Densely Connected Multiscale Attention Network for Hyperspectral Image Classification

Hyperspectral images (HSIs) are characterized by high spatial resolution and are rich in spectral information. In the process of HSI classification, the extraction of spectral-spatial features directly influences the classification results. In recent years, the hyperspectral classification method ba...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in applied earth observations and remote sensing Vol. 14; pp. 2563 - 2576
Main Authors Gao, Hongmin, Miao, Yawen, Cao, Xueying, Li, Chenming
Format Journal Article
LanguageEnglish
Published IEEE 2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hyperspectral images (HSIs) are characterized by high spatial resolution and are rich in spectral information. In the process of HSI classification, the extraction of spectral-spatial features directly influences the classification results. In recent years, the hyperspectral classification method based on convolutional neural networks has demonstrated excellent performance. However, as the network structure deepens, degradation occurs, and the features learned from the fixed-scale convolutional kernels are usually specific, which is not conducive to feature learning and thus impairs the classification accuracy. To solve the problem of difficult extraction of features and underutilization of information from HSI data, a densely connected multiscale attention network based on 3-D convolution is proposed for HSI classification. First, to reduce the spectral redundancy of the HSIs, the principal component analysis algorithm is performed on the raw HSI data; then, several multiscale blocks comprised of parallel factorized spatial-spectral convolution modules of different sizes are adopted to extract the enriched spectral-spatial features from HSIs; furthermore, dense connections are introduced to further fuse features obtained from blocks of different depths, thereby enhancing feature reuse and propagation and helping to alleviate the problem of vanishing gradients. Besides, the channel-spectral-spatial attention block is put forward to spontaneously reweight the fused features to emphasize the features that are more relevant to the classification results while weakening the less relevant ones. The experimental results show that the proposed method is effective in extracting discriminative features of the target and outperforms the other state-of-the-art methods.
AbstractList Hyperspectral images (HSIs) are characterized by high spatial resolution and are rich in spectral information. In the process of HSI classification, the extraction of spectral-spatial features directly influences the classification results. In recent years, the hyperspectral classification method based on convolutional neural networks has demonstrated excellent performance. However, as the network structure deepens, degradation occurs, and the features learned from the fixed-scale convolutional kernels are usually specific, which is not conducive to feature learning and thus impairs the classification accuracy. To solve the problem of difficult extraction of features and underutilization of information from HSI data, a densely connected multiscale attention network based on 3-D convolution is proposed for HSI classification. First, to reduce the spectral redundancy of the HSIs, the principal component analysis algorithm is performed on the raw HSI data; then, several multiscale blocks comprised of parallel factorized spatial-spectral convolution modules of different sizes are adopted to extract the enriched spectral-spatial features from HSIs; furthermore, dense connections are introduced to further fuse features obtained from blocks of different depths, thereby enhancing feature reuse and propagation and helping to alleviate the problem of vanishing gradients. Besides, the channel-spectral-spatial attention block is put forward to spontaneously reweight the fused features to emphasize the features that are more relevant to the classification results while weakening the less relevant ones. The experimental results show that the proposed method is effective in extracting discriminative features of the target and outperforms the other state-of-the-art methods.
Author Miao, Yawen
Cao, Xueying
Li, Chenming
Gao, Hongmin
Author_xml – sequence: 1
  givenname: Hongmin
  orcidid: 0000-0002-8404-2464
  surname: Gao
  fullname: Gao, Hongmin
  email: gaohongmin@hhu.edu.cn
  organization: College of Computer and Information, Hohai University, Nanjing, China
– sequence: 2
  givenname: Yawen
  surname: Miao
  fullname: Miao, Yawen
  email: miaoyawen@hhu.edu.cn
  organization: College of Computer and Information, Hohai University, Nanjing, China
– sequence: 3
  givenname: Xueying
  surname: Cao
  fullname: Cao, Xueying
  email: shary@hhu.edu.cn
  organization: College of Computer and Information, Hohai University, Nanjing, China
– sequence: 4
  givenname: Chenming
  orcidid: 0000-0003-0959-7600
  surname: Li
  fullname: Li, Chenming
  email: lcm@hhu.edu.cn
  organization: College of Computer and Information, Hohai University, Nanjing, China
BookMark eNqFkM1q3DAUhUVJoZO0T5CNX8BTSVeyreUw_cmUtIUmWYtr6SoodaxBUinz9vFkQhbddHXhcL5z4TtnZ3OaibFLwddCcPPx283t5tfNWnIp1sB1J6R6w1ZSaNEKDfqMrYQB0wrF1Tt2XsoD553sDazY3SeaC02HZpvmmVwl33z_M9VYHE7UbGqlucY0Nz-o_k35dxNSbq4Oe8plv7QzTs3uEe-p2U5YSgzR4bH-nr0NOBX68HIv2N2Xz7fbq_b659fddnPdOhh4bT2Q7jX30lHXexCIXo5aKuiWhCM5CtwIR0Pfj9h7CkGCxtD1pIwkHOGC7U67PuGD3ef4iPlgE0b7HKR8bzHX6CayQ-iwH4KHToMaQI0Khg4I0I3eGy6WLThtuZxKyRRe9wS3R8v2ZNkeLdsXywtl_qFcrM8OFjlx-g97eWIjEb1-M6A0gIYngu2PYA
CODEN IJSTHZ
CitedBy_id crossref_primary_10_1016_j_engappai_2023_106017
crossref_primary_10_1109_TGRS_2022_3186400
crossref_primary_10_1109_ACCESS_2023_3330114
crossref_primary_10_1109_JSTARS_2023_3298477
crossref_primary_10_1109_TGRS_2023_3309245
crossref_primary_10_1080_01431161_2023_2176721
crossref_primary_10_1080_01431161_2022_2093621
crossref_primary_10_3390_rs14153670
crossref_primary_10_1080_01431161_2023_2224099
crossref_primary_10_3390_rs16010022
crossref_primary_10_1109_JSTARS_2022_3145917
crossref_primary_10_1080_01431161_2022_2089069
crossref_primary_10_1109_TGRS_2024_3443662
crossref_primary_10_1109_JSTARS_2021_3076198
crossref_primary_10_1109_TNNLS_2022_3171572
crossref_primary_10_1109_TGRS_2021_3130940
crossref_primary_10_3390_rs15184642
crossref_primary_10_1109_ACCESS_2023_3332695
crossref_primary_10_1038_s41598_021_97029_5
crossref_primary_10_3390_rs14225778
crossref_primary_10_1080_01431161_2024_2334812
crossref_primary_10_1109_JSTARS_2022_3191396
crossref_primary_10_1080_01431161_2022_2102952
crossref_primary_10_3390_app11167614
Cites_doi 10.3390/rs10071068
10.1109/JSTARS.2015.2414816
10.1109/JSTARS.2014.2329330
10.1109/TGRS.2013.2260552
10.1109/TGRS.2020.3033336
10.1109/CVPR.2017.243
10.1109/LGRS.2019.2918719
10.1109/CVPR.2016.90
10.1109/IGARSS.2015.7326945
10.3390/rs9010067
10.1109/IGARSS.2016.7730324
10.1109/TGRS.2019.2899129
10.1109/TGRS.2017.2755542
10.1109/TGRS.2018.2886022
10.1016/j.isprsjprs.2018.10.006
10.1109/TGRS.2018.2890705
10.1109/TGRS.2020.2994057
10.1109/CVPR42600.2020.01155
10.1117/12.943611
10.1109/ACCESS.2018.2812999
10.1016/j.isprsjprs.2020.06.014
10.1109/TGRS.2020.3000684
10.1109/TGRS.2011.2157166
10.1109/TGRS.2019.2933588
10.1109/TGRS.2011.2129595
10.1109/TIP.2018.2878958
10.1109/TGRS.2016.2636241
10.1109/CVPR.2015.7298594
10.1109/JSTARS.2015.2388577
10.1155/2015/258619
10.1109/TGRS.2020.3006534
10.1109/TGRS.2019.2925615
10.1109/TGRS.2019.2951160
10.1109/TGRS.2009.2020156
10.3390/rs12162659
10.1109/TGRS.2012.2230268
10.1016/S0034-4257(98)00064-9
10.1109/TGRS.2016.2646420
10.1109/TGRS.2020.3016820
10.1109/TGRS.2019.2957251
10.1109/TGRS.2017.2765364
10.1109/TGRS.2014.2344442
10.1109/MGRS.2020.2979764
10.1109/TGRS.2020.3015157
10.1109/TGRS.2014.2360672
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
DOA
DOI 10.1109/JSTARS.2021.3056124
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 2576
ExternalDocumentID oai_doaj_org_article_8f6a78fd36534834b43863e3acbdd901
10_1109_JSTARS_2021_3056124
9345335
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62071168; 61701166
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities; Fundamental Research Funds for the Central Universities of China
  grantid: B200202183
  funderid: 10.13039/501100012226
– fundername: National Key Research and Development Program of China
  grantid: 2018YFC1508106
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c380t-d3e5750d2ce67d31aad2b524362ce0aecef091ce877ba7deff235af67e492eab3
IEDL.DBID DOA
ISSN 1939-1404
IngestDate Wed Aug 27 01:32:24 EDT 2025
Thu Apr 24 23:08:49 EDT 2025
Tue Jul 01 03:16:16 EDT 2025
Wed Aug 27 02:50:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c380t-d3e5750d2ce67d31aad2b524362ce0aecef091ce877ba7deff235af67e492eab3
ORCID 0000-0002-8404-2464
0000-0003-0959-7600
OpenAccessLink https://doaj.org/article/8f6a78fd36534834b43863e3acbdd901
PageCount 14
ParticipantIDs crossref_primary_10_1109_JSTARS_2021_3056124
crossref_citationtrail_10_1109_JSTARS_2021_3056124
doaj_primary_oai_doaj_org_article_8f6a78fd36534834b43863e3acbdd901
ieee_primary_9345335
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref53
ref55
ref10
ref17
ref16
ref19
ref18
palmason (ref11) 0
ref51
ref50
ref45
ref44
ioffe (ref47) 2015
van der maaten (ref54) 2014; 15
ref8
maas (ref48) 0
woo (ref43) 2018
ref7
ref9
ref4
vaswani (ref41) 2017
ref3
ref6
ref5
ref35
ref34
ref37
ref36
jie (ref42) 0
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
kingma (ref52) 0
wang (ref40) 2016
ref29
szegedy (ref49) 2017
zhu (ref46) 2021; 59
References_xml – ident: ref37
  doi: 10.3390/rs10071068
– ident: ref16
  doi: 10.1109/JSTARS.2015.2414816
– start-page: 1
  year: 0
  ident: ref52
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc Int Conf Learn Represent
– ident: ref22
  doi: 10.1109/JSTARS.2014.2329330
– ident: ref19
  doi: 10.1109/TGRS.2013.2260552
– ident: ref55
  doi: 10.1109/TGRS.2020.3033336
– ident: ref36
  doi: 10.1109/CVPR.2017.243
– start-page: 4
  year: 0
  ident: ref11
  article-title: Classification of hyperspectral data from urban areas using morphological preprocessing and independent component analysis
  publication-title: Proc IEEE Int Geosci Remote Sens Symp
– ident: ref31
  doi: 10.1109/LGRS.2019.2918719
– ident: ref34
  doi: 10.1109/CVPR.2016.90
– ident: ref28
  doi: 10.1109/IGARSS.2015.7326945
– start-page: 17
  year: 2018
  ident: ref43
  article-title: CBAM: Convolutional module attention module
  publication-title: Proc Eur Conf Comput Vision
– ident: ref30
  doi: 10.3390/rs9010067
– ident: ref29
  doi: 10.1109/IGARSS.2016.7730324
– ident: ref25
  doi: 10.1109/TGRS.2019.2899129
– start-page: 448
  year: 2015
  ident: ref47
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: Proc 32nd Int Conf Mach Learn
– ident: ref35
  doi: 10.1109/TGRS.2017.2755542
– volume: 15
  start-page: 3221
  year: 2014
  ident: ref54
  article-title: Accelerating t-SNE using tree-based algorithms
  publication-title: J Mach Learn Res
– ident: ref39
  doi: 10.1109/TGRS.2018.2886022
– ident: ref32
  doi: 10.1016/j.isprsjprs.2018.10.006
– start-page: 3
  year: 0
  ident: ref48
  article-title: Rectifier nonlinearities improve neural network acoustic models
  publication-title: Proc Int Conf Mach Learn
– ident: ref4
  doi: 10.1109/TGRS.2018.2890705
– volume: 59
  start-page: 449
  year: 2021
  ident: ref46
  article-title: Residual spectral-spatial attention network for hyperspectral image classification
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2020.2994057
– ident: ref44
  doi: 10.1109/CVPR42600.2020.01155
– year: 2016
  ident: ref40
  article-title: Survey on the attention based RNN model and its applications in computer vision
– ident: ref51
  doi: 10.1117/12.943611
– ident: ref2
  doi: 10.1109/ACCESS.2018.2812999
– start-page: 7132
  year: 0
  ident: ref42
  article-title: Squeeze-and-excitation networks
  publication-title: Proc IEEE Conf Comput Vision Pattern Recognit
– ident: ref33
  doi: 10.1016/j.isprsjprs.2020.06.014
– ident: ref18
  doi: 10.1109/TGRS.2020.3000684
– ident: ref8
  doi: 10.1109/TGRS.2011.2157166
– ident: ref14
  doi: 10.1109/TGRS.2019.2933588
– ident: ref17
  doi: 10.1109/TGRS.2011.2129595
– ident: ref6
  doi: 10.1109/TIP.2018.2878958
– ident: ref24
  doi: 10.1109/TGRS.2016.2636241
– ident: ref38
  doi: 10.1109/CVPR.2015.7298594
– ident: ref23
  doi: 10.1109/JSTARS.2015.2388577
– ident: ref27
  doi: 10.1155/2015/258619
– start-page: 5998
  year: 2017
  ident: ref41
  article-title: Attention is all you need
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref21
  doi: 10.1109/TGRS.2020.3006534
– ident: ref53
  doi: 10.1109/TGRS.2019.2925615
– ident: ref45
  doi: 10.1109/TGRS.2019.2951160
– ident: ref10
  doi: 10.1109/TGRS.2009.2020156
– start-page: 4278
  year: 2017
  ident: ref49
  article-title: Inception-v4, inception-ResNet and the impact of residual connections on learning
  publication-title: Proc 31st AAAI Conf Artif Intell
– ident: ref1
  doi: 10.3390/rs12162659
– ident: ref12
  doi: 10.1109/TGRS.2012.2230268
– ident: ref50
  doi: 10.1016/S0034-4257(98)00064-9
– ident: ref3
  doi: 10.1109/TGRS.2016.2646420
– ident: ref20
  doi: 10.1109/TGRS.2020.3016820
– ident: ref13
  doi: 10.1109/TGRS.2019.2957251
– ident: ref7
  doi: 10.1109/TGRS.2017.2765364
– ident: ref15
  doi: 10.1109/TGRS.2014.2344442
– ident: ref5
  doi: 10.1109/MGRS.2020.2979764
– ident: ref26
  doi: 10.1109/TGRS.2020.3015157
– ident: ref9
  doi: 10.1109/TGRS.2014.2360672
SSID ssj0062793
Score 2.3904774
Snippet Hyperspectral images (HSIs) are characterized by high spatial resolution and are rich in spectral information. In the process of HSI classification, the...
SourceID doaj
crossref
ieee
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 2563
SubjectTerms Attention mechanism
Computational modeling
Convolution
convolutional neural network (CNN)
Data mining
dense connectivity
Feature extraction
hyperspectral image (HSI) classification
Hyperspectral imaging
multiscale features
Task analysis
Three-dimensional displays
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5UELz4FtcXOXi0azdJ0_a4PldBD-qCt5Imk4u6K9o96K93knQXFBFvJbRhyJcm3yQz3wAc2jTVNbkVSaaMS6RMXaJLJZOscKKn0aie8Qf6N7dqMJTXj9njHBzNcmEQMQSfYdc_hrt8OzYTf1R2XApJ7CSbh3ly3GKu1nTVVTwPArvER8rES8a0CkO9tDymKd6_uydfkPe6gTFz-W0XCmL936qrhM3lYgVupmbFmJKn7qSpu-bzh2Ljf-1eheWWZbJ-nBZrMIejdVi8DFV8PzZgeIY-Ef2DhTAXQ6SThUTcdwIMWb9pYgwku40x4oyILRuQwxrzMt-o56sXWodYqKjpY40CvJswvDh_OB0kbX2FxIgibRIrkMhaarlBlVuCRlteZ1zSnmYwJaDQEZswWOR5rXOLznGRaadylCVHXYstWBiNR7gNjEadetO5KayT2riSWA7Hwt8aEqOyRQf4dLwr04qP-xoYz1VwQtKyiiBVHqSqBakDR7OPXqP2xt-vn3ggZ6964ezQQFhU7X9YFU7pvHBWqEz4c9RaCrIShTa1tcSNOrDh8Zt10kK383vzLix5C-KRzB4sNG8T3CeS0tQHYXZ-AWlK45M
  priority: 102
  providerName: IEEE
Title Densely Connected Multiscale Attention Network for Hyperspectral Image Classification
URI https://ieeexplore.ieee.org/document/9345335
https://doaj.org/article/8f6a78fd36534834b43863e3acbdd901
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJSQWBBREeVQeGAl1bMexx_IoBYkOQKVukePHBAWVMPTfc7ZDRRdYWCPnZH0--b473wOhM0uIrsGtyAphfMY58ZlWgmeF9CzXzojchID-w0SMp_x-Vsx-jPoKOWGpPXACbiC90KX0lomChcBXzZkUzDFtamtVqtwCm_ftTKU7WFBQu7bHUE7UAJR8-PgE3iDNLyJnpnzNDsV2_WvzVaJ5Ge2g7ZYX4mHazy7acPM9tHkb5-4uu2h67ULp-BLHxBQDNBHH0tkPgNjhYdOkrEU8SVndGKgoHoOLmSopFyD57hVuDhxnYIbsoHgg-2g6unm-GmftRITMMEmazDIH9IpYapwoLYCpLa0LysEKGUcAWucBC-NkWda6tM57ygrtRem4ok7X7AB15m9zd4iwYgqk6dJI67k2XgEvoU6Gdz7gQFb2EP3GpzJtu_AwteKlim4DUVUCtQqgVi2oPXS--uk9dcv4ffllAH61NLS6jh9AAapWAaq_FKCHuuHYVkIU40Bhi6P_kH2MtsJ-U8jlBHWaxac7BRLS1P2ob_1YL_gFsJjZBg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LTxsxEB5RKlQu9EFRQ18-tDc2bGyvd_fQQ9qUJg3kQInEbeu1xxdKQLARSn9L_0r_W8f2JhKo6g2pt5Xl9Xrtz_Y343kAvLNpqmsSK5JMGZdImbpEl0omWeFET6NRPeMV-kcTNZzKr6fZ6Rr8WvnCIGIwPsOufwx3-fbCzL2qbL8UktjJ0oRyjIsbEtCuP4wGNJvvOT_4fPJpmLQ5BBIjirRJrEAiJKnlBlVu6fPa8jrjkvZtgyl1Bh2dmAaLPK91btE5LjLtVI6y5KhrQe0-gIfEMzIevcOW-7zieQjpSwyoTHyQmjamUS8t92lR9Y-_kfTJe93A0bm8de6F9AC38rmE4-zgMfxeDkS0Yjnrzpu6a37eiRH5v47UE9hqeTTrR-A_hTWcPYONLyFP8WIbpgP0rvYLFgx5DNFqFlyNrwmSyPpNE6082SRawTOi7mxIInn0PL2ilkfntNOykDPUW1MFAD-H6b380w6szy5m-AIYzTK1pnNTWCe1cSXxOI6FvxclzmiLDvDl_FamDa_us3z8qIKYlZZVBEXlQVG1oOjA3uqlyxhd5N_VP3rgrKr60OChgOa-aneaqnBK54WzQmXCa4prKaiXKLSprSX214Ftj5dVIy1Udv9e_BYeDU-ODqvD0WT8EjZ9b6IC6hWsN1dzfE2UrKnfhJXB4Pt9A-wPS3FEog
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Densely+Connected+Multiscale+Attention+Network+for+Hyperspectral+Image+Classification&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Gao%2C+Hongmin&rft.au=Miao%2C+Yawen&rft.au=Cao%2C+Xueying&rft.au=Li%2C+Chenming&rft.date=2021&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=14&rft.spage=2563&rft.epage=2576&rft_id=info:doi/10.1109%2FJSTARS.2021.3056124&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTARS_2021_3056124
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon