Densely Connected Multiscale Attention Network for Hyperspectral Image Classification
Hyperspectral images (HSIs) are characterized by high spatial resolution and are rich in spectral information. In the process of HSI classification, the extraction of spectral-spatial features directly influences the classification results. In recent years, the hyperspectral classification method ba...
Saved in:
Published in | IEEE journal of selected topics in applied earth observations and remote sensing Vol. 14; pp. 2563 - 2576 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hyperspectral images (HSIs) are characterized by high spatial resolution and are rich in spectral information. In the process of HSI classification, the extraction of spectral-spatial features directly influences the classification results. In recent years, the hyperspectral classification method based on convolutional neural networks has demonstrated excellent performance. However, as the network structure deepens, degradation occurs, and the features learned from the fixed-scale convolutional kernels are usually specific, which is not conducive to feature learning and thus impairs the classification accuracy. To solve the problem of difficult extraction of features and underutilization of information from HSI data, a densely connected multiscale attention network based on 3-D convolution is proposed for HSI classification. First, to reduce the spectral redundancy of the HSIs, the principal component analysis algorithm is performed on the raw HSI data; then, several multiscale blocks comprised of parallel factorized spatial-spectral convolution modules of different sizes are adopted to extract the enriched spectral-spatial features from HSIs; furthermore, dense connections are introduced to further fuse features obtained from blocks of different depths, thereby enhancing feature reuse and propagation and helping to alleviate the problem of vanishing gradients. Besides, the channel-spectral-spatial attention block is put forward to spontaneously reweight the fused features to emphasize the features that are more relevant to the classification results while weakening the less relevant ones. The experimental results show that the proposed method is effective in extracting discriminative features of the target and outperforms the other state-of-the-art methods. |
---|---|
AbstractList | Hyperspectral images (HSIs) are characterized by high spatial resolution and are rich in spectral information. In the process of HSI classification, the extraction of spectral-spatial features directly influences the classification results. In recent years, the hyperspectral classification method based on convolutional neural networks has demonstrated excellent performance. However, as the network structure deepens, degradation occurs, and the features learned from the fixed-scale convolutional kernels are usually specific, which is not conducive to feature learning and thus impairs the classification accuracy. To solve the problem of difficult extraction of features and underutilization of information from HSI data, a densely connected multiscale attention network based on 3-D convolution is proposed for HSI classification. First, to reduce the spectral redundancy of the HSIs, the principal component analysis algorithm is performed on the raw HSI data; then, several multiscale blocks comprised of parallel factorized spatial-spectral convolution modules of different sizes are adopted to extract the enriched spectral-spatial features from HSIs; furthermore, dense connections are introduced to further fuse features obtained from blocks of different depths, thereby enhancing feature reuse and propagation and helping to alleviate the problem of vanishing gradients. Besides, the channel-spectral-spatial attention block is put forward to spontaneously reweight the fused features to emphasize the features that are more relevant to the classification results while weakening the less relevant ones. The experimental results show that the proposed method is effective in extracting discriminative features of the target and outperforms the other state-of-the-art methods. |
Author | Miao, Yawen Cao, Xueying Li, Chenming Gao, Hongmin |
Author_xml | – sequence: 1 givenname: Hongmin orcidid: 0000-0002-8404-2464 surname: Gao fullname: Gao, Hongmin email: gaohongmin@hhu.edu.cn organization: College of Computer and Information, Hohai University, Nanjing, China – sequence: 2 givenname: Yawen surname: Miao fullname: Miao, Yawen email: miaoyawen@hhu.edu.cn organization: College of Computer and Information, Hohai University, Nanjing, China – sequence: 3 givenname: Xueying surname: Cao fullname: Cao, Xueying email: shary@hhu.edu.cn organization: College of Computer and Information, Hohai University, Nanjing, China – sequence: 4 givenname: Chenming orcidid: 0000-0003-0959-7600 surname: Li fullname: Li, Chenming email: lcm@hhu.edu.cn organization: College of Computer and Information, Hohai University, Nanjing, China |
BookMark | eNqFkM1q3DAUhUVJoZO0T5CNX8BTSVeyreUw_cmUtIUmWYtr6SoodaxBUinz9vFkQhbddHXhcL5z4TtnZ3OaibFLwddCcPPx283t5tfNWnIp1sB1J6R6w1ZSaNEKDfqMrYQB0wrF1Tt2XsoD553sDazY3SeaC02HZpvmmVwl33z_M9VYHE7UbGqlucY0Nz-o_k35dxNSbq4Oe8plv7QzTs3uEe-p2U5YSgzR4bH-nr0NOBX68HIv2N2Xz7fbq_b659fddnPdOhh4bT2Q7jX30lHXexCIXo5aKuiWhCM5CtwIR0Pfj9h7CkGCxtD1pIwkHOGC7U67PuGD3ef4iPlgE0b7HKR8bzHX6CayQ-iwH4KHToMaQI0Khg4I0I3eGy6WLThtuZxKyRRe9wS3R8v2ZNkeLdsXywtl_qFcrM8OFjlx-g97eWIjEb1-M6A0gIYngu2PYA |
CODEN | IJSTHZ |
CitedBy_id | crossref_primary_10_1016_j_engappai_2023_106017 crossref_primary_10_1109_TGRS_2022_3186400 crossref_primary_10_1109_ACCESS_2023_3330114 crossref_primary_10_1109_JSTARS_2023_3298477 crossref_primary_10_1109_TGRS_2023_3309245 crossref_primary_10_1080_01431161_2023_2176721 crossref_primary_10_1080_01431161_2022_2093621 crossref_primary_10_3390_rs14153670 crossref_primary_10_1080_01431161_2023_2224099 crossref_primary_10_3390_rs16010022 crossref_primary_10_1109_JSTARS_2022_3145917 crossref_primary_10_1080_01431161_2022_2089069 crossref_primary_10_1109_TGRS_2024_3443662 crossref_primary_10_1109_JSTARS_2021_3076198 crossref_primary_10_1109_TNNLS_2022_3171572 crossref_primary_10_1109_TGRS_2021_3130940 crossref_primary_10_3390_rs15184642 crossref_primary_10_1109_ACCESS_2023_3332695 crossref_primary_10_1038_s41598_021_97029_5 crossref_primary_10_3390_rs14225778 crossref_primary_10_1080_01431161_2024_2334812 crossref_primary_10_1109_JSTARS_2022_3191396 crossref_primary_10_1080_01431161_2022_2102952 crossref_primary_10_3390_app11167614 |
Cites_doi | 10.3390/rs10071068 10.1109/JSTARS.2015.2414816 10.1109/JSTARS.2014.2329330 10.1109/TGRS.2013.2260552 10.1109/TGRS.2020.3033336 10.1109/CVPR.2017.243 10.1109/LGRS.2019.2918719 10.1109/CVPR.2016.90 10.1109/IGARSS.2015.7326945 10.3390/rs9010067 10.1109/IGARSS.2016.7730324 10.1109/TGRS.2019.2899129 10.1109/TGRS.2017.2755542 10.1109/TGRS.2018.2886022 10.1016/j.isprsjprs.2018.10.006 10.1109/TGRS.2018.2890705 10.1109/TGRS.2020.2994057 10.1109/CVPR42600.2020.01155 10.1117/12.943611 10.1109/ACCESS.2018.2812999 10.1016/j.isprsjprs.2020.06.014 10.1109/TGRS.2020.3000684 10.1109/TGRS.2011.2157166 10.1109/TGRS.2019.2933588 10.1109/TGRS.2011.2129595 10.1109/TIP.2018.2878958 10.1109/TGRS.2016.2636241 10.1109/CVPR.2015.7298594 10.1109/JSTARS.2015.2388577 10.1155/2015/258619 10.1109/TGRS.2020.3006534 10.1109/TGRS.2019.2925615 10.1109/TGRS.2019.2951160 10.1109/TGRS.2009.2020156 10.3390/rs12162659 10.1109/TGRS.2012.2230268 10.1016/S0034-4257(98)00064-9 10.1109/TGRS.2016.2646420 10.1109/TGRS.2020.3016820 10.1109/TGRS.2019.2957251 10.1109/TGRS.2017.2765364 10.1109/TGRS.2014.2344442 10.1109/MGRS.2020.2979764 10.1109/TGRS.2020.3015157 10.1109/TGRS.2014.2360672 |
ContentType | Journal Article |
DBID | 97E ESBDL RIA RIE AAYXX CITATION DOA |
DOI | 10.1109/JSTARS.2021.3056124 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 2151-1535 |
EndPage | 2576 |
ExternalDocumentID | oai_doaj_org_article_8f6a78fd36534834b43863e3acbdd901 10_1109_JSTARS_2021_3056124 9345335 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62071168; 61701166 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities; Fundamental Research Funds for the Central Universities of China grantid: B200202183 funderid: 10.13039/501100012226 – fundername: National Key Research and Development Program of China grantid: 2018YFC1508106 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACIWK AENEX AETIX AFPKN AFRAH AGSQL ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS EJD ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c380t-d3e5750d2ce67d31aad2b524362ce0aecef091ce877ba7deff235af67e492eab3 |
IEDL.DBID | DOA |
ISSN | 1939-1404 |
IngestDate | Wed Aug 27 01:32:24 EDT 2025 Thu Apr 24 23:08:49 EDT 2025 Tue Jul 01 03:16:16 EDT 2025 Wed Aug 27 02:50:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c380t-d3e5750d2ce67d31aad2b524362ce0aecef091ce877ba7deff235af67e492eab3 |
ORCID | 0000-0002-8404-2464 0000-0003-0959-7600 |
OpenAccessLink | https://doaj.org/article/8f6a78fd36534834b43863e3acbdd901 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1109_JSTARS_2021_3056124 crossref_citationtrail_10_1109_JSTARS_2021_3056124 doaj_primary_oai_doaj_org_article_8f6a78fd36534834b43863e3acbdd901 ieee_primary_9345335 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210000 2021-00-00 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 20210000 |
PublicationDecade | 2020 |
PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
PublicationTitleAbbrev | JSTARS |
PublicationYear | 2021 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref12 ref15 ref14 ref53 ref55 ref10 ref17 ref16 ref19 ref18 palmason (ref11) 0 ref51 ref50 ref45 ref44 ioffe (ref47) 2015 van der maaten (ref54) 2014; 15 ref8 maas (ref48) 0 woo (ref43) 2018 ref7 ref9 ref4 vaswani (ref41) 2017 ref3 ref6 ref5 ref35 ref34 ref37 ref36 jie (ref42) 0 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 kingma (ref52) 0 wang (ref40) 2016 ref29 szegedy (ref49) 2017 zhu (ref46) 2021; 59 |
References_xml | – ident: ref37 doi: 10.3390/rs10071068 – ident: ref16 doi: 10.1109/JSTARS.2015.2414816 – start-page: 1 year: 0 ident: ref52 article-title: Adam: A method for stochastic optimization publication-title: Proc Int Conf Learn Represent – ident: ref22 doi: 10.1109/JSTARS.2014.2329330 – ident: ref19 doi: 10.1109/TGRS.2013.2260552 – ident: ref55 doi: 10.1109/TGRS.2020.3033336 – ident: ref36 doi: 10.1109/CVPR.2017.243 – start-page: 4 year: 0 ident: ref11 article-title: Classification of hyperspectral data from urban areas using morphological preprocessing and independent component analysis publication-title: Proc IEEE Int Geosci Remote Sens Symp – ident: ref31 doi: 10.1109/LGRS.2019.2918719 – ident: ref34 doi: 10.1109/CVPR.2016.90 – ident: ref28 doi: 10.1109/IGARSS.2015.7326945 – start-page: 17 year: 2018 ident: ref43 article-title: CBAM: Convolutional module attention module publication-title: Proc Eur Conf Comput Vision – ident: ref30 doi: 10.3390/rs9010067 – ident: ref29 doi: 10.1109/IGARSS.2016.7730324 – ident: ref25 doi: 10.1109/TGRS.2019.2899129 – start-page: 448 year: 2015 ident: ref47 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: Proc 32nd Int Conf Mach Learn – ident: ref35 doi: 10.1109/TGRS.2017.2755542 – volume: 15 start-page: 3221 year: 2014 ident: ref54 article-title: Accelerating t-SNE using tree-based algorithms publication-title: J Mach Learn Res – ident: ref39 doi: 10.1109/TGRS.2018.2886022 – ident: ref32 doi: 10.1016/j.isprsjprs.2018.10.006 – start-page: 3 year: 0 ident: ref48 article-title: Rectifier nonlinearities improve neural network acoustic models publication-title: Proc Int Conf Mach Learn – ident: ref4 doi: 10.1109/TGRS.2018.2890705 – volume: 59 start-page: 449 year: 2021 ident: ref46 article-title: Residual spectral-spatial attention network for hyperspectral image classification publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2020.2994057 – ident: ref44 doi: 10.1109/CVPR42600.2020.01155 – year: 2016 ident: ref40 article-title: Survey on the attention based RNN model and its applications in computer vision – ident: ref51 doi: 10.1117/12.943611 – ident: ref2 doi: 10.1109/ACCESS.2018.2812999 – start-page: 7132 year: 0 ident: ref42 article-title: Squeeze-and-excitation networks publication-title: Proc IEEE Conf Comput Vision Pattern Recognit – ident: ref33 doi: 10.1016/j.isprsjprs.2020.06.014 – ident: ref18 doi: 10.1109/TGRS.2020.3000684 – ident: ref8 doi: 10.1109/TGRS.2011.2157166 – ident: ref14 doi: 10.1109/TGRS.2019.2933588 – ident: ref17 doi: 10.1109/TGRS.2011.2129595 – ident: ref6 doi: 10.1109/TIP.2018.2878958 – ident: ref24 doi: 10.1109/TGRS.2016.2636241 – ident: ref38 doi: 10.1109/CVPR.2015.7298594 – ident: ref23 doi: 10.1109/JSTARS.2015.2388577 – ident: ref27 doi: 10.1155/2015/258619 – start-page: 5998 year: 2017 ident: ref41 article-title: Attention is all you need publication-title: Proc Adv Neural Inf Process Syst – ident: ref21 doi: 10.1109/TGRS.2020.3006534 – ident: ref53 doi: 10.1109/TGRS.2019.2925615 – ident: ref45 doi: 10.1109/TGRS.2019.2951160 – ident: ref10 doi: 10.1109/TGRS.2009.2020156 – start-page: 4278 year: 2017 ident: ref49 article-title: Inception-v4, inception-ResNet and the impact of residual connections on learning publication-title: Proc 31st AAAI Conf Artif Intell – ident: ref1 doi: 10.3390/rs12162659 – ident: ref12 doi: 10.1109/TGRS.2012.2230268 – ident: ref50 doi: 10.1016/S0034-4257(98)00064-9 – ident: ref3 doi: 10.1109/TGRS.2016.2646420 – ident: ref20 doi: 10.1109/TGRS.2020.3016820 – ident: ref13 doi: 10.1109/TGRS.2019.2957251 – ident: ref7 doi: 10.1109/TGRS.2017.2765364 – ident: ref15 doi: 10.1109/TGRS.2014.2344442 – ident: ref5 doi: 10.1109/MGRS.2020.2979764 – ident: ref26 doi: 10.1109/TGRS.2020.3015157 – ident: ref9 doi: 10.1109/TGRS.2014.2360672 |
SSID | ssj0062793 |
Score | 2.3904774 |
Snippet | Hyperspectral images (HSIs) are characterized by high spatial resolution and are rich in spectral information. In the process of HSI classification, the... |
SourceID | doaj crossref ieee |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 2563 |
SubjectTerms | Attention mechanism Computational modeling Convolution convolutional neural network (CNN) Data mining dense connectivity Feature extraction hyperspectral image (HSI) classification Hyperspectral imaging multiscale features Task analysis Three-dimensional displays |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5UELz4FtcXOXi0azdJ0_a4PldBD-qCt5Imk4u6K9o96K93knQXFBFvJbRhyJcm3yQz3wAc2jTVNbkVSaaMS6RMXaJLJZOscKKn0aie8Qf6N7dqMJTXj9njHBzNcmEQMQSfYdc_hrt8OzYTf1R2XApJ7CSbh3ly3GKu1nTVVTwPArvER8rES8a0CkO9tDymKd6_uydfkPe6gTFz-W0XCmL936qrhM3lYgVupmbFmJKn7qSpu-bzh2Ljf-1eheWWZbJ-nBZrMIejdVi8DFV8PzZgeIY-Ef2DhTAXQ6SThUTcdwIMWb9pYgwku40x4oyILRuQwxrzMt-o56sXWodYqKjpY40CvJswvDh_OB0kbX2FxIgibRIrkMhaarlBlVuCRlteZ1zSnmYwJaDQEZswWOR5rXOLznGRaadylCVHXYstWBiNR7gNjEadetO5KayT2riSWA7Hwt8aEqOyRQf4dLwr04qP-xoYz1VwQtKyiiBVHqSqBakDR7OPXqP2xt-vn3ggZ6964ezQQFhU7X9YFU7pvHBWqEz4c9RaCrIShTa1tcSNOrDh8Zt10kK383vzLix5C-KRzB4sNG8T3CeS0tQHYXZ-AWlK45M priority: 102 providerName: IEEE |
Title | Densely Connected Multiscale Attention Network for Hyperspectral Image Classification |
URI | https://ieeexplore.ieee.org/document/9345335 https://doaj.org/article/8f6a78fd36534834b43863e3acbdd901 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJSQWBBREeVQeGAl1bMexx_IoBYkOQKVukePHBAWVMPTfc7ZDRRdYWCPnZH0--b473wOhM0uIrsGtyAphfMY58ZlWgmeF9CzXzojchID-w0SMp_x-Vsx-jPoKOWGpPXACbiC90KX0lomChcBXzZkUzDFtamtVqtwCm_ftTKU7WFBQu7bHUE7UAJR8-PgE3iDNLyJnpnzNDsV2_WvzVaJ5Ge2g7ZYX4mHazy7acPM9tHkb5-4uu2h67ULp-BLHxBQDNBHH0tkPgNjhYdOkrEU8SVndGKgoHoOLmSopFyD57hVuDhxnYIbsoHgg-2g6unm-GmftRITMMEmazDIH9IpYapwoLYCpLa0LysEKGUcAWucBC-NkWda6tM57ygrtRem4ok7X7AB15m9zd4iwYgqk6dJI67k2XgEvoU6Gdz7gQFb2EP3GpzJtu_AwteKlim4DUVUCtQqgVi2oPXS--uk9dcv4ffllAH61NLS6jh9AAapWAaq_FKCHuuHYVkIU40Bhi6P_kH2MtsJ-U8jlBHWaxac7BRLS1P2ob_1YL_gFsJjZBg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LTxsxEB5RKlQu9EFRQ18-tDc2bGyvd_fQQ9qUJg3kQInEbeu1xxdKQLARSn9L_0r_W8f2JhKo6g2pt5Xl9Xrtz_Y343kAvLNpqmsSK5JMGZdImbpEl0omWeFET6NRPeMV-kcTNZzKr6fZ6Rr8WvnCIGIwPsOufwx3-fbCzL2qbL8UktjJ0oRyjIsbEtCuP4wGNJvvOT_4fPJpmLQ5BBIjirRJrEAiJKnlBlVu6fPa8jrjkvZtgyl1Bh2dmAaLPK91btE5LjLtVI6y5KhrQe0-gIfEMzIevcOW-7zieQjpSwyoTHyQmjamUS8t92lR9Y-_kfTJe93A0bm8de6F9AC38rmE4-zgMfxeDkS0Yjnrzpu6a37eiRH5v47UE9hqeTTrR-A_hTWcPYONLyFP8WIbpgP0rvYLFgx5DNFqFlyNrwmSyPpNE6082SRawTOi7mxIInn0PL2ilkfntNOykDPUW1MFAD-H6b380w6szy5m-AIYzTK1pnNTWCe1cSXxOI6FvxclzmiLDvDl_FamDa_us3z8qIKYlZZVBEXlQVG1oOjA3uqlyxhd5N_VP3rgrKr60OChgOa-aneaqnBK54WzQmXCa4prKaiXKLSprSX214Ftj5dVIy1Udv9e_BYeDU-ODqvD0WT8EjZ9b6IC6hWsN1dzfE2UrKnfhJXB4Pt9A-wPS3FEog |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Densely+Connected+Multiscale+Attention+Network+for+Hyperspectral+Image+Classification&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Gao%2C+Hongmin&rft.au=Miao%2C+Yawen&rft.au=Cao%2C+Xueying&rft.au=Li%2C+Chenming&rft.date=2021&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=14&rft.spage=2563&rft.epage=2576&rft_id=info:doi/10.1109%2FJSTARS.2021.3056124&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTARS_2021_3056124 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |