Bromate electroreduction in acidic solution inside rectangular channel under flow-through porous electrode conditions

In view of applied prospects of the bromate electroreduction in acidic medium this process has been analyzed for the solution flow through a channel filled in with porous conducting material playing the role of 3D electrode. The process passes via mediator redox cycle where the bromine is reduced at...

Full description

Saved in:
Bibliographic Details
Published inElectrochimica acta Vol. 323; p. 134799
Main Authors Vorotyntsev, Mikhail A., Antipov, Anatoly E.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 10.11.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In view of applied prospects of the bromate electroreduction in acidic medium this process has been analyzed for the solution flow through a channel filled in with porous conducting material playing the role of 3D electrode. The process passes via mediator redox cycle where the bromine is reduced at the electrode surface to bromide which is subject to the comproportionation reaction with bromate inside the solution phase to regenerate bromine. Inside the entering solution protons are in excess compared to bromate ions while the bromine concentration is very low. Ohmic losses across the channel are disregarded. Perpendicular size of pores is assumed to be sufficiently small so that the diffusion of solute components suppresses concentration gradients in the transversal direction. Solute species are transported along the channel by the convective mechanism. Numerical and approximate analytical methods of solving coupled transport equations have provided distributions of solute components inside the porous medium and of the current density along the flow coordinate, y. Quite unusual features of the process have been discovered, in particular non-monotonous variation of the bromine concentration and of the current density as functions of y, with narrow maxima at an intermediate distance from the entrance, dependent on the flow velocity and rate constants of the electrochemical and chemical steps of the redox cycle. All these surprising features of the bromate reduction process originate directly from the autocatalytic character of this cycle where each passage of the cycle increases the amount of the catalytic bromine/bromide couple in solution, thus accelerating the bromate transformation. As a result one can reach simultaneously both high efficiency of the bromate transformation and strong current for an optimal value of the channel length-to-flow velocity ratio, even for extremely small ratio of the incoming bromine and bromate concentrations.
AbstractList In view of applied prospects of the bromate electroreduction in acidic medium this process has been analyzed for the solution flow through a channel filled in with porous conducting material playing the role of 3D electrode. The process passes via mediator redox cycle where the bromine is reduced at the electrode surface to bromide which is subject to the comproportionation reaction with bromate inside the solution phase to regenerate bromine. Inside the entering solution protons are in excess compared to bromate ions while the bromine concentration is very low. Ohmic losses across the channel are disregarded. Perpendicular size of pores is assumed to be sufficiently small so that the diffusion of solute components suppresses concentration gradients in the transversal direction. Solute species are transported along the channel by the convective mechanism. Numerical and approximate analytical methods of solving coupled transport equations have provided distributions of solute components inside the porous medium and of the current density along the flow coordinate, y. Quite unusual features of the process have been discovered, in particular non-monotonous variation of the bromine concentration and of the current density as functions of y, with narrow maxima at an intermediate distance from the entrance, dependent on the flow velocity and rate constants of the electrochemical and chemical steps of the redox cycle. All these surprising features of the bromate reduction process originate directly from the autocatalytic character of this cycle where each passage of the cycle increases the amount of the catalytic bromine/bromide couple in solution, thus accelerating the bromate transformation. As a result one can reach simultaneously both high efficiency of the bromate transformation and strong current for an optimal value of the channel length-to-flow velocity ratio, even for extremely small ratio of the incoming bromine and bromate concentrations.
ArticleNumber 134799
Author Vorotyntsev, Mikhail A.
Antipov, Anatoly E.
Author_xml – sequence: 1
  givenname: Mikhail A.
  surname: Vorotyntsev
  fullname: Vorotyntsev, Mikhail A.
  email: mivo2010@yandex.com
  organization: D. I. Mendeleev University of Chemical Technology of Russia, Moscow, Russia
– sequence: 2
  givenname: Anatoly E.
  surname: Antipov
  fullname: Antipov, Anatoly E.
  email: 89636941963antipov@gmail.com
  organization: D. I. Mendeleev University of Chemical Technology of Russia, Moscow, Russia
BookMark eNqNkE1r3DAQhkVJoJuP31BBz96OLNuyDz0kIWkKgV7as9CORlktjrSV7Jb8-8jZpIdcUhAMiPd5R3pO2FGIgRj7JGAtQHRfdmsaCSdTzroGMayFbNQwfGAr0StZyb4djtgKQMiq6fruIzvJeQcAqlOwYvNlig9mIv5ckmIiO-PkY-A-cIPeeuQ5jvPLVfaWeFrWhft5NInj1oRAI5-DpcTdGP9W0zbF-X7L97HM_FpcOIzB-qUon7FjZ8ZM5y_zlP26uf55dVvd_fj2_erirkLZw1SRxFa52gD0m42l8h_nEGWDFkQ9KKkUdb3bGGgQrGiEKuG2NU1tmxYH5-Qp-3zo3af4e6Y86V2cUygrdS2hU0Mne1FSXw8pTDHnRE6jn8zy0CkZP2oBejGtd_qfab2Y1gfThVdv-H3yDyY9_gd5cSCpSPjjKemMngKS9YtkbaN_t-MJGhmjcg
CitedBy_id crossref_primary_10_1134_S1023193522110118
crossref_primary_10_1016_j_ijhydene_2021_02_149
crossref_primary_10_1016_j_jelechem_2023_117331
crossref_primary_10_1134_S1023193522110088
crossref_primary_10_1016_j_electacta_2021_138914
crossref_primary_10_1002_ente_202100233
crossref_primary_10_1021_acs_iecr_3c04520
crossref_primary_10_1016_j_electacta_2022_139961
crossref_primary_10_3390_membranes12080815
Cites_doi 10.1002/ente.201700447
10.1016/j.elecom.2017.11.006
10.1016/0013-4686(82)80019-4
10.1007/s10008-002-0290-7
10.1021/ic0350786
10.5562/cca3383
10.1002/elan.201900028
10.1016/0013-4686(85)80198-5
10.1149/1.2129720
10.1016/0022-0728(84)80215-6
10.1134/S1023193516100037
10.1002/aic.690210103
10.1016/j.electacta.2016.06.010
10.1021/ja01350a021
10.1016/0022-0728(94)03447-8
10.1021/la970809y
10.1007/s10800-004-6774-7
10.1002/1521-4109(200111)13:16<1326::AID-ELAN1326>3.0.CO;2-S
10.1149/1.2132707
10.1149/1.3645611
10.1016/j.electacta.2017.11.097
10.1016/j.bpc.2011.01.010
10.1016/j.elecom.2015.04.019
10.1016/j.jelechem.2016.06.004
10.1002/ente.201500449
10.1016/j.electacta.2015.03.175
10.1016/j.electacta.2017.10.199
10.1002/celc.201600422
10.1002/kin.20210
10.1134/S1023193514020050
10.1016/0022-0728(90)87001-Z
10.1149/1.2396840
10.1016/j.electacta.2015.11.074
10.1016/0022-0728(91)85207-6
10.1002/(SICI)1097-4601(2000)32:6<388::AID-KIN5>3.0.CO;2-#
10.1007/BF00251022
10.1016/j.apenergy.2014.06.077
10.1007/s10800-011-0348-2
10.1016/j.jelechem.2019.01.070
10.1007/BF01039388
10.1016/j.apenergy.2016.05.072
10.1039/c3cp51944a
10.1515/pac-2017-0306
10.1021/ja01304a016
10.1021/ac60263a016
10.1016/j.electacta.2017.06.158
10.1149/2.051208jes
10.1007/s10008-011-1397-5
10.1016/j.electacta.2015.05.099
10.1021/jp2023204
10.1080/00986448508911301
10.1149/1.2133531
10.1016/0013-4686(82)80018-2
10.1007/s10008-015-2805-z
10.1021/j100856a046
10.1149/1.2133106
10.1039/c1cp22032b
10.1016/j.jpowsour.2011.08.024
10.1016/j.electacta.2016.11.138
10.1149/1.2127513
10.1016/S0022-0728(00)00115-7
10.1149/2.0841902jes
10.1039/ft9959100283
10.1021/ja01295a043
10.1149/1.2115357
10.20897/ejosdr/86200
10.1016/0022-0728(93)80438-N
10.1149/1.2124338
10.1002/elan.201800739
10.1007/BF00609127
10.1016/j.electacta.2012.07.104
10.1016/j.electacta.2017.12.062
10.1016/S0022-0728(97)00566-4
10.1021/ja078248c
10.1111/papr.12109
10.1016/j.apenergy.2017.08.175
10.1007/s10800-004-6773-8
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Nov 10, 2019
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Nov 10, 2019
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1016/j.electacta.2019.134799
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-3859
ExternalDocumentID 10_1016_j_electacta_2019_134799
S0013468619316706
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSK
SSZ
T5K
TWZ
UPT
WH7
XPP
YK3
ZMT
~02
~G-
29G
41~
53G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIDUJ
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
HMU
HVGLF
HZ~
H~9
LPU
R2-
SC5
SCB
SCH
SEW
SSH
T9H
VH1
WUQ
XOL
ZY4
7SR
7U5
8BQ
8FD
EFKBS
JG9
L7M
ID FETCH-LOGICAL-c380t-e3c57f2a008bbde187ffcc34cd01297377e68fba04c0d14177f255a42d45c9ff3
IEDL.DBID .~1
ISSN 0013-4686
IngestDate Sun Jul 13 04:08:54 EDT 2025
Thu Apr 24 23:02:56 EDT 2025
Tue Jul 01 03:02:02 EDT 2025
Fri Feb 23 02:26:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Bromate reduction
3D electrode
Autocatalysis
Bromine/bromide redox couple
Redox flow cell
Redox mediator cycle
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c380t-e3c57f2a008bbde187ffcc34cd01297377e68fba04c0d14177f255a42d45c9ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2306796381
PQPubID 2045485
ParticipantIDs proquest_journals_2306796381
crossref_citationtrail_10_1016_j_electacta_2019_134799
crossref_primary_10_1016_j_electacta_2019_134799
elsevier_sciencedirect_doi_10_1016_j_electacta_2019_134799
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-10
PublicationDateYYYYMMDD 2019-11-10
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-10
  day: 10
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Electrochimica acta
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Gulaboski, Petkovska (bib65) 2018; 10
Gulaboski (bib62) 2019; 31
Vorotyntsev, Antipov (bib44) 2016; 779
Gulaboski, Mirčeski (bib58) 2015; 167
Newman, Tiedemann (bib3) 1975; 21
Denuault, Fleischmann, Pletcher, Tutty (bib50) 1990; 280
Denuault, Pletcher (bib51) 1991; 305
Vorotyntsev, Antipov, Konev (bib38) 2017; 89
Alkire, Ng (bib5) 1977; 124
Fedkiw (bib9) 1981; 128
Gulaboski, Mihajlov (bib60) 2011; 155
Schmitz (bib81) 2007; 39
Enriquez-Granados, Hutin, Storck (bib12) 1982; 27
Storck, Enriquez-Granados, Roger, Coeuret (bib11) 1982; 27
Li, Fan, Xuan, Leung, Zheng, She (bib27) 2017; 206
Alkire, Gould (bib4) 1976; 123
Cho, Tucker, Weber (bib36) 2016; 4
Bray, Liebhafsky (bib76) 1935; 57
Tolmachev, Piatkivskyi, Ryzhov, Konev, Vorotyntsev (bib32) 2015; 19
Bennion, Newman (bib1) 1972; 2
Newman, Thomas-Alyea (bib29) 2004
Habib, Sou (bib37) 2018; 2
Calhoun, Bard (bib57) 2011; 35
Modestov, Konev, Tripachev, Antipov, Tolmachev, Vorotyntsev (bib73) 2018; 6
Y. V. Tolmachev, Ftorion, Inc., 2014. US Pat. Appl. 14/184,702.
Vorotyntsev, Antipov (bib39) 2016; 210
Gulaboski, Kokoskarova, Petkovska (bib64) 2018; 91
Liu, Grim, Papandrew, Turhan, Zawodzinski, Mench (bib21) 2012; 159
Newman (bib87) 1973
Vorotyntsev, Antipov (bib45) 2017; 246
Kim (bib28) 2019
Fedkiw, Safemazandarani (bib15) 1985; 38
Skyllas-Kazacos, Menictas, Lim (bib33) 2013
Rodrıguez, Del Mar Graciani, Munoz, Moya (bib79) 2000; 32
Beran, Bruckenstein (bib71) 1968; 40
Tutty (bib56) 1994; 377
Molina (bib49) 1998; 443
Langlois, Coeuret (bib16) 1989; 19
Vorotyntsev, Antipov (bib46) 2017; 258
Cortes, Faria (bib80) 2004; 43
Qi, Savinell (bib17) 1993; 23
Xu, Zhao (bib22) 2013; 15
Molina, Gonzalez, Laborda, Wang, Compton (bib55) 2011; 13
De Levie (bib88) 1967; 6
Cho, Razaulla (bib69) 2019; 166
Kinoshita, K., Leach (bib10) 1982; 129
Sclar, Riesch (bib77) 1936; 58
Ward, Lawrence, Hartshorne, Compton (bib52) 2011; 115
Compton, Banks (bib63) 2011
Lavagnini, Pastore, Magno (bib53) 1993; 358
Vorotyntsev, Antipov, Tolmachev (bib72) 2016; 222
Molina, Serna, Martinez-Ortiz (bib54) 2000; 486
Alkire, Ng (bib2) 1974; 121
Conway, Phillips, Qian (bib83) 1995; 91
Leveque (bib86) 1928; 12
Konev, Antipov, Petrov, Shamraeva, Vorotyntsev (bib68) 2018; 86
Alkire, Gould (bib8) 1980; 127
Modestov, Konev, Antipov, Petrov, Pichugov, Vorotyntsev (bib67) 2017; 259
Fleischmann, Lasserre, Robinson, Swan (bib47) 1984; 177
Gulaboski, Janeva, Maksimova (bib66) 2019; 31
Newman, Tiedemann (bib7) 1978; 11
Kjeang, Michel, Harrington, Djilali, Sinton (bib18) 2008; 130
Krishnamurthy, Johansson, Lee, Kjeang (bib19) 2011; 196
Li, Fan, Xuan, Leung (bib26) 2016; 187
Mastragostino, Gramellini (bib82) 1985; 30
Trainham, Newman (bib6) 1977; 124
Vorotyntsev, Antipov (bib41) 2018; 261
Ferro (bib85) 2005
Zheng, Li, Cheng, Ning, Xing, Zhang (bib23) 2014; 132
Vorotyntsev, Antipov (bib40) 2016; 3
Beran, Bruckenstein (bib70) 1968; 72
Risch, Newman A (bib14) 1984; 131
Weber, Mench, Meyers, Ross (bib34) 2011; 41
Y. V. Tolmachev, Ftorion, Inc., 2013. US Pat. Appl. 13/969,597.
Lee, Hong, Kjeang (bib20) 2012; 83
Mirčeski, Gulaboski (bib48) 2001; 13
Fedkiw, Safemazandarani (bib13) 1985; 38
Goulet, Eikerling, Kjeang (bib24) 2015; 57
Mirčeski, Gulaboski (bib61) 2003; 7
Li, Nikiforidis, Leung, Daoud (bib25) 2016; 177
Petrov, Konev, Kuznetsov, Antipov, Glazkov, Vorotyntsev (bib74) 2019; 836
Ferro, Orsan, de Battisti (bib84) 2005; 35
Gulaboski, Mirčeski, Bogeski (bib59) 2012; 16
Tolmachev, Vorotyntsev (bib35) 2014; 50
Antipov, Vorotyntsev (bib43) 2016; 52
Young, Bray (bib75) 1932; 54
Domınguez, Iglesias (bib78) 1998; 14
Vorotyntsev, Konev, Tolmachev (bib42) 2015; 173
Lee (10.1016/j.electacta.2019.134799_bib20) 2012; 83
Alkire (10.1016/j.electacta.2019.134799_bib8) 1980; 127
Alkire (10.1016/j.electacta.2019.134799_bib5) 1977; 124
Krishnamurthy (10.1016/j.electacta.2019.134799_bib19) 2011; 196
Bray (10.1016/j.electacta.2019.134799_bib76) 1935; 57
Gulaboski (10.1016/j.electacta.2019.134799_bib58) 2015; 167
Modestov (10.1016/j.electacta.2019.134799_bib67) 2017; 259
Li (10.1016/j.electacta.2019.134799_bib26) 2016; 187
Skyllas-Kazacos (10.1016/j.electacta.2019.134799_bib33) 2013
Tolmachev (10.1016/j.electacta.2019.134799_bib35) 2014; 50
Tutty (10.1016/j.electacta.2019.134799_bib56) 1994; 377
Risch (10.1016/j.electacta.2019.134799_bib14) 1984; 131
Denuault (10.1016/j.electacta.2019.134799_bib51) 1991; 305
Goulet (10.1016/j.electacta.2019.134799_bib24) 2015; 57
Xu (10.1016/j.electacta.2019.134799_bib22) 2013; 15
Fedkiw (10.1016/j.electacta.2019.134799_bib15) 1985; 38
Fedkiw (10.1016/j.electacta.2019.134799_bib9) 1981; 128
Molina (10.1016/j.electacta.2019.134799_bib49) 1998; 443
Newman (10.1016/j.electacta.2019.134799_bib7) 1978; 11
Petrov (10.1016/j.electacta.2019.134799_bib74) 2019; 836
Domınguez (10.1016/j.electacta.2019.134799_bib78) 1998; 14
Ferro (10.1016/j.electacta.2019.134799_bib85) 2005
Weber (10.1016/j.electacta.2019.134799_bib34) 2011; 41
Sclar (10.1016/j.electacta.2019.134799_bib77) 1936; 58
Newman (10.1016/j.electacta.2019.134799_bib87) 1973
Storck (10.1016/j.electacta.2019.134799_bib11) 1982; 27
Newman (10.1016/j.electacta.2019.134799_bib29) 2004
Antipov (10.1016/j.electacta.2019.134799_bib43) 2016; 52
Molina (10.1016/j.electacta.2019.134799_bib54) 2000; 486
Bennion (10.1016/j.electacta.2019.134799_bib1) 1972; 2
Rodrıguez (10.1016/j.electacta.2019.134799_bib79) 2000; 32
Konev (10.1016/j.electacta.2019.134799_bib68) 2018; 86
Vorotyntsev (10.1016/j.electacta.2019.134799_bib45) 2017; 246
Gulaboski (10.1016/j.electacta.2019.134799_bib64) 2018; 91
Li (10.1016/j.electacta.2019.134799_bib25) 2016; 177
Beran (10.1016/j.electacta.2019.134799_bib70) 1968; 72
Kim (10.1016/j.electacta.2019.134799_bib28) 2019
Tolmachev (10.1016/j.electacta.2019.134799_bib32) 2015; 19
Gulaboski (10.1016/j.electacta.2019.134799_bib62) 2019; 31
Kinoshita (10.1016/j.electacta.2019.134799_bib10) 1982; 129
Vorotyntsev (10.1016/j.electacta.2019.134799_bib39) 2016; 210
Mirčeski (10.1016/j.electacta.2019.134799_bib48) 2001; 13
Schmitz (10.1016/j.electacta.2019.134799_bib81) 2007; 39
Vorotyntsev (10.1016/j.electacta.2019.134799_bib41) 2018; 261
Gulaboski (10.1016/j.electacta.2019.134799_bib60) 2011; 155
Cortes (10.1016/j.electacta.2019.134799_bib80) 2004; 43
Compton (10.1016/j.electacta.2019.134799_bib63) 2011
Calhoun (10.1016/j.electacta.2019.134799_bib57) 2011; 35
Liu (10.1016/j.electacta.2019.134799_bib21) 2012; 159
Enriquez-Granados (10.1016/j.electacta.2019.134799_bib12) 1982; 27
Cho (10.1016/j.electacta.2019.134799_bib36) 2016; 4
Alkire (10.1016/j.electacta.2019.134799_bib2) 1974; 121
Ferro (10.1016/j.electacta.2019.134799_bib84) 2005; 35
Vorotyntsev (10.1016/j.electacta.2019.134799_bib38) 2017; 89
Gulaboski (10.1016/j.electacta.2019.134799_bib59) 2012; 16
Qi (10.1016/j.electacta.2019.134799_bib17) 1993; 23
Fedkiw (10.1016/j.electacta.2019.134799_bib13) 1985; 38
De Levie (10.1016/j.electacta.2019.134799_bib88) 1967; 6
Gulaboski (10.1016/j.electacta.2019.134799_bib65) 2018; 10
Denuault (10.1016/j.electacta.2019.134799_bib50) 1990; 280
Gulaboski (10.1016/j.electacta.2019.134799_bib66) 2019; 31
Vorotyntsev (10.1016/j.electacta.2019.134799_bib40) 2016; 3
Lavagnini (10.1016/j.electacta.2019.134799_bib53) 1993; 358
10.1016/j.electacta.2019.134799_bib31
10.1016/j.electacta.2019.134799_bib30
Cho (10.1016/j.electacta.2019.134799_bib69) 2019; 166
Li (10.1016/j.electacta.2019.134799_bib27) 2017; 206
Vorotyntsev (10.1016/j.electacta.2019.134799_bib46) 2017; 258
Mirčeski (10.1016/j.electacta.2019.134799_bib61) 2003; 7
Vorotyntsev (10.1016/j.electacta.2019.134799_bib44) 2016; 779
Modestov (10.1016/j.electacta.2019.134799_bib73) 2018; 6
Beran (10.1016/j.electacta.2019.134799_bib71) 1968; 40
Mastragostino (10.1016/j.electacta.2019.134799_bib82) 1985; 30
Zheng (10.1016/j.electacta.2019.134799_bib23) 2014; 132
Young (10.1016/j.electacta.2019.134799_bib75) 1932; 54
Vorotyntsev (10.1016/j.electacta.2019.134799_bib42) 2015; 173
Molina (10.1016/j.electacta.2019.134799_bib55) 2011; 13
Conway (10.1016/j.electacta.2019.134799_bib83) 1995; 91
Newman (10.1016/j.electacta.2019.134799_bib3) 1975; 21
Alkire (10.1016/j.electacta.2019.134799_bib4) 1976; 123
Kjeang (10.1016/j.electacta.2019.134799_bib18) 2008; 130
Ward (10.1016/j.electacta.2019.134799_bib52) 2011; 115
Habib (10.1016/j.electacta.2019.134799_bib37) 2018; 2
Vorotyntsev (10.1016/j.electacta.2019.134799_bib72) 2016; 222
Leveque (10.1016/j.electacta.2019.134799_bib86) 1928; 12
Trainham (10.1016/j.electacta.2019.134799_bib6) 1977; 124
Fleischmann (10.1016/j.electacta.2019.134799_bib47) 1984; 177
Langlois (10.1016/j.electacta.2019.134799_bib16) 1989; 19
References_xml – volume: 280
  start-page: 243
  year: 1990
  end-page: 254
  ident: bib50
  article-title: Development of the theory for the interpretation of steady state limiting currents at a microelectrode: EC' processes: first and second order reactions
  publication-title: J. Electroanal. Chem. Interfacial Electrochem.
– volume: 127
  start-page: 605
  year: 1980
  end-page: 612
  ident: bib8
  article-title: An engineering model for electro-organic synthesis in continuous flow-through porous electrodes
  publication-title: J. Electrochem. Soc.
– volume: 32
  start-page: 388
  year: 2000
  end-page: 394
  ident: bib79
  article-title: Study of the bromide oxidation by bromate in zwitterionic micellar solutions
  publication-title: Int. J. Chem. Kinet.
– volume: 130
  start-page: 4000
  year: 2008
  end-page: 4006
  ident: bib18
  article-title: A microfluidic fuel cell with flow-through porous electrodes
  publication-title: J. Am. Chem. Soc.
– volume: 173
  start-page: 779
  year: 2015
  end-page: 795
  ident: bib42
  article-title: Electroreduction of halogen oxoanions via autocatalytic redox mediation by halide anions: novel EC” mechanism. Theory for stationary 1D regime
  publication-title: Electrochim. Acta
– year: 2004
  ident: bib29
  article-title: Electrochemical Systems
– volume: 222
  start-page: 1555
  year: 2016
  end-page: 1561
  ident: bib72
  article-title: 1D model of steady-state discharge process in hydrogen-bromate flow battery
  publication-title: Electrochim. Acta
– volume: 40
  start-page: 1044
  year: 1968
  end-page: 1051
  ident: bib71
  article-title: Voltammetry of iodine(I) chloride, iodine, and iodate at rotated platinum disk and ring-disk electrodes
  publication-title: Anal. Chem.
– volume: 38
  start-page: 107
  year: 1985
  end-page: 123
  ident: bib15
  article-title: Porous electrode theory analysis of a variable-depth, flow-by porous electrode
  publication-title: Chem. Eng. Commun.
– volume: 41
  start-page: 1137
  year: 2011
  end-page: 1164
  ident: bib34
  article-title: Redox flow batteries: a review
  publication-title: J. Appl. Electrochem.
– volume: 131
  start-page: 2551
  year: 1984
  end-page: 2556
  ident: bib14
  article-title: Theoretical comparison of flow-through and flow-by porous electrodes at the limiting current
  publication-title: J. Electrochem. Soc.
– volume: 91
  start-page: 1
  year: 2018
  end-page: 6
  ident: bib64
  article-title: Time-independent methodology to access michaelis-menten constant by exploring electrochemical-catalytic mechanism in protein-film cyclic staircase voltammetry
  publication-title: Croat. Chem. Acta
– volume: 305
  start-page: 131
  year: 1991
  end-page: 134
  ident: bib51
  article-title: Improvement to the equation for the steady state limiting currents at a microelectrode: EC' processes (1st and 2nd order reactions)
  publication-title: J. Electroanal. Chem. Interfacial Electrochem.
– volume: 35
  start-page: 39
  year: 2011
  end-page: 51
  ident: bib57
  article-title: Study of the EC’ mechanism by scanning electrochemical microscopy (SECM)
  publication-title: ECS Transactions
– volume: 124
  start-page: 1528
  year: 1977
  end-page: 1540
  ident: bib6
  article-title: A flow-through porous electrode model: application to metal-ion removal from dilute streams
  publication-title: J. Electrochem. Soc.
– volume: 124
  start-page: 1220
  year: 1977
  end-page: 1227
  ident: bib5
  article-title: Studies on flow-by porous electrodes having perpendicular directions of current and electrolyte flow
  publication-title: J. Electrochem. Soc.
– volume: 166
  start-page: A286
  year: 2019
  end-page: A296
  ident: bib69
  article-title: Redox-mediated bromate based electrochemical energy system
  publication-title: J. Electrochem. Soc.
– volume: 187
  start-page: 636
  year: 2016
  end-page: 645
  ident: bib26
  article-title: Dimensionless parametric sensitivity analysis of microfluidic fuel cell with flow-through porous electrodes
  publication-title: Electrochim. Acta
– volume: 779
  start-page: 146
  year: 2016
  end-page: 155
  ident: bib44
  article-title: Reduction of bromate anion via autocatalytic redox-mediation by Br2/Br- redox couple. Theory for stationary 1D regime. Effect of different Nernst layer thicknesses for reactants
  publication-title: J. Electroanal. Chem.
– start-page: 279
  year: 2005
  end-page: 283
  ident: bib85
  article-title: The bromine electrode Part III: reaction kinetics at highly boron-doped diamond electrodes
  publication-title: J. Appl. Electrochem.
– volume: 50
  start-page: 403
  year: 2014
  end-page: 411
  ident: bib35
  article-title: Fuel cells with chemically regenerative redox cathodes
  publication-title: Russ. J. Electrochem.
– volume: 196
  start-page: 10019
  year: 2011
  end-page: 10031
  ident: bib19
  article-title: Computational modeling of microfluidic fuel cells with flow-through porous electrodes
  publication-title: J. Power Sources
– year: 2011
  ident: bib63
  article-title: Understanding Voltammetry
– volume: 31
  start-page: 946
  year: 2019
  end-page: 956
  ident: bib66
  article-title: New aspects of protein-film voltammetry of redox enzymes coupled to follow-up reversible chemical reaction in square-wave voltammetry
  publication-title: Electroanalysis
– volume: 57
  start-page: 14
  year: 2015
  end-page: 17
  ident: bib24
  article-title: Direct measurement of electrochemical reaction kinetics in flow-through porous electrodes
  publication-title: Electr. Commun.
– volume: 836
  start-page: 125
  year: 2019
  end-page: 133
  ident: bib74
  article-title: Electrochemically driven evolution of Br-containing aqueous solution composition
  publication-title: J. Electroanal. Chem.
– volume: 258
  start-page: 544
  year: 2017
  end-page: 553
  ident: bib46
  article-title: Bromate electroreduction from acidic solution at spherical microelectrode under steady-state conditions: theory for the redox-mediator autocatalytic (EC”) mechanism
  publication-title: Electrochim. Acta
– volume: 43
  start-page: 1395
  year: 2004
  end-page: 1402
  ident: bib80
  article-title: Kinetics and mechanism of bromate− bromide reaction catalyzed by acetate
  publication-title: Inorg. Chem.
– volume: 19
  start-page: 2711
  year: 2015
  end-page: 2722
  ident: bib32
  article-title: Energy cycle based on a high specific energy aqueous flow battery and its potential use for fully electric vehicles and for direct solar-to-chemical energy conversion
  publication-title: J. Solid State Electrochem.
– volume: 31
  start-page: 545
  year: 2019
  end-page: 553
  ident: bib62
  article-title: Theoretical contribution towards understanding specific behaviour of “simple” protein-film reactions in square-wave voltammetry
  publication-title: Electroanalysis
– volume: 159
  start-page: A1246
  year: 2012
  end-page: A1252
  ident: bib21
  article-title: High performance vanadium redox flow batteries with optimized electrode configuration and membrane selection
  publication-title: J. Electrochem. Soc.
– volume: 2
  start-page: 113
  year: 1972
  end-page: 122
  ident: bib1
  article-title: Electrochemical removal of copper ions from very dilute solutions
  publication-title: J. Appl. Electrochem.
– volume: 38
  start-page: 107
  year: 1985
  end-page: 123
  ident: bib13
  article-title: Porous electrode theory analysis of a variable-depth, flow-by porous electrode
  publication-title: Chem. Eng. Commun.
– volume: 177
  start-page: 729
  year: 2016
  end-page: 739
  ident: bib25
  article-title: Vanadium microfluidic fuel cell with novel multi-layer flow-through porous electrodes: model, simulations and experiments
  publication-title: Appl. Energy
– volume: 377
  start-page: 39
  year: 1994
  end-page: 51
  ident: bib56
  article-title: Second-order kinetics for steady state EC' reactions at a disc microelectrode
  publication-title: J. Electroanal. Chem.
– volume: 128
  start-page: 831
  year: 1981
  end-page: 838
  ident: bib9
  article-title: Ohmic potential drop in flow-through and flow-by porous electrodes
  publication-title: J. Electrochem. Soc.
– volume: 261
  start-page: 113
  year: 2018
  end-page: 126
  ident: bib41
  article-title: Bromate electroreduction from acidic solution at rotating disc electrode. Theoretical study of the steady-state convective-diffusion transport for excess of bromate ions compared to protons
  publication-title: Electrochim. Acta
– volume: 72
  start-page: 3630
  year: 1968
  end-page: 3635
  ident: bib70
  article-title: Rotating-disk-electrode study of the catalytic wave produced by the reduction of iodine in the presence of iodate
  publication-title: J. Phys. Chem.
– volume: 19
  start-page: 43
  year: 1989
  end-page: 50
  ident: bib16
  article-title: Flow-through and flow-by porous electrodes of nickel foam. I. Material characterization//
  publication-title: J. Appl. Electrochem.
– volume: 11
  year: 1978
  ident: bib7
  article-title: Flow-through porous electrodes
  publication-title: Adv. Electrochem. Electrochem Eng.
– volume: 21
  start-page: 25
  year: 1975
  end-page: 41
  ident: bib3
  article-title: Porous-electrode theory with battery applications
  publication-title: AIChE J.
– volume: 210
  start-page: 950
  year: 2016
  end-page: 962
  ident: bib39
  article-title: Bromate electroreduction via autocatalytic redox mediation: EC” mechanism. Theory for stationary 1D regime. Current limitation by proton transport,
  publication-title: Electrochim. Acta
– volume: 358
  start-page: 193
  year: 1993
  end-page: 201
  ident: bib53
  article-title: Digital simulation of steady state and non-steady state voltammetric responses for electrochemical reactions occurring at an inlaid microdisk electrode: application to ECirr, EC' and CE first-order reactions
  publication-title: J. Electroanal. Chem.
– volume: 54
  start-page: 4284
  year: 1932
  end-page: 4296
  ident: bib75
  article-title: The rate of the fourth order reaction between bromic and hydrobromic acids. The kinetic salt effect
  publication-title: J. Am. Chem. Soc.
– volume: 35
  start-page: 273
  year: 2005
  end-page: 278
  ident: bib84
  article-title: The bromine electrode Part II: reaction kinetics at polycrystalline Pt
  publication-title: J. Appl. Electrochem.
– volume: 123
  start-page: 1842
  year: 1976
  end-page: 1849
  ident: bib4
  article-title: Analysis of multiple reaction sequences in flow-through porous electrodes
  publication-title: J. Electrochem. Soc.
– volume: 27
  start-page: 293
  year: 1982
  end-page: 301
  ident: bib11
  article-title: The behaviour of porous electrodes in a flow-by regime—I. theoretical study
  publication-title: Electrochim. Acta
– volume: 259
  start-page: 655
  year: 2017
  end-page: 663
  ident: bib67
  article-title: Bromate electroreduction from sulfuric acid solution at rotating disk electrode: experimental study
  publication-title: Electrochim. Acta
– year: 1973
  ident: bib87
  article-title: Electrochemical Systems
– reference: Y. V. Tolmachev, Ftorion, Inc., 2014. US Pat. Appl. 14/184,702.
– volume: 4
  year: 2016
  ident: bib36
  article-title: A review of hydrogen/halogen flow cells
  publication-title: Energ. Tech.
– volume: 246
  start-page: 1217
  year: 2017
  end-page: 1229
  ident: bib45
  article-title: Bromate electroreduction from acidic solution at rotating disk electrode. Theory of steady-state convective-diffusion transport
  publication-title: Electrochim. Acta
– volume: 6
  start-page: 242
  year: 2018
  end-page: 245
  ident: bib73
  article-title: A novel hydrogen-bromate flow battery for air deficient environment: proof-of-concept study
  publication-title: Energ. Tech.
– volume: 129
  start-page: 1993
  year: 1982
  end-page: 1997
  ident: bib10
  article-title: Mass-transfer study of carbon felt, flow-through electrode
  publication-title: J. Electrochem. Soc.
– volume: 27
  start-page: 303
  year: 1982
  end-page: 311
  ident: bib12
  article-title: The behaviour of porous electrodes in a flow-by regime—II. Experimental study
  publication-title: Electrochim. Acta
– volume: 115
  start-page: 11204
  year: 2011
  end-page: 11215
  ident: bib52
  article-title: Cyclic voltammetry of the EC' mechanism at hemispherical particles and their arrays: the split wave
  publication-title: J. Phys. Chem. C
– volume: 3
  start-page: 2227
  year: 2016
  end-page: 2242
  ident: bib40
  article-title: Generalized Nernst Layer Model: application to bromate anion electroreduction. Theory for stationary 1D regime for proton transport limitations
  publication-title: ChemElectrochem
– volume: 167
  start-page: 219
  year: 2015
  end-page: 225
  ident: bib58
  article-title: New aspects of the electrochemical-catalytic (EC’) mechanism in square-wave voltammetry
  publication-title: Electrochim. Acta
– volume: 16
  start-page: 2315
  year: 2012
  end-page: 2328
  ident: bib59
  article-title: Protein film voltammetry: electrochemical enzymatic spectroscopy. A review on recent progress
  publication-title: J. Solid State Electrochem.
– volume: 7
  start-page: 157
  year: 2003
  end-page: 165
  ident: bib61
  article-title: The surface catalytic mechanism: a comparative study with square-wave and staircase cyclic voltammetry
  publication-title: J. Solid State Electrochem.
– volume: 13
  start-page: 1326
  year: 2001
  end-page: 1334
  ident: bib48
  article-title: Surface catalytic mechanism in square-wave voltammetry
  publication-title: Electroanalysis
– volume: 2
  start-page: 31
  year: 2018
  ident: bib37
  article-title: Analytical review on the trends and present situation of large-scale sustainable energy storage technology
  publication-title: Eur. J. Sustain. Dev.
– volume: 10
  start-page: 566
  year: 2018
  end-page: 575
  ident: bib65
  article-title: A time-independent approach to evaluate the kinetics of enzyme-substrate reactions in cyclic staircase voltammetry
  publication-title: Analytical Bioanal. Electrochem.
– volume: 12
  start-page: 13
  year: 1928
  ident: bib86
  publication-title: Annals des Mines, Memoires, ser.
– volume: 89
  year: 2017
  ident: bib38
  article-title: Bromate anion reduction: novel autocatalytic (EC”) mechanism of electrochemical processes, its implication for redox flow batteries of high energy and power densities
  publication-title: Pure Appl. Chem.
– volume: 132
  start-page: 254
  year: 2014
  end-page: 266
  ident: bib23
  article-title: Development and perspective in vanadium flow battery modeling
  publication-title: Appl. Energy
– volume: 23
  start-page: 873
  year: 1993
  end-page: 886
  ident: bib17
  article-title: Analysis of flow-through porous electrode cell with homogeneous chemical reactions: application to bromide oxidation in brine solutions
  publication-title: J. Appl. Electrochem.
– volume: 91
  start-page: 283
  year: 1995
  end-page: 293
  ident: bib83
  article-title: J. Surface electrochemistry and kinetics of anodic bromine formation at platinum
  publication-title: Chem. Soc. Faraday Trans.
– volume: 52
  start-page: 925
  year: 2016
  end-page: 932
  ident: bib43
  article-title: Electroreduction of bromate anion on inactive RDE under steady-state conditions: numerical study of ion transport processes and comproportionation reaction
  publication-title: Russ. J. Electrochem.
– volume: 14
  start-page: 2683
  year: 1998
  ident: bib78
  article-title: Micellar effects on the ionic-redox reaction BrO
  publication-title: Langmuir
– volume: 86
  start-page: 76
  year: 2018
  end-page: 79
  ident: bib68
  article-title: Surprising dependence of the current density of bromate electroreduction on the microelectrode radius as manifestation of the autocatalytic redox-cycle (EC″) reaction mechanism
  publication-title: Electr. Commun.
– year: 2019
  ident: bib28
  article-title: Vanadium redox flow batteries: electrochemical engineering
  publication-title: Energy Storage Devices
– volume: 30
  start-page: 373
  year: 1985
  end-page: 380
  ident: bib82
  article-title: Kinetic study of the electrochemical processes of the bromine/bromide aqueous system on vitreous carbon electrodes
  publication-title: Electrochim. Acta
– volume: 443
  start-page: 163
  year: 1998
  end-page: 167
  ident: bib49
  article-title: Analytical solution corresponding to the i/t response to a multipotential step for a catalytic mechanism
  publication-title: J. Electroanal. Chem.
– volume: 13
  start-page: 16748
  year: 2011
  end-page: 16755
  ident: bib55
  article-title: Analytical theory of the catalytic mechanism in square wave voltammetry at disc electrodes
  publication-title: Phys. Chem. Chem. Phys.
– volume: 121
  start-page: 95
  year: 1974
  end-page: 103
  ident: bib2
  article-title: Two-dimensional current distribution within a packed-bed electrochemical flow reactor
  publication-title: J. Electrochem. Soc.
– start-page: 398
  year: 2013
  end-page: 441
  ident: bib33
  article-title: Redox Flow Batteries for Medium- to Large-Scale Energy Storage, Electricity Transmission, Distribution and Storage Systems
– volume: 6
  start-page: 329
  year: 1967
  end-page: 397
  ident: bib88
  article-title: Electrochemical response of porous and rough electrodes
  publication-title: Adv. Electrochem. Electrochem. Eng.
– volume: 57
  start-page: 51
  year: 1935
  end-page: 56
  ident: bib76
  article-title: The kinetic salt effect in the fourth order reaction BrO
  publication-title: J. Am. Chem. Soc.
– reference: Y. V. Tolmachev, Ftorion, Inc., 2013. US Pat. Appl. 13/969,597.
– volume: 15
  start-page: 10841
  year: 2013
  end-page: 10848
  ident: bib22
  article-title: Determination of the mass-transport properties of vanadium ions through the porous electrodes of vanadium redox flow batteries
  publication-title: Phys. Chem. Chem. Phys.
– volume: 177
  start-page: 97
  year: 1984
  end-page: 114
  ident: bib47
  article-title: The application of microelectrodes to the study of homogeneous processes coupled to electrode reactions: Part I. EC' and CE reactions
  publication-title: J. Electroanal. Chem. Interfacial Electrochem.
– volume: 83
  start-page: 430
  year: 2012
  end-page: 438
  ident: bib20
  article-title: Electrochemical characteristics of vanadium redox reactions on porous carbon electrodes for microfluidic fuel cell applications
  publication-title: Electrochim. Acta
– volume: 486
  start-page: 9
  year: 2000
  end-page: 15
  ident: bib54
  article-title: Square wave voltammetry for a pseudo-first-order catalytic process at spherical electrodes
  publication-title: J. Electroanal. Chem.
– volume: 39
  start-page: 17
  year: 2007
  end-page: 21
  ident: bib81
  article-title: Kinetics of the bromate–bromide reaction at high bromide concentrations
  publication-title: Int. J. Chem. Kinet.
– volume: 206
  start-page: 413
  year: 2017
  end-page: 424
  ident: bib27
  article-title: Optimal design of current collectors for microfluidic fuel cell with flow-through porous electrodes: model and experiment
  publication-title: Appl. Energy
– volume: 155
  start-page: 1
  year: 2011
  end-page: 9
  ident: bib60
  article-title: Catalytic mechanism in successive two-step protein-film voltammetry—theoretical study in square-wave voltammetry
  publication-title: Biophys. Chem.
– volume: 58
  start-page: 667
  year: 1936
  end-page: 670
  ident: bib77
  article-title: The kinetic salt effect in the fourth order reaction BrO
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 242
  year: 2018
  ident: 10.1016/j.electacta.2019.134799_bib73
  article-title: A novel hydrogen-bromate flow battery for air deficient environment: proof-of-concept study
  publication-title: Energ. Tech.
  doi: 10.1002/ente.201700447
– volume: 86
  start-page: 76
  year: 2018
  ident: 10.1016/j.electacta.2019.134799_bib68
  article-title: Surprising dependence of the current density of bromate electroreduction on the microelectrode radius as manifestation of the autocatalytic redox-cycle (EC″) reaction mechanism
  publication-title: Electr. Commun.
  doi: 10.1016/j.elecom.2017.11.006
– volume: 27
  start-page: 303
  year: 1982
  ident: 10.1016/j.electacta.2019.134799_bib12
  article-title: The behaviour of porous electrodes in a flow-by regime—II. Experimental study
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(82)80019-4
– volume: 7
  start-page: 157
  year: 2003
  ident: 10.1016/j.electacta.2019.134799_bib61
  article-title: The surface catalytic mechanism: a comparative study with square-wave and staircase cyclic voltammetry
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-002-0290-7
– volume: 43
  start-page: 1395
  year: 2004
  ident: 10.1016/j.electacta.2019.134799_bib80
  article-title: Kinetics and mechanism of bromate− bromide reaction catalyzed by acetate
  publication-title: Inorg. Chem.
  doi: 10.1021/ic0350786
– volume: 91
  start-page: 1
  year: 2018
  ident: 10.1016/j.electacta.2019.134799_bib64
  article-title: Time-independent methodology to access michaelis-menten constant by exploring electrochemical-catalytic mechanism in protein-film cyclic staircase voltammetry
  publication-title: Croat. Chem. Acta
  doi: 10.5562/cca3383
– volume: 31
  start-page: 946
  year: 2019
  ident: 10.1016/j.electacta.2019.134799_bib66
  article-title: New aspects of protein-film voltammetry of redox enzymes coupled to follow-up reversible chemical reaction in square-wave voltammetry
  publication-title: Electroanalysis
  doi: 10.1002/elan.201900028
– volume: 30
  start-page: 373
  year: 1985
  ident: 10.1016/j.electacta.2019.134799_bib82
  article-title: Kinetic study of the electrochemical processes of the bromine/bromide aqueous system on vitreous carbon electrodes
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(85)80198-5
– year: 1973
  ident: 10.1016/j.electacta.2019.134799_bib87
– volume: 127
  start-page: 605
  year: 1980
  ident: 10.1016/j.electacta.2019.134799_bib8
  article-title: An engineering model for electro-organic synthesis in continuous flow-through porous electrodes
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2129720
– volume: 177
  start-page: 97
  year: 1984
  ident: 10.1016/j.electacta.2019.134799_bib47
  article-title: The application of microelectrodes to the study of homogeneous processes coupled to electrode reactions: Part I. EC' and CE reactions
  publication-title: J. Electroanal. Chem. Interfacial Electrochem.
  doi: 10.1016/0022-0728(84)80215-6
– volume: 52
  start-page: 925
  year: 2016
  ident: 10.1016/j.electacta.2019.134799_bib43
  article-title: Electroreduction of bromate anion on inactive RDE under steady-state conditions: numerical study of ion transport processes and comproportionation reaction
  publication-title: Russ. J. Electrochem.
  doi: 10.1134/S1023193516100037
– volume: 10
  start-page: 566
  year: 2018
  ident: 10.1016/j.electacta.2019.134799_bib65
  article-title: A time-independent approach to evaluate the kinetics of enzyme-substrate reactions in cyclic staircase voltammetry
  publication-title: Analytical Bioanal. Electrochem.
– volume: 21
  start-page: 25
  year: 1975
  ident: 10.1016/j.electacta.2019.134799_bib3
  article-title: Porous-electrode theory with battery applications
  publication-title: AIChE J.
  doi: 10.1002/aic.690210103
– volume: 210
  start-page: 950
  year: 2016
  ident: 10.1016/j.electacta.2019.134799_bib39
  article-title: Bromate electroreduction via autocatalytic redox mediation: EC” mechanism. Theory for stationary 1D regime. Current limitation by proton transport,
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.06.010
– volume: 54
  start-page: 4284
  year: 1932
  ident: 10.1016/j.electacta.2019.134799_bib75
  article-title: The rate of the fourth order reaction between bromic and hydrobromic acids. The kinetic salt effect
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01350a021
– volume: 377
  start-page: 39
  year: 1994
  ident: 10.1016/j.electacta.2019.134799_bib56
  article-title: Second-order kinetics for steady state EC' reactions at a disc microelectrode
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/0022-0728(94)03447-8
– volume: 14
  start-page: 2683
  year: 1998
  ident: 10.1016/j.electacta.2019.134799_bib78
  article-title: Micellar effects on the ionic-redox reaction BrO3-/Br- in acid medium
  publication-title: Langmuir
  doi: 10.1021/la970809y
– start-page: 279
  year: 2005
  ident: 10.1016/j.electacta.2019.134799_bib85
  article-title: The bromine electrode Part III: reaction kinetics at highly boron-doped diamond electrodes
  publication-title: J. Appl. Electrochem.
  doi: 10.1007/s10800-004-6774-7
– volume: 13
  start-page: 1326
  year: 2001
  ident: 10.1016/j.electacta.2019.134799_bib48
  article-title: Surface catalytic mechanism in square-wave voltammetry
  publication-title: Electroanalysis
  doi: 10.1002/1521-4109(200111)13:16<1326::AID-ELAN1326>3.0.CO;2-S
– volume: 123
  start-page: 1842
  year: 1976
  ident: 10.1016/j.electacta.2019.134799_bib4
  article-title: Analysis of multiple reaction sequences in flow-through porous electrodes
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2132707
– volume: 35
  start-page: 39
  year: 2011
  ident: 10.1016/j.electacta.2019.134799_bib57
  article-title: Study of the EC’ mechanism by scanning electrochemical microscopy (SECM)
  publication-title: ECS Transactions
  doi: 10.1149/1.3645611
– start-page: 398
  year: 2013
  ident: 10.1016/j.electacta.2019.134799_bib33
– volume: 258
  start-page: 544
  year: 2017
  ident: 10.1016/j.electacta.2019.134799_bib46
  article-title: Bromate electroreduction from acidic solution at spherical microelectrode under steady-state conditions: theory for the redox-mediator autocatalytic (EC”) mechanism
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.11.097
– year: 2004
  ident: 10.1016/j.electacta.2019.134799_bib29
– ident: 10.1016/j.electacta.2019.134799_bib31
– volume: 155
  start-page: 1
  year: 2011
  ident: 10.1016/j.electacta.2019.134799_bib60
  article-title: Catalytic mechanism in successive two-step protein-film voltammetry—theoretical study in square-wave voltammetry
  publication-title: Biophys. Chem.
  doi: 10.1016/j.bpc.2011.01.010
– volume: 12
  start-page: 13
  year: 1928
  ident: 10.1016/j.electacta.2019.134799_bib86
  publication-title: Annals des Mines, Memoires, ser.
– volume: 57
  start-page: 14
  year: 2015
  ident: 10.1016/j.electacta.2019.134799_bib24
  article-title: Direct measurement of electrochemical reaction kinetics in flow-through porous electrodes
  publication-title: Electr. Commun.
  doi: 10.1016/j.elecom.2015.04.019
– volume: 779
  start-page: 146
  year: 2016
  ident: 10.1016/j.electacta.2019.134799_bib44
  article-title: Reduction of bromate anion via autocatalytic redox-mediation by Br2/Br- redox couple. Theory for stationary 1D regime. Effect of different Nernst layer thicknesses for reactants
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2016.06.004
– volume: 4
  year: 2016
  ident: 10.1016/j.electacta.2019.134799_bib36
  article-title: A review of hydrogen/halogen flow cells
  publication-title: Energ. Tech.
  doi: 10.1002/ente.201500449
– volume: 167
  start-page: 219
  year: 2015
  ident: 10.1016/j.electacta.2019.134799_bib58
  article-title: New aspects of the electrochemical-catalytic (EC’) mechanism in square-wave voltammetry
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.03.175
– volume: 259
  start-page: 655
  year: 2017
  ident: 10.1016/j.electacta.2019.134799_bib67
  article-title: Bromate electroreduction from sulfuric acid solution at rotating disk electrode: experimental study
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.10.199
– volume: 3
  start-page: 2227
  year: 2016
  ident: 10.1016/j.electacta.2019.134799_bib40
  article-title: Generalized Nernst Layer Model: application to bromate anion electroreduction. Theory for stationary 1D regime for proton transport limitations
  publication-title: ChemElectrochem
  doi: 10.1002/celc.201600422
– volume: 39
  start-page: 17
  year: 2007
  ident: 10.1016/j.electacta.2019.134799_bib81
  article-title: Kinetics of the bromate–bromide reaction at high bromide concentrations
  publication-title: Int. J. Chem. Kinet.
  doi: 10.1002/kin.20210
– volume: 50
  start-page: 403
  year: 2014
  ident: 10.1016/j.electacta.2019.134799_bib35
  article-title: Fuel cells with chemically regenerative redox cathodes
  publication-title: Russ. J. Electrochem.
  doi: 10.1134/S1023193514020050
– volume: 280
  start-page: 243
  year: 1990
  ident: 10.1016/j.electacta.2019.134799_bib50
  article-title: Development of the theory for the interpretation of steady state limiting currents at a microelectrode: EC' processes: first and second order reactions
  publication-title: J. Electroanal. Chem. Interfacial Electrochem.
  doi: 10.1016/0022-0728(90)87001-Z
– volume: 121
  start-page: 95
  year: 1974
  ident: 10.1016/j.electacta.2019.134799_bib2
  article-title: Two-dimensional current distribution within a packed-bed electrochemical flow reactor
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2396840
– volume: 187
  start-page: 636
  year: 2016
  ident: 10.1016/j.electacta.2019.134799_bib26
  article-title: Dimensionless parametric sensitivity analysis of microfluidic fuel cell with flow-through porous electrodes
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.11.074
– volume: 11
  year: 1978
  ident: 10.1016/j.electacta.2019.134799_bib7
  article-title: Flow-through porous electrodes
  publication-title: Adv. Electrochem. Electrochem Eng.
– volume: 305
  start-page: 131
  year: 1991
  ident: 10.1016/j.electacta.2019.134799_bib51
  article-title: Improvement to the equation for the steady state limiting currents at a microelectrode: EC' processes (1st and 2nd order reactions)
  publication-title: J. Electroanal. Chem. Interfacial Electrochem.
  doi: 10.1016/0022-0728(91)85207-6
– volume: 32
  start-page: 388
  year: 2000
  ident: 10.1016/j.electacta.2019.134799_bib79
  article-title: Study of the bromide oxidation by bromate in zwitterionic micellar solutions
  publication-title: Int. J. Chem. Kinet.
  doi: 10.1002/(SICI)1097-4601(2000)32:6<388::AID-KIN5>3.0.CO;2-#
– volume: 23
  start-page: 873
  year: 1993
  ident: 10.1016/j.electacta.2019.134799_bib17
  article-title: Analysis of flow-through porous electrode cell with homogeneous chemical reactions: application to bromide oxidation in brine solutions
  publication-title: J. Appl. Electrochem.
  doi: 10.1007/BF00251022
– volume: 132
  start-page: 254
  year: 2014
  ident: 10.1016/j.electacta.2019.134799_bib23
  article-title: Development and perspective in vanadium flow battery modeling
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.06.077
– volume: 41
  start-page: 1137
  year: 2011
  ident: 10.1016/j.electacta.2019.134799_bib34
  article-title: Redox flow batteries: a review
  publication-title: J. Appl. Electrochem.
  doi: 10.1007/s10800-011-0348-2
– volume: 836
  start-page: 125
  year: 2019
  ident: 10.1016/j.electacta.2019.134799_bib74
  article-title: Electrochemically driven evolution of Br-containing aqueous solution composition
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2019.01.070
– volume: 19
  start-page: 43
  year: 1989
  ident: 10.1016/j.electacta.2019.134799_bib16
  article-title: Flow-through and flow-by porous electrodes of nickel foam. I. Material characterization//
  publication-title: J. Appl. Electrochem.
  doi: 10.1007/BF01039388
– volume: 177
  start-page: 729
  year: 2016
  ident: 10.1016/j.electacta.2019.134799_bib25
  article-title: Vanadium microfluidic fuel cell with novel multi-layer flow-through porous electrodes: model, simulations and experiments
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.05.072
– volume: 15
  start-page: 10841
  year: 2013
  ident: 10.1016/j.electacta.2019.134799_bib22
  article-title: Determination of the mass-transport properties of vanadium ions through the porous electrodes of vanadium redox flow batteries
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp51944a
– volume: 89
  year: 2017
  ident: 10.1016/j.electacta.2019.134799_bib38
  article-title: Bromate anion reduction: novel autocatalytic (EC”) mechanism of electrochemical processes, its implication for redox flow batteries of high energy and power densities
  publication-title: Pure Appl. Chem.
  doi: 10.1515/pac-2017-0306
– volume: 57
  start-page: 51
  year: 1935
  ident: 10.1016/j.electacta.2019.134799_bib76
  article-title: The kinetic salt effect in the fourth order reaction BrO3- + Br- + 2H+ →. Ionization quotients for HSO4 - at 25°
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01304a016
– volume: 40
  start-page: 1044
  year: 1968
  ident: 10.1016/j.electacta.2019.134799_bib71
  article-title: Voltammetry of iodine(I) chloride, iodine, and iodate at rotated platinum disk and ring-disk electrodes
  publication-title: Anal. Chem.
  doi: 10.1021/ac60263a016
– year: 2019
  ident: 10.1016/j.electacta.2019.134799_bib28
  article-title: Vanadium redox flow batteries: electrochemical engineering
– volume: 246
  start-page: 1217
  year: 2017
  ident: 10.1016/j.electacta.2019.134799_bib45
  article-title: Bromate electroreduction from acidic solution at rotating disk electrode. Theory of steady-state convective-diffusion transport
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.06.158
– volume: 159
  start-page: A1246
  year: 2012
  ident: 10.1016/j.electacta.2019.134799_bib21
  article-title: High performance vanadium redox flow batteries with optimized electrode configuration and membrane selection
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.051208jes
– volume: 16
  start-page: 2315
  year: 2012
  ident: 10.1016/j.electacta.2019.134799_bib59
  article-title: Protein film voltammetry: electrochemical enzymatic spectroscopy. A review on recent progress
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-011-1397-5
– volume: 173
  start-page: 779
  year: 2015
  ident: 10.1016/j.electacta.2019.134799_bib42
  article-title: Electroreduction of halogen oxoanions via autocatalytic redox mediation by halide anions: novel EC” mechanism. Theory for stationary 1D regime
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.05.099
– volume: 115
  start-page: 11204
  year: 2011
  ident: 10.1016/j.electacta.2019.134799_bib52
  article-title: Cyclic voltammetry of the EC' mechanism at hemispherical particles and their arrays: the split wave
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp2023204
– volume: 38
  start-page: 107
  year: 1985
  ident: 10.1016/j.electacta.2019.134799_bib15
  article-title: Porous electrode theory analysis of a variable-depth, flow-by porous electrode
  publication-title: Chem. Eng. Commun.
  doi: 10.1080/00986448508911301
– volume: 124
  start-page: 1220
  year: 1977
  ident: 10.1016/j.electacta.2019.134799_bib5
  article-title: Studies on flow-by porous electrodes having perpendicular directions of current and electrolyte flow
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2133531
– volume: 6
  start-page: 329
  year: 1967
  ident: 10.1016/j.electacta.2019.134799_bib88
  article-title: Electrochemical response of porous and rough electrodes
  publication-title: Adv. Electrochem. Electrochem. Eng.
– volume: 27
  start-page: 293
  year: 1982
  ident: 10.1016/j.electacta.2019.134799_bib11
  article-title: The behaviour of porous electrodes in a flow-by regime—I. theoretical study
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(82)80018-2
– volume: 19
  start-page: 2711
  year: 2015
  ident: 10.1016/j.electacta.2019.134799_bib32
  article-title: Energy cycle based on a high specific energy aqueous flow battery and its potential use for fully electric vehicles and for direct solar-to-chemical energy conversion
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-015-2805-z
– volume: 72
  start-page: 3630
  year: 1968
  ident: 10.1016/j.electacta.2019.134799_bib70
  article-title: Rotating-disk-electrode study of the catalytic wave produced by the reduction of iodine in the presence of iodate
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100856a046
– year: 2011
  ident: 10.1016/j.electacta.2019.134799_bib63
– volume: 124
  start-page: 1528
  year: 1977
  ident: 10.1016/j.electacta.2019.134799_bib6
  article-title: A flow-through porous electrode model: application to metal-ion removal from dilute streams
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2133106
– volume: 38
  start-page: 107
  year: 1985
  ident: 10.1016/j.electacta.2019.134799_bib13
  article-title: Porous electrode theory analysis of a variable-depth, flow-by porous electrode
  publication-title: Chem. Eng. Commun.
  doi: 10.1080/00986448508911301
– volume: 13
  start-page: 16748
  year: 2011
  ident: 10.1016/j.electacta.2019.134799_bib55
  article-title: Analytical theory of the catalytic mechanism in square wave voltammetry at disc electrodes
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c1cp22032b
– volume: 196
  start-page: 10019
  year: 2011
  ident: 10.1016/j.electacta.2019.134799_bib19
  article-title: Computational modeling of microfluidic fuel cells with flow-through porous electrodes
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.08.024
– volume: 222
  start-page: 1555
  year: 2016
  ident: 10.1016/j.electacta.2019.134799_bib72
  article-title: 1D model of steady-state discharge process in hydrogen-bromate flow battery
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.11.138
– volume: 128
  start-page: 831
  year: 1981
  ident: 10.1016/j.electacta.2019.134799_bib9
  article-title: Ohmic potential drop in flow-through and flow-by porous electrodes
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2127513
– volume: 486
  start-page: 9
  year: 2000
  ident: 10.1016/j.electacta.2019.134799_bib54
  article-title: Square wave voltammetry for a pseudo-first-order catalytic process at spherical electrodes
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/S0022-0728(00)00115-7
– volume: 166
  start-page: A286
  year: 2019
  ident: 10.1016/j.electacta.2019.134799_bib69
  article-title: Redox-mediated bromate based electrochemical energy system
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0841902jes
– volume: 91
  start-page: 283
  year: 1995
  ident: 10.1016/j.electacta.2019.134799_bib83
  article-title: J. Surface electrochemistry and kinetics of anodic bromine formation at platinum
  publication-title: Chem. Soc. Faraday Trans.
  doi: 10.1039/ft9959100283
– volume: 58
  start-page: 667
  year: 1936
  ident: 10.1016/j.electacta.2019.134799_bib77
  article-title: The kinetic salt effect in the fourth order reaction BrO3-+ Br-+ 2H+
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01295a043
– volume: 131
  start-page: 2551
  year: 1984
  ident: 10.1016/j.electacta.2019.134799_bib14
  article-title: Theoretical comparison of flow-through and flow-by porous electrodes at the limiting current
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2115357
– volume: 2
  start-page: 31
  year: 2018
  ident: 10.1016/j.electacta.2019.134799_bib37
  article-title: Analytical review on the trends and present situation of large-scale sustainable energy storage technology
  publication-title: Eur. J. Sustain. Dev.
  doi: 10.20897/ejosdr/86200
– volume: 358
  start-page: 193
  year: 1993
  ident: 10.1016/j.electacta.2019.134799_bib53
  article-title: Digital simulation of steady state and non-steady state voltammetric responses for electrochemical reactions occurring at an inlaid microdisk electrode: application to ECirr, EC' and CE first-order reactions
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/0022-0728(93)80438-N
– volume: 129
  start-page: 1993
  year: 1982
  ident: 10.1016/j.electacta.2019.134799_bib10
  article-title: Mass-transfer study of carbon felt, flow-through electrode
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2124338
– volume: 31
  start-page: 545
  year: 2019
  ident: 10.1016/j.electacta.2019.134799_bib62
  article-title: Theoretical contribution towards understanding specific behaviour of “simple” protein-film reactions in square-wave voltammetry
  publication-title: Electroanalysis
  doi: 10.1002/elan.201800739
– volume: 2
  start-page: 113
  year: 1972
  ident: 10.1016/j.electacta.2019.134799_bib1
  article-title: Electrochemical removal of copper ions from very dilute solutions
  publication-title: J. Appl. Electrochem.
  doi: 10.1007/BF00609127
– volume: 83
  start-page: 430
  year: 2012
  ident: 10.1016/j.electacta.2019.134799_bib20
  article-title: Electrochemical characteristics of vanadium redox reactions on porous carbon electrodes for microfluidic fuel cell applications
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2012.07.104
– volume: 261
  start-page: 113
  year: 2018
  ident: 10.1016/j.electacta.2019.134799_bib41
  article-title: Bromate electroreduction from acidic solution at rotating disc electrode. Theoretical study of the steady-state convective-diffusion transport for excess of bromate ions compared to protons
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.12.062
– volume: 443
  start-page: 163
  year: 1998
  ident: 10.1016/j.electacta.2019.134799_bib49
  article-title: Analytical solution corresponding to the i/t response to a multipotential step for a catalytic mechanism
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/S0022-0728(97)00566-4
– volume: 130
  start-page: 4000
  year: 2008
  ident: 10.1016/j.electacta.2019.134799_bib18
  article-title: A microfluidic fuel cell with flow-through porous electrodes
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja078248c
– ident: 10.1016/j.electacta.2019.134799_bib30
  doi: 10.1111/papr.12109
– volume: 206
  start-page: 413
  year: 2017
  ident: 10.1016/j.electacta.2019.134799_bib27
  article-title: Optimal design of current collectors for microfluidic fuel cell with flow-through porous electrodes: model and experiment
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.08.175
– volume: 35
  start-page: 273
  year: 2005
  ident: 10.1016/j.electacta.2019.134799_bib84
  article-title: The bromine electrode Part II: reaction kinetics at polycrystalline Pt
  publication-title: J. Appl. Electrochem.
  doi: 10.1007/s10800-004-6773-8
SSID ssj0007670
Score 2.3631988
Snippet In view of applied prospects of the bromate electroreduction in acidic medium this process has been analyzed for the solution flow through a channel filled in...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 134799
SubjectTerms 3D electrode
Approximation
Autocatalysis
Bromate reduction
Bromine
Bromine/bromide redox couple
Concentration gradient
Current density
Electrodes
Electrowinning
Entrances
Flow velocity
Mathematical analysis
Maxima
Organic chemistry
Porous materials
Porous media
Rate constants
Redox flow cell
Redox mediator cycle
Transformations (mathematics)
Transport equations
Title Bromate electroreduction in acidic solution inside rectangular channel under flow-through porous electrode conditions
URI https://dx.doi.org/10.1016/j.electacta.2019.134799
https://www.proquest.com/docview/2306796381
Volume 323
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6LHtSD-MTHuuTgNdpu06b1JouyKnpywVtoXlBZurIPvPnbnWmT1RXEg9BLQxJKZjrzTZiZj5Bz9Numn1hmwXcxDgibqTKLmAJsb50Dc5hggfPjUzYc8fuX9KVDBqEWBtMqve1vbXpjrf3IpT_Ny7eqwhrfOOFZDhEAVnM3bbc5F6jlFx9faR4iE1FgMcDZKzleDdVMCQ_meBUXTVll8ZuH-mGrGwd0u0O2PXKk1-3H7ZKOrffIxiAQtu2RrW-9BffJAgJsQKOWeqKbKfZoRSnQqqalrkyladA7GELWToongfeXEO1SrAiu7ZhikdmUuvHknXlOHwqQfbKYhY1hHcTUpk39OiCj25vnwZB5jgWmkzyaM5voVLh-CVBAKWPjXDindcK1wRsqkQhhs9ypMuI6MjGPBUxO05L3DU914VxySNbqSW2PCC0NN4AOVWYtxFguz63iELcXuSl0pFV8TLJwrlL7BuTIgzGWIdPsVS4FIlEgshXIMYmWC9_aHhx_L7kKgpMr6iTBU_y9uBtELf0fPZMYqgm0VvHJf_Y-JZv4xppEwi5Zm08X9gxgzVz1Gr3tkfXru4fh0yfCvvtw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iB_Uguiq-zcFr1nabNq03WZT1sZ4U9haaF1SW7rLu4s3f7kyb-ALxIPSUZkrJJDPfhJn5CDlDv216iWUWfBfjgLCZKrOIKcD21jkwhwkWOA8fssETvx2loyXSD7UwmFbpbX9r0xtr7UfO_WqeT6sKa3zjhGc5RABYzY1tt1c4HF-kMei-feZ5iExEgcYAp39L8mq4Zkp4MMmr6DZ1lcVvLuqHsW480PUm2fDQkV62f7dFlmzdIav9wNjWIetfmgtukwVE2ABHLfVMNzNs0opqoFVNS12ZStOw8WAIaTspLgVeYEK4S7EkuLZjilVmM-rGk1fmSX0oYPbJ4iV8GOQgqDZt7tcOebq-euwPmCdZYDrJozmziU6F65WABZQyNs6Fc1onXBu8ohKJEDbLnSojriMT81jA5DQtec_wVBfOJbtkuZ7Udo_Q0nAD8FBl1kKQ5fLcKg6Be5GbQkdaxfskC-sqte9AjkQYYxlSzZ7lh0IkKkS2Ctkn0YfgtG3C8bfIRVCc_LafJLiKv4WPgqqlP9IvEmM1geYqPvjPt0_J6uBxeC_vbx7uDskavmFNVuERWZ7PFvYYMM5cnTR7-B11fPz-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bromate+electroreduction+in+acidic+solution+inside+rectangular+channel+under+flow-through+porous+electrode+conditions&rft.jtitle=Electrochimica+acta&rft.au=Vorotyntsev%2C+Mikhail+A.&rft.au=Antipov%2C+Anatoly+E.&rft.date=2019-11-10&rft.issn=0013-4686&rft.volume=323&rft.spage=134799&rft_id=info:doi/10.1016%2Fj.electacta.2019.134799&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_electacta_2019_134799
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon