Bromate electroreduction in acidic solution inside rectangular channel under flow-through porous electrode conditions
In view of applied prospects of the bromate electroreduction in acidic medium this process has been analyzed for the solution flow through a channel filled in with porous conducting material playing the role of 3D electrode. The process passes via mediator redox cycle where the bromine is reduced at...
Saved in:
Published in | Electrochimica acta Vol. 323; p. 134799 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
10.11.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In view of applied prospects of the bromate electroreduction in acidic medium this process has been analyzed for the solution flow through a channel filled in with porous conducting material playing the role of 3D electrode. The process passes via mediator redox cycle where the bromine is reduced at the electrode surface to bromide which is subject to the comproportionation reaction with bromate inside the solution phase to regenerate bromine. Inside the entering solution protons are in excess compared to bromate ions while the bromine concentration is very low. Ohmic losses across the channel are disregarded. Perpendicular size of pores is assumed to be sufficiently small so that the diffusion of solute components suppresses concentration gradients in the transversal direction. Solute species are transported along the channel by the convective mechanism. Numerical and approximate analytical methods of solving coupled transport equations have provided distributions of solute components inside the porous medium and of the current density along the flow coordinate, y. Quite unusual features of the process have been discovered, in particular non-monotonous variation of the bromine concentration and of the current density as functions of y, with narrow maxima at an intermediate distance from the entrance, dependent on the flow velocity and rate constants of the electrochemical and chemical steps of the redox cycle. All these surprising features of the bromate reduction process originate directly from the autocatalytic character of this cycle where each passage of the cycle increases the amount of the catalytic bromine/bromide couple in solution, thus accelerating the bromate transformation. As a result one can reach simultaneously both high efficiency of the bromate transformation and strong current for an optimal value of the channel length-to-flow velocity ratio, even for extremely small ratio of the incoming bromine and bromate concentrations. |
---|---|
AbstractList | In view of applied prospects of the bromate electroreduction in acidic medium this process has been analyzed for the solution flow through a channel filled in with porous conducting material playing the role of 3D electrode. The process passes via mediator redox cycle where the bromine is reduced at the electrode surface to bromide which is subject to the comproportionation reaction with bromate inside the solution phase to regenerate bromine. Inside the entering solution protons are in excess compared to bromate ions while the bromine concentration is very low. Ohmic losses across the channel are disregarded. Perpendicular size of pores is assumed to be sufficiently small so that the diffusion of solute components suppresses concentration gradients in the transversal direction. Solute species are transported along the channel by the convective mechanism. Numerical and approximate analytical methods of solving coupled transport equations have provided distributions of solute components inside the porous medium and of the current density along the flow coordinate, y. Quite unusual features of the process have been discovered, in particular non-monotonous variation of the bromine concentration and of the current density as functions of y, with narrow maxima at an intermediate distance from the entrance, dependent on the flow velocity and rate constants of the electrochemical and chemical steps of the redox cycle. All these surprising features of the bromate reduction process originate directly from the autocatalytic character of this cycle where each passage of the cycle increases the amount of the catalytic bromine/bromide couple in solution, thus accelerating the bromate transformation. As a result one can reach simultaneously both high efficiency of the bromate transformation and strong current for an optimal value of the channel length-to-flow velocity ratio, even for extremely small ratio of the incoming bromine and bromate concentrations. |
ArticleNumber | 134799 |
Author | Vorotyntsev, Mikhail A. Antipov, Anatoly E. |
Author_xml | – sequence: 1 givenname: Mikhail A. surname: Vorotyntsev fullname: Vorotyntsev, Mikhail A. email: mivo2010@yandex.com organization: D. I. Mendeleev University of Chemical Technology of Russia, Moscow, Russia – sequence: 2 givenname: Anatoly E. surname: Antipov fullname: Antipov, Anatoly E. email: 89636941963antipov@gmail.com organization: D. I. Mendeleev University of Chemical Technology of Russia, Moscow, Russia |
BookMark | eNqNkE1r3DAQhkVJoJuP31BBz96OLNuyDz0kIWkKgV7as9CORlktjrSV7Jb8-8jZpIdcUhAMiPd5R3pO2FGIgRj7JGAtQHRfdmsaCSdTzroGMayFbNQwfGAr0StZyb4djtgKQMiq6fruIzvJeQcAqlOwYvNlig9mIv5ckmIiO-PkY-A-cIPeeuQ5jvPLVfaWeFrWhft5NInj1oRAI5-DpcTdGP9W0zbF-X7L97HM_FpcOIzB-qUon7FjZ8ZM5y_zlP26uf55dVvd_fj2_erirkLZw1SRxFa52gD0m42l8h_nEGWDFkQ9KKkUdb3bGGgQrGiEKuG2NU1tmxYH5-Qp-3zo3af4e6Y86V2cUygrdS2hU0Mne1FSXw8pTDHnRE6jn8zy0CkZP2oBejGtd_qfab2Y1gfThVdv-H3yDyY9_gd5cSCpSPjjKemMngKS9YtkbaN_t-MJGhmjcg |
CitedBy_id | crossref_primary_10_1134_S1023193522110118 crossref_primary_10_1016_j_ijhydene_2021_02_149 crossref_primary_10_1016_j_jelechem_2023_117331 crossref_primary_10_1134_S1023193522110088 crossref_primary_10_1016_j_electacta_2021_138914 crossref_primary_10_1002_ente_202100233 crossref_primary_10_1021_acs_iecr_3c04520 crossref_primary_10_1016_j_electacta_2022_139961 crossref_primary_10_3390_membranes12080815 |
Cites_doi | 10.1002/ente.201700447 10.1016/j.elecom.2017.11.006 10.1016/0013-4686(82)80019-4 10.1007/s10008-002-0290-7 10.1021/ic0350786 10.5562/cca3383 10.1002/elan.201900028 10.1016/0013-4686(85)80198-5 10.1149/1.2129720 10.1016/0022-0728(84)80215-6 10.1134/S1023193516100037 10.1002/aic.690210103 10.1016/j.electacta.2016.06.010 10.1021/ja01350a021 10.1016/0022-0728(94)03447-8 10.1021/la970809y 10.1007/s10800-004-6774-7 10.1002/1521-4109(200111)13:16<1326::AID-ELAN1326>3.0.CO;2-S 10.1149/1.2132707 10.1149/1.3645611 10.1016/j.electacta.2017.11.097 10.1016/j.bpc.2011.01.010 10.1016/j.elecom.2015.04.019 10.1016/j.jelechem.2016.06.004 10.1002/ente.201500449 10.1016/j.electacta.2015.03.175 10.1016/j.electacta.2017.10.199 10.1002/celc.201600422 10.1002/kin.20210 10.1134/S1023193514020050 10.1016/0022-0728(90)87001-Z 10.1149/1.2396840 10.1016/j.electacta.2015.11.074 10.1016/0022-0728(91)85207-6 10.1002/(SICI)1097-4601(2000)32:6<388::AID-KIN5>3.0.CO;2-# 10.1007/BF00251022 10.1016/j.apenergy.2014.06.077 10.1007/s10800-011-0348-2 10.1016/j.jelechem.2019.01.070 10.1007/BF01039388 10.1016/j.apenergy.2016.05.072 10.1039/c3cp51944a 10.1515/pac-2017-0306 10.1021/ja01304a016 10.1021/ac60263a016 10.1016/j.electacta.2017.06.158 10.1149/2.051208jes 10.1007/s10008-011-1397-5 10.1016/j.electacta.2015.05.099 10.1021/jp2023204 10.1080/00986448508911301 10.1149/1.2133531 10.1016/0013-4686(82)80018-2 10.1007/s10008-015-2805-z 10.1021/j100856a046 10.1149/1.2133106 10.1039/c1cp22032b 10.1016/j.jpowsour.2011.08.024 10.1016/j.electacta.2016.11.138 10.1149/1.2127513 10.1016/S0022-0728(00)00115-7 10.1149/2.0841902jes 10.1039/ft9959100283 10.1021/ja01295a043 10.1149/1.2115357 10.20897/ejosdr/86200 10.1016/0022-0728(93)80438-N 10.1149/1.2124338 10.1002/elan.201800739 10.1007/BF00609127 10.1016/j.electacta.2012.07.104 10.1016/j.electacta.2017.12.062 10.1016/S0022-0728(97)00566-4 10.1021/ja078248c 10.1111/papr.12109 10.1016/j.apenergy.2017.08.175 10.1007/s10800-004-6773-8 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Nov 10, 2019 |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Nov 10, 2019 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1016/j.electacta.2019.134799 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-3859 |
ExternalDocumentID | 10_1016_j_electacta_2019_134799 S0013468619316706 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSK SSZ T5K TWZ UPT WH7 XPP YK3 ZMT ~02 ~G- 29G 41~ 53G AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIDUJ AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB HMU HVGLF HZ~ H~9 LPU R2- SC5 SCB SCH SEW SSH T9H VH1 WUQ XOL ZY4 7SR 7U5 8BQ 8FD EFKBS JG9 L7M |
ID | FETCH-LOGICAL-c380t-e3c57f2a008bbde187ffcc34cd01297377e68fba04c0d14177f255a42d45c9ff3 |
IEDL.DBID | .~1 |
ISSN | 0013-4686 |
IngestDate | Sun Jul 13 04:08:54 EDT 2025 Thu Apr 24 23:02:56 EDT 2025 Tue Jul 01 03:02:02 EDT 2025 Fri Feb 23 02:26:24 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Bromate reduction 3D electrode Autocatalysis Bromine/bromide redox couple Redox flow cell Redox mediator cycle |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c380t-e3c57f2a008bbde187ffcc34cd01297377e68fba04c0d14177f255a42d45c9ff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2306796381 |
PQPubID | 2045485 |
ParticipantIDs | proquest_journals_2306796381 crossref_citationtrail_10_1016_j_electacta_2019_134799 crossref_primary_10_1016_j_electacta_2019_134799 elsevier_sciencedirect_doi_10_1016_j_electacta_2019_134799 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-10 |
PublicationDateYYYYMMDD | 2019-11-10 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Electrochimica acta |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Gulaboski, Petkovska (bib65) 2018; 10 Gulaboski (bib62) 2019; 31 Vorotyntsev, Antipov (bib44) 2016; 779 Gulaboski, Mirčeski (bib58) 2015; 167 Newman, Tiedemann (bib3) 1975; 21 Denuault, Fleischmann, Pletcher, Tutty (bib50) 1990; 280 Denuault, Pletcher (bib51) 1991; 305 Vorotyntsev, Antipov, Konev (bib38) 2017; 89 Alkire, Ng (bib5) 1977; 124 Fedkiw (bib9) 1981; 128 Gulaboski, Mihajlov (bib60) 2011; 155 Schmitz (bib81) 2007; 39 Enriquez-Granados, Hutin, Storck (bib12) 1982; 27 Storck, Enriquez-Granados, Roger, Coeuret (bib11) 1982; 27 Li, Fan, Xuan, Leung, Zheng, She (bib27) 2017; 206 Alkire, Gould (bib4) 1976; 123 Cho, Tucker, Weber (bib36) 2016; 4 Bray, Liebhafsky (bib76) 1935; 57 Tolmachev, Piatkivskyi, Ryzhov, Konev, Vorotyntsev (bib32) 2015; 19 Bennion, Newman (bib1) 1972; 2 Newman, Thomas-Alyea (bib29) 2004 Habib, Sou (bib37) 2018; 2 Calhoun, Bard (bib57) 2011; 35 Modestov, Konev, Tripachev, Antipov, Tolmachev, Vorotyntsev (bib73) 2018; 6 Y. V. Tolmachev, Ftorion, Inc., 2014. US Pat. Appl. 14/184,702. Vorotyntsev, Antipov (bib39) 2016; 210 Gulaboski, Kokoskarova, Petkovska (bib64) 2018; 91 Liu, Grim, Papandrew, Turhan, Zawodzinski, Mench (bib21) 2012; 159 Newman (bib87) 1973 Vorotyntsev, Antipov (bib45) 2017; 246 Kim (bib28) 2019 Fedkiw, Safemazandarani (bib15) 1985; 38 Skyllas-Kazacos, Menictas, Lim (bib33) 2013 Rodrıguez, Del Mar Graciani, Munoz, Moya (bib79) 2000; 32 Beran, Bruckenstein (bib71) 1968; 40 Tutty (bib56) 1994; 377 Molina (bib49) 1998; 443 Langlois, Coeuret (bib16) 1989; 19 Vorotyntsev, Antipov (bib46) 2017; 258 Cortes, Faria (bib80) 2004; 43 Qi, Savinell (bib17) 1993; 23 Xu, Zhao (bib22) 2013; 15 Molina, Gonzalez, Laborda, Wang, Compton (bib55) 2011; 13 De Levie (bib88) 1967; 6 Cho, Razaulla (bib69) 2019; 166 Kinoshita, K., Leach (bib10) 1982; 129 Sclar, Riesch (bib77) 1936; 58 Ward, Lawrence, Hartshorne, Compton (bib52) 2011; 115 Compton, Banks (bib63) 2011 Lavagnini, Pastore, Magno (bib53) 1993; 358 Vorotyntsev, Antipov, Tolmachev (bib72) 2016; 222 Molina, Serna, Martinez-Ortiz (bib54) 2000; 486 Alkire, Ng (bib2) 1974; 121 Conway, Phillips, Qian (bib83) 1995; 91 Leveque (bib86) 1928; 12 Konev, Antipov, Petrov, Shamraeva, Vorotyntsev (bib68) 2018; 86 Alkire, Gould (bib8) 1980; 127 Modestov, Konev, Antipov, Petrov, Pichugov, Vorotyntsev (bib67) 2017; 259 Fleischmann, Lasserre, Robinson, Swan (bib47) 1984; 177 Gulaboski, Janeva, Maksimova (bib66) 2019; 31 Newman, Tiedemann (bib7) 1978; 11 Kjeang, Michel, Harrington, Djilali, Sinton (bib18) 2008; 130 Krishnamurthy, Johansson, Lee, Kjeang (bib19) 2011; 196 Li, Fan, Xuan, Leung (bib26) 2016; 187 Mastragostino, Gramellini (bib82) 1985; 30 Trainham, Newman (bib6) 1977; 124 Vorotyntsev, Antipov (bib41) 2018; 261 Ferro (bib85) 2005 Zheng, Li, Cheng, Ning, Xing, Zhang (bib23) 2014; 132 Vorotyntsev, Antipov (bib40) 2016; 3 Beran, Bruckenstein (bib70) 1968; 72 Risch, Newman A (bib14) 1984; 131 Weber, Mench, Meyers, Ross (bib34) 2011; 41 Y. V. Tolmachev, Ftorion, Inc., 2013. US Pat. Appl. 13/969,597. Lee, Hong, Kjeang (bib20) 2012; 83 Mirčeski, Gulaboski (bib48) 2001; 13 Fedkiw, Safemazandarani (bib13) 1985; 38 Goulet, Eikerling, Kjeang (bib24) 2015; 57 Mirčeski, Gulaboski (bib61) 2003; 7 Li, Nikiforidis, Leung, Daoud (bib25) 2016; 177 Petrov, Konev, Kuznetsov, Antipov, Glazkov, Vorotyntsev (bib74) 2019; 836 Ferro, Orsan, de Battisti (bib84) 2005; 35 Gulaboski, Mirčeski, Bogeski (bib59) 2012; 16 Tolmachev, Vorotyntsev (bib35) 2014; 50 Antipov, Vorotyntsev (bib43) 2016; 52 Young, Bray (bib75) 1932; 54 Domınguez, Iglesias (bib78) 1998; 14 Vorotyntsev, Konev, Tolmachev (bib42) 2015; 173 Lee (10.1016/j.electacta.2019.134799_bib20) 2012; 83 Alkire (10.1016/j.electacta.2019.134799_bib8) 1980; 127 Alkire (10.1016/j.electacta.2019.134799_bib5) 1977; 124 Krishnamurthy (10.1016/j.electacta.2019.134799_bib19) 2011; 196 Bray (10.1016/j.electacta.2019.134799_bib76) 1935; 57 Gulaboski (10.1016/j.electacta.2019.134799_bib58) 2015; 167 Modestov (10.1016/j.electacta.2019.134799_bib67) 2017; 259 Li (10.1016/j.electacta.2019.134799_bib26) 2016; 187 Skyllas-Kazacos (10.1016/j.electacta.2019.134799_bib33) 2013 Tolmachev (10.1016/j.electacta.2019.134799_bib35) 2014; 50 Tutty (10.1016/j.electacta.2019.134799_bib56) 1994; 377 Risch (10.1016/j.electacta.2019.134799_bib14) 1984; 131 Denuault (10.1016/j.electacta.2019.134799_bib51) 1991; 305 Goulet (10.1016/j.electacta.2019.134799_bib24) 2015; 57 Xu (10.1016/j.electacta.2019.134799_bib22) 2013; 15 Fedkiw (10.1016/j.electacta.2019.134799_bib15) 1985; 38 Fedkiw (10.1016/j.electacta.2019.134799_bib9) 1981; 128 Molina (10.1016/j.electacta.2019.134799_bib49) 1998; 443 Newman (10.1016/j.electacta.2019.134799_bib7) 1978; 11 Petrov (10.1016/j.electacta.2019.134799_bib74) 2019; 836 Domınguez (10.1016/j.electacta.2019.134799_bib78) 1998; 14 Ferro (10.1016/j.electacta.2019.134799_bib85) 2005 Weber (10.1016/j.electacta.2019.134799_bib34) 2011; 41 Sclar (10.1016/j.electacta.2019.134799_bib77) 1936; 58 Newman (10.1016/j.electacta.2019.134799_bib87) 1973 Storck (10.1016/j.electacta.2019.134799_bib11) 1982; 27 Newman (10.1016/j.electacta.2019.134799_bib29) 2004 Antipov (10.1016/j.electacta.2019.134799_bib43) 2016; 52 Molina (10.1016/j.electacta.2019.134799_bib54) 2000; 486 Bennion (10.1016/j.electacta.2019.134799_bib1) 1972; 2 Rodrıguez (10.1016/j.electacta.2019.134799_bib79) 2000; 32 Konev (10.1016/j.electacta.2019.134799_bib68) 2018; 86 Vorotyntsev (10.1016/j.electacta.2019.134799_bib45) 2017; 246 Gulaboski (10.1016/j.electacta.2019.134799_bib64) 2018; 91 Li (10.1016/j.electacta.2019.134799_bib25) 2016; 177 Beran (10.1016/j.electacta.2019.134799_bib70) 1968; 72 Kim (10.1016/j.electacta.2019.134799_bib28) 2019 Tolmachev (10.1016/j.electacta.2019.134799_bib32) 2015; 19 Gulaboski (10.1016/j.electacta.2019.134799_bib62) 2019; 31 Kinoshita (10.1016/j.electacta.2019.134799_bib10) 1982; 129 Vorotyntsev (10.1016/j.electacta.2019.134799_bib39) 2016; 210 Mirčeski (10.1016/j.electacta.2019.134799_bib48) 2001; 13 Schmitz (10.1016/j.electacta.2019.134799_bib81) 2007; 39 Vorotyntsev (10.1016/j.electacta.2019.134799_bib41) 2018; 261 Gulaboski (10.1016/j.electacta.2019.134799_bib60) 2011; 155 Cortes (10.1016/j.electacta.2019.134799_bib80) 2004; 43 Compton (10.1016/j.electacta.2019.134799_bib63) 2011 Calhoun (10.1016/j.electacta.2019.134799_bib57) 2011; 35 Liu (10.1016/j.electacta.2019.134799_bib21) 2012; 159 Enriquez-Granados (10.1016/j.electacta.2019.134799_bib12) 1982; 27 Cho (10.1016/j.electacta.2019.134799_bib36) 2016; 4 Alkire (10.1016/j.electacta.2019.134799_bib2) 1974; 121 Ferro (10.1016/j.electacta.2019.134799_bib84) 2005; 35 Vorotyntsev (10.1016/j.electacta.2019.134799_bib38) 2017; 89 Gulaboski (10.1016/j.electacta.2019.134799_bib59) 2012; 16 Qi (10.1016/j.electacta.2019.134799_bib17) 1993; 23 Fedkiw (10.1016/j.electacta.2019.134799_bib13) 1985; 38 De Levie (10.1016/j.electacta.2019.134799_bib88) 1967; 6 Gulaboski (10.1016/j.electacta.2019.134799_bib65) 2018; 10 Denuault (10.1016/j.electacta.2019.134799_bib50) 1990; 280 Gulaboski (10.1016/j.electacta.2019.134799_bib66) 2019; 31 Vorotyntsev (10.1016/j.electacta.2019.134799_bib40) 2016; 3 Lavagnini (10.1016/j.electacta.2019.134799_bib53) 1993; 358 10.1016/j.electacta.2019.134799_bib31 10.1016/j.electacta.2019.134799_bib30 Cho (10.1016/j.electacta.2019.134799_bib69) 2019; 166 Li (10.1016/j.electacta.2019.134799_bib27) 2017; 206 Vorotyntsev (10.1016/j.electacta.2019.134799_bib46) 2017; 258 Mirčeski (10.1016/j.electacta.2019.134799_bib61) 2003; 7 Vorotyntsev (10.1016/j.electacta.2019.134799_bib44) 2016; 779 Modestov (10.1016/j.electacta.2019.134799_bib73) 2018; 6 Beran (10.1016/j.electacta.2019.134799_bib71) 1968; 40 Mastragostino (10.1016/j.electacta.2019.134799_bib82) 1985; 30 Zheng (10.1016/j.electacta.2019.134799_bib23) 2014; 132 Young (10.1016/j.electacta.2019.134799_bib75) 1932; 54 Vorotyntsev (10.1016/j.electacta.2019.134799_bib42) 2015; 173 Molina (10.1016/j.electacta.2019.134799_bib55) 2011; 13 Conway (10.1016/j.electacta.2019.134799_bib83) 1995; 91 Newman (10.1016/j.electacta.2019.134799_bib3) 1975; 21 Alkire (10.1016/j.electacta.2019.134799_bib4) 1976; 123 Kjeang (10.1016/j.electacta.2019.134799_bib18) 2008; 130 Ward (10.1016/j.electacta.2019.134799_bib52) 2011; 115 Habib (10.1016/j.electacta.2019.134799_bib37) 2018; 2 Vorotyntsev (10.1016/j.electacta.2019.134799_bib72) 2016; 222 Leveque (10.1016/j.electacta.2019.134799_bib86) 1928; 12 Trainham (10.1016/j.electacta.2019.134799_bib6) 1977; 124 Fleischmann (10.1016/j.electacta.2019.134799_bib47) 1984; 177 Langlois (10.1016/j.electacta.2019.134799_bib16) 1989; 19 |
References_xml | – volume: 280 start-page: 243 year: 1990 end-page: 254 ident: bib50 article-title: Development of the theory for the interpretation of steady state limiting currents at a microelectrode: EC' processes: first and second order reactions publication-title: J. Electroanal. Chem. Interfacial Electrochem. – volume: 127 start-page: 605 year: 1980 end-page: 612 ident: bib8 article-title: An engineering model for electro-organic synthesis in continuous flow-through porous electrodes publication-title: J. Electrochem. Soc. – volume: 32 start-page: 388 year: 2000 end-page: 394 ident: bib79 article-title: Study of the bromide oxidation by bromate in zwitterionic micellar solutions publication-title: Int. J. Chem. Kinet. – volume: 130 start-page: 4000 year: 2008 end-page: 4006 ident: bib18 article-title: A microfluidic fuel cell with flow-through porous electrodes publication-title: J. Am. Chem. Soc. – volume: 173 start-page: 779 year: 2015 end-page: 795 ident: bib42 article-title: Electroreduction of halogen oxoanions via autocatalytic redox mediation by halide anions: novel EC” mechanism. Theory for stationary 1D regime publication-title: Electrochim. Acta – year: 2004 ident: bib29 article-title: Electrochemical Systems – volume: 222 start-page: 1555 year: 2016 end-page: 1561 ident: bib72 article-title: 1D model of steady-state discharge process in hydrogen-bromate flow battery publication-title: Electrochim. Acta – volume: 40 start-page: 1044 year: 1968 end-page: 1051 ident: bib71 article-title: Voltammetry of iodine(I) chloride, iodine, and iodate at rotated platinum disk and ring-disk electrodes publication-title: Anal. Chem. – volume: 38 start-page: 107 year: 1985 end-page: 123 ident: bib15 article-title: Porous electrode theory analysis of a variable-depth, flow-by porous electrode publication-title: Chem. Eng. Commun. – volume: 41 start-page: 1137 year: 2011 end-page: 1164 ident: bib34 article-title: Redox flow batteries: a review publication-title: J. Appl. Electrochem. – volume: 131 start-page: 2551 year: 1984 end-page: 2556 ident: bib14 article-title: Theoretical comparison of flow-through and flow-by porous electrodes at the limiting current publication-title: J. Electrochem. Soc. – volume: 91 start-page: 1 year: 2018 end-page: 6 ident: bib64 article-title: Time-independent methodology to access michaelis-menten constant by exploring electrochemical-catalytic mechanism in protein-film cyclic staircase voltammetry publication-title: Croat. Chem. Acta – volume: 305 start-page: 131 year: 1991 end-page: 134 ident: bib51 article-title: Improvement to the equation for the steady state limiting currents at a microelectrode: EC' processes (1st and 2nd order reactions) publication-title: J. Electroanal. Chem. Interfacial Electrochem. – volume: 35 start-page: 39 year: 2011 end-page: 51 ident: bib57 article-title: Study of the EC’ mechanism by scanning electrochemical microscopy (SECM) publication-title: ECS Transactions – volume: 124 start-page: 1528 year: 1977 end-page: 1540 ident: bib6 article-title: A flow-through porous electrode model: application to metal-ion removal from dilute streams publication-title: J. Electrochem. Soc. – volume: 124 start-page: 1220 year: 1977 end-page: 1227 ident: bib5 article-title: Studies on flow-by porous electrodes having perpendicular directions of current and electrolyte flow publication-title: J. Electrochem. Soc. – volume: 166 start-page: A286 year: 2019 end-page: A296 ident: bib69 article-title: Redox-mediated bromate based electrochemical energy system publication-title: J. Electrochem. Soc. – volume: 187 start-page: 636 year: 2016 end-page: 645 ident: bib26 article-title: Dimensionless parametric sensitivity analysis of microfluidic fuel cell with flow-through porous electrodes publication-title: Electrochim. Acta – volume: 779 start-page: 146 year: 2016 end-page: 155 ident: bib44 article-title: Reduction of bromate anion via autocatalytic redox-mediation by Br2/Br- redox couple. Theory for stationary 1D regime. Effect of different Nernst layer thicknesses for reactants publication-title: J. Electroanal. Chem. – start-page: 279 year: 2005 end-page: 283 ident: bib85 article-title: The bromine electrode Part III: reaction kinetics at highly boron-doped diamond electrodes publication-title: J. Appl. Electrochem. – volume: 50 start-page: 403 year: 2014 end-page: 411 ident: bib35 article-title: Fuel cells with chemically regenerative redox cathodes publication-title: Russ. J. Electrochem. – volume: 196 start-page: 10019 year: 2011 end-page: 10031 ident: bib19 article-title: Computational modeling of microfluidic fuel cells with flow-through porous electrodes publication-title: J. Power Sources – year: 2011 ident: bib63 article-title: Understanding Voltammetry – volume: 31 start-page: 946 year: 2019 end-page: 956 ident: bib66 article-title: New aspects of protein-film voltammetry of redox enzymes coupled to follow-up reversible chemical reaction in square-wave voltammetry publication-title: Electroanalysis – volume: 57 start-page: 14 year: 2015 end-page: 17 ident: bib24 article-title: Direct measurement of electrochemical reaction kinetics in flow-through porous electrodes publication-title: Electr. Commun. – volume: 836 start-page: 125 year: 2019 end-page: 133 ident: bib74 article-title: Electrochemically driven evolution of Br-containing aqueous solution composition publication-title: J. Electroanal. Chem. – volume: 258 start-page: 544 year: 2017 end-page: 553 ident: bib46 article-title: Bromate electroreduction from acidic solution at spherical microelectrode under steady-state conditions: theory for the redox-mediator autocatalytic (EC”) mechanism publication-title: Electrochim. Acta – volume: 43 start-page: 1395 year: 2004 end-page: 1402 ident: bib80 article-title: Kinetics and mechanism of bromate− bromide reaction catalyzed by acetate publication-title: Inorg. Chem. – volume: 19 start-page: 2711 year: 2015 end-page: 2722 ident: bib32 article-title: Energy cycle based on a high specific energy aqueous flow battery and its potential use for fully electric vehicles and for direct solar-to-chemical energy conversion publication-title: J. Solid State Electrochem. – volume: 31 start-page: 545 year: 2019 end-page: 553 ident: bib62 article-title: Theoretical contribution towards understanding specific behaviour of “simple” protein-film reactions in square-wave voltammetry publication-title: Electroanalysis – volume: 159 start-page: A1246 year: 2012 end-page: A1252 ident: bib21 article-title: High performance vanadium redox flow batteries with optimized electrode configuration and membrane selection publication-title: J. Electrochem. Soc. – volume: 2 start-page: 113 year: 1972 end-page: 122 ident: bib1 article-title: Electrochemical removal of copper ions from very dilute solutions publication-title: J. Appl. Electrochem. – volume: 38 start-page: 107 year: 1985 end-page: 123 ident: bib13 article-title: Porous electrode theory analysis of a variable-depth, flow-by porous electrode publication-title: Chem. Eng. Commun. – volume: 177 start-page: 729 year: 2016 end-page: 739 ident: bib25 article-title: Vanadium microfluidic fuel cell with novel multi-layer flow-through porous electrodes: model, simulations and experiments publication-title: Appl. Energy – volume: 377 start-page: 39 year: 1994 end-page: 51 ident: bib56 article-title: Second-order kinetics for steady state EC' reactions at a disc microelectrode publication-title: J. Electroanal. Chem. – volume: 128 start-page: 831 year: 1981 end-page: 838 ident: bib9 article-title: Ohmic potential drop in flow-through and flow-by porous electrodes publication-title: J. Electrochem. Soc. – volume: 261 start-page: 113 year: 2018 end-page: 126 ident: bib41 article-title: Bromate electroreduction from acidic solution at rotating disc electrode. Theoretical study of the steady-state convective-diffusion transport for excess of bromate ions compared to protons publication-title: Electrochim. Acta – volume: 72 start-page: 3630 year: 1968 end-page: 3635 ident: bib70 article-title: Rotating-disk-electrode study of the catalytic wave produced by the reduction of iodine in the presence of iodate publication-title: J. Phys. Chem. – volume: 19 start-page: 43 year: 1989 end-page: 50 ident: bib16 article-title: Flow-through and flow-by porous electrodes of nickel foam. I. Material characterization// publication-title: J. Appl. Electrochem. – volume: 11 year: 1978 ident: bib7 article-title: Flow-through porous electrodes publication-title: Adv. Electrochem. Electrochem Eng. – volume: 21 start-page: 25 year: 1975 end-page: 41 ident: bib3 article-title: Porous-electrode theory with battery applications publication-title: AIChE J. – volume: 210 start-page: 950 year: 2016 end-page: 962 ident: bib39 article-title: Bromate electroreduction via autocatalytic redox mediation: EC” mechanism. Theory for stationary 1D regime. Current limitation by proton transport, publication-title: Electrochim. Acta – volume: 358 start-page: 193 year: 1993 end-page: 201 ident: bib53 article-title: Digital simulation of steady state and non-steady state voltammetric responses for electrochemical reactions occurring at an inlaid microdisk electrode: application to ECirr, EC' and CE first-order reactions publication-title: J. Electroanal. Chem. – volume: 54 start-page: 4284 year: 1932 end-page: 4296 ident: bib75 article-title: The rate of the fourth order reaction between bromic and hydrobromic acids. The kinetic salt effect publication-title: J. Am. Chem. Soc. – volume: 35 start-page: 273 year: 2005 end-page: 278 ident: bib84 article-title: The bromine electrode Part II: reaction kinetics at polycrystalline Pt publication-title: J. Appl. Electrochem. – volume: 123 start-page: 1842 year: 1976 end-page: 1849 ident: bib4 article-title: Analysis of multiple reaction sequences in flow-through porous electrodes publication-title: J. Electrochem. Soc. – volume: 27 start-page: 293 year: 1982 end-page: 301 ident: bib11 article-title: The behaviour of porous electrodes in a flow-by regime—I. theoretical study publication-title: Electrochim. Acta – volume: 259 start-page: 655 year: 2017 end-page: 663 ident: bib67 article-title: Bromate electroreduction from sulfuric acid solution at rotating disk electrode: experimental study publication-title: Electrochim. Acta – year: 1973 ident: bib87 article-title: Electrochemical Systems – reference: Y. V. Tolmachev, Ftorion, Inc., 2014. US Pat. Appl. 14/184,702. – volume: 4 year: 2016 ident: bib36 article-title: A review of hydrogen/halogen flow cells publication-title: Energ. Tech. – volume: 246 start-page: 1217 year: 2017 end-page: 1229 ident: bib45 article-title: Bromate electroreduction from acidic solution at rotating disk electrode. Theory of steady-state convective-diffusion transport publication-title: Electrochim. Acta – volume: 6 start-page: 242 year: 2018 end-page: 245 ident: bib73 article-title: A novel hydrogen-bromate flow battery for air deficient environment: proof-of-concept study publication-title: Energ. Tech. – volume: 129 start-page: 1993 year: 1982 end-page: 1997 ident: bib10 article-title: Mass-transfer study of carbon felt, flow-through electrode publication-title: J. Electrochem. Soc. – volume: 27 start-page: 303 year: 1982 end-page: 311 ident: bib12 article-title: The behaviour of porous electrodes in a flow-by regime—II. Experimental study publication-title: Electrochim. Acta – volume: 115 start-page: 11204 year: 2011 end-page: 11215 ident: bib52 article-title: Cyclic voltammetry of the EC' mechanism at hemispherical particles and their arrays: the split wave publication-title: J. Phys. Chem. C – volume: 3 start-page: 2227 year: 2016 end-page: 2242 ident: bib40 article-title: Generalized Nernst Layer Model: application to bromate anion electroreduction. Theory for stationary 1D regime for proton transport limitations publication-title: ChemElectrochem – volume: 167 start-page: 219 year: 2015 end-page: 225 ident: bib58 article-title: New aspects of the electrochemical-catalytic (EC’) mechanism in square-wave voltammetry publication-title: Electrochim. Acta – volume: 16 start-page: 2315 year: 2012 end-page: 2328 ident: bib59 article-title: Protein film voltammetry: electrochemical enzymatic spectroscopy. A review on recent progress publication-title: J. Solid State Electrochem. – volume: 7 start-page: 157 year: 2003 end-page: 165 ident: bib61 article-title: The surface catalytic mechanism: a comparative study with square-wave and staircase cyclic voltammetry publication-title: J. Solid State Electrochem. – volume: 13 start-page: 1326 year: 2001 end-page: 1334 ident: bib48 article-title: Surface catalytic mechanism in square-wave voltammetry publication-title: Electroanalysis – volume: 2 start-page: 31 year: 2018 ident: bib37 article-title: Analytical review on the trends and present situation of large-scale sustainable energy storage technology publication-title: Eur. J. Sustain. Dev. – volume: 10 start-page: 566 year: 2018 end-page: 575 ident: bib65 article-title: A time-independent approach to evaluate the kinetics of enzyme-substrate reactions in cyclic staircase voltammetry publication-title: Analytical Bioanal. Electrochem. – volume: 12 start-page: 13 year: 1928 ident: bib86 publication-title: Annals des Mines, Memoires, ser. – volume: 89 year: 2017 ident: bib38 article-title: Bromate anion reduction: novel autocatalytic (EC”) mechanism of electrochemical processes, its implication for redox flow batteries of high energy and power densities publication-title: Pure Appl. Chem. – volume: 132 start-page: 254 year: 2014 end-page: 266 ident: bib23 article-title: Development and perspective in vanadium flow battery modeling publication-title: Appl. Energy – volume: 23 start-page: 873 year: 1993 end-page: 886 ident: bib17 article-title: Analysis of flow-through porous electrode cell with homogeneous chemical reactions: application to bromide oxidation in brine solutions publication-title: J. Appl. Electrochem. – volume: 91 start-page: 283 year: 1995 end-page: 293 ident: bib83 article-title: J. Surface electrochemistry and kinetics of anodic bromine formation at platinum publication-title: Chem. Soc. Faraday Trans. – volume: 52 start-page: 925 year: 2016 end-page: 932 ident: bib43 article-title: Electroreduction of bromate anion on inactive RDE under steady-state conditions: numerical study of ion transport processes and comproportionation reaction publication-title: Russ. J. Electrochem. – volume: 14 start-page: 2683 year: 1998 ident: bib78 article-title: Micellar effects on the ionic-redox reaction BrO publication-title: Langmuir – volume: 86 start-page: 76 year: 2018 end-page: 79 ident: bib68 article-title: Surprising dependence of the current density of bromate electroreduction on the microelectrode radius as manifestation of the autocatalytic redox-cycle (EC″) reaction mechanism publication-title: Electr. Commun. – year: 2019 ident: bib28 article-title: Vanadium redox flow batteries: electrochemical engineering publication-title: Energy Storage Devices – volume: 30 start-page: 373 year: 1985 end-page: 380 ident: bib82 article-title: Kinetic study of the electrochemical processes of the bromine/bromide aqueous system on vitreous carbon electrodes publication-title: Electrochim. Acta – volume: 443 start-page: 163 year: 1998 end-page: 167 ident: bib49 article-title: Analytical solution corresponding to the i/t response to a multipotential step for a catalytic mechanism publication-title: J. Electroanal. Chem. – volume: 13 start-page: 16748 year: 2011 end-page: 16755 ident: bib55 article-title: Analytical theory of the catalytic mechanism in square wave voltammetry at disc electrodes publication-title: Phys. Chem. Chem. Phys. – volume: 121 start-page: 95 year: 1974 end-page: 103 ident: bib2 article-title: Two-dimensional current distribution within a packed-bed electrochemical flow reactor publication-title: J. Electrochem. Soc. – start-page: 398 year: 2013 end-page: 441 ident: bib33 article-title: Redox Flow Batteries for Medium- to Large-Scale Energy Storage, Electricity Transmission, Distribution and Storage Systems – volume: 6 start-page: 329 year: 1967 end-page: 397 ident: bib88 article-title: Electrochemical response of porous and rough electrodes publication-title: Adv. Electrochem. Electrochem. Eng. – volume: 57 start-page: 51 year: 1935 end-page: 56 ident: bib76 article-title: The kinetic salt effect in the fourth order reaction BrO publication-title: J. Am. Chem. Soc. – reference: Y. V. Tolmachev, Ftorion, Inc., 2013. US Pat. Appl. 13/969,597. – volume: 15 start-page: 10841 year: 2013 end-page: 10848 ident: bib22 article-title: Determination of the mass-transport properties of vanadium ions through the porous electrodes of vanadium redox flow batteries publication-title: Phys. Chem. Chem. Phys. – volume: 177 start-page: 97 year: 1984 end-page: 114 ident: bib47 article-title: The application of microelectrodes to the study of homogeneous processes coupled to electrode reactions: Part I. EC' and CE reactions publication-title: J. Electroanal. Chem. Interfacial Electrochem. – volume: 83 start-page: 430 year: 2012 end-page: 438 ident: bib20 article-title: Electrochemical characteristics of vanadium redox reactions on porous carbon electrodes for microfluidic fuel cell applications publication-title: Electrochim. Acta – volume: 486 start-page: 9 year: 2000 end-page: 15 ident: bib54 article-title: Square wave voltammetry for a pseudo-first-order catalytic process at spherical electrodes publication-title: J. Electroanal. Chem. – volume: 39 start-page: 17 year: 2007 end-page: 21 ident: bib81 article-title: Kinetics of the bromate–bromide reaction at high bromide concentrations publication-title: Int. J. Chem. Kinet. – volume: 206 start-page: 413 year: 2017 end-page: 424 ident: bib27 article-title: Optimal design of current collectors for microfluidic fuel cell with flow-through porous electrodes: model and experiment publication-title: Appl. Energy – volume: 155 start-page: 1 year: 2011 end-page: 9 ident: bib60 article-title: Catalytic mechanism in successive two-step protein-film voltammetry—theoretical study in square-wave voltammetry publication-title: Biophys. Chem. – volume: 58 start-page: 667 year: 1936 end-page: 670 ident: bib77 article-title: The kinetic salt effect in the fourth order reaction BrO publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 242 year: 2018 ident: 10.1016/j.electacta.2019.134799_bib73 article-title: A novel hydrogen-bromate flow battery for air deficient environment: proof-of-concept study publication-title: Energ. Tech. doi: 10.1002/ente.201700447 – volume: 86 start-page: 76 year: 2018 ident: 10.1016/j.electacta.2019.134799_bib68 article-title: Surprising dependence of the current density of bromate electroreduction on the microelectrode radius as manifestation of the autocatalytic redox-cycle (EC″) reaction mechanism publication-title: Electr. Commun. doi: 10.1016/j.elecom.2017.11.006 – volume: 27 start-page: 303 year: 1982 ident: 10.1016/j.electacta.2019.134799_bib12 article-title: The behaviour of porous electrodes in a flow-by regime—II. Experimental study publication-title: Electrochim. Acta doi: 10.1016/0013-4686(82)80019-4 – volume: 7 start-page: 157 year: 2003 ident: 10.1016/j.electacta.2019.134799_bib61 article-title: The surface catalytic mechanism: a comparative study with square-wave and staircase cyclic voltammetry publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-002-0290-7 – volume: 43 start-page: 1395 year: 2004 ident: 10.1016/j.electacta.2019.134799_bib80 article-title: Kinetics and mechanism of bromate− bromide reaction catalyzed by acetate publication-title: Inorg. Chem. doi: 10.1021/ic0350786 – volume: 91 start-page: 1 year: 2018 ident: 10.1016/j.electacta.2019.134799_bib64 article-title: Time-independent methodology to access michaelis-menten constant by exploring electrochemical-catalytic mechanism in protein-film cyclic staircase voltammetry publication-title: Croat. Chem. Acta doi: 10.5562/cca3383 – volume: 31 start-page: 946 year: 2019 ident: 10.1016/j.electacta.2019.134799_bib66 article-title: New aspects of protein-film voltammetry of redox enzymes coupled to follow-up reversible chemical reaction in square-wave voltammetry publication-title: Electroanalysis doi: 10.1002/elan.201900028 – volume: 30 start-page: 373 year: 1985 ident: 10.1016/j.electacta.2019.134799_bib82 article-title: Kinetic study of the electrochemical processes of the bromine/bromide aqueous system on vitreous carbon electrodes publication-title: Electrochim. Acta doi: 10.1016/0013-4686(85)80198-5 – year: 1973 ident: 10.1016/j.electacta.2019.134799_bib87 – volume: 127 start-page: 605 year: 1980 ident: 10.1016/j.electacta.2019.134799_bib8 article-title: An engineering model for electro-organic synthesis in continuous flow-through porous electrodes publication-title: J. Electrochem. Soc. doi: 10.1149/1.2129720 – volume: 177 start-page: 97 year: 1984 ident: 10.1016/j.electacta.2019.134799_bib47 article-title: The application of microelectrodes to the study of homogeneous processes coupled to electrode reactions: Part I. EC' and CE reactions publication-title: J. Electroanal. Chem. Interfacial Electrochem. doi: 10.1016/0022-0728(84)80215-6 – volume: 52 start-page: 925 year: 2016 ident: 10.1016/j.electacta.2019.134799_bib43 article-title: Electroreduction of bromate anion on inactive RDE under steady-state conditions: numerical study of ion transport processes and comproportionation reaction publication-title: Russ. J. Electrochem. doi: 10.1134/S1023193516100037 – volume: 10 start-page: 566 year: 2018 ident: 10.1016/j.electacta.2019.134799_bib65 article-title: A time-independent approach to evaluate the kinetics of enzyme-substrate reactions in cyclic staircase voltammetry publication-title: Analytical Bioanal. Electrochem. – volume: 21 start-page: 25 year: 1975 ident: 10.1016/j.electacta.2019.134799_bib3 article-title: Porous-electrode theory with battery applications publication-title: AIChE J. doi: 10.1002/aic.690210103 – volume: 210 start-page: 950 year: 2016 ident: 10.1016/j.electacta.2019.134799_bib39 article-title: Bromate electroreduction via autocatalytic redox mediation: EC” mechanism. Theory for stationary 1D regime. Current limitation by proton transport, publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.06.010 – volume: 54 start-page: 4284 year: 1932 ident: 10.1016/j.electacta.2019.134799_bib75 article-title: The rate of the fourth order reaction between bromic and hydrobromic acids. The kinetic salt effect publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01350a021 – volume: 377 start-page: 39 year: 1994 ident: 10.1016/j.electacta.2019.134799_bib56 article-title: Second-order kinetics for steady state EC' reactions at a disc microelectrode publication-title: J. Electroanal. Chem. doi: 10.1016/0022-0728(94)03447-8 – volume: 14 start-page: 2683 year: 1998 ident: 10.1016/j.electacta.2019.134799_bib78 article-title: Micellar effects on the ionic-redox reaction BrO3-/Br- in acid medium publication-title: Langmuir doi: 10.1021/la970809y – start-page: 279 year: 2005 ident: 10.1016/j.electacta.2019.134799_bib85 article-title: The bromine electrode Part III: reaction kinetics at highly boron-doped diamond electrodes publication-title: J. Appl. Electrochem. doi: 10.1007/s10800-004-6774-7 – volume: 13 start-page: 1326 year: 2001 ident: 10.1016/j.electacta.2019.134799_bib48 article-title: Surface catalytic mechanism in square-wave voltammetry publication-title: Electroanalysis doi: 10.1002/1521-4109(200111)13:16<1326::AID-ELAN1326>3.0.CO;2-S – volume: 123 start-page: 1842 year: 1976 ident: 10.1016/j.electacta.2019.134799_bib4 article-title: Analysis of multiple reaction sequences in flow-through porous electrodes publication-title: J. Electrochem. Soc. doi: 10.1149/1.2132707 – volume: 35 start-page: 39 year: 2011 ident: 10.1016/j.electacta.2019.134799_bib57 article-title: Study of the EC’ mechanism by scanning electrochemical microscopy (SECM) publication-title: ECS Transactions doi: 10.1149/1.3645611 – start-page: 398 year: 2013 ident: 10.1016/j.electacta.2019.134799_bib33 – volume: 258 start-page: 544 year: 2017 ident: 10.1016/j.electacta.2019.134799_bib46 article-title: Bromate electroreduction from acidic solution at spherical microelectrode under steady-state conditions: theory for the redox-mediator autocatalytic (EC”) mechanism publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.11.097 – year: 2004 ident: 10.1016/j.electacta.2019.134799_bib29 – ident: 10.1016/j.electacta.2019.134799_bib31 – volume: 155 start-page: 1 year: 2011 ident: 10.1016/j.electacta.2019.134799_bib60 article-title: Catalytic mechanism in successive two-step protein-film voltammetry—theoretical study in square-wave voltammetry publication-title: Biophys. Chem. doi: 10.1016/j.bpc.2011.01.010 – volume: 12 start-page: 13 year: 1928 ident: 10.1016/j.electacta.2019.134799_bib86 publication-title: Annals des Mines, Memoires, ser. – volume: 57 start-page: 14 year: 2015 ident: 10.1016/j.electacta.2019.134799_bib24 article-title: Direct measurement of electrochemical reaction kinetics in flow-through porous electrodes publication-title: Electr. Commun. doi: 10.1016/j.elecom.2015.04.019 – volume: 779 start-page: 146 year: 2016 ident: 10.1016/j.electacta.2019.134799_bib44 article-title: Reduction of bromate anion via autocatalytic redox-mediation by Br2/Br- redox couple. Theory for stationary 1D regime. Effect of different Nernst layer thicknesses for reactants publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2016.06.004 – volume: 4 year: 2016 ident: 10.1016/j.electacta.2019.134799_bib36 article-title: A review of hydrogen/halogen flow cells publication-title: Energ. Tech. doi: 10.1002/ente.201500449 – volume: 167 start-page: 219 year: 2015 ident: 10.1016/j.electacta.2019.134799_bib58 article-title: New aspects of the electrochemical-catalytic (EC’) mechanism in square-wave voltammetry publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.03.175 – volume: 259 start-page: 655 year: 2017 ident: 10.1016/j.electacta.2019.134799_bib67 article-title: Bromate electroreduction from sulfuric acid solution at rotating disk electrode: experimental study publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.10.199 – volume: 3 start-page: 2227 year: 2016 ident: 10.1016/j.electacta.2019.134799_bib40 article-title: Generalized Nernst Layer Model: application to bromate anion electroreduction. Theory for stationary 1D regime for proton transport limitations publication-title: ChemElectrochem doi: 10.1002/celc.201600422 – volume: 39 start-page: 17 year: 2007 ident: 10.1016/j.electacta.2019.134799_bib81 article-title: Kinetics of the bromate–bromide reaction at high bromide concentrations publication-title: Int. J. Chem. Kinet. doi: 10.1002/kin.20210 – volume: 50 start-page: 403 year: 2014 ident: 10.1016/j.electacta.2019.134799_bib35 article-title: Fuel cells with chemically regenerative redox cathodes publication-title: Russ. J. Electrochem. doi: 10.1134/S1023193514020050 – volume: 280 start-page: 243 year: 1990 ident: 10.1016/j.electacta.2019.134799_bib50 article-title: Development of the theory for the interpretation of steady state limiting currents at a microelectrode: EC' processes: first and second order reactions publication-title: J. Electroanal. Chem. Interfacial Electrochem. doi: 10.1016/0022-0728(90)87001-Z – volume: 121 start-page: 95 year: 1974 ident: 10.1016/j.electacta.2019.134799_bib2 article-title: Two-dimensional current distribution within a packed-bed electrochemical flow reactor publication-title: J. Electrochem. Soc. doi: 10.1149/1.2396840 – volume: 187 start-page: 636 year: 2016 ident: 10.1016/j.electacta.2019.134799_bib26 article-title: Dimensionless parametric sensitivity analysis of microfluidic fuel cell with flow-through porous electrodes publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.11.074 – volume: 11 year: 1978 ident: 10.1016/j.electacta.2019.134799_bib7 article-title: Flow-through porous electrodes publication-title: Adv. Electrochem. Electrochem Eng. – volume: 305 start-page: 131 year: 1991 ident: 10.1016/j.electacta.2019.134799_bib51 article-title: Improvement to the equation for the steady state limiting currents at a microelectrode: EC' processes (1st and 2nd order reactions) publication-title: J. Electroanal. Chem. Interfacial Electrochem. doi: 10.1016/0022-0728(91)85207-6 – volume: 32 start-page: 388 year: 2000 ident: 10.1016/j.electacta.2019.134799_bib79 article-title: Study of the bromide oxidation by bromate in zwitterionic micellar solutions publication-title: Int. J. Chem. Kinet. doi: 10.1002/(SICI)1097-4601(2000)32:6<388::AID-KIN5>3.0.CO;2-# – volume: 23 start-page: 873 year: 1993 ident: 10.1016/j.electacta.2019.134799_bib17 article-title: Analysis of flow-through porous electrode cell with homogeneous chemical reactions: application to bromide oxidation in brine solutions publication-title: J. Appl. Electrochem. doi: 10.1007/BF00251022 – volume: 132 start-page: 254 year: 2014 ident: 10.1016/j.electacta.2019.134799_bib23 article-title: Development and perspective in vanadium flow battery modeling publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.06.077 – volume: 41 start-page: 1137 year: 2011 ident: 10.1016/j.electacta.2019.134799_bib34 article-title: Redox flow batteries: a review publication-title: J. Appl. Electrochem. doi: 10.1007/s10800-011-0348-2 – volume: 836 start-page: 125 year: 2019 ident: 10.1016/j.electacta.2019.134799_bib74 article-title: Electrochemically driven evolution of Br-containing aqueous solution composition publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2019.01.070 – volume: 19 start-page: 43 year: 1989 ident: 10.1016/j.electacta.2019.134799_bib16 article-title: Flow-through and flow-by porous electrodes of nickel foam. I. Material characterization// publication-title: J. Appl. Electrochem. doi: 10.1007/BF01039388 – volume: 177 start-page: 729 year: 2016 ident: 10.1016/j.electacta.2019.134799_bib25 article-title: Vanadium microfluidic fuel cell with novel multi-layer flow-through porous electrodes: model, simulations and experiments publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.05.072 – volume: 15 start-page: 10841 year: 2013 ident: 10.1016/j.electacta.2019.134799_bib22 article-title: Determination of the mass-transport properties of vanadium ions through the porous electrodes of vanadium redox flow batteries publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp51944a – volume: 89 year: 2017 ident: 10.1016/j.electacta.2019.134799_bib38 article-title: Bromate anion reduction: novel autocatalytic (EC”) mechanism of electrochemical processes, its implication for redox flow batteries of high energy and power densities publication-title: Pure Appl. Chem. doi: 10.1515/pac-2017-0306 – volume: 57 start-page: 51 year: 1935 ident: 10.1016/j.electacta.2019.134799_bib76 article-title: The kinetic salt effect in the fourth order reaction BrO3- + Br- + 2H+ →. Ionization quotients for HSO4 - at 25° publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01304a016 – volume: 40 start-page: 1044 year: 1968 ident: 10.1016/j.electacta.2019.134799_bib71 article-title: Voltammetry of iodine(I) chloride, iodine, and iodate at rotated platinum disk and ring-disk electrodes publication-title: Anal. Chem. doi: 10.1021/ac60263a016 – year: 2019 ident: 10.1016/j.electacta.2019.134799_bib28 article-title: Vanadium redox flow batteries: electrochemical engineering – volume: 246 start-page: 1217 year: 2017 ident: 10.1016/j.electacta.2019.134799_bib45 article-title: Bromate electroreduction from acidic solution at rotating disk electrode. Theory of steady-state convective-diffusion transport publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.06.158 – volume: 159 start-page: A1246 year: 2012 ident: 10.1016/j.electacta.2019.134799_bib21 article-title: High performance vanadium redox flow batteries with optimized electrode configuration and membrane selection publication-title: J. Electrochem. Soc. doi: 10.1149/2.051208jes – volume: 16 start-page: 2315 year: 2012 ident: 10.1016/j.electacta.2019.134799_bib59 article-title: Protein film voltammetry: electrochemical enzymatic spectroscopy. A review on recent progress publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-011-1397-5 – volume: 173 start-page: 779 year: 2015 ident: 10.1016/j.electacta.2019.134799_bib42 article-title: Electroreduction of halogen oxoanions via autocatalytic redox mediation by halide anions: novel EC” mechanism. Theory for stationary 1D regime publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.05.099 – volume: 115 start-page: 11204 year: 2011 ident: 10.1016/j.electacta.2019.134799_bib52 article-title: Cyclic voltammetry of the EC' mechanism at hemispherical particles and their arrays: the split wave publication-title: J. Phys. Chem. C doi: 10.1021/jp2023204 – volume: 38 start-page: 107 year: 1985 ident: 10.1016/j.electacta.2019.134799_bib15 article-title: Porous electrode theory analysis of a variable-depth, flow-by porous electrode publication-title: Chem. Eng. Commun. doi: 10.1080/00986448508911301 – volume: 124 start-page: 1220 year: 1977 ident: 10.1016/j.electacta.2019.134799_bib5 article-title: Studies on flow-by porous electrodes having perpendicular directions of current and electrolyte flow publication-title: J. Electrochem. Soc. doi: 10.1149/1.2133531 – volume: 6 start-page: 329 year: 1967 ident: 10.1016/j.electacta.2019.134799_bib88 article-title: Electrochemical response of porous and rough electrodes publication-title: Adv. Electrochem. Electrochem. Eng. – volume: 27 start-page: 293 year: 1982 ident: 10.1016/j.electacta.2019.134799_bib11 article-title: The behaviour of porous electrodes in a flow-by regime—I. theoretical study publication-title: Electrochim. Acta doi: 10.1016/0013-4686(82)80018-2 – volume: 19 start-page: 2711 year: 2015 ident: 10.1016/j.electacta.2019.134799_bib32 article-title: Energy cycle based on a high specific energy aqueous flow battery and its potential use for fully electric vehicles and for direct solar-to-chemical energy conversion publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-015-2805-z – volume: 72 start-page: 3630 year: 1968 ident: 10.1016/j.electacta.2019.134799_bib70 article-title: Rotating-disk-electrode study of the catalytic wave produced by the reduction of iodine in the presence of iodate publication-title: J. Phys. Chem. doi: 10.1021/j100856a046 – year: 2011 ident: 10.1016/j.electacta.2019.134799_bib63 – volume: 124 start-page: 1528 year: 1977 ident: 10.1016/j.electacta.2019.134799_bib6 article-title: A flow-through porous electrode model: application to metal-ion removal from dilute streams publication-title: J. Electrochem. Soc. doi: 10.1149/1.2133106 – volume: 38 start-page: 107 year: 1985 ident: 10.1016/j.electacta.2019.134799_bib13 article-title: Porous electrode theory analysis of a variable-depth, flow-by porous electrode publication-title: Chem. Eng. Commun. doi: 10.1080/00986448508911301 – volume: 13 start-page: 16748 year: 2011 ident: 10.1016/j.electacta.2019.134799_bib55 article-title: Analytical theory of the catalytic mechanism in square wave voltammetry at disc electrodes publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c1cp22032b – volume: 196 start-page: 10019 year: 2011 ident: 10.1016/j.electacta.2019.134799_bib19 article-title: Computational modeling of microfluidic fuel cells with flow-through porous electrodes publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2011.08.024 – volume: 222 start-page: 1555 year: 2016 ident: 10.1016/j.electacta.2019.134799_bib72 article-title: 1D model of steady-state discharge process in hydrogen-bromate flow battery publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.11.138 – volume: 128 start-page: 831 year: 1981 ident: 10.1016/j.electacta.2019.134799_bib9 article-title: Ohmic potential drop in flow-through and flow-by porous electrodes publication-title: J. Electrochem. Soc. doi: 10.1149/1.2127513 – volume: 486 start-page: 9 year: 2000 ident: 10.1016/j.electacta.2019.134799_bib54 article-title: Square wave voltammetry for a pseudo-first-order catalytic process at spherical electrodes publication-title: J. Electroanal. Chem. doi: 10.1016/S0022-0728(00)00115-7 – volume: 166 start-page: A286 year: 2019 ident: 10.1016/j.electacta.2019.134799_bib69 article-title: Redox-mediated bromate based electrochemical energy system publication-title: J. Electrochem. Soc. doi: 10.1149/2.0841902jes – volume: 91 start-page: 283 year: 1995 ident: 10.1016/j.electacta.2019.134799_bib83 article-title: J. Surface electrochemistry and kinetics of anodic bromine formation at platinum publication-title: Chem. Soc. Faraday Trans. doi: 10.1039/ft9959100283 – volume: 58 start-page: 667 year: 1936 ident: 10.1016/j.electacta.2019.134799_bib77 article-title: The kinetic salt effect in the fourth order reaction BrO3-+ Br-+ 2H+ publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01295a043 – volume: 131 start-page: 2551 year: 1984 ident: 10.1016/j.electacta.2019.134799_bib14 article-title: Theoretical comparison of flow-through and flow-by porous electrodes at the limiting current publication-title: J. Electrochem. Soc. doi: 10.1149/1.2115357 – volume: 2 start-page: 31 year: 2018 ident: 10.1016/j.electacta.2019.134799_bib37 article-title: Analytical review on the trends and present situation of large-scale sustainable energy storage technology publication-title: Eur. J. Sustain. Dev. doi: 10.20897/ejosdr/86200 – volume: 358 start-page: 193 year: 1993 ident: 10.1016/j.electacta.2019.134799_bib53 article-title: Digital simulation of steady state and non-steady state voltammetric responses for electrochemical reactions occurring at an inlaid microdisk electrode: application to ECirr, EC' and CE first-order reactions publication-title: J. Electroanal. Chem. doi: 10.1016/0022-0728(93)80438-N – volume: 129 start-page: 1993 year: 1982 ident: 10.1016/j.electacta.2019.134799_bib10 article-title: Mass-transfer study of carbon felt, flow-through electrode publication-title: J. Electrochem. Soc. doi: 10.1149/1.2124338 – volume: 31 start-page: 545 year: 2019 ident: 10.1016/j.electacta.2019.134799_bib62 article-title: Theoretical contribution towards understanding specific behaviour of “simple” protein-film reactions in square-wave voltammetry publication-title: Electroanalysis doi: 10.1002/elan.201800739 – volume: 2 start-page: 113 year: 1972 ident: 10.1016/j.electacta.2019.134799_bib1 article-title: Electrochemical removal of copper ions from very dilute solutions publication-title: J. Appl. Electrochem. doi: 10.1007/BF00609127 – volume: 83 start-page: 430 year: 2012 ident: 10.1016/j.electacta.2019.134799_bib20 article-title: Electrochemical characteristics of vanadium redox reactions on porous carbon electrodes for microfluidic fuel cell applications publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.07.104 – volume: 261 start-page: 113 year: 2018 ident: 10.1016/j.electacta.2019.134799_bib41 article-title: Bromate electroreduction from acidic solution at rotating disc electrode. Theoretical study of the steady-state convective-diffusion transport for excess of bromate ions compared to protons publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.12.062 – volume: 443 start-page: 163 year: 1998 ident: 10.1016/j.electacta.2019.134799_bib49 article-title: Analytical solution corresponding to the i/t response to a multipotential step for a catalytic mechanism publication-title: J. Electroanal. Chem. doi: 10.1016/S0022-0728(97)00566-4 – volume: 130 start-page: 4000 year: 2008 ident: 10.1016/j.electacta.2019.134799_bib18 article-title: A microfluidic fuel cell with flow-through porous electrodes publication-title: J. Am. Chem. Soc. doi: 10.1021/ja078248c – ident: 10.1016/j.electacta.2019.134799_bib30 doi: 10.1111/papr.12109 – volume: 206 start-page: 413 year: 2017 ident: 10.1016/j.electacta.2019.134799_bib27 article-title: Optimal design of current collectors for microfluidic fuel cell with flow-through porous electrodes: model and experiment publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.08.175 – volume: 35 start-page: 273 year: 2005 ident: 10.1016/j.electacta.2019.134799_bib84 article-title: The bromine electrode Part II: reaction kinetics at polycrystalline Pt publication-title: J. Appl. Electrochem. doi: 10.1007/s10800-004-6773-8 |
SSID | ssj0007670 |
Score | 2.3631988 |
Snippet | In view of applied prospects of the bromate electroreduction in acidic medium this process has been analyzed for the solution flow through a channel filled in... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 134799 |
SubjectTerms | 3D electrode Approximation Autocatalysis Bromate reduction Bromine Bromine/bromide redox couple Concentration gradient Current density Electrodes Electrowinning Entrances Flow velocity Mathematical analysis Maxima Organic chemistry Porous materials Porous media Rate constants Redox flow cell Redox mediator cycle Transformations (mathematics) Transport equations |
Title | Bromate electroreduction in acidic solution inside rectangular channel under flow-through porous electrode conditions |
URI | https://dx.doi.org/10.1016/j.electacta.2019.134799 https://www.proquest.com/docview/2306796381 |
Volume | 323 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6LHtSD-MTHuuTgNdpu06b1JouyKnpywVtoXlBZurIPvPnbnWmT1RXEg9BLQxJKZjrzTZiZj5Bz9Numn1hmwXcxDgibqTKLmAJsb50Dc5hggfPjUzYc8fuX9KVDBqEWBtMqve1vbXpjrf3IpT_Ny7eqwhrfOOFZDhEAVnM3bbc5F6jlFx9faR4iE1FgMcDZKzleDdVMCQ_meBUXTVll8ZuH-mGrGwd0u0O2PXKk1-3H7ZKOrffIxiAQtu2RrW-9BffJAgJsQKOWeqKbKfZoRSnQqqalrkyladA7GELWToongfeXEO1SrAiu7ZhikdmUuvHknXlOHwqQfbKYhY1hHcTUpk39OiCj25vnwZB5jgWmkzyaM5voVLh-CVBAKWPjXDindcK1wRsqkQhhs9ypMuI6MjGPBUxO05L3DU914VxySNbqSW2PCC0NN4AOVWYtxFguz63iELcXuSl0pFV8TLJwrlL7BuTIgzGWIdPsVS4FIlEgshXIMYmWC9_aHhx_L7kKgpMr6iTBU_y9uBtELf0fPZMYqgm0VvHJf_Y-JZv4xppEwi5Zm08X9gxgzVz1Gr3tkfXru4fh0yfCvvtw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iB_Uguiq-zcFr1nabNq03WZT1sZ4U9haaF1SW7rLu4s3f7kyb-ALxIPSUZkrJJDPfhJn5CDlDv216iWUWfBfjgLCZKrOIKcD21jkwhwkWOA8fssETvx2loyXSD7UwmFbpbX9r0xtr7UfO_WqeT6sKa3zjhGc5RABYzY1tt1c4HF-kMei-feZ5iExEgcYAp39L8mq4Zkp4MMmr6DZ1lcVvLuqHsW480PUm2fDQkV62f7dFlmzdIav9wNjWIetfmgtukwVE2ABHLfVMNzNs0opqoFVNS12ZStOw8WAIaTspLgVeYEK4S7EkuLZjilVmM-rGk1fmSX0oYPbJ4iV8GOQgqDZt7tcOebq-euwPmCdZYDrJozmziU6F65WABZQyNs6Fc1onXBu8ohKJEDbLnSojriMT81jA5DQtec_wVBfOJbtkuZ7Udo_Q0nAD8FBl1kKQ5fLcKg6Be5GbQkdaxfskC-sqte9AjkQYYxlSzZ7lh0IkKkS2Ctkn0YfgtG3C8bfIRVCc_LafJLiKv4WPgqqlP9IvEmM1geYqPvjPt0_J6uBxeC_vbx7uDskavmFNVuERWZ7PFvYYMM5cnTR7-B11fPz- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bromate+electroreduction+in+acidic+solution+inside+rectangular+channel+under+flow-through+porous+electrode+conditions&rft.jtitle=Electrochimica+acta&rft.au=Vorotyntsev%2C+Mikhail+A.&rft.au=Antipov%2C+Anatoly+E.&rft.date=2019-11-10&rft.issn=0013-4686&rft.volume=323&rft.spage=134799&rft_id=info:doi/10.1016%2Fj.electacta.2019.134799&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_electacta_2019_134799 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon |