The Amazonian mangrove systems accumulate and release dissolved neodymium and hafnium to the oceans
Mangroves are essential tropical ecosystems nurturing a wide range of marine biodiversity and counteracting global warming by sequestering atmospheric carbon dioxide. Hence, the export mechanisms and fluxes of particulate and dissolved organic carbon and trace elements from mangroves directly influe...
Saved in:
Published in | Communications earth & environment Vol. 6; no. 1; p. 13 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
08.01.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mangroves are essential tropical ecosystems nurturing a wide range of marine biodiversity and counteracting global warming by sequestering atmospheric carbon dioxide. Hence, the export mechanisms and fluxes of particulate and dissolved organic carbon and trace elements from mangroves directly influence coastal productivity, the global carbon cycle and thus global climate, which are, however, not well constrained. Here we find consistent radiogenic neodymium and hafnium isotopic compositions of porewater, sedimentary iron-manganese oxyhydroxides and coastal seawater, suggesting that the Amazonian mangrove belt supplies trace elements through porewater discharge, dissolution of iron-manganese oxyhydroxides and their interactions with seawater. Together, these processes supply 8.4 × 10
6
g yr
-1
dissolved neodymium, equivalent to 64% of the total sources of neodymium to the Amazonian coastal seawater. Globally, mangrove systems along the continental margins contribute 6–9% of the net neodymium input to the ocean, which is similar to the contributions from atmospheric deposition. A contribution of this magnitude is potentially also the case for other trace elements, given the strong correlations between neodymium and iron (Pearson
r
= 0.92), and manganese (
r
= 0.75) concentrations across the entire river-ocean section, emphasizing the crucial role of mangrove system inputs in micro-nutrient cycling.
Mangrove systems supply the equivalent of 64% of the neodymium input to Amazonian coastal seawater, according to chemical analyses of estuarine water, seawater and sediment samples from the Amazonian mangrove belt. |
---|---|
AbstractList | Mangroves are essential tropical ecosystems nurturing a wide range of marine biodiversity and counteracting global warming by sequestering atmospheric carbon dioxide. Hence, the export mechanisms and fluxes of particulate and dissolved organic carbon and trace elements from mangroves directly influence coastal productivity, the global carbon cycle and thus global climate, which are, however, not well constrained. Here we find consistent radiogenic neodymium and hafnium isotopic compositions of porewater, sedimentary iron-manganese oxyhydroxides and coastal seawater, suggesting that the Amazonian mangrove belt supplies trace elements through porewater discharge, dissolution of iron-manganese oxyhydroxides and their interactions with seawater. Together, these processes supply 8.4 × 10
6
g yr
-1
dissolved neodymium, equivalent to 64% of the total sources of neodymium to the Amazonian coastal seawater. Globally, mangrove systems along the continental margins contribute 6–9% of the net neodymium input to the ocean, which is similar to the contributions from atmospheric deposition. A contribution of this magnitude is potentially also the case for other trace elements, given the strong correlations between neodymium and iron (Pearson
r
= 0.92), and manganese (
r
= 0.75) concentrations across the entire river-ocean section, emphasizing the crucial role of mangrove system inputs in micro-nutrient cycling.
Mangrove systems supply the equivalent of 64% of the neodymium input to Amazonian coastal seawater, according to chemical analyses of estuarine water, seawater and sediment samples from the Amazonian mangrove belt. Mangroves are essential tropical ecosystems nurturing a wide range of marine biodiversity and counteracting global warming by sequestering atmospheric carbon dioxide. Hence, the export mechanisms and fluxes of particulate and dissolved organic carbon and trace elements from mangroves directly influence coastal productivity, the global carbon cycle and thus global climate, which are, however, not well constrained. Here we find consistent radiogenic neodymium and hafnium isotopic compositions of porewater, sedimentary iron-manganese oxyhydroxides and coastal seawater, suggesting that the Amazonian mangrove belt supplies trace elements through porewater discharge, dissolution of iron-manganese oxyhydroxides and their interactions with seawater. Together, these processes supply 8.4 × 10 6 g yr -1 dissolved neodymium, equivalent to 64% of the total sources of neodymium to the Amazonian coastal seawater. Globally, mangrove systems along the continental margins contribute 6–9% of the net neodymium input to the ocean, which is similar to the contributions from atmospheric deposition. A contribution of this magnitude is potentially also the case for other trace elements, given the strong correlations between neodymium and iron (Pearson r = 0.92), and manganese ( r = 0.75) concentrations across the entire river-ocean section, emphasizing the crucial role of mangrove system inputs in micro-nutrient cycling. Mangroves are essential tropical ecosystems nurturing a wide range of marine biodiversity and counteracting global warming by sequestering atmospheric carbon dioxide. Hence, the export mechanisms and fluxes of particulate and dissolved organic carbon and trace elements from mangroves directly influence coastal productivity, the global carbon cycle and thus global climate, which are, however, not well constrained. Here we find consistent radiogenic neodymium and hafnium isotopic compositions of porewater, sedimentary iron-manganese oxyhydroxides and coastal seawater, suggesting that the Amazonian mangrove belt supplies trace elements through porewater discharge, dissolution of iron-manganese oxyhydroxides and their interactions with seawater. Together, these processes supply 8.4 × 106 g yr-1 dissolved neodymium, equivalent to 64% of the total sources of neodymium to the Amazonian coastal seawater. Globally, mangrove systems along the continental margins contribute 6–9% of the net neodymium input to the ocean, which is similar to the contributions from atmospheric deposition. A contribution of this magnitude is potentially also the case for other trace elements, given the strong correlations between neodymium and iron (Pearson r = 0.92), and manganese (r = 0.75) concentrations across the entire river-ocean section, emphasizing the crucial role of mangrove system inputs in micro-nutrient cycling.Mangrove systems supply the equivalent of 64% of the neodymium input to Amazonian coastal seawater, according to chemical analyses of estuarine water, seawater and sediment samples from the Amazonian mangrove belt. Abstract Mangroves are essential tropical ecosystems nurturing a wide range of marine biodiversity and counteracting global warming by sequestering atmospheric carbon dioxide. Hence, the export mechanisms and fluxes of particulate and dissolved organic carbon and trace elements from mangroves directly influence coastal productivity, the global carbon cycle and thus global climate, which are, however, not well constrained. Here we find consistent radiogenic neodymium and hafnium isotopic compositions of porewater, sedimentary iron-manganese oxyhydroxides and coastal seawater, suggesting that the Amazonian mangrove belt supplies trace elements through porewater discharge, dissolution of iron-manganese oxyhydroxides and their interactions with seawater. Together, these processes supply 8.4 × 106 g yr-1 dissolved neodymium, equivalent to 64% of the total sources of neodymium to the Amazonian coastal seawater. Globally, mangrove systems along the continental margins contribute 6–9% of the net neodymium input to the ocean, which is similar to the contributions from atmospheric deposition. A contribution of this magnitude is potentially also the case for other trace elements, given the strong correlations between neodymium and iron (Pearson r = 0.92), and manganese (r = 0.75) concentrations across the entire river-ocean section, emphasizing the crucial role of mangrove system inputs in micro-nutrient cycling. |
ArticleNumber | 13 |
Author | Xu, Antao Dittmar, Thorsten Liu, Te Seidel, Michael Frank, Martin Hathorne, Ed Asp, Nils E. Koschinsky, Andrea |
Author_xml | – sequence: 1 givenname: Antao orcidid: 0000-0002-5644-0852 surname: Xu fullname: Xu, Antao email: axu16@outlook.com organization: GEOMAR Helmholtz Centre for Ocean Research Kiel, Institute of Environmental Physics, Universität Heidelberg – sequence: 2 givenname: Ed surname: Hathorne fullname: Hathorne, Ed organization: GEOMAR Helmholtz Centre for Ocean Research Kiel – sequence: 3 givenname: Michael orcidid: 0000-0003-0934-1939 surname: Seidel fullname: Seidel, Michael organization: Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg – sequence: 4 givenname: Te surname: Liu fullname: Liu, Te organization: GEOMAR Helmholtz Centre for Ocean Research Kiel, School of Ocean and Earth Science, University of Southampton – sequence: 5 givenname: Nils E. surname: Asp fullname: Asp, Nils E. organization: Institute for Coastal Studies, Federal University of Pará – sequence: 6 givenname: Andrea orcidid: 0000-0002-9224-0663 surname: Koschinsky fullname: Koschinsky, Andrea organization: School of Science, Constructor University – sequence: 7 givenname: Thorsten orcidid: 0000-0002-3462-0107 surname: Dittmar fullname: Dittmar, Thorsten organization: Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, Helmholtz Institute for Functional Marine Biodiversity at Carl von Ossietzky Universität Oldenburg (HIFMB) – sequence: 8 givenname: Martin orcidid: 0000-0002-8606-4421 surname: Frank fullname: Frank, Martin organization: GEOMAR Helmholtz Centre for Ocean Research Kiel |
BookMark | eNp9kU1vFDEMhiNUJMrSP8ApEueBfE1m5lhVQCtV4lLOkddxtrOaSUoyU2n59aQ7CDjhiy3b72NL71t2EVMkxt5L8VEK3X8qRivTNUKZRsihHxr5il0qa1VjjG4v_qnfsKtSjkII1UolVXfJ8OGR-PUMP1McIfIZ4iGnZ-LlVBaaCwfEdV4nWIhD9DzTRFCI-7GUND2T55GSP83jOp_njxDiS70kvlRwQoJY3rHXAaZCV7_zjn3_8vnh5ra5__b17ub6vkHdi6UJYrAK963Rkjy21NnQ7RWhCCp4OSjoA0qktt2DFaAC1rbwGrvW2H4A0jt2t3F9gqN7yuMM-eQSjO7cSPngIC8jTuRsvaIQgwWQpu-6XgXjrd-DNraTiJX1YWM95fRjpbK4Y1pzrO87LVvVC6Vr7JjatjCnUjKFP1elcC_euM0bV71xZ2-crCK9iUpdjgfKf9H_Uf0CbfmUsw |
Cites_doi | 10.1016/j.gca.2018.12.029 10.1016/j.chemgeo.2021.120278 10.1016/j.gca.2020.11.017 10.1029/2000RG000094 10.1016/j.chemgeo.2007.03.021 10.1038/296214a0 10.1016/j.epsl.2007.05.003 10.1016/j.epsl.2019.115944 10.1016/j.chemgeo.2012.01.018 10.3354/meps213067 10.1016/0012-821X(88)90031-3 10.1039/B511557D 10.1016/j.csr.2012.04.015 10.5935/0103-5053.20130216 10.1016/j.epsl.2011.11.025 10.1016/0016-7037(77)90075-8 10.1016/j.aquabot.2007.12.005 10.1002/lno.12473 10.1016/j.chemgeo.2016.06.001 10.1029/2005GB002570 10.1038/s41467-023-39922-3 10.1007/s10533-024-01117-3 10.1016/j.marchem.2016.05.013 10.1016/j.geoderma.2008.10.016 10.3389/ffgc.2022.817992 10.1016/0016-7037(93)90559-F 10.1016/S0009-2541(01)00402-8 10.1016/S0009-2541(00)00198-4 10.1016/j.gca.2012.07.005 10.1016/0012-821X(80)90125-9 10.1016/j.ecss.2021.107361 10.1016/j.apgeochem.2022.105217 10.1029/2001GC000183 10.1016/j.marchem.2005.09.010 10.1029/2018MS001538 10.1146/annurev-marine-121211-172322 10.1007/s10750-010-0554-7 10.1130/G37114.1 10.1029/2020PA003917 10.1016/j.chemgeo.2014.03.018 10.5194/bg-6-2829-2009 10.1146/annurev-environ-101718-033302 10.1007/BF00477106 10.1016/j.marchem.2015.03.011 10.1146/annurev-marine-010816-060457 10.2112/JCOASTRES-D-11-00215.1 10.1007/BF00349238 10.1016/j.epsl.2006.10.021 10.3389/fmars.2019.00481 10.1016/j.gca.2021.09.015 10.1016/S0016-7037(02)01413-8 10.1111/gcb.15275 10.1016/j.epsl.2008.06.010 10.1016/S0009-2541(98)00036-9 10.1016/j.chemosphere.2017.12.189 10.1016/j.gca.2012.10.010 10.1016/0012-821X(87)90202-0 10.1029/2020GC009287 10.1023/A:1025973426404 10.1002/essoar.10512637.10512631 10.1016/j.marchem.2021.104067 10.3389/feart.2020.00093 10.1029/2007GB003052 10.1002/lol2.10210 10.1016/j.marpolbul.2018.02.052 10.1016/0012-821X(96)00127-6 10.1016/j.epsl.2005.01.004 10.1016/j.epsl.2016.01.010 10.1029/2012GB004375 10.1016/0048-9697(88)90030-7 10.1007/s11356-019-04222-1 10.3390/rs10101669 10.1023/A:1009992418964 10.1016/S0003-2670(96)00499-0 10.1016/j.marchem.2021.104019 10.1016/j.chemosphere.2020.128431 10.1071/MF10013 10.1016/j.gca.2016.01.018 10.1016/j.chemosphere.2009.01.036 10.1016/j.marchem.2021.104005 10.1016/j.gca.2016.09.041 10.1007/s11356-014-3100-8 10.1371/journal.pone.0129936 10.1016/j.gca.2011.07.044 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 Copyright Nature Publishing Group Dec 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: Copyright Nature Publishing Group Dec 2025 |
DBID | C6C AAYXX CITATION ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS PYCSY DOA |
DOI | 10.1038/s43247-024-01989-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central Environmental Science Collection ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Environmental Science Database ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 2662-4435 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_65432ccf6aa1487782f4d6dba34671cc 10_1038_s43247_024_01989_1 |
GroupedDBID | 0R~ AAFWJ AAJSJ ACSMW AEUYN AFKRA AJTQC ALMA_UNASSIGNED_HOLDINGS ATCPS BENPR BHPHI C6C CCPQU EBLON EBS GROUPED_DOAJ HCIFZ M~E NAO OK1 PATMY PIMPY PYCSY SNYQT AASML AAYXX AFPKN CITATION PHGZM PHGZT ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c380t-f0962cb5431edc5e76f7b2ec0f2fd192a8fc1ce55ba60a2fc2fd0d3c754689ae3 |
IEDL.DBID | DOA |
ISSN | 2662-4435 |
IngestDate | Wed Aug 27 00:23:54 EDT 2025 Sat Aug 23 13:12:42 EDT 2025 Tue Jul 01 02:31:20 EDT 2025 Fri Feb 21 02:35:13 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c380t-f0962cb5431edc5e76f7b2ec0f2fd192a8fc1ce55ba60a2fc2fd0d3c754689ae3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0934-1939 0000-0002-3462-0107 0000-0002-5644-0852 0000-0002-8606-4421 0000-0002-9224-0663 |
OpenAccessLink | https://doaj.org/article/65432ccf6aa1487782f4d6dba34671cc |
PQID | 3152802333 |
PQPubID | 5061813 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_65432ccf6aa1487782f4d6dba34671cc proquest_journals_3152802333 crossref_primary_10_1038_s43247_024_01989_1 springer_journals_10_1038_s43247_024_01989_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-08 |
PublicationDateYYYYMMDD | 2025-01-08 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Communications earth & environment |
PublicationTitleAbbrev | Commun Earth Environ |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | J Tang (1989_CR49) 2003; 67 K Furukawa (1989_CR3) 1996; 1 F Lacan (1989_CR29) 2005; 232 K Rao (1989_CR68) 2018; 129 DH Dang (1989_CR22) 2021; 576 R Zhang (1989_CR24) 2013; 29 M Rabiet (1989_CR19) 2009; 75 P Rahlf (1989_CR30) 2020; 530 LD De Lacerda (1989_CR7) 1984; 7 C Marchand (1989_CR57) 2012; 301 H Elderfield (1989_CR78) 1987; 82 AN Abbott (1989_CR64) 2015; 43 CJ Sanders (1989_CR40) 2012; 43 N Thanh-Nho (1989_CR41) 2018; 196 CJ Holloway (1989_CR54) 2016; 184 EC Hathorne (1989_CR17) 2015; 177 T van de Flierdt (1989_CR28) 2007; 259 T Arsouze (1989_CR62) 2009; 6 CA Nittrouer (1989_CR4) 2021; 13 AP Hollister (1989_CR35) 2021; 234 RR Twilley (1989_CR1) 1992; 64 M Frank (1989_CR26) 2002; 40 X-Y Zheng (1989_CR15) 2016; 177 MF Adame (1989_CR69) 2010; 61 E Kristensen (1989_CR52) 2008; 89 L Goldberg (1989_CR66) 2020; 26 M Gutjahr (1989_CR77) 2007; 242 1989_CR91 SJ Goldstein (1989_CR16) 1988; 89 LM Och (1989_CR53) 2014; 376 G Bayon (1989_CR80) 2009; 33 1989_CR90 AB Schneider (1989_CR38) 2022; 238 C Münker (1989_CR82) 2001; 2 M Bau (1989_CR20) 1996; 143 1989_CR42 J Rempfer (1989_CR59) 2011; 75 T Dittmar (1989_CR9) 2001; 213 DA Friess (1989_CR67) 2019; 44 LD Lacerda (1989_CR72) 1999; 3 G Nowell (1989_CR85) 1998; 149 M Knoke (1989_CR43) 2024; 69 CA Ramos Silva (1989_CR8) 2006; 99 SK Mandal (1989_CR23) 2019; 26 T Stichel (1989_CR27) 2012; 94 CRL Matos (1989_CR33) 2022; 138 1989_CR48 BS Twining (1989_CR75) 2013; 5 S Bouillon (1989_CR2) 2008; 22 MF Adame (1989_CR71) 2011; 663 Lacerda Ld (1989_CR5) 1988; 75 LM de Carvalho (1989_CR36) 2021; 236 A Cabral (1989_CR12) 2021; 6 D Carpenter (1989_CR58) 2015; 10 H Huang (1989_CR76) 2021; 22 P Rahlf (1989_CR88) 2021; 294 LG Speidel (1989_CR21) 2024; 167 YV Sahoo (1989_CR89) 2006; 131 N Tepe (1989_CR51) 2016; 438 H Elderfield (1989_CR18) 1982; 296 R Newell (1989_CR70) 1995; 123 1989_CR79 1989_CR34 K Tachikawa (1989_CR60) 2003; 108 C Mori (1989_CR13) 2019; 6 T Stichel (1989_CR31) 2012; 317 H Elderfield (1989_CR46) 1988; 325 1989_CR73 D Vance (1989_CR83) 2002; 185 T Tanaka (1989_CR84) 2000; 168 M Call (1989_CR11) 2019; 247 IR Santos (1989_CR14) 2021; 255 1989_CR39 A Bouvier (1989_CR87) 2008; 273 G Bayon (1989_CR47) 2016; 438 E Boyle (1989_CR45) 1977; 41 S Gu (1989_CR61) 2019; 11 KH Johannesson (1989_CR63) 2007; 253 R Wang (1989_CR32) 2021; 314 TOP de Freitas (1989_CR25) 2021; 264 SB Jacobsen (1989_CR86) 1980; 50 K Tachikawa (1989_CR55) 2013; 100 MarinsRV Lacerda LDd (1989_CR74) 2020; 8 A Xu (1989_CR37) 2023; 14 ER Sholkovitz (1989_CR44) 1993; 57 XL Otero (1989_CR56) 2009; 148 1989_CR65 C Pin (1989_CR81) 1997; 339 G Merschel (1989_CR50) 2017; 197 ZW Zhang (1989_CR6) 2014; 21 T Dittmar (1989_CR10) 2006; 20 |
References_xml | – volume: 247 start-page: 106 year: 2019 ident: 1989_CR11 publication-title: Geochim Cosmochim. Acta doi: 10.1016/j.gca.2018.12.029 – volume: 576 start-page: 120278 year: 2021 ident: 1989_CR22 publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2021.120278 – volume: 294 start-page: 192 year: 2021 ident: 1989_CR88 publication-title: Geochim Cosmochim. Acta doi: 10.1016/j.gca.2020.11.017 – volume: 40 start-page: 1 year: 2002 ident: 1989_CR26 publication-title: Rev. Geophys. doi: 10.1029/2000RG000094 – volume: 242 start-page: 351 year: 2007 ident: 1989_CR77 publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2007.03.021 – volume: 296 start-page: 214 year: 1982 ident: 1989_CR18 publication-title: Nature doi: 10.1038/296214a0 – volume: 259 start-page: 432 year: 2007 ident: 1989_CR28 publication-title: Earth Planet Sci. Lett. doi: 10.1016/j.epsl.2007.05.003 – volume: 530 start-page: 115944 year: 2020 ident: 1989_CR30 publication-title: Earth Planet Sci. Lett. doi: 10.1016/j.epsl.2019.115944 – volume: 301 start-page: 70 year: 2012 ident: 1989_CR57 publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2012.01.018 – volume: 213 start-page: 67 year: 2001 ident: 1989_CR9 publication-title: Mar. Ecol.-Prog. Ser. doi: 10.3354/meps213067 – volume: 89 start-page: 35 year: 1988 ident: 1989_CR16 publication-title: Earth Planet Sci. Lett. doi: 10.1016/0012-821X(88)90031-3 – volume: 131 start-page: 434 year: 2006 ident: 1989_CR89 publication-title: Analyst doi: 10.1039/B511557D – volume: 43 start-page: 86 year: 2012 ident: 1989_CR40 publication-title: Continental Shelf Res. doi: 10.1016/j.csr.2012.04.015 – ident: 1989_CR73 doi: 10.5935/0103-5053.20130216 – volume: 317 start-page: 282 year: 2012 ident: 1989_CR31 publication-title: Earth Planet Sci. Lett. doi: 10.1016/j.epsl.2011.11.025 – volume: 41 start-page: 1313 year: 1977 ident: 1989_CR45 publication-title: Geochim Cosmochim. Acta doi: 10.1016/0016-7037(77)90075-8 – ident: 1989_CR91 – volume: 89 start-page: 201 year: 2008 ident: 1989_CR52 publication-title: Aquat. Bot. doi: 10.1016/j.aquabot.2007.12.005 – volume: 69 start-page: 262 year: 2024 ident: 1989_CR43 publication-title: Limnol. Oceanogr. doi: 10.1002/lno.12473 – volume: 438 start-page: 134 year: 2016 ident: 1989_CR51 publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2016.06.001 – volume: 20 start-page: GB1012 year: 2006 ident: 1989_CR10 publication-title: Glob. Biogeochem. Cycles doi: 10.1029/2005GB002570 – volume: 14 year: 2023 ident: 1989_CR37 publication-title: Nat. Commun. doi: 10.1038/s41467-023-39922-3 – volume: 167 start-page: 225 year: 2024 ident: 1989_CR21 publication-title: Biogeochemistry doi: 10.1007/s10533-024-01117-3 – volume: 184 start-page: 43 year: 2016 ident: 1989_CR54 publication-title: Mar. Chem. doi: 10.1016/j.marchem.2016.05.013 – volume: 148 start-page: 318 year: 2009 ident: 1989_CR56 publication-title: Geoderma doi: 10.1016/j.geoderma.2008.10.016 – ident: 1989_CR42 doi: 10.3389/ffgc.2022.817992 – volume: 57 start-page: 2181 year: 1993 ident: 1989_CR44 publication-title: Geochim Cosmochim. Acta doi: 10.1016/0016-7037(93)90559-F – volume: 185 start-page: 227 year: 2002 ident: 1989_CR83 publication-title: Chem. Geol. doi: 10.1016/S0009-2541(01)00402-8 – volume: 168 start-page: 279 year: 2000 ident: 1989_CR84 publication-title: Chem. Geol. doi: 10.1016/S0009-2541(00)00198-4 – volume: 94 start-page: 22 year: 2012 ident: 1989_CR27 publication-title: Geochim Cosmochim. Acta doi: 10.1016/j.gca.2012.07.005 – volume: 50 start-page: 139 year: 1980 ident: 1989_CR86 publication-title: Earth Planet Sci. Lett. doi: 10.1016/0012-821X(80)90125-9 – volume: 255 start-page: 107361 year: 2021 ident: 1989_CR14 publication-title: Estuar., Coast. Shelf Sci. doi: 10.1016/j.ecss.2021.107361 – volume: 138 start-page: 105217 year: 2022 ident: 1989_CR33 publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2022.105217 – volume: 2 start-page: GC000183 year: 2001 ident: 1989_CR82 publication-title: Geochem. Geophys. Geosyst. doi: 10.1029/2001GC000183 – volume: 99 start-page: 2 year: 2006 ident: 1989_CR8 publication-title: Mar. Chem. doi: 10.1016/j.marchem.2005.09.010 – volume: 11 start-page: 624 year: 2019 ident: 1989_CR61 publication-title: J. Adv. Modeling Earth Syst. doi: 10.1029/2018MS001538 – volume: 5 start-page: 191 year: 2013 ident: 1989_CR75 publication-title: Ann. Rev. Mar. Sci. doi: 10.1146/annurev-marine-121211-172322 – volume: 663 start-page: 23 year: 2011 ident: 1989_CR71 publication-title: Hydrobiologia doi: 10.1007/s10750-010-0554-7 – volume: 43 start-page: 1035 year: 2015 ident: 1989_CR64 publication-title: Geology doi: 10.1130/G37114.1 – ident: 1989_CR79 doi: 10.1029/2020PA003917 – volume: 376 start-page: 61 year: 2014 ident: 1989_CR53 publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2014.03.018 – volume: 6 start-page: 2829 year: 2009 ident: 1989_CR62 publication-title: Biogeosciences doi: 10.5194/bg-6-2829-2009 – volume: 44 start-page: 89 year: 2019 ident: 1989_CR67 publication-title: Annu. Rev. Environ. Resour. doi: 10.1146/annurev-environ-101718-033302 – volume: 64 start-page: 265 year: 1992 ident: 1989_CR1 publication-title: Water Air Soil Pollut. doi: 10.1007/BF00477106 – volume: 177 start-page: 157 year: 2015 ident: 1989_CR17 publication-title: Mar. Chem. doi: 10.1016/j.marchem.2015.03.011 – volume: 325 start-page: 105 year: 1988 ident: 1989_CR46 publication-title: Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. – volume: 13 start-page: 501 year: 2021 ident: 1989_CR4 publication-title: Ann. Rev. Mar. Sci. doi: 10.1146/annurev-marine-010816-060457 – volume: 29 start-page: 1341 year: 2013 ident: 1989_CR24 publication-title: J. Coast. Res. doi: 10.2112/JCOASTRES-D-11-00215.1 – volume: 123 start-page: 595 year: 1995 ident: 1989_CR70 publication-title: Mar. Biol. doi: 10.1007/BF00349238 – volume: 253 start-page: 129 year: 2007 ident: 1989_CR63 publication-title: Earth Planet Sci. Lett. doi: 10.1016/j.epsl.2006.10.021 – volume: 6 start-page: 481 year: 2019 ident: 1989_CR13 publication-title: Front. Mar. Sci. doi: 10.3389/fmars.2019.00481 – volume: 314 start-page: 121 year: 2021 ident: 1989_CR32 publication-title: Geochim Cosmochim. Acta doi: 10.1016/j.gca.2021.09.015 – volume: 67 start-page: 2321 year: 2003 ident: 1989_CR49 publication-title: Geochim Cosmochim. Acta doi: 10.1016/S0016-7037(02)01413-8 – volume: 26 start-page: 5844 year: 2020 ident: 1989_CR66 publication-title: Glob. Chang Biol. doi: 10.1111/gcb.15275 – volume: 273 start-page: 48 year: 2008 ident: 1989_CR87 publication-title: Earth Planet Sci. Lett. doi: 10.1016/j.epsl.2008.06.010 – volume: 149 start-page: 211 year: 1998 ident: 1989_CR85 publication-title: Chem. Geol. doi: 10.1016/S0009-2541(98)00036-9 – ident: 1989_CR39 – volume: 196 start-page: 311 year: 2018 ident: 1989_CR41 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.12.189 – volume: 100 start-page: 11 year: 2013 ident: 1989_CR55 publication-title: Geochim Cosmochim. Acta doi: 10.1016/j.gca.2012.10.010 – volume: 108 start-page: C8 year: 2003 ident: 1989_CR60 publication-title: J. Geophys. Res. – volume: 82 start-page: 280 year: 1987 ident: 1989_CR78 publication-title: Earth Planet Sci. Lett. doi: 10.1016/0012-821X(87)90202-0 – volume: 22 start-page: e2020GC009287 year: 2021 ident: 1989_CR76 publication-title: Geochem. Geophys. Geosyst. doi: 10.1029/2020GC009287 – volume: 1 start-page: 3 year: 1996 ident: 1989_CR3 publication-title: Mangroves Salt Marshes doi: 10.1023/A:1025973426404 – ident: 1989_CR34 doi: 10.1002/essoar.10512637.10512631 – volume: 238 start-page: 104067 year: 2022 ident: 1989_CR38 publication-title: Mar. Chem. doi: 10.1016/j.marchem.2021.104067 – volume: 8 start-page: 93 year: 2020 ident: 1989_CR74 publication-title: Front. Earth Sci. doi: 10.3389/feart.2020.00093 – volume: 22 start-page: GB2013 year: 2008 ident: 1989_CR2 publication-title: Glob. Biogeochem. Cycles doi: 10.1029/2007GB003052 – volume: 33 start-page: 51 year: 2009 ident: 1989_CR80 publication-title: Geostand. Geoanal. Res. – volume: 6 start-page: 369 year: 2021 ident: 1989_CR12 publication-title: Limnol. Oceanogr. Lett. doi: 10.1002/lol2.10210 – volume: 129 start-page: 329 year: 2018 ident: 1989_CR68 publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2018.02.052 – volume: 143 start-page: 245 year: 1996 ident: 1989_CR20 publication-title: Earth Planet Sci. Lett. doi: 10.1016/0012-821X(96)00127-6 – volume: 232 start-page: 245 year: 2005 ident: 1989_CR29 publication-title: Earth Planet Sci. Lett. doi: 10.1016/j.epsl.2005.01.004 – volume: 438 start-page: 25 year: 2016 ident: 1989_CR47 publication-title: Earth Planet Sci. Lett. doi: 10.1016/j.epsl.2016.01.010 – ident: 1989_CR48 doi: 10.1029/2012GB004375 – volume: 75 start-page: 169 year: 1988 ident: 1989_CR5 publication-title: Sci. Total Environ. doi: 10.1016/0048-9697(88)90030-7 – ident: 1989_CR90 – volume: 26 start-page: 9146 year: 2019 ident: 1989_CR23 publication-title: Environ. Sci. Pollut. Res Int doi: 10.1007/s11356-019-04222-1 – ident: 1989_CR65 doi: 10.3390/rs10101669 – volume: 3 start-page: 105 year: 1999 ident: 1989_CR72 publication-title: Mangroves Salt Marshes doi: 10.1023/A:1009992418964 – volume: 339 start-page: 79 year: 1997 ident: 1989_CR81 publication-title: Anal. Chim. Acta doi: 10.1016/S0003-2670(96)00499-0 – volume: 236 start-page: 104019 year: 2021 ident: 1989_CR36 publication-title: Mar. Chem. doi: 10.1016/j.marchem.2021.104019 – volume: 264 start-page: 128431 year: 2021 ident: 1989_CR25 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.128431 – volume: 61 start-page: 1197 year: 2010 ident: 1989_CR69 publication-title: Mar. Freshw. Res. doi: 10.1071/MF10013 – volume: 7 start-page: 49 year: 1984 ident: 1989_CR7 publication-title: Rev. Bras. Biol. – volume: 177 start-page: 217 year: 2016 ident: 1989_CR15 publication-title: Geochim Cosmochim. Acta doi: 10.1016/j.gca.2016.01.018 – volume: 75 start-page: 1057 year: 2009 ident: 1989_CR19 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2009.01.036 – volume: 234 start-page: 104005 year: 2021 ident: 1989_CR35 publication-title: Mar. Chem. doi: 10.1016/j.marchem.2021.104005 – volume: 197 start-page: 1 year: 2017 ident: 1989_CR50 publication-title: Geochim Cosmochim. Acta doi: 10.1016/j.gca.2016.09.041 – volume: 21 start-page: 11938 year: 2014 ident: 1989_CR6 publication-title: Environ. Sci. Pollut. Res Int doi: 10.1007/s11356-014-3100-8 – volume: 10 start-page: e0129936 year: 2015 ident: 1989_CR58 publication-title: PloS one doi: 10.1371/journal.pone.0129936 – volume: 75 start-page: 5927 year: 2011 ident: 1989_CR59 publication-title: Geochim Cosmochim. Acta doi: 10.1016/j.gca.2011.07.044 |
SSID | ssj0002512127 |
Score | 2.2795513 |
Snippet | Mangroves are essential tropical ecosystems nurturing a wide range of marine biodiversity and counteracting global warming by sequestering atmospheric carbon... Abstract Mangroves are essential tropical ecosystems nurturing a wide range of marine biodiversity and counteracting global warming by sequestering atmospheric... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 13 |
SubjectTerms | 704/47/4112 704/829 Biodiversity Carbon Carbon cycle Carbon dioxide Chemical analysis Climate change Coastal waters Continental margins Dissolved organic carbon Earth and Environmental Science Earth Sciences Environment Equivalence Global climate Global warming Hafnium Iron Manganese Manganese oxyhydroxides Mangroves Marine ecosystems Neodymium Nutrient cycles Oceans Pore water Seawater Sediment samplers Sequestering Trace elements Water analysis |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NSx0xEA9-UPBSbLX0VVty6M0u7ibZTd5JVLRSqIhU8BaSSWIL3V37PgT9653Zl6dYaG9LsizLTDK_38wkM4x9RhT1WoJG3wR8QSXdinES4yKFYAwI5U2gOOT38-bsSn27rq9zwG2aj1UubeJgqEMPFCPflwg0VKxMyoPbPwV1jaLsam6hscrW0QQbdL7Wj07OLy6foiyE3pXQ-bZMKc3-lErQ6QKhCb1oOi9UvUCkoXD_C7b5V4J0wJ3TTfY6E0Z-uNDwG7YSu7fs1dehIe_9FgPUMz9s3QPuTdfx1nU3k_4u8kWF5il3APOWWnRF7rrAqUUK4hanNHz_-y4G3sU-3Le_5u0w_9Oljp5nPUdmyBHcEMq22dXpyY_jsyI3TihAmnJWJPRLBHi65h4D1FE3SXsRoUwiBaR0ziSoINa1d03pRAIcLgNqrFaNGbso37G1ru_ie8Y9KIEEvK68MiqAGyetgw9eKe2JDI7Y3lJ49nZRH8MOeW1p7ELUFkVtB1HbasSOSL5Pb1Jt62Ggn9zYvFUs3XYVAKlxDn01jRQmKWp75SQa9QpgxHaX2rF5w03t8_IYsS9LjT1P__uXPvz_aztsQ1DHXwq6mF22NpvM40ekITP_Ka-1R8dM29E priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSx0xFA6iCN2UWlt6rZYs3OnQmSQzyV3aiw8KulJwF5KTxBY6M3Ifgv76npM7Y7G0C3dDkoFwTpLvO3l8h7FDRFGvJWiMTcAXJOlWTJOYFikEY0AobwLtQ15eNRc36vttfbvBxPgWJl_az5KWeZkeb4d9XZBynC4QUTD4pWs-GPFskXQ7jepZM3veVyG8roQe3seU0vzj1xcYlKX6X_DLv45EM9KcvWNvB4rIT9ad2mEbsXvPts9zCt7HXQboWX7Suiecja7jrevu5v1D5GtN5gV3AKuWknJF7rrAKSkKIhWng_f-10MMvIt9eGx_rtpc_8Oljr6XPUcuyBHOELw-sJuz0-vZRTGkSihAmnJZJIxEBHh62B4D1FE3SXsRoUwiBSRxziSoINa1d03pRAIsLgP6qFaNmbooP7LNru_iJ8Y9KIGUu668MiqAmyatgw9eKe2J_k3Y0Wg8e79WxLD5JFsauza1RVPbbGpbTdg3su9zS1KzzgX9_M4O3rX0vlUApMY5jM40kpakKNGVk7iMVwATtj96xw5TbGElMg9Sr5Nywo5Hj_2p_n-X9l7X_DN7IyjnL227mH22uZyv4gESkaX_kkfeb2oj2FM priority: 102 providerName: Springer Nature |
Title | The Amazonian mangrove systems accumulate and release dissolved neodymium and hafnium to the oceans |
URI | https://link.springer.com/article/10.1038/s43247-024-01989-1 https://www.proquest.com/docview/3152802333 https://doaj.org/article/65432ccf6aa1487782f4d6dba34671cc |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgCIkLAgpioax84NZGTWwn9h63qy3VSq0QbaXeLHtsA1KTVN3dSuXAb2cmyZYWCXHhkkR2DtaM7ffGH28Y-4go6rUEjbEJ-Iwk3bJJEpMshWAMCOVNoHXI45Pq6FwtLsqLe6m-6ExYLw_cG26f7j4KgFQ5h8xdI6AlRUmQnMQhXgDQ7IuYdy-YojmYULsQerglk0uzvyTpOZ0hJGH0TOeEigdI1An2P2CZf2yMdnhz-II9H4gin_YNfMkexeYVe_qpS8R7u80A_cuntfuBY9I1vHbN1-v2JvJemXnJHcC6ptRckbsmcEqNgnjFafu9vbyJgTexDbf193Xd1X9zqaHvVcuREXIENYSw1-z8cH42O8qGhAkZSJOvsoTxiABP19tjgDLqKmkvIuRJpIBUzpkEBcSy9K7KnUiAxXlAT5WqMhMX5Ru21bRNfMu4ByWQeJeFV0YFcJOkdfDBK6U9kcAR290Yz171uhi228-Wxvamtmhq25naFiN2QPa9-5M0rbsC9LQdPG3_5ekR29l4xw4DbWkl8g_SsJNyxPY2Hvtd_fcmvfsfTXrPngnKB0xLMmaHba2u1_EDkpSVH7Mn0-nidIHvg_nJ5y9j9nhWzcZdL8Xn8c_5L-4y6FI |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgguiKe60IIPcIKoie3E3gNCLbRsabtCqJV6M34WJJKUfRQtP6q_kZk8WhUJbr1FdmQl47G_b_yYj5CXgKJWcichNnE2wZRuySiyURK9V8oxYZXHdcjDSTE-Fp9O8pMVctHfhcFjlf2c2EzUvna4Rr7JAWgwWRnn785-JqgahburvYRG6xb7YfkLQrbZ270P0L-vGNvdOXo_TjpVgcRxlc6TCKSdOYt3wIN3eZBFlJYFl0YWPfAdo6LLXMhza4rUsOigOPXwO7ko1MgEDu3eIquCQygzIKvbO5PPXy5XdZAtZEx2t3NSrjZnmPJOJgCFELXj-aTsGgI2QgHX2O1fG7INzu3eJ_c6gkq3Wo96QFZC9ZDc_tgIAC8fEQd-RbdK8xvmAlPR0lSn0_o80DYj9Iwa5xYlSoIFaipPUZIFcJLitn_94zx4WoXaL8vvi7Kp_2Zihc_zmgITpQCmAJ2PyfGNmPQJGVR1FdYItU4wIPx5ZoUS3plRlNJbb4WQFsnnkLzujafP2nwcutlH50q3ptZgat2YWmdDso32vXwTc2k3BfX0VHdDU-PtWuZcLIyB2FACZYoCZbYMBxDJnBuS9b53dDfAZ_rKHYfkTd9jV9X__qSn_2_tBbkzPjo80Ad7k_1n5C5DtWFc8FHrZDCfLsIGUKC5fd75HSVfb9rV_wDHDxq3 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKEaiXiqe6tIAP3CAisZ3YeywLS3lVHKjUm2WP7YLUJNU-KpVfz4w3KSqCA7fIcSRrJvb3je35hrEXiKJeS9AYm4AvSNKtmCYxLVIIxoBQ3gTah_xy3BydqI-n9ekWa8ZcmHxpP0ta5mV6vB32eknKcbpARMHgl6754AoT0i12G_l2SUHXrJld760QZldCDzkypTR_-fwGDmW5_hsc849j0Yw283tsd6CJ_HAzsPtsK3YP2J33uQzv1UMG6F1-2LqfOCNdx1vXnS36y8g3usxL7gDWLRXmitx1gVNhFEQrTofv_fllDLyLfbhqf6zb_P67Sx09r3qOfJAjpCGAPWIn83ffZkfFUC6hAGnKVZEwGhHgKbk9BqijbpL2IkKZRApI5JxJUEGsa--a0okE2FwG9FOtGjN1UT5m213fxT3GPSiBtLuuvDIqgJsmrYMPXintiQJO2MvRePZio4ph82m2NHZjaoumttnUtpqwN2Tf656kaJ0b-sWZHTxsKcdVAKTGOYzQNBKXpKjYlZO4lFcAE3YwescO02xpJbIPUrCTcsJejR77_frfQ3ryf92fs7tf387t5w_Hn_bZjqASwLQLYw7Y9mqxjk-Rl6z8s_wT_gLp6txL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Amazonian+mangrove+systems+accumulate+and+release+dissolved+neodymium+and+hafnium+to+the+oceans&rft.jtitle=Communications+earth+%26+environment&rft.au=Antao+Xu&rft.au=Ed+Hathorne&rft.au=Michael+Seidel&rft.au=Te+Liu&rft.date=2025-01-08&rft.pub=Nature+Portfolio&rft.eissn=2662-4435&rft.volume=6&rft.issue=1&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1038%2Fs43247-024-01989-1&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_65432ccf6aa1487782f4d6dba34671cc |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-4435&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-4435&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-4435&client=summon |