Li (10.1016/j.tig.2023.07.001_bb0585) 2021; 44 Qi (10.1016/j.tig.2023.07.001_bb0335) 2017; 38 Wei (10.1016/j.tig.2023.07.001_bb0415) 2019; 100 Wani (10.1016/j.tig.2023.07.001_bb0010) 2021; 40 Wen (10.1016/j.tig.2023.07.001_bb0495) 2021; 184 Zhou (10.1016/j.tig.2023.07.001_bb0310) 2020; 32 Ravi (10.1016/j.tig.2023.07.001_bb0355) 2023; 46 Kaya (10.1016/j.tig.2023.07.001_bb0175) 2023; 196 Barco (10.1016/j.tig.2023.07.001_bb0480) 2020; 10 Chen (10.1016/j.tig.2023.07.001_bb0290) 2023; 10 Chen (10.1016/j.tig.2023.07.001_bb0465) 2021; 8 Huang (10.1016/j.tig.2023.07.001_bb0260) 2022; 9 Gulzar (10.1016/j.tig.2023.07.001_bb0510) 2021; 22 Hou (10.1016/j.tig.2023.07.001_bb0255) 2019; 16 Zheng (10.1016/j.tig.2023.07.001_bb0550) 2020; 13 Wang (10.1016/j.tig.2023.07.001_bb0445) 2023; 24 Liu (10.1016/j.tig.2023.07.001_bb0635) 2023; 79 Javed (10.1016/j.tig.2023.07.001_bb0090) 2022; 13 Burdon (10.1016/j.tig.2023.07.001_bb0015) 2020; 18 Hussain (10.1016/j.tig.2023.07.001_bb0275) 2021; 22 Singh (10.1016/j.tig.2023.07.001_bb0170) 2021; 40 Wu (10.1016/j.tig.2023.07.001_bb0345) 2023 Hu (10.1016/j.tig.2023.07.001_bb0500) 2021; 305 Wang (10.1016/j.tig.2023.07.001_bb0315) 2023; 35 Yogendra (10.1016/j.tig.2023.07.001_bb0475) 2017; 256 Khoso (10.1016/j.tig.2023.07.001_bb0055) 2022; 13 Zhang (10.1016/j.tig.2023.07.001_bb0630) 2022; 112 Sarkar (10.1016/j.tig.2023.07.001_bb0210) 2018; 247 Wang (10.1016/j.tig.2023.07.001_bb0470) 2021; 45 Zheng (10.1016/j.tig.2023.07.001_bb0235) 2022; 13 Eulgem (10.1016/j.tig.2023.07.001_bb0100) 2020; 5 Domozych (10.1016/j.tig.2023.07.001_bb0155) 2022; 190 Jiang (10.1016/j.tig.2023.07.001_bb0390) 2023; 28 Kummu (10.1016/j.tig.2023.07.001_bb0005) 2021; 4 Lee (10.1016/j.tig.2023.07.001_bb0115) 2022; 23 Wang (10.1016/j.tig.2023.07.001_bb0305) 2023; 16 Chen (10.1016/j.tig.2023.07.001_bb0110) 2019; 1 Wen (10.1016/j.tig.2023.07.001_bb0490) 2023; 14 Noh (10.1016/j.tig.2023.07.001_bb0540) 2021; 12 Chen (10.1016/j.tig.2023.07.001_bb0520) 2021; 1 Wang (10.1016/j.tig.2023.07.001_bb0045) 2023; 45 Wang (10.1016/j.tig.2023.07.001_bb0365) 2022; 34 Wang (10.1016/j.tig.2023.07.001_bb0625) 2019; 13 Foyer (10.1016/j.tig.2023.07.001_bb0350) 2020; 71 Sharma (10.1016/j.tig.2023.07.001_bb0195) 2023 Xiang (10.1016/j.tig.2023.07.001_bb0370) 2021; 11 Ali (10.1016/j.tig.2023.07.001_bb0640) 2023; 11 Ahammed (10.1016/j.tig.2023.07.001_bb0375) 2020; 171 Ding (10.1016/j.tig.2023.07.001_bb0420) 2021; 8 Javed (10.1016/j.tig.2023.07.001_bb0040) 2020; 9 Nguyen (10.1016/j.tig.2023.07.001_bb0225) 2022; 67 Gu (10.1016/j.tig.2023.07.001_bb0380) 2023; 14 Pan (10.1016/j.tig.2023.07.001_bb0645) 2023; 18 Shan (10.1016/j.tig.2023.07.001_bb0330) 2021; 186 Wang (10.1016/j.tig.2023.07.001_bb0515) 2018; 30 Viana (10.1016/j.tig.2023.07.001_bb0075) 2018; 45 Luan (10.1016/j.tig.2023.07.001_bb0395) 2021; 37 Kosakivska (10.1016/j.tig.2023.07.001_bb0030) 2022; 49 Ye (10.1016/j.tig.2023.07.001_bb0245) 2016; 6 Sun (10.1016/j.tig.2023.07.001_bb0455) 2020; 71 Savary (10.1016/j.tig.2023.07.001_bb0025) 2019; 3 Li (10.1016/j.tig.2023.07.001_bb0320) 2017; 215 Rushton (10.1016/j.tig.2023.07.001_bb0265) 2012; 10 Chen (10.1016/j.tig.2023.07.001_bb0140) 2022; 255 Ross (10.1016/j.tig.2023.07.001_bb0120) 2007; 49 Liu (10.1016/j.tig.2023.07.001_bb0145) 2023; 24 Yan (10.1016/j.tig.2023.07.001_bb0135) 2022; 13 Leisner (10.1016/j.tig.2023.07.001_bb0020) 2022 Rinerson (10.1016/j.tig.2023.07.001_bb0160) 2015; 15 Hu (10.1016/j.tig.2023.07.001_bb0130) 2021; 21 Hao (10.1016/j.tig.2023.07.001_bb0150) 2021; 12 Zavaliev (10.1016/j.tig.2023.07.001_bb0200) 2020; 182 Ding (10.1016/j.tig.2023.07.001_bb0180) 2020; 25 Zhang (10.1016/j.tig.2023.07.001_bb0575) 2016; 29 Boro (10.1016/j.tig.2023.07.001_bb0325) 2022; 271 Lopez (10.1016/j.tig.2023.07.001_bb0565) 2018; 37 Wang (10.1016/j.tig.2023.07.001_bb0220) 2023; 14 Ma (10.1016/j.tig.2023.07.001_bb0570) 2021; 19 Zhang (10.1016/j.tig.2023.07.001_bb0460) 2022; 232 |
References_xml | – volume: 334 year: 2023 ident: bb0095 article-title: WRKY transcription factors: understanding the functional divergence publication-title: Plant Sci. – volume: 190 start-page: 1588 year: 2022 end-page: 1608 ident: bb0155 article-title: The cell biology of charophytes: exploring the past and models for the future publication-title: Plant Physiol. – volume: 25 start-page: 549 year: 2020 end-page: 565 ident: bb0180 article-title: Stories of salicylic acid: a plant defense hormone publication-title: Trends Plant Sci. – volume: 13 year: 2022 ident: bb0205 article-title: CmWRKY15-1 promotes resistance to chrysanthemum white rust by regulating publication-title: Front. Plant Sci. – volume: 61 start-page: 616 year: 2020 end-page: 630 ident: bb0105 article-title: Genome-wide identification and expression profile analysis of WRKY family genes in the autopolyploid publication-title: Plant Cell Physiol. – volume: 12 start-page: 1444 year: 2021 ident: bb0150 article-title: Genome-wide identification and transcriptional expression profiles of transcription factor WRKY in common walnut ( publication-title: Genes – volume: 11 year: 2023 ident: bb0640 article-title: Breakthrough in CRISPR/Cas system: current and future directions and challenges publication-title: Biotechnol. J. – volume: 112 start-page: 383 year: 2022 end-page: 398 ident: bb0630 article-title: The publication-title: Plant J. – volume: 71 start-page: 157 year: 2020 end-page: 182 ident: bb0350 article-title: Redox homeostasis and signaling in a higher-CO publication-title: Annu. Rev. Plant Biol. – volume: 11 start-page: 327 year: 2021 ident: bb0370 article-title: Dehydration-induced WRKY transcriptional factor MfWRKY70 of publication-title: Biomolecules – volume: 45 start-page: 1107 year: 2021 ident: bb0470 article-title: Genome-wide identification of WRKY gene family and expression analysis under abiotic stresses in publication-title: Biocell – volume: 24 start-page: 2423 year: 2023 ident: bb0445 article-title: Characterization of the WRKY gene family related to anthocyanin biosynthesis and the regulation mechanism under drought stress and methyl jasmonate treatment in publication-title: Int. J. Mol. Sci. – volume: 45 start-page: 268 year: 2018 end-page: 275 ident: bb0075 article-title: Activation of rice WRKY transcription factors: an army of stress fighting soldiers? publication-title: Curr. Opin. Plant Biol. – volume: 196 start-page: 431 year: 2023 end-page: 443 ident: bb0175 article-title: Salicylic acid interacts with other plant growth regulators and signal molecules in response to stressful environments in plants publication-title: Plant Physiol. Biochem. – volume: 14 start-page: 1015 year: 2023 ident: bb0490 article-title: Molecular cloning and characterization of WRKY12, a pathogen induced WRKY transcription factor from publication-title: Genes – volume: 41 year: 2022 ident: bb0385 article-title: Ca publication-title: EMBO J. – volume: 32 start-page: 2621 year: 2020 end-page: 2638 ident: bb0310 article-title: Differential phosphorylation of the transcription factor WRKY33 by the protein kinases CPK5/CPK6 and MPK3/MPK6 cooperatively regulates camalexin biosynthesis in publication-title: Plant Cell – volume: 110 start-page: 235 year: 2022 end-page: 251 ident: bb0505 article-title: , OscWRKY1, regulates phenylpropanoid pathway genes and promotes resistance to pathogen infection in publication-title: Plant Mol. Biol. – volume: 97 start-page: 933 year: 2019 end-page: 946 ident: bb0580 article-title: LncRNA33732-respiratory burst oxidase module associated with WRKY1 in tomato– publication-title: Plant J. – volume: 247 start-page: 181 year: 2018 end-page: 199 ident: bb0210 article-title: Interaction of publication-title: Planta – volume: 13 start-page: 501 year: 2019 end-page: 510 ident: bb0625 article-title: CRISPR/Cas9-mediated editing of CsWRKY22 reduces susceptibility to publication-title: Plant Biotechnol. Rep. – volume: 255 start-page: 3 year: 2022 ident: bb0140 article-title: Identification of WRKY transcription factors responding to abiotic stresses in publication-title: Planta – volume: 13 year: 2022 ident: bb0235 article-title: WRKY transcription factor 9 is a positive regulator in responding to root rot pathogen publication-title: Front. Plant Sci. – volume: 46 start-page: 2277 year: 2023 end-page: 2295 ident: bb0300 article-title: Revisiting the role of MAPK signalling pathway in plants and its manipulation for crop improvement publication-title: Plant Cell Environ. – volume: 3 start-page: 430 year: 2019 end-page: 439 ident: bb0025 article-title: The global burden of pathogens and pests on major food crops publication-title: Nat. Ecol. Evol. – volume: 171 year: 2020 ident: bb0375 article-title: Tomato WRKY81 acts as a negative regulator for drought tolerance by modulating guard cell H publication-title: Environ. Exp. Bot. – volume: 256 start-page: 208 year: 2017 end-page: 216 ident: bb0475 article-title: StWRKY8 transcription factor regulates benzylisoquinoline alkaloid pathway in potato conferring resistance to late blight publication-title: Plant Sci. – volume: 14 year: 2023 ident: bb0220 article-title: Exogenous application of salicylic acid improves freezing stress tolerance in alfalfa publication-title: Front. Plant Sci. – volume: 12 year: 2021 ident: bb0540 article-title: Two publication-title: Front. Plant Sci. – volume: 40 start-page: 2037 year: 2021 end-page: 2046 ident: bb0170 article-title: Two-component signaling system in plants: interaction network and specificity in response to stress and hormones publication-title: Plant Cell Rep. – volume: 260 start-page: 331 year: 2023 end-page: 348 ident: bb0035 article-title: WRKY transcription factors: evolution, regulation, and functional diversity in plants publication-title: Protoplasma – volume: 44 start-page: 982 year: 2021 end-page: 994 ident: bb0585 article-title: Long non-coding RNAs associate with jasmonate-mediated plant defence against herbivores publication-title: Plant Cell Environ. – volume: 73 start-page: 6207 year: 2022 end-page: 6225 ident: bb0250 article-title: The transcription factor SlWRKY37 positively regulates jasmonic acid- and dark-induced leaf senescence in tomato publication-title: J. Exp. Bot. – volume: 13 start-page: 598 year: 2020 end-page: 611 ident: bb0550 article-title: Histone deacetylase HDA9 and WRKY53 transcription factor are mutual antagonists in regulation of plant stress response publication-title: Mol. Plant – volume: 215 start-page: 1115 year: 2017 end-page: 1131 ident: bb0525 article-title: A WRKY transcription factor from publication-title: New Phytol. – volume: 13 year: 2022 ident: bb0135 article-title: WRKY genes provide novel insights into their role against publication-title: Front. Plant Sci. – volume: 21 start-page: 458 year: 2021 ident: bb0280 article-title: , a WRKY transcription factor, mediates drought tolerance in publication-title: BMC Plant Biol. – volume: 24 start-page: 3783 year: 2021 end-page: 3794 ident: bb0545 article-title: HDT701, a histone H4 deacetylase, negatively regulates plant innate immunity by modulating histone H4 acetylation of defense-related genes in rice publication-title: Plant Cell – year: 2023 ident: bb0345 article-title: Fuels for ROS signaling in plant immunity publication-title: Trends Plant Sci. – volume: 237 start-page: 1856 year: 2023 end-page: 1875 ident: bb0440 article-title: VqWRKY56 interacts with VqbZIPC22 in grapevine to promote proanthocyanidin biosynthesis and increase resistance to powdery mildew publication-title: New Phytol. – volume: 28 start-page: 630 year: 2023 end-page: 645 ident: bb0050 article-title: Functions of WRKYs in plant growth and development publication-title: Trends Plant Sci. – volume: 18 start-page: 1760 year: 2023 end-page: 1794 ident: bb0645 article-title: CRISPR-Combo-mediated orthogonal genome editing and transcriptional activation for plant breeding publication-title: Nat. Protoc. – volume: 9 start-page: 197 year: 2022 ident: bb0260 article-title: SlWRKY45 interacts with jasmonate-ZIM domain proteins to negatively regulate defense against the root-knot nematode publication-title: Hortic. Res. – volume: 23 start-page: 164 year: 2022 ident: bb0115 article-title: Identification of drought responsive publication-title: BMC Genomics – volume: 63 start-page: 438 year: 2021 end-page: 450 ident: bb0080 article-title: Chromatin remodeling factors regulate environmental stress responses in plants publication-title: J. Integr. Plant Biol. – volume: 37 start-page: 167 year: 2018 end-page: 176 ident: bb0565 article-title: Epigenetic regulation of the expression of WRKY75 transcription factor in response to biotic and abiotic stresses in Solanaceae plants publication-title: Plant Cell Rep. – volume: 62 year: 2021 ident: bb0065 article-title: PTI–ETI crosstalk: an integrative view of plant immunity publication-title: Curr. Opin. Plant Biol. – volume: 6 start-page: 23632 year: 2016 ident: bb0245 article-title: Banana fruit VQ motif-containing protein5 represses cold-responsive transcription factor MaWRKY26 involved in the regulation of JA biosynthetic genes publication-title: Sci. Rep. – volume: 29 start-page: 16016 year: 2016 ident: bb0575 article-title: Transposon-derived small RNA is responsible for modified function of WRKY45 locus publication-title: Nat. Plants – volume: 79 year: 2023 ident: bb0635 article-title: Large-scale genome editing in plants: approaches, applications, and future perspectives publication-title: Curr. Opin. Biotechnol. – volume: 68 start-page: 7348 year: 2020 end-page: 7359 ident: bb0190 article-title: A rapeseed WRKY transcription factor phosphorylated by CPK modulates cell death and leaf senescence by regulating the expression of ROS and SA-synthesis-related genes publication-title: J. Agric. Food Chem. – volume: 21 start-page: 961 year: 2023 end-page: 978 ident: bb0430 article-title: GhWRKY41 forms a positive feedback regulation loop and increases cotton defense response against publication-title: Plant Biotechnol. J. – volume: 12 start-page: 327 year: 2021 ident: bb0620 article-title: dually functions between leaf senescence and in response to biotic stress in rice publication-title: Front. Plant Sci. – volume: 1 start-page: 13 year: 2019 ident: bb0110 article-title: WRKY transcription factors: evolution, binding, and action publication-title: Phytopathol. Res. – volume: 159 start-page: 121 year: 2019 end-page: 131 ident: bb0535 article-title: Epigenetic analysis of WRKY transcription factor genes in salt stressed rice ( publication-title: Environ. Exp. Bot. – volume: 5 start-page: 199 year: 2020 end-page: 206 ident: bb0100 article-title: The WRKY superfamily of plant transcription factors publication-title: Trends Plant Sci. – volume: 14 year: 2023 ident: bb0435 article-title: Overexpression of GmWRKY172 enhances cadmium tolerance in plants and reduces cadmium accumulation in soybean seeds publication-title: Front. Plant Sci. – volume: 63 start-page: 180 year: 2021 end-page: 209 ident: bb0425 article-title: Contribution of phenylpropanoid metabolism to plant development and plant–environment interactions publication-title: J. Integr. Plant Biol. – volume: 67 year: 2022 ident: bb0225 article-title: Jasmonate: a hormone of primary importance for plant metabolism publication-title: Curr. Opin. Plant Biol. – volume: 35 start-page: 2391 year: 2023 end-page: 2412 ident: bb0315 article-title: Phosphorylation and ubiquitination of OsWRKY31 are integral to OsMKK10-2-mediated defense responses in rice publication-title: Plant Cell – volume: 36 start-page: 311 year: 2017 end-page: 335 ident: bb0060 article-title: The WRKY transcription factor family in model plants and crops publication-title: Crit. Rev. Plant Sci. – year: 2022 ident: bb0020 article-title: Crosstalk and trade-offs: plant responses to climate change-associated abiotic and biotic stresses publication-title: Plant Cell Environ. – volume: 8 start-page: 217 year: 2021 ident: bb0465 article-title: AaWRKY17, a positive regulator of artemisinin biosynthesis, is involved in resistance to publication-title: Hortic. Res. – volume: 19 start-page: 2716 year: 2018 ident: bb0615 article-title: CRISPR/Cas9-mediated multiplex genome editing of the publication-title: Int. J. Mol. Sci. – volume: 23 start-page: 182 year: 2022 end-page: 194 ident: bb0555 article-title: Transcriptomic and epigenomic assessment reveals epigenetic regulation of WRKY genes in response to publication-title: Curr. Genomics – volume: 56 start-page: 174 year: 2016 end-page: 189 ident: bb0165 article-title: No hormone to rule them all: interactions of plant hormones during the responses of plants to pathogens publication-title: Semin. Cell Dev. Biol. – year: 2023 ident: bb0450 article-title: NaWRKY3 is a master transcriptional regulator of the defense network against brown spot disease in wild tobacco publication-title: J. Exp. Bot. – volume: 40 start-page: 1071 year: 2021 end-page: 1085 ident: bb0010 article-title: WRKY transcription factors and plant defense responses: latest discoveries and future prospects publication-title: Plant Cell Rep. – volume: 11 start-page: 89 year: 2011 ident: bb0185 article-title: WRKY transcription factors involved in activation of SA biosynthesis genes publication-title: BMC Plant Biol. – volume: 1 start-page: 21 year: 2021 ident: bb0520 article-title: Roles of hormones, calcium and PmWRKY31 in the defense of publication-title: For. Res. – year: 2023 ident: bb0085 article-title: Epigenetic regulation of plant immunity: from chromatin codes to plant disease resistance publication-title: aBIOTECH – volume: 28 start-page: 74 year: 2023 end-page: 89 ident: bb0390 article-title: Calcium signaling in plant immunity: a spatiotemporally controlled symphony publication-title: Trends Plant Sci. – volume: 4 start-page: 720 year: 2021 end-page: 729 ident: bb0005 article-title: Climate change risks pushing one-third of global food production outside the safe climatic space publication-title: One Earth – volume: 13 year: 2022 ident: bb0055 article-title: WRKY transcription factors (TFs): molecular switches to regulate drought, temperature, and salinity stresses in plants publication-title: Front. Plant Sci. – volume: 215 start-page: 1462 year: 2017 end-page: 1475 ident: bb0320 article-title: Regulation of cotton ( publication-title: New Phytol. – volume: 192 start-page: 77 year: 2023 end-page: 84 ident: bb0070 article-title: Single-cytosine methylation at W-boxes repels binding of WRKY transcription factors through steric hindrance publication-title: Plant Physiol. – volume: 45 start-page: 2861 year: 2023 end-page: 2880 ident: bb0045 article-title: Advances in the research on plant WRKY transcription factors responsive to external stresses publication-title: Curr. Issues Mol. Biol. – volume: 62 start-page: 25 year: 2020 end-page: 54 ident: bb0270 article-title: Abscisic acid dynamics, signaling, and functions in plants publication-title: J. Integr. Plant Biol. – volume: 22 start-page: 12091 year: 2021 ident: bb0275 article-title: positively regulates pepper immunity by targeting publication-title: Int. J. Mol. Sci. – volume: 23 start-page: 7537 year: 2022 ident: bb0405 article-title: Role of PsnWRKY70 in regulatory network response to infection with publication-title: Int. J. Mol. Sci. – volume: 49 start-page: 827 year: 2007 end-page: 842 ident: bb0120 article-title: The WRKY gene family in rice ( publication-title: J. Integr. Plant Biol. – volume: 43 start-page: 559 year: 2023 end-page: 574 ident: bb0610 article-title: Improving environmental stress resilience in crops by genome editing: insights from extremophile plants publication-title: Crit. Rev. Biotechnol. – volume: 100 start-page: 384 year: 2019 end-page: 398 ident: bb0415 article-title: GmWRKY54 improves drought tolerance through activating genes in abscisic acid and Ca publication-title: Plant J. – volume: 14 start-page: 937 year: 2021 end-page: 948 ident: bb0600 article-title: The lncRNA APOLO interacts with the transcription factor WRKY42 to trigger root hair cell expansion in response to cold publication-title: Mol. Plant – volume: 49 start-page: 617 year: 2022 end-page: 628 ident: bb0030 article-title: Exogenous phytohormones in the regulation of growth and development of cereals under abiotic stresses publication-title: Mol. Biol. Rep. – volume: 34 start-page: 1784 year: 2022 end-page: 1803 ident: bb0365 article-title: Transcriptional repression of publication-title: Plant Cell – volume: 9 start-page: 491 year: 2020 ident: bb0040 article-title: Transcription factors in plant stress responses: challenges and potential for sugarcane improvement publication-title: Plants – volume: 13 year: 2022 ident: bb0090 article-title: Identification and expression profiling of WRKY family genes in sugarcane in response to bacterial pathogen infection and nitrogen implantation dosage publication-title: Front. Plant Sci. – volume: 4 year: 2015 ident: bb0285 article-title: Negative regulation of ABA signaling by WRKY33 is critical for publication-title: eLife – volume: 24 start-page: 9519 year: 2023 ident: bb0145 article-title: Genome-wide analysis of WRKY transcription factors involved in abiotic stress and aba response in publication-title: Int. J. Mol. Sci. – volume: 70 start-page: 136 year: 2018 end-page: 149 ident: bb0240 article-title: Injury activates Ca publication-title: Mol. Cell – volume: 182 start-page: 1093 year: 2020 end-page: 1108 ident: bb0200 article-title: Formation of NPR1 condensates promotes cell survival during the plant immune response publication-title: Cell – volume: 184 year: 2021 ident: bb0495 article-title: MsWRKY11, activated by MsWRKY22, functions in drought tolerance and modulates lignin biosynthesis in alfalfa ( publication-title: Environ. Exp. Bot. – volume: 15 start-page: 66 year: 2015 ident: bb0160 article-title: The evolution of WRKY transcription factors publication-title: BMC Plant Biol. – volume: 1 start-page: 43 year: 2023 end-page: 56 ident: bb0650 article-title: Smart breeding driven by advances in sequencing technology publication-title: Modern Agric. – volume: 18 year: 2020 ident: bb0015 article-title: Climate change and disease in plant communities publication-title: PLoS Biol. – volume: 12 year: 2022 ident: bb0360 article-title: CsWRKY25 improves resistance of citrus fruit to publication-title: Front. Plant Sci. – volume: 71 start-page: 1128 year: 2020 end-page: 1138 ident: bb0455 article-title: WRKY44 represses expression of the wound-induced sesquiterpene biosynthetic gene ASS1 in publication-title: J. Exp. Bot. – volume: 23 start-page: 10049 year: 2022 ident: bb0560 article-title: Coronatine enhances chilling tolerance of tomato plants by inducing chilling-related epigenetic adaptations and transcriptional reprogramming publication-title: Int. J. Mol. Sci. – volume: 232 year: 2022 ident: bb0460 article-title: Transcription factor McWRKY71 induced by ozone stress regulates anthocyanin and proanthocyanidin biosynthesis in publication-title: Ecotoxicol. Environ. Saf. – volume: 10 start-page: 1775 year: 2020 ident: bb0480 article-title: Hierarchical and dynamic regulation of defense-responsive specialized metabolism by WRKY and MYB transcription factors publication-title: Front. Plant Sci. – volume: 6 start-page: 8 year: 2020 ident: bb0590 article-title: The publication-title: Noncoding RNA – volume: 38 start-page: 92 year: 2017 end-page: 100 ident: bb0335 article-title: Apoplastic ROS signaling in plant immunity publication-title: Curr. Opin. Plant Biol. – volume: 10 start-page: 2 year: 2012 end-page: 11 ident: bb0265 article-title: WRKY transcription factors: key components in abscisic acid signalling publication-title: Plant Biotechnol. J. – volume: 21 start-page: 427 year: 2021 ident: bb0130 article-title: Genome-wide identification and analysis of WRKY gene family in maize provide insights into regulatory network in response to abiotic stresses publication-title: BMC Plant Biol. – volume: 16 start-page: 499 year: 2019 end-page: 510 ident: bb0255 article-title: SAPK10-mediated phosphorylation on WRKY72 releases its suppression on jasmonic acid biosynthesis and bacterial blight resistance publication-title: iScience – volume: 10 start-page: 663 year: 2022 end-page: 679 ident: bb0340 article-title: Reactive oxygen species signalling in plant stress responses publication-title: Nat. Rev. Mol. Cell Biol. – volume: 37 start-page: 311 year: 2021 end-page: 340 ident: bb0395 article-title: Calcium signaling mechanisms across kingdoms publication-title: Annu. Rev. Cell Dev. Biol. – volume: 19 start-page: 311 year: 2021 end-page: 323 ident: bb0570 article-title: The miR156/SPL module regulates apple salt stress tolerance by activating MdWRKY100 expression publication-title: Plant Biotechnol. J. – volume: 13 year: 2022 ident: bb0125 article-title: Genome-wide analysis of the publication-title: Front. Plant Sci. – volume: 10 year: 2023 ident: bb0290 article-title: GA signaling protein LsRGL1 interacts with the ABA signaling-related genes publication-title: Hortic. Res. – volume: 30 start-page: 2480 year: 2018 end-page: 2494 ident: bb0515 article-title: A MPK3/6–WRKY33–ALD1–pipecolic acid regulatory loop contributes to systemic acquired resistance publication-title: Plant Cell – volume: 7 start-page: 393 year: 2019 end-page: 402 ident: bb0215 article-title: The cotton WRKY transcription factor publication-title: Crop J. – volume: 19 start-page: 598 year: 2019 ident: bb0230 article-title: , a member of the WRKY transcription factor genes identified from publication-title: BMC Plant Biol. – volume: 233 start-page: 1843 year: 2022 end-page: 1863 ident: bb0410 article-title: A CaCDPK29–CaWRKY27b module promotes CaWRKY40-mediated thermotolerance and immunity to publication-title: New Phytol. – volume: 271 year: 2022 ident: bb0325 article-title: Interplay between glutathione and mitogen-activated protein kinase 3 via transcription factor WRKY40 under combined osmotic and cold stress in publication-title: J. Plant Physiol. – volume: 188 start-page: 1900 year: 2022 end-page: 1916 ident: bb0295 article-title: Inactivating transcription factor publication-title: Plant Physiol. – volume: 16 start-page: 903 year: 2023 end-page: 918 ident: bb0305 article-title: Suppression of ETI by PTI priming to balance plant growth and defense through a MPK3/MPK6-WRKYs-PP2Cs module publication-title: Mol. Plant – volume: 21 start-page: 50442 year: 2020 ident: bb0400 article-title: A malectin-like receptor kinase regulates cell death and pattern-triggered immunity in soybean publication-title: EMBO Rep. – volume: 236 start-page: 249 year: 2022 end-page: 265 ident: bb0485 article-title: Group IIc WRKY transcription factors regulate cotton resistance to publication-title: New Phytol. – volume: 22 start-page: 10080 year: 2021 ident: bb0510 article-title: Maize WRKY transcription factor ZmWRKY79 positively regulates drought tolerance through elevating ABA biosynthesis publication-title: Int. J. Mol. Sci. – volume: 14 start-page: 486 year: 2023 ident: bb0380 article-title: A WRKY transcription factor CbWRKY27 negatively regulates salt tolerance in publication-title: Forests – volume: 113 start-page: 1761 year: 2021 end-page: 1777 ident: bb0595 article-title: Genome-wide identification and comparative analysis of the WRKY gene family in aquatic plants and their response to abiotic stresses in giant duckweed ( publication-title: Genomics – volume: 305 year: 2021 ident: bb0500 article-title: GhWRKY1-like enhances cotton resistance to publication-title: Plant Sci. – year: 2023 ident: bb0195 article-title: Salicylic acid: a phenolic molecule with multiple roles in salt-stressed plants publication-title: J. Plant Growth Regul. – volume: 8 start-page: 36 year: 2021 ident: bb0420 article-title: LlWRKY39 is involved in thermotolerance by activating publication-title: Hortic. Res. – volume: 50 start-page: 6201 year: 2023 end-page: 6216 ident: bb0530 article-title: Epigenomics in stress tolerance of plants under the climate change publication-title: Mol. Biol. Rep. – volume: 186 start-page: 1202 year: 2021 end-page: 1219 ident: bb0330 article-title: MKK4-MPK3-WRKY17-mediated salicylic acid degradation increases susceptibility to publication-title: Plant Physiol. – volume: 46 start-page: 1985 year: 2023 end-page: 2006 ident: bb0355 article-title: The integration of reactive oxygen species (ROS) and calcium signalling in abiotic stress responses publication-title: Plant Cell Environ. – volume: 7 start-page: 393 year: 2019 ident: 10.1016/j.tig.2023.07.001_bb0215 article-title: The cotton WRKY transcription factor GhWRKY70 negatively regulates the defense response against Verticillium dahliae publication-title: Crop J. doi: 10.1016/j.cj.2018.10.005 – volume: 110 start-page: 235 year: 2022 ident: 10.1016/j.tig.2023.07.001_bb0505 article-title: Ocimum sanctum, OscWRKY1, regulates phenylpropanoid pathway genes and promotes resistance to pathogen infection in Arabidopsis publication-title: Plant Mol. Biol. doi: 10.1007/s11103-022-01297-2 – volume: 45 start-page: 2861 year: 2023 ident: 10.1016/j.tig.2023.07.001_bb0045 article-title: Advances in the research on plant WRKY transcription factors responsive to external stresses publication-title: Curr. Issues Mol. Biol. doi: 10.3390/cimb45040187 – volume: 12 year: 2022 ident: 10.1016/j.tig.2023.07.001_bb0360 article-title: CsWRKY25 improves resistance of citrus fruit to Penicillium digitatum via modulating reactive oxygen species production publication-title: Front. Plant Sci. – volume: 13 year: 2022 ident: 10.1016/j.tig.2023.07.001_bb0125 article-title: Genome-wide analysis of the Tritipyrum WRKY gene family and the response of TtWRKY256 in salt-tolerance publication-title: Front. Plant Sci. doi: 10.3389/fpls.2022.1042078 – volume: 14 start-page: 1015 year: 2023 ident: 10.1016/j.tig.2023.07.001_bb0490 article-title: Molecular cloning and characterization of WRKY12, a pathogen induced WRKY transcription factor from Akebia trifoliata publication-title: Genes doi: 10.3390/genes14051015 – volume: 13 year: 2022 ident: 10.1016/j.tig.2023.07.001_bb0205 article-title: CmWRKY15-1 promotes resistance to chrysanthemum white rust by regulating CmNPR1 expression publication-title: Front. Plant Sci. – volume: 6 start-page: 8 year: 2020 ident: 10.1016/j.tig.2023.07.001_bb0590 article-title: The Arabidopsis hypoxia inducible AtR8 long non-coding RNA also contributes to plant defense and root elongation coordinating with WRKY genes under low levels of salicylic acid publication-title: Noncoding RNA – volume: 271 year: 2022 ident: 10.1016/j.tig.2023.07.001_bb0325 article-title: Interplay between glutathione and mitogen-activated protein kinase 3 via transcription factor WRKY40 under combined osmotic and cold stress in Arabidopsis publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2022.153664 – volume: 113 start-page: 1761 year: 2021 ident: 10.1016/j.tig.2023.07.001_bb0595 article-title: Genome-wide identification and comparative analysis of the WRKY gene family in aquatic plants and their response to abiotic stresses in giant duckweed (Spirodela polyrhiza) publication-title: Genomics doi: 10.1016/j.ygeno.2021.03.035 – year: 2023 ident: 10.1016/j.tig.2023.07.001_bb0085 article-title: Epigenetic regulation of plant immunity: from chromatin codes to plant disease resistance publication-title: aBIOTECH doi: 10.1007/s42994-023-00101-z – volume: 13 start-page: 501 year: 2019 ident: 10.1016/j.tig.2023.07.001_bb0625 article-title: CRISPR/Cas9-mediated editing of CsWRKY22 reduces susceptibility to Xanthomonas citri subsp. citri in Wanjincheng orange (Citrus sinensis (L.) Osbeck) publication-title: Plant Biotechnol. Rep. doi: 10.1007/s11816-019-00556-x – volume: 71 start-page: 157 year: 2020 ident: 10.1016/j.tig.2023.07.001_bb0350 article-title: Redox homeostasis and signaling in a higher-CO2 world publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-050718-095955 – volume: 40 start-page: 1071 year: 2021 ident: 10.1016/j.tig.2023.07.001_bb0010 article-title: WRKY transcription factors and plant defense responses: latest discoveries and future prospects publication-title: Plant Cell Rep. doi: 10.1007/s00299-021-02691-8 – volume: 50 start-page: 6201 year: 2023 ident: 10.1016/j.tig.2023.07.001_bb0530 article-title: Epigenomics in stress tolerance of plants under the climate change publication-title: Mol. Biol. Rep. doi: 10.1007/s11033-023-08539-6 – volume: 3 start-page: 430 year: 2019 ident: 10.1016/j.tig.2023.07.001_bb0025 article-title: The global burden of pathogens and pests on major food crops publication-title: Nat. Ecol. Evol. doi: 10.1038/s41559-018-0793-y – year: 2023 ident: 10.1016/j.tig.2023.07.001_bb0450 article-title: NaWRKY3 is a master transcriptional regulator of the defense network against brown spot disease in wild tobacco publication-title: J. Exp. Bot. doi: 10.1093/jxb/erad142 – volume: 21 start-page: 458 year: 2021 ident: 10.1016/j.tig.2023.07.001_bb0280 article-title: GhWRKY1-like, a WRKY transcription factor, mediates drought tolerance in Arabidopsis via modulating ABA biosynthesis publication-title: BMC Plant Biol. doi: 10.1186/s12870-021-03238-5 – volume: 37 start-page: 167 year: 2018 ident: 10.1016/j.tig.2023.07.001_bb0565 article-title: Epigenetic regulation of the expression of WRKY75 transcription factor in response to biotic and abiotic stresses in Solanaceae plants publication-title: Plant Cell Rep. doi: 10.1007/s00299-017-2219-8 – volume: 62 year: 2021 ident: 10.1016/j.tig.2023.07.001_bb0065 article-title: PTI–ETI crosstalk: an integrative view of plant immunity publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2021.102030 – volume: 196 start-page: 431 year: 2023 ident: 10.1016/j.tig.2023.07.001_bb0175 article-title: Salicylic acid interacts with other plant growth regulators and signal molecules in response to stressful environments in plants publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2023.02.006 – volume: 13 year: 2022 ident: 10.1016/j.tig.2023.07.001_bb0235 article-title: Panax notoginseng WRKY transcription factor 9 is a positive regulator in responding to root rot pathogen Fusarium solani publication-title: Front. Plant Sci. – volume: 13 start-page: 598 year: 2020 ident: 10.1016/j.tig.2023.07.001_bb0550 article-title: Histone deacetylase HDA9 and WRKY53 transcription factor are mutual antagonists in regulation of plant stress response publication-title: Mol. Plant doi: 10.1016/j.molp.2019.12.011 – volume: 236 start-page: 249 year: 2022 ident: 10.1016/j.tig.2023.07.001_bb0485 article-title: Group IIc WRKY transcription factors regulate cotton resistance to Fusarium oxysporum by promoting GhMKK2-mediated flavonoid biosynthesis publication-title: New Phytol. doi: 10.1111/nph.18329 – volume: 12 year: 2021 ident: 10.1016/j.tig.2023.07.001_bb0540 article-title: Two Arabidopsis homologs of human lysine-specific demethylase function in epigenetic regulation of plant defense responses publication-title: Front. Plant Sci. doi: 10.3389/fpls.2021.688003 – volume: 19 start-page: 311 year: 2021 ident: 10.1016/j.tig.2023.07.001_bb0570 article-title: The miR156/SPL module regulates apple salt stress tolerance by activating MdWRKY100 expression publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.13464 – volume: 56 start-page: 174 year: 2016 ident: 10.1016/j.tig.2023.07.001_bb0165 article-title: No hormone to rule them all: interactions of plant hormones during the responses of plants to pathogens publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2016.06.005 – volume: 9 start-page: 197 year: 2022 ident: 10.1016/j.tig.2023.07.001_bb0260 article-title: SlWRKY45 interacts with jasmonate-ZIM domain proteins to negatively regulate defense against the root-knot nematode Meloidogyne incognita in tomato publication-title: Hortic. Res. doi: 10.1093/hr/uhac197 – volume: 171 year: 2020 ident: 10.1016/j.tig.2023.07.001_bb0375 article-title: Tomato WRKY81 acts as a negative regulator for drought tolerance by modulating guard cell H2O2-mediated stomatal closure publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2019.103960 – volume: 14 year: 2023 ident: 10.1016/j.tig.2023.07.001_bb0220 article-title: Exogenous application of salicylic acid improves freezing stress tolerance in alfalfa publication-title: Front. Plant Sci. – volume: 19 start-page: 598 year: 2019 ident: 10.1016/j.tig.2023.07.001_bb0230 article-title: GmWRKY40, a member of the WRKY transcription factor genes identified from Glycine max L., enhanced the resistance to Phytophthora sojae publication-title: BMC Plant Biol. doi: 10.1186/s12870-019-2132-0 – volume: 1 start-page: 13 year: 2019 ident: 10.1016/j.tig.2023.07.001_bb0110 article-title: WRKY transcription factors: evolution, binding, and action publication-title: Phytopathol. Res. doi: 10.1186/s42483-019-0022-x – volume: 35 start-page: 2391 year: 2023 ident: 10.1016/j.tig.2023.07.001_bb0315 article-title: Phosphorylation and ubiquitination of OsWRKY31 are integral to OsMKK10-2-mediated defense responses in rice publication-title: Plant Cell doi: 10.1093/plcell/koad064 – volume: 4 year: 2015 ident: 10.1016/j.tig.2023.07.001_bb0285 article-title: Negative regulation of ABA signaling by WRKY33 is critical for Arabidopsis immunity towards Botrytis cinerea 2100 publication-title: eLife doi: 10.7554/eLife.07295 – volume: 13 year: 2022 ident: 10.1016/j.tig.2023.07.001_bb0090 article-title: Identification and expression profiling of WRKY family genes in sugarcane in response to bacterial pathogen infection and nitrogen implantation dosage publication-title: Front. Plant Sci. doi: 10.3389/fpls.2022.917953 – volume: 23 start-page: 10049 year: 2022 ident: 10.1016/j.tig.2023.07.001_bb0560 article-title: Coronatine enhances chilling tolerance of tomato plants by inducing chilling-related epigenetic adaptations and transcriptional reprogramming publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms231710049 – volume: 188 start-page: 1900 year: 2022 ident: 10.1016/j.tig.2023.07.001_bb0295 article-title: Inactivating transcription factor OsWRKY5 enhances drought tolerance through abscisic acid signaling pathways publication-title: Plant Physiol. doi: 10.1093/plphys/kiab492 – volume: 215 start-page: 1462 year: 2017 ident: 10.1016/j.tig.2023.07.001_bb0320 article-title: Regulation of cotton (Gossypium hirsutum) drought responses by mitogen-activated protein (MAP) kinase cascade-mediated phosphorylation of GhWRKY59 publication-title: New Phytol. doi: 10.1111/nph.14680 – volume: 12 start-page: 1444 year: 2021 ident: 10.1016/j.tig.2023.07.001_bb0150 article-title: Genome-wide identification and transcriptional expression profiles of transcription factor WRKY in common walnut (Juglans regia L.) publication-title: Genes doi: 10.3390/genes12091444 – volume: 25 start-page: 549 year: 2020 ident: 10.1016/j.tig.2023.07.001_bb0180 article-title: Stories of salicylic acid: a plant defense hormone publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2020.01.004 – volume: 9 start-page: 491 year: 2020 ident: 10.1016/j.tig.2023.07.001_bb0040 article-title: Transcription factors in plant stress responses: challenges and potential for sugarcane improvement publication-title: Plants doi: 10.3390/plants9040491 – year: 2023 ident: 10.1016/j.tig.2023.07.001_bb0345 article-title: Fuels for ROS signaling in plant immunity publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2023.04.007 – volume: 70 start-page: 136 year: 2018 ident: 10.1016/j.tig.2023.07.001_bb0240 article-title: Injury activates Ca2+/calmodulin-dependent phosphorylation of JAV1-JAZ8-WRKY51 complex for jasmonate biosynthesis publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.03.013 – volume: 18 start-page: 1760 year: 2023 ident: 10.1016/j.tig.2023.07.001_bb0645 article-title: CRISPR-Combo-mediated orthogonal genome editing and transcriptional activation for plant breeding publication-title: Nat. Protoc. doi: 10.1038/s41596-023-00823-w – volume: 29 start-page: 16016 year: 2016 ident: 10.1016/j.tig.2023.07.001_bb0575 article-title: Transposon-derived small RNA is responsible for modified function of WRKY45 locus publication-title: Nat. Plants doi: 10.1038/nplants.2016.16 – volume: 4 start-page: 720 year: 2021 ident: 10.1016/j.tig.2023.07.001_bb0005 article-title: Climate change risks pushing one-third of global food production outside the safe climatic space publication-title: One Earth doi: 10.1016/j.oneear.2021.04.017 – volume: 30 start-page: 2480 year: 2018 ident: 10.1016/j.tig.2023.07.001_bb0515 article-title: A MPK3/6–WRKY33–ALD1–pipecolic acid regulatory loop contributes to systemic acquired resistance publication-title: Plant Cell doi: 10.1105/tpc.18.00547 – volume: 11 year: 2023 ident: 10.1016/j.tig.2023.07.001_bb0640 article-title: Breakthrough in CRISPR/Cas system: current and future directions and challenges publication-title: Biotechnol. J. – volume: 10 start-page: 2 year: 2012 ident: 10.1016/j.tig.2023.07.001_bb0265 article-title: WRKY transcription factors: key components in abscisic acid signalling publication-title: Plant Biotechnol. J. doi: 10.1111/j.1467-7652.2011.00634.x – volume: 13 year: 2022 ident: 10.1016/j.tig.2023.07.001_bb0135 article-title: WRKY genes provide novel insights into their role against Ralstonia solanacearum infection in cultivated peanut (Arachis hypogaea L.) publication-title: Front. Plant Sci. doi: 10.3389/fpls.2022.986673 – volume: 233 start-page: 1843 year: 2022 ident: 10.1016/j.tig.2023.07.001_bb0410 article-title: A CaCDPK29–CaWRKY27b module promotes CaWRKY40-mediated thermotolerance and immunity to Ralstonia solanacearum in pepper publication-title: New Phytol. doi: 10.1111/nph.17891 – volume: 21 start-page: 961 year: 2023 ident: 10.1016/j.tig.2023.07.001_bb0430 article-title: GhWRKY41 forms a positive feedback regulation loop and increases cotton defense response against Verticillium dahliae by regulating phenylpropanoid metabolism publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.14008 – volume: 184 year: 2021 ident: 10.1016/j.tig.2023.07.001_bb0495 article-title: MsWRKY11, activated by MsWRKY22, functions in drought tolerance and modulates lignin biosynthesis in alfalfa (Medicago sativa L.) publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2021.104373 – volume: 256 start-page: 208 year: 2017 ident: 10.1016/j.tig.2023.07.001_bb0475 article-title: StWRKY8 transcription factor regulates benzylisoquinoline alkaloid pathway in potato conferring resistance to late blight publication-title: Plant Sci. doi: 10.1016/j.plantsci.2016.12.014 – volume: 40 start-page: 2037 year: 2021 ident: 10.1016/j.tig.2023.07.001_bb0170 article-title: Two-component signaling system in plants: interaction network and specificity in response to stress and hormones publication-title: Plant Cell Rep. doi: 10.1007/s00299-021-02727-z – volume: 14 start-page: 486 year: 2023 ident: 10.1016/j.tig.2023.07.001_bb0380 article-title: A WRKY transcription factor CbWRKY27 negatively regulates salt tolerance in Catalpa bungei publication-title: Forests doi: 10.3390/f14030486 – volume: 247 start-page: 181 year: 2018 ident: 10.1016/j.tig.2023.07.001_bb0210 article-title: Interaction of Arabidopsis TGA3 and WRKY53 transcription factors on Cestrum yellow leaf curling virus (CmYLCV) promoter mediates salicylic acid-dependent gene expression in planta publication-title: Planta doi: 10.1007/s00425-017-2769-6 – volume: 24 start-page: 3783 year: 2021 ident: 10.1016/j.tig.2023.07.001_bb0545 article-title: HDT701, a histone H4 deacetylase, negatively regulates plant innate immunity by modulating histone H4 acetylation of defense-related genes in rice publication-title: Plant Cell doi: 10.1105/tpc.112.101972 – volume: 100 start-page: 384 year: 2019 ident: 10.1016/j.tig.2023.07.001_bb0415 article-title: GmWRKY54 improves drought tolerance through activating genes in abscisic acid and Ca2+ signaling pathways in transgenic soybean publication-title: Plant J. doi: 10.1111/tpj.14449 – volume: 305 year: 2021 ident: 10.1016/j.tig.2023.07.001_bb0500 article-title: GhWRKY1-like enhances cotton resistance to Verticillium dahliae via an increase in defense-induced lignification and S monolignol content publication-title: Plant Sci. doi: 10.1016/j.plantsci.2021.110833 – year: 2023 ident: 10.1016/j.tig.2023.07.001_bb0195 article-title: Salicylic acid: a phenolic molecule with multiple roles in salt-stressed plants publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-022-10902-z – volume: 22 start-page: 12091 year: 2021 ident: 10.1016/j.tig.2023.07.001_bb0275 article-title: CaWRKY30 positively regulates pepper immunity by targeting CaWRKY40 against Ralstonia solanacearum inoculation through modulating defense-related genes publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms222112091 – volume: 215 start-page: 1115 year: 2017 ident: 10.1016/j.tig.2023.07.001_bb0525 article-title: A WRKY transcription factor from Withania somnifera regulates triterpenoid withanolide accumulation and biotic stress tolerance through modulation of phytosterol and defense pathways publication-title: New Phytol. doi: 10.1111/nph.14663 – volume: 45 start-page: 1107 year: 2021 ident: 10.1016/j.tig.2023.07.001_bb0470 article-title: Genome-wide identification of WRKY gene family and expression analysis under abiotic stresses in Andrographis paniculata publication-title: Biocell doi: 10.32604/biocell.2021.015282 – volume: 79 year: 2023 ident: 10.1016/j.tig.2023.07.001_bb0635 article-title: Large-scale genome editing in plants: approaches, applications, and future perspectives publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2022.102875 – volume: 8 start-page: 217 year: 2021 ident: 10.1016/j.tig.2023.07.001_bb0465 article-title: AaWRKY17, a positive regulator of artemisinin biosynthesis, is involved in resistance to Pseudomonas syringae in Artemisia annua publication-title: Hortic. Res. doi: 10.1038/s41438-021-00652-6 – volume: 14 start-page: 937 year: 2021 ident: 10.1016/j.tig.2023.07.001_bb0600 article-title: The lncRNA APOLO interacts with the transcription factor WRKY42 to trigger root hair cell expansion in response to cold publication-title: Mol. Plant doi: 10.1016/j.molp.2021.03.008 – volume: 73 start-page: 6207 year: 2022 ident: 10.1016/j.tig.2023.07.001_bb0250 article-title: The transcription factor SlWRKY37 positively regulates jasmonic acid- and dark-induced leaf senescence in tomato publication-title: J. Exp. Bot. doi: 10.1093/jxb/erac258 – volume: 190 start-page: 1588 year: 2022 ident: 10.1016/j.tig.2023.07.001_bb0155 article-title: The cell biology of charophytes: exploring the past and models for the future publication-title: Plant Physiol. doi: 10.1093/plphys/kiac390 – volume: 11 start-page: 89 year: 2011 ident: 10.1016/j.tig.2023.07.001_bb0185 article-title: WRKY transcription factors involved in activation of SA biosynthesis genes publication-title: BMC Plant Biol. doi: 10.1186/1471-2229-11-89 – volume: 16 start-page: 903 year: 2023 ident: 10.1016/j.tig.2023.07.001_bb0305 article-title: Suppression of ETI by PTI priming to balance plant growth and defense through a MPK3/MPK6-WRKYs-PP2Cs module publication-title: Mol. Plant doi: 10.1016/j.molp.2023.04.004 – volume: 21 start-page: 427 year: 2021 ident: 10.1016/j.tig.2023.07.001_bb0130 article-title: Genome-wide identification and analysis of WRKY gene family in maize provide insights into regulatory network in response to abiotic stresses publication-title: BMC Plant Biol. doi: 10.1186/s12870-021-03206-z – volume: 1 start-page: 43 year: 2023 ident: 10.1016/j.tig.2023.07.001_bb0650 article-title: Smart breeding driven by advances in sequencing technology publication-title: Modern Agric. doi: 10.1002/moda.8 – volume: 232 year: 2022 ident: 10.1016/j.tig.2023.07.001_bb0460 article-title: Transcription factor McWRKY71 induced by ozone stress regulates anthocyanin and proanthocyanidin biosynthesis in Malus crabapple publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2022.113274 – volume: 260 start-page: 331 year: 2023 ident: 10.1016/j.tig.2023.07.001_bb0035 article-title: WRKY transcription factors: evolution, regulation, and functional diversity in plants publication-title: Protoplasma doi: 10.1007/s00709-022-01794-7 – volume: 13 year: 2022 ident: 10.1016/j.tig.2023.07.001_bb0055 article-title: WRKY transcription factors (TFs): molecular switches to regulate drought, temperature, and salinity stresses in plants publication-title: Front. Plant Sci. doi: 10.3389/fpls.2022.1039329 – volume: 255 start-page: 3 year: 2022 ident: 10.1016/j.tig.2023.07.001_bb0140 article-title: Identification of WRKY transcription factors responding to abiotic stresses in Brassica napus L publication-title: Planta doi: 10.1007/s00425-021-03733-x – volume: 97 start-page: 933 year: 2019 ident: 10.1016/j.tig.2023.07.001_bb0580 article-title: LncRNA33732-respiratory burst oxidase module associated with WRKY1 in tomato–Phytophthora infestans interactions publication-title: Plant J. doi: 10.1111/tpj.14173 – volume: 186 start-page: 1202 year: 2021 ident: 10.1016/j.tig.2023.07.001_bb0330 article-title: MKK4-MPK3-WRKY17-mediated salicylic acid degradation increases susceptibility to Glomerella leaf spot in apple publication-title: Plant Physiol. doi: 10.1093/plphys/kiab108 – volume: 1 start-page: 21 year: 2021 ident: 10.1016/j.tig.2023.07.001_bb0520 article-title: Roles of hormones, calcium and PmWRKY31 in the defense of Pinus massoniana Lamb. against Dendrolimus punctatus Walker publication-title: For. Res. – volume: 18 year: 2020 ident: 10.1016/j.tig.2023.07.001_bb0015 article-title: Climate change and disease in plant communities publication-title: PLoS Biol. doi: 10.1371/journal.pbio.3000949 – volume: 41 year: 2022 ident: 10.1016/j.tig.2023.07.001_bb0385 article-title: Ca2+ signals in plant immunity publication-title: EMBO J. doi: 10.15252/embj.2022110741 – volume: 24 start-page: 2423 year: 2023 ident: 10.1016/j.tig.2023.07.001_bb0445 article-title: Characterization of the WRKY gene family related to anthocyanin biosynthesis and the regulation mechanism under drought stress and methyl jasmonate treatment in Lycoris radiata publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms24032423 – volume: 10 start-page: 1775 year: 2020 ident: 10.1016/j.tig.2023.07.001_bb0480 article-title: Hierarchical and dynamic regulation of defense-responsive specialized metabolism by WRKY and MYB transcription factors publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.01775 – volume: 23 start-page: 164 year: 2022 ident: 10.1016/j.tig.2023.07.001_bb0115 article-title: Identification of drought responsive Elaeis guineensis WRKY transcription factors with sensitivity to other abiotic stresses and hormone treatments publication-title: BMC Genomics doi: 10.1186/s12864-022-08378-y – volume: 24 start-page: 9519 year: 2023 ident: 10.1016/j.tig.2023.07.001_bb0145 article-title: Genome-wide analysis of WRKY transcription factors involved in abiotic stress and aba response in Caragana korshinskii publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms24119519 – volume: 49 start-page: 827 year: 2007 ident: 10.1016/j.tig.2023.07.001_bb0120 article-title: The WRKY gene family in rice (Oryza sativa) publication-title: J. Integr. Plant Biol. doi: 10.1111/j.1744-7909.2007.00504.x – volume: 37 start-page: 311 year: 2021 ident: 10.1016/j.tig.2023.07.001_bb0395 article-title: Calcium signaling mechanisms across kingdoms publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev-cellbio-120219-035210 – volume: 28 start-page: 630 year: 2023 ident: 10.1016/j.tig.2023.07.001_bb0050 article-title: Functions of WRKYs in plant growth and development publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2022.12.012 – volume: 46 start-page: 1985 year: 2023 ident: 10.1016/j.tig.2023.07.001_bb0355 article-title: The integration of reactive oxygen species (ROS) and calcium signalling in abiotic stress responses publication-title: Plant Cell Environ. doi: 10.1111/pce.14596 – volume: 19 start-page: 2716 year: 2018 ident: 10.1016/j.tig.2023.07.001_bb0615 article-title: CRISPR/Cas9-mediated multiplex genome editing of the BnWRKY11 and BnWRKY70 genes in Brassica napus L publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms19092716 – volume: 45 start-page: 268 year: 2018 ident: 10.1016/j.tig.2023.07.001_bb0075 article-title: Activation of rice WRKY transcription factors: an army of stress fighting soldiers? publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2018.07.007 – volume: 34 start-page: 1784 year: 2022 ident: 10.1016/j.tig.2023.07.001_bb0365 article-title: Transcriptional repression of TaNOX10 by TaWRKY19 compromises ROS generation and enhances wheat susceptibility to stripe rust publication-title: Plant Cell doi: 10.1093/plcell/koac001 – volume: 15 start-page: 66 year: 2015 ident: 10.1016/j.tig.2023.07.001_bb0160 article-title: The evolution of WRKY transcription factors publication-title: BMC Plant Biol. doi: 10.1186/s12870-015-0456-y – volume: 16 start-page: 499 year: 2019 ident: 10.1016/j.tig.2023.07.001_bb0255 article-title: SAPK10-mediated phosphorylation on WRKY72 releases its suppression on jasmonic acid biosynthesis and bacterial blight resistance publication-title: iScience doi: 10.1016/j.isci.2019.06.009 – volume: 182 start-page: 1093 year: 2020 ident: 10.1016/j.tig.2023.07.001_bb0200 article-title: Formation of NPR1 condensates promotes cell survival during the plant immune response publication-title: Cell doi: 10.1016/j.cell.2020.07.016 – volume: 14 year: 2023 ident: 10.1016/j.tig.2023.07.001_bb0435 article-title: Overexpression of GmWRKY172 enhances cadmium tolerance in plants and reduces cadmium accumulation in soybean seeds publication-title: Front. Plant Sci. doi: 10.3389/fpls.2023.1133892 – volume: 10 year: 2023 ident: 10.1016/j.tig.2023.07.001_bb0290 article-title: GA signaling protein LsRGL1 interacts with the ABA signaling-related genes LsWRKY70 to affect the bolting of leaf lettuce publication-title: Hortic. Res. doi: 10.1093/hr/uhad054 – volume: 23 start-page: 7537 year: 2022 ident: 10.1016/j.tig.2023.07.001_bb0405 article-title: Role of PsnWRKY70 in regulatory network response to infection with Alternaria alternata (Fr.) Keissl in Populus publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms23147537 – volume: 334 year: 2023 ident: 10.1016/j.tig.2023.07.001_bb0095 article-title: WRKY transcription factors: understanding the functional divergence publication-title: Plant Sci. doi: 10.1016/j.plantsci.2023.111770 – volume: 63 start-page: 438 year: 2021 ident: 10.1016/j.tig.2023.07.001_bb0080 article-title: Chromatin remodeling factors regulate environmental stress responses in plants publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.13064 – volume: 10 start-page: 663 year: 2022 ident: 10.1016/j.tig.2023.07.001_bb0340 article-title: Reactive oxygen species signalling in plant stress responses publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-022-00499-2 – volume: 192 start-page: 77 year: 2023 ident: 10.1016/j.tig.2023.07.001_bb0070 article-title: Single-cytosine methylation at W-boxes repels binding of WRKY transcription factors through steric hindrance publication-title: Plant Physiol. doi: 10.1093/plphys/kiad069 – volume: 12 start-page: 327 year: 2021 ident: 10.1016/j.tig.2023.07.001_bb0620 article-title: OsWRKY93 dually functions between leaf senescence and in response to biotic stress in rice publication-title: Front. Plant Sci. – volume: 62 start-page: 25 year: 2020 ident: 10.1016/j.tig.2023.07.001_bb0270 article-title: Abscisic acid dynamics, signaling, and functions in plants publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.12899 – volume: 237 start-page: 1856 year: 2023 ident: 10.1016/j.tig.2023.07.001_bb0440 article-title: VqWRKY56 interacts with VqbZIPC22 in grapevine to promote proanthocyanidin biosynthesis and increase resistance to powdery mildew publication-title: New Phytol. doi: 10.1111/nph.18688 – volume: 36 start-page: 311 year: 2017 ident: 10.1016/j.tig.2023.07.001_bb0060 article-title: The WRKY transcription factor family in model plants and crops publication-title: Crit. Rev. Plant Sci. doi: 10.1080/07352689.2018.1441103 – volume: 38 start-page: 92 year: 2017 ident: 10.1016/j.tig.2023.07.001_bb0335 article-title: Apoplastic ROS signaling in plant immunity publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2017.04.022 – volume: 46 start-page: 2277 year: 2023 ident: 10.1016/j.tig.2023.07.001_bb0300 article-title: Revisiting the role of MAPK signalling pathway in plants and its manipulation for crop improvement publication-title: Plant Cell Environ. doi: 10.1111/pce.14606 – volume: 49 start-page: 617 year: 2022 ident: 10.1016/j.tig.2023.07.001_bb0030 article-title: Exogenous phytohormones in the regulation of growth and development of cereals under abiotic stresses publication-title: Mol. Biol. Rep. doi: 10.1007/s11033-021-06802-2 – volume: 112 start-page: 383 year: 2022 ident: 10.1016/j.tig.2023.07.001_bb0630 article-title: The OsWRKY63–OsWRKY76–OsDREB1B module regulates chilling tolerance in rice publication-title: Plant J. doi: 10.1111/tpj.15950 – volume: 6 start-page: 23632 year: 2016 ident: 10.1016/j.tig.2023.07.001_bb0245 article-title: Banana fruit VQ motif-containing protein5 represses cold-responsive transcription factor MaWRKY26 involved in the regulation of JA biosynthetic genes publication-title: Sci. Rep. doi: 10.1038/srep23632 – volume: 43 start-page: 559 year: 2023 ident: 10.1016/j.tig.2023.07.001_bb0610 article-title: Improving environmental stress resilience in crops by genome editing: insights from extremophile plants publication-title: Crit. Rev. Biotechnol. doi: 10.1080/07388551.2022.2042481 – volume: 61 start-page: 616 year: 2020 ident: 10.1016/j.tig.2023.07.001_bb0105 article-title: Genome-wide identification and expression profile analysis of WRKY family genes in the autopolyploid Saccharum spontaneum publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcz227 – volume: 28 start-page: 74 year: 2023 ident: 10.1016/j.tig.2023.07.001_bb0390 article-title: Calcium signaling in plant immunity: a spatiotemporally controlled symphony publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2022.11.001 – volume: 23 start-page: 182 year: 2022 ident: 10.1016/j.tig.2023.07.001_bb0555 article-title: Transcriptomic and epigenomic assessment reveals epigenetic regulation of WRKY genes in response to Magnaporthe oryzae infection in rice publication-title: Curr. Genomics doi: 10.2174/1389202923666220510195910 – volume: 63 start-page: 180 year: 2021 ident: 10.1016/j.tig.2023.07.001_bb0425 article-title: Contribution of phenylpropanoid metabolism to plant development and plant–environment interactions publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.13054 – volume: 5 start-page: 199 year: 2020 ident: 10.1016/j.tig.2023.07.001_bb0100 article-title: The WRKY superfamily of plant transcription factors publication-title: Trends Plant Sci. doi: 10.1016/S1360-1385(00)01600-9 – volume: 71 start-page: 1128 year: 2020 ident: 10.1016/j.tig.2023.07.001_bb0455 article-title: WRKY44 represses expression of the wound-induced sesquiterpene biosynthetic gene ASS1 in Aquilaria sinensis publication-title: J. Exp. Bot. – volume: 22 start-page: 10080 year: 2021 ident: 10.1016/j.tig.2023.07.001_bb0510 article-title: Maize WRKY transcription factor ZmWRKY79 positively regulates drought tolerance through elevating ABA biosynthesis publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms221810080 – volume: 68 start-page: 7348 year: 2020 ident: 10.1016/j.tig.2023.07.001_bb0190 article-title: A rapeseed WRKY transcription factor phosphorylated by CPK modulates cell death and leaf senescence by regulating the expression of ROS and SA-synthesis-related genes publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.0c02500 – volume: 11 start-page: 327 year: 2021 ident: 10.1016/j.tig.2023.07.001_bb0370 article-title: Dehydration-induced WRKY transcriptional factor MfWRKY70 of Myrothamnus flabellifolia enhanced drought and salinity tolerance in Arabidopsis publication-title: Biomolecules doi: 10.3390/biom11020327 – volume: 32 start-page: 2621 year: 2020 ident: 10.1016/j.tig.2023.07.001_bb0310 article-title: Differential phosphorylation of the transcription factor WRKY33 by the protein kinases CPK5/CPK6 and MPK3/MPK6 cooperatively regulates camalexin biosynthesis in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.19.00971 – volume: 21 start-page: 50442 year: 2020 ident: 10.1016/j.tig.2023.07.001_bb0400 article-title: A malectin-like receptor kinase regulates cell death and pattern-triggered immunity in soybean publication-title: EMBO Rep. doi: 10.15252/embr.202050442 – volume: 159 start-page: 121 year: 2019 ident: 10.1016/j.tig.2023.07.001_bb0535 article-title: Epigenetic analysis of WRKY transcription factor genes in salt stressed rice (Oryza sativa L.) plants publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2018.12.015 – year: 2022 ident: 10.1016/j.tig.2023.07.001_bb0020 article-title: Crosstalk and trade-offs: plant responses to climate change-associated abiotic and biotic stresses publication-title: Plant Cell Environ. – volume: 67 year: 2022 ident: 10.1016/j.tig.2023.07.001_bb0225 article-title: Jasmonate: a hormone of primary importance for plant metabolism publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2022.102197 – volume: 44 start-page: 982 year: 2021 ident: 10.1016/j.tig.2023.07.001_bb0585 article-title: Long non-coding RNAs associate with jasmonate-mediated plant defence against herbivores publication-title: Plant Cell Environ. doi: 10.1111/pce.13952 – volume: 8 start-page: 36 year: 2021 ident: 10.1016/j.tig.2023.07.001_bb0420 article-title: LlWRKY39 is involved in thermotolerance by activating LlMBF1c and interacting with LlCaM3 in lily (Lilium longiflorum) publication-title: Hortic. Res. doi: 10.1038/s41438-021-00473-7 |
SSID | ssj0005735 |
Score | 2.6881905 |
SecondaryResourceType | review_article |
Snippet | WRKY transcription factors (TFs) are transcriptional regulators in plants and have a conserved WRKY motif and various zinc-finger structures.WRKY TFs may... Environmental stressors caused by climate change are fundamental barriers to agricultural sustainability. Enhancing the stress resilience of crops is a key... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 787 |
SubjectTerms | defense response environmental stressors molecular mechanism signaling cascades WRKY transcription factors |
Title | WRKY transcription factors in plant defense |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0168952523001592 https://dx.doi.org/10.1016/j.tig.2023.07.001 https://www.proquest.com/docview/2857849392 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KongRrYr1USJ4UrbdJpsmOZZiqRZ7UIv1tOxTKiUtmh68-NudTTZFRSp4TJgJYbL5vpmd2RmEzlWkIUSLQgwISTA1vsaCxxwLFQhigCRk0e1z2O6P6M04HFdQtzwLY8sqHfYXmJ6jtbvTdNZszieT5j04K3ES-nZbEzgtsThMaWRXeePjS5lHVAzZBGFspcvMZl7jlU2eG3Z-eN6_082F-YWbfqB0Tj29HbTtfEavU7zWLqrotIo2iimS71W0eevy43vo8vFu8ORlln9KNPDcRB1vknrzKdjRU9pA7Kr30ah39dDtYzcOAcsgJhk2EEwqIGCZaCJiTpQyvM1jEvFAgFsFflKoRJgQQYS0G3syACnaosL4vpCBDg7QWjpL9SHyICqlPlWmZTSYzCgBpM9JLC3fcyNFDZHSEEy6XuF2ZMWUlUVhLwxsx6ztGLEZ7FYNXSxV5kWjjFXCfmldVp4ABcxiAOOrlOhS6dsS-UvtrPx8DH4dmw_hqZ4t3pgfA1zRBDzEo_89-hht2auitu8ErWWvC30KPkom6vkirKP1zvWgP_wEZX7jlw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5Ki4-L-MT6jOBJid0mmyY5FlGqfRzUYj0t-5SKxKLpwX_vbLNRFKngNZkJYbL5vpmd2RmAYxVrDNHiyEeEJD41gfYFT7gvVCiIQZKQRbfPQaszpNejaFSB8_IsjC2rdNhfYPoMrd2VhrNmYzIeN27RWUnSKLDbmshpKeJwzXaniqpQa191O4OvSo-4mLOJ8r5VKJObszKvfPx4ZkeIz1p4utEwv9DTD6Cesc_lKqw4t9FrF2-2BhWdrcNCMUjyfR0W-y5FvgGn9zfdBy-3FFQCgueG6njjzJs8oyk9pQ2Gr3oThpcXd-cd301E8GWYkNw3GE8q5GCZaiISTpQyvMUTEvNQoGeFrlKkRJQSQYS0e3syRCnapMIEgZChDregmr1kehs8DExpQJVpGk1pbJRA3uckkZbyuZGiDqQ0BJOuXbidWvHMyrqwJ4a2Y9Z2jNgkdrMOJ58qk6JXxjzhoLQuKw-BImwxRPJ5SvRT6dsq-UvtqPx8DP8emxLhmX6ZvrEgQcSiKTqJO_979CEsde76Pda7GnR3YdneKUr99qCav071ProsuThwS_IDQRLmSA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=WRKY+transcription+factors+in+plant+defense&rft.jtitle=Trends+in+genetics&rft.au=Javed%2C+Talha&rft.au=Gao%2C+San-Ji&rft.date=2023-10-01&rft.pub=Elsevier+Ltd&rft.issn=0168-9525&rft.volume=39&rft.issue=10&rft.spage=787&rft.epage=801&rft_id=info:doi/10.1016%2Fj.tig.2023.07.001&rft.externalDocID=S0168952523001592 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-9525&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-9525&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-9525&client=summon |