Silicon nanosheets derived from silicate minerals: controllable synthesis and energy storage application

Silicon plays a crucial part in developing high-performance energy storage materials, owing to a high specific capacity compared to carbon. Moreover, nanoscale silicon is beneficial for reducing the inherent disadvantage of large volume change during repeated lithiation/de-lithiation, while artifici...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 13; no. 44; pp. 1841 - 1842
Main Authors He, Yuanqing, Zhang, Zihan, Chen, Gen, Zhang, Ying, Liu, Xiaohe, Ma, Renzhi
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 18.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Silicon plays a crucial part in developing high-performance energy storage materials, owing to a high specific capacity compared to carbon. Moreover, nanoscale silicon is beneficial for reducing the inherent disadvantage of large volume change during repeated lithiation/de-lithiation, while artificial synthesis methods usually involve complex procedures and high costs. On account of the abundant natural reserve and low cost, the manipulation of silicate minerals is a simple and economical approach to prepare silicon nanosheets. In this regard, this mini review introduces different classes of silicate minerals and summarizes some typical molten salt-assisted reduction methods and other valuable methods applied to prepare silicon nanosheets for energy storage. Finally, the challenges and perspectives in this field are also proposed. Progress in developing advanced Si nanosheets from silicate minerals for energy storage is reviewed.
AbstractList Silicon plays a crucial part in developing high-performance energy storage materials, owing to a high specific capacity compared to carbon. Moreover, nanoscale silicon is beneficial for reducing the inherent disadvantage of large volume change during repeated lithiation/de-lithiation, while artificial synthesis methods usually involve complex procedures and high costs. On account of the abundant natural reserve and low cost, the manipulation of silicate minerals is a simple and economical approach to prepare silicon nanosheets. In this regard, this mini review introduces different classes of silicate minerals and summarizes some typical molten salt-assisted reduction methods and other valuable methods applied to prepare silicon nanosheets for energy storage. Finally, the challenges and perspectives in this field are also proposed.Silicon plays a crucial part in developing high-performance energy storage materials, owing to a high specific capacity compared to carbon. Moreover, nanoscale silicon is beneficial for reducing the inherent disadvantage of large volume change during repeated lithiation/de-lithiation, while artificial synthesis methods usually involve complex procedures and high costs. On account of the abundant natural reserve and low cost, the manipulation of silicate minerals is a simple and economical approach to prepare silicon nanosheets. In this regard, this mini review introduces different classes of silicate minerals and summarizes some typical molten salt-assisted reduction methods and other valuable methods applied to prepare silicon nanosheets for energy storage. Finally, the challenges and perspectives in this field are also proposed.
Silicon plays a crucial part in developing high-performance energy storage materials, owing to a high specific capacity compared to carbon. Moreover, nanoscale silicon is beneficial for reducing the inherent disadvantage of large volume change during repeated lithiation/de-lithiation, while artificial synthesis methods usually involve complex procedures and high costs. On account of the abundant natural reserve and low cost, the manipulation of silicate minerals is a simple and economical approach to prepare silicon nanosheets. In this regard, this mini review introduces different classes of silicate minerals and summarizes some typical molten salt-assisted reduction methods and other valuable methods applied to prepare silicon nanosheets for energy storage. Finally, the challenges and perspectives in this field are also proposed.
Silicon plays a crucial part in developing high-performance energy storage materials, owing to a high specific capacity compared to carbon. Moreover, nanoscale silicon is beneficial for reducing the inherent disadvantage of large volume change during repeated lithiation/de-lithiation, while artificial synthesis methods usually involve complex procedures and high costs. On account of the abundant natural reserve and low cost, the manipulation of silicate minerals is a simple and economical approach to prepare silicon nanosheets. In this regard, this mini review introduces different classes of silicate minerals and summarizes some typical molten salt-assisted reduction methods and other valuable methods applied to prepare silicon nanosheets for energy storage. Finally, the challenges and perspectives in this field are also proposed. Progress in developing advanced Si nanosheets from silicate minerals for energy storage is reviewed.
Author Ma, Renzhi
Zhang, Ying
He, Yuanqing
Zhang, Zihan
Liu, Xiaohe
Chen, Gen
AuthorAffiliation National Institute for Materials Science (NIMS)
Central South University
International Center for Materials Nanoarchitectonics (WPI-MANA)
School of Materials Science and Engineering
Henan Province Industrial Technology Research Institute of Resources and Materials
Zhengzhou University
AuthorAffiliation_xml – name: Zhengzhou University
– name: International Center for Materials Nanoarchitectonics (WPI-MANA)
– name: Henan Province Industrial Technology Research Institute of Resources and Materials
– name: National Institute for Materials Science (NIMS)
– name: School of Materials Science and Engineering
– name: Central South University
Author_xml – sequence: 1
  givenname: Yuanqing
  surname: He
  fullname: He, Yuanqing
– sequence: 2
  givenname: Zihan
  surname: Zhang
  fullname: Zhang, Zihan
– sequence: 3
  givenname: Gen
  surname: Chen
  fullname: Chen, Gen
– sequence: 4
  givenname: Ying
  surname: Zhang
  fullname: Zhang, Ying
– sequence: 5
  givenname: Xiaohe
  surname: Liu
  fullname: Liu, Xiaohe
– sequence: 6
  givenname: Renzhi
  surname: Ma
  fullname: Ma, Renzhi
BookMark eNpt0UtLAzEQB_AgCtbHxbsQ8CJCdbLZTTfeROsDRMHHeUmTSRvZJjVJhX57t61UEE8J5PcfZiZ7ZNsHj4QcMThnwOWFYT5CKcQAt0ivgBL6nA-K7c1dlLtkL6UPACG54D0yeXWt08FTr3xIE8ScqMHovtBQG8OUpuW7ykinzmNUbbqkHc8xtK0atUjTwucJJpeo8oZiZ8YLmnKIaoxUzWartAv-gOzYLo2HP-c-eb8dvl3f9x-f7x6urx77mteQ-4ZZIyRgNbKSlxYEWKWYtfWoVrLiaEaS15oPdClrsBYNg7ritWGFZgUrON8np-u6sxg-55hyM3VJY9etxzBPTVHJspCMVUt68od-hHn0XXdLVQsOooBOna2VjiGliLaZRTdVcdEwaJZLb27Y08tq6cMOwx-sXV7Nn6Ny7f-R43UkJr0p_fuP_BuBoZG7
CitedBy_id crossref_primary_10_1088_2053_1583_ad569b
crossref_primary_10_1088_1361_648X_ad44fa
crossref_primary_10_1016_j_jcis_2024_06_243
crossref_primary_10_1039_D3TC04167K
crossref_primary_10_1016_j_jallcom_2022_166134
crossref_primary_10_1021_acsnano_4c01814
crossref_primary_10_1080_14686996_2022_2054666
Cites_doi 10.1002/anie.200703941
10.1039/c3nr05354g
10.1007/s12274-018-2153-2
10.1126/science.1194975
10.1021/acs.chemmater.9b04180
10.1039/C6CS00937A
10.1016/j.ensm.2020.07.006
10.1016/j.ensm.2017.08.011
10.1039/C7CS00858A
10.1039/C9NR01440C
10.1002/adma.201304327
10.1180/EMU-notes.11
10.2138/rmg.2002.46.01
10.1088/0256-307X/30/1/017103
10.1021/acsnano.9b06653
10.1039/C8EE00160J
10.1002/adma.201902654
10.34133/2021/8140964
10.1039/C8DT01242C
10.1016/j.jpowsour.2015.02.020
10.1016/j.jpowsour.2016.05.058
10.1038/s41586-018-0298-5
10.1126/science.aal4373
10.1039/C7NR00284J
10.1002/adma.201701777
10.1088/1674-1056/25/1/017101
10.1002/aenm.201400622
10.1346/CCMN.1980.0280606
10.1002/adfm.202002200
10.1021/ja310246r
10.1039/c3ra43481h
10.1016/j.clay.2019.105429
10.1016/j.nanoen.2013.12.002
10.1063/1.4952442
10.1039/C8CS00324F
10.1180/claymin.1963.005.29.05
10.1002/adma.201606716
10.1021/cm902787u
10.1002/adma.201402182
10.1073/pnas.96.7.3358
10.1016/j.electacta.2016.04.043
10.1021/acsnano.7b03942
10.1016/j.biomaterials.2004.07.058
10.1021/nn302328x
10.1038/nclimate1332
10.1021/cr300263a
10.1016/B978-0-08-098258-8.00002-X
10.1021/acsnano.5b07977
10.1016/j.jpowsour.2018.10.031
10.1021/acsami.9b06976
10.1002/aenm.201902535
10.1016/j.jpowsour.2018.11.014
10.1002/anie.200600321
10.1002/adfm.201908721
10.1002/adma.201800838
10.3390/ma12020201
10.1016/S1572-4352(05)01001-9
10.1016/j.pmatsci.2020.100712
10.1002/adfm.201301094
10.1038/nmat2507
10.1016/j.electacta.2015.12.192
10.1038/s41586-018-0109-z
10.1021/ja908827z
10.1021/nn501683f
10.1038/s41570-016-0014
10.1002/adma.201400578
10.1016/j.ensm.2018.09.019
10.1039/c3ra43326a
10.1149/2.1301915jes
10.1021/nl400830u
10.1021/acs.nanolett.6b03762
10.1007/s12274-015-0772-4
10.1126/science.1209150
10.1073/pnas.0905723106
10.1016/j.clay.2018.07.004
10.1016/j.nanoen.2016.11.013
10.1126/science.aau4146
10.1038/174799a0
10.1063/1.116811
10.1038/s41586-019-1904-x
10.1016/j.jpcs.2019.109227
10.1016/S1387-1811(99)00196-1
10.1016/j.electacta.2009.12.095
10.1002/adfm.201900649
10.1038/s41586-019-1573-9
10.1103/PhysRevB.86.224511
10.1126/science.aba1416
10.7567/JJAP.56.05DE02
10.1016/j.jpowsour.2018.01.030
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2021
Copyright_xml – notice: Copyright Royal Society of Chemistry 2021
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1039/d1nr04667e
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 1842
ExternalDocumentID 10_1039_D1NR04667E
d1nr04667e
GroupedDBID -
0-7
0R
29M
4.4
53G
705
7~J
AAEMU
AAGNR
AAIWI
AAJAE
AANOJ
AAPBV
ABASK
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFVBQ
AGRSR
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
DU5
EBS
ECGLT
EE0
EF-
F5P
HZ
H~N
J3I
JG
O-G
O9-
OK1
P2P
RCNCU
RIG
RNS
RPMJG
RRC
RSCEA
---
0R~
AARTK
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AHGCF
AKBGW
AKMSF
ALUYA
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
RVUXY
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c380t-d1fd690e5bf934f060faa1ff8b8a953edb938c37c4980ffed108538d12c121233
ISSN 2040-3364
2040-3372
IngestDate Fri Jul 11 15:26:31 EDT 2025
Sun Jun 29 15:13:56 EDT 2025
Tue Jul 01 01:14:15 EDT 2025
Thu Apr 24 22:59:48 EDT 2025
Sun May 08 06:02:02 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 44
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c380t-d1fd690e5bf934f060faa1ff8b8a953edb938c37c4980ffed108538d12c121233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-2417-4710
0000-0003-1297-9597
0000-0001-7126-2006
0000-0003-3504-3572
PQID 2598630620
PQPubID 2047485
PageCount 11
ParticipantIDs crossref_citationtrail_10_1039_D1NR04667E
proquest_miscellaneous_2594291153
proquest_journals_2598630620
crossref_primary_10_1039_D1NR04667E
rsc_primary_d1nr04667e
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-18
PublicationDateYYYYMMDD 2021-11-18
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-18
  day: 18
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Nanoscale
PublicationYear 2021
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Kong (D1NR04667E/cit16) 2017; 46
Park (D1NR04667E/cit46) 2000; 37
Ma (D1NR04667E/cit44) 2008; 47
White (D1NR04667E/cit55) 1954; 174
Ryu (D1NR04667E/cit58) 2016; 10
Zuo (D1NR04667E/cit5) 2017; 31
An (D1NR04667E/cit19) 2020; 32
Kong (D1NR04667E/cit49) 2014; 26
Jin (D1NR04667E/cit45) 2019; 29
Tang (D1NR04667E/cit22) 2021; 2021
Reddy (D1NR04667E/cit47) 2010; 55
Adpakpang (D1NR04667E/cit56) 2016; 204
Yoo (D1NR04667E/cit57) 2014; 4
Coleman (D1NR04667E/cit23) 2011; 331
Bergaya (D1NR04667E/cit35) 2006; 1
Xu (D1NR04667E/cit17) 2013; 113
Liang (D1NR04667E/cit42) 2010; 22
Kim (D1NR04667E/cit33) 2014; 6
Abdullayev (D1NR04667E/cit64) 2012; 6
Gao (D1NR04667E/cit91) 2020; 30
Akinwande (D1NR04667E/cit24) 2019; 573
Varghese (D1NR04667E/cit51) 2017; 9
Wan (D1NR04667E/cit68) 2018; 47
Brigatti (D1NR04667E/cit41) 2013; 5
Wu (D1NR04667E/cit62) 2016; 190
Tritsaris (D1NR04667E/cit89) 2013; 13
Mannix (D1NR04667E/cit20) 2017; 1
Zhou (D1NR04667E/cit65) 2016; 324
Brigatti (D1NR04667E/cit38) 2002; 46
Mukherjee (D1NR04667E/cit70) 1963; 5
Huang (D1NR04667E/cit85) 2013; 30
Guggenheim (D1NR04667E/cit40) 2011; 11
Yue (D1NR04667E/cit71) 2019; 410–411
Tang (D1NR04667E/cit80) 2019; 11
Liu (D1NR04667E/cit88) 2019; 166
Tang (D1NR04667E/cit67) 2018; 162
Liu (D1NR04667E/cit27) 2014; 26
Takahashi (D1NR04667E/cit50) 2009; 8
Lin (D1NR04667E/cit86) 2012; 86
Wang (D1NR04667E/cit72) 2021; 116
Rogers (D1NR04667E/cit2) 2009; 106
Brigatti (D1NR04667E/cit39) 2011; 11
An (D1NR04667E/cit6) 2019; 13
Han (D1NR04667E/cit60) 2018; 11
Liu (D1NR04667E/cit10) 2019; 18
Sullivan (D1NR04667E/cit28) 1996; 69
Kim (D1NR04667E/cit32) 2014; 8
Sposito (D1NR04667E/cit36) 1999; 96
Thian (D1NR04667E/cit26) 2005; 26
Ryan (D1NR04667E/cit75) 2019; 32
Huang (D1NR04667E/cit82) 2014; 26
Nakano (D1NR04667E/cit25) 2016; 3
Liu (D1NR04667E/cit90) 2018; 30
Cho (D1NR04667E/cit61) 2016; 16
Adams (D1NR04667E/cit69) 1980; 28
Weaver (D1NR04667E/cit37) 2011
Okamoto (D1NR04667E/cit77) 2010; 132
Du (D1NR04667E/cit13) 2020; 577
Xu (D1NR04667E/cit92) 2015; 8
Zhuang (D1NR04667E/cit87) 2017; 29
Chen (D1NR04667E/cit18) 2019; 10
Ma (D1NR04667E/cit43) 2012; 134
Liu (D1NR04667E/cit54) 2014; 4
Deng (D1NR04667E/cit84) 2013; 3
Choi (D1NR04667E/cit7) 2017; 357
Meng (D1NR04667E/cit78) 2017; 56
Zhang (D1NR04667E/cit30) 2017; 11
Krishnamoorthy (D1NR04667E/cit34) 2018; 11
Wang (D1NR04667E/cit74) 2019; 12
Cao (D1NR04667E/cit31) 2013; 3
Wang (D1NR04667E/cit81) 2018; 379
Huang (D1NR04667E/cit83) 2019; 11
Liu (D1NR04667E/cit14) 2020; 367
Guo (D1NR04667E/cit4) 2016; 25
Chen (D1NR04667E/cit12) 2018; 362
Yeom (D1NR04667E/cit29) 2014; 24
Chen (D1NR04667E/cit59) 2018; 405
He (D1NR04667E/cit48) 2020; 186
Zhang (D1NR04667E/cit63) 2015; 281
Kwon (D1NR04667E/cit9) 2018; 47
Jiang (D1NR04667E/cit15) 2018; 559
Kovalenko (D1NR04667E/cit8) 2011; 334
Pang (D1NR04667E/cit11) 2019; 48
Xia (D1NR04667E/cit21) 2018; 557
Wang (D1NR04667E/cit66) 2020; 137
Nakano (D1NR04667E/cit76) 2006; 45
Coleman (D1NR04667E/cit73) 2011; 331
Xiong (D1NR04667E/cit53) 2020; 32
Lang (D1NR04667E/cit79) 2017; 29
Wu (D1NR04667E/cit52) 2018; 10
Peters (D1NR04667E/cit1) 2012; 2
An (D1NR04667E/cit3) 2019; 30
References_xml – issn: 2011
  publication-title: The chemistry of clay minerals
  doi: Weaver Pollard
– issn: 2011
  issue: 11
  end-page: 1-71
  publication-title: Layered mineral structures and their application in advanced technologies
  doi: Brigatti Malferrari Laurora Elmi Mottana
– issn: 2011
  issue: 11
  end-page: 72-111
  publication-title: Layered mineral structures and their application in advanced technologies
  doi: Guggenheim Brigatti Mottana
– volume: 47
  start-page: 86
  year: 2008
  ident: D1NR04667E/cit44
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200703941
– volume: 6
  start-page: 4297
  year: 2014
  ident: D1NR04667E/cit33
  publication-title: Nanoscale
  doi: 10.1039/c3nr05354g
– volume: 11
  start-page: 6294
  year: 2018
  ident: D1NR04667E/cit60
  publication-title: Nano Res.
  doi: 10.1007/s12274-018-2153-2
– volume: 331
  start-page: 568
  year: 2011
  ident: D1NR04667E/cit73
  publication-title: Science
  doi: 10.1126/science.1194975
– volume: 32
  start-page: 795
  year: 2019
  ident: D1NR04667E/cit75
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b04180
– volume: 46
  start-page: 2127
  year: 2017
  ident: D1NR04667E/cit16
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00937A
– volume: 32
  start-page: 115
  year: 2020
  ident: D1NR04667E/cit19
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.07.006
– volume: 10
  start-page: 122
  year: 2018
  ident: D1NR04667E/cit52
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2017.08.011
– volume: 47
  start-page: 2145
  year: 2018
  ident: D1NR04667E/cit9
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00858A
– volume: 11
  start-page: 10984
  year: 2019
  ident: D1NR04667E/cit80
  publication-title: Nanoscale
  doi: 10.1039/C9NR01440C
– volume: 26
  start-page: 1410
  year: 2014
  ident: D1NR04667E/cit27
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201304327
– volume: 11
  start-page: 1
  volume-title: Layered mineral structures and their application in advanced technologies
  year: 2011
  ident: D1NR04667E/cit39
  doi: 10.1180/EMU-notes.11
– volume: 46
  start-page: 1
  year: 2002
  ident: D1NR04667E/cit38
  publication-title: Rev. Mineral. Geochem.
  doi: 10.2138/rmg.2002.46.01
– volume: 30
  start-page: 017103
  year: 2013
  ident: D1NR04667E/cit85
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/30/1/017103
– volume: 13
  start-page: 13690
  year: 2019
  ident: D1NR04667E/cit6
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b06653
– volume: 11
  start-page: 1595
  year: 2018
  ident: D1NR04667E/cit34
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00160J
– volume: 32
  start-page: e1902654
  year: 2020
  ident: D1NR04667E/cit53
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902654
– volume: 2021
  start-page: 8140964
  year: 2021
  ident: D1NR04667E/cit22
  publication-title: Energy Mater. Adv.
  doi: 10.34133/2021/8140964
– volume: 47
  start-page: 7522
  year: 2018
  ident: D1NR04667E/cit68
  publication-title: Dalton Trans.
  doi: 10.1039/C8DT01242C
– volume: 11
  start-page: 72
  volume-title: Layered mineral structures and their application in advanced technologies
  year: 2011
  ident: D1NR04667E/cit40
– volume: 281
  start-page: 425
  year: 2015
  ident: D1NR04667E/cit63
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.02.020
– volume: 324
  start-page: 33
  year: 2016
  ident: D1NR04667E/cit65
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.05.058
– volume: 559
  start-page: 343
  year: 2018
  ident: D1NR04667E/cit15
  publication-title: Nature
  doi: 10.1038/s41586-018-0298-5
– volume: 357
  start-page: 279
  year: 2017
  ident: D1NR04667E/cit7
  publication-title: Science
  doi: 10.1126/science.aal4373
– volume: 9
  start-page: 3818
  year: 2017
  ident: D1NR04667E/cit51
  publication-title: Nanoscale
  doi: 10.1039/C7NR00284J
– volume: 29
  start-page: 1701777
  year: 2017
  ident: D1NR04667E/cit79
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701777
– volume: 25
  start-page: 017101
  year: 2016
  ident: D1NR04667E/cit4
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/25/1/017101
– volume: 4
  start-page: 1400622
  year: 2014
  ident: D1NR04667E/cit57
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201400622
– volume: 28
  start-page: 444
  year: 1980
  ident: D1NR04667E/cit69
  publication-title: Clays Clay Miner.
  doi: 10.1346/CCMN.1980.0280606
– volume: 30
  start-page: 2002200
  year: 2020
  ident: D1NR04667E/cit91
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202002200
– volume: 134
  start-page: 19915
  year: 2012
  ident: D1NR04667E/cit43
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja310246r
– volume: 3
  start-page: 20157
  year: 2013
  ident: D1NR04667E/cit31
  publication-title: RSC Adv.
  doi: 10.1039/c3ra43481h
– volume: 186
  start-page: 105429
  year: 2020
  ident: D1NR04667E/cit48
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2019.105429
– volume: 4
  start-page: 31
  year: 2014
  ident: D1NR04667E/cit54
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2013.12.002
– volume: 3
  start-page: 040803
  year: 2016
  ident: D1NR04667E/cit25
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.4952442
– volume: 48
  start-page: 72
  year: 2019
  ident: D1NR04667E/cit11
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00324F
– volume: 5
  start-page: 194
  year: 1963
  ident: D1NR04667E/cit70
  publication-title: Clay Miner. Bull.
  doi: 10.1180/claymin.1963.005.29.05
– volume: 29
  start-page: 1606716
  year: 2017
  ident: D1NR04667E/cit87
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606716
– volume: 22
  start-page: 371
  year: 2010
  ident: D1NR04667E/cit42
  publication-title: Chem. Mater.
  doi: 10.1021/cm902787u
– volume: 26
  start-page: 6275
  year: 2014
  ident: D1NR04667E/cit49
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201402182
– volume: 96
  start-page: 3358
  year: 1999
  ident: D1NR04667E/cit36
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.96.7.3358
– volume: 204
  start-page: 60
  year: 2016
  ident: D1NR04667E/cit56
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.04.043
– volume: 11
  start-page: 7476
  year: 2017
  ident: D1NR04667E/cit30
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b03942
– volume: 26
  start-page: 2947
  year: 2005
  ident: D1NR04667E/cit26
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2004.07.058
– volume: 6
  start-page: 7216
  year: 2012
  ident: D1NR04667E/cit64
  publication-title: ACS Nano
  doi: 10.1021/nn302328x
– volume: 2
  start-page: 2
  year: 2012
  ident: D1NR04667E/cit1
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate1332
– volume: 113
  start-page: 3766
  year: 2013
  ident: D1NR04667E/cit17
  publication-title: Chem. Rev.
  doi: 10.1021/cr300263a
– volume: 5
  start-page: 21
  year: 2013
  ident: D1NR04667E/cit41
  publication-title: Dev. Clay Sci.
  doi: 10.1016/B978-0-08-098258-8.00002-X
– volume: 10
  start-page: 2843
  year: 2016
  ident: D1NR04667E/cit58
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b07977
– volume: 405
  start-page: 61
  year: 2018
  ident: D1NR04667E/cit59
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.10.031
– volume: 11
  start-page: 26854
  year: 2019
  ident: D1NR04667E/cit83
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b06976
– volume-title: The chemistry of clay minerals
  year: 2011
  ident: D1NR04667E/cit37
– volume: 10
  start-page: 1902535
  year: 2019
  ident: D1NR04667E/cit18
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201902535
– volume: 410–411
  start-page: 132
  year: 2019
  ident: D1NR04667E/cit71
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.11.014
– volume: 45
  start-page: 6303
  year: 2006
  ident: D1NR04667E/cit76
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200600321
– volume: 30
  start-page: 1908721
  year: 2019
  ident: D1NR04667E/cit3
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201908721
– volume: 30
  start-page: 1800838
  year: 2018
  ident: D1NR04667E/cit90
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800838
– volume: 12
  start-page: 201
  year: 2019
  ident: D1NR04667E/cit74
  publication-title: Materials
  doi: 10.3390/ma12020201
– volume: 1
  start-page: 1
  year: 2006
  ident: D1NR04667E/cit35
  publication-title: Dev. Clay Sci.
  doi: 10.1016/S1572-4352(05)01001-9
– volume: 116
  start-page: 100712
  year: 2021
  ident: D1NR04667E/cit72
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2020.100712
– volume: 24
  start-page: 106
  year: 2014
  ident: D1NR04667E/cit29
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201301094
– volume: 8
  start-page: 721
  year: 2009
  ident: D1NR04667E/cit50
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2507
– volume: 190
  start-page: 628
  year: 2016
  ident: D1NR04667E/cit62
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.12.192
– volume: 557
  start-page: 409
  year: 2018
  ident: D1NR04667E/cit21
  publication-title: Nature
  doi: 10.1038/s41586-018-0109-z
– volume: 132
  start-page: 2710
  year: 2010
  ident: D1NR04667E/cit77
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja908827z
– volume: 8
  start-page: 6556
  year: 2014
  ident: D1NR04667E/cit32
  publication-title: ACS Nano
  doi: 10.1021/nn501683f
– volume: 1
  start-page: 1
  year: 2017
  ident: D1NR04667E/cit20
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-016-0014
– volume: 26
  start-page: 4326
  year: 2014
  ident: D1NR04667E/cit82
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201400578
– volume: 18
  start-page: 165
  year: 2019
  ident: D1NR04667E/cit10
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.09.019
– volume: 331
  start-page: 568
  year: 2011
  ident: D1NR04667E/cit23
  publication-title: Science
  doi: 10.1126/science.1194975
– volume: 3
  start-page: 20338
  year: 2013
  ident: D1NR04667E/cit84
  publication-title: RSC Adv.
  doi: 10.1039/c3ra43326a
– volume: 166
  start-page: A3886
  year: 2019
  ident: D1NR04667E/cit88
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1301915jes
– volume: 13
  start-page: 2258
  year: 2013
  ident: D1NR04667E/cit89
  publication-title: Nano Lett.
  doi: 10.1021/nl400830u
– volume: 16
  start-page: 7261
  year: 2016
  ident: D1NR04667E/cit61
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b03762
– volume: 8
  start-page: 2654
  year: 2015
  ident: D1NR04667E/cit92
  publication-title: Nano Res.
  doi: 10.1007/s12274-015-0772-4
– volume: 334
  start-page: 75
  year: 2011
  ident: D1NR04667E/cit8
  publication-title: Science
  doi: 10.1126/science.1209150
– volume: 106
  start-page: 10875
  year: 2009
  ident: D1NR04667E/cit2
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0905723106
– volume: 162
  start-page: 499
  year: 2018
  ident: D1NR04667E/cit67
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2018.07.004
– volume: 31
  start-page: 113
  year: 2017
  ident: D1NR04667E/cit5
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.11.013
– volume: 362
  start-page: 1135
  year: 2018
  ident: D1NR04667E/cit12
  publication-title: Science
  doi: 10.1126/science.aau4146
– volume: 174
  start-page: 799
  year: 1954
  ident: D1NR04667E/cit55
  publication-title: Nature
  doi: 10.1038/174799a0
– volume: 69
  start-page: 3149
  year: 1996
  ident: D1NR04667E/cit28
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.116811
– volume: 577
  start-page: 492
  year: 2020
  ident: D1NR04667E/cit13
  publication-title: Nature
  doi: 10.1038/s41586-019-1904-x
– volume: 137
  start-page: 109227
  year: 2020
  ident: D1NR04667E/cit66
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/j.jpcs.2019.109227
– volume: 37
  start-page: 81
  year: 2000
  ident: D1NR04667E/cit46
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/S1387-1811(99)00196-1
– volume: 55
  start-page: 3109
  year: 2010
  ident: D1NR04667E/cit47
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2009.12.095
– volume: 29
  start-page: 1900649
  year: 2019
  ident: D1NR04667E/cit45
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201900649
– volume: 573
  start-page: 507
  year: 2019
  ident: D1NR04667E/cit24
  publication-title: Nature
  doi: 10.1038/s41586-019-1573-9
– volume: 86
  start-page: 224511
  year: 2012
  ident: D1NR04667E/cit86
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.86.224511
– volume: 367
  start-page: 903
  year: 2020
  ident: D1NR04667E/cit14
  publication-title: Science
  doi: 10.1126/science.aba1416
– volume: 56
  start-page: 05DE02
  year: 2017
  ident: D1NR04667E/cit78
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.56.05DE02
– volume: 379
  start-page: 20
  year: 2018
  ident: D1NR04667E/cit81
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.01.030
SSID ssj0069363
Score 2.4038122
SecondaryResourceType review_article
Snippet Silicon plays a crucial part in developing high-performance energy storage materials, owing to a high specific capacity compared to carbon. Moreover, nanoscale...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1841
SubjectTerms Energy storage
Minerals
Molten salts
Nanosheets
Silicon
Synthesis
Title Silicon nanosheets derived from silicate minerals: controllable synthesis and energy storage application
URI https://www.proquest.com/docview/2598630620
https://www.proquest.com/docview/2594291153
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe67QIHxNdEYSAjuKAqI47TzOY2RreJTUWCVnRcojix1UrF3ZoUCf56nh07CaKHwSWqXDuO8vvl-T37fSD0OlGM5ZQUpmpAHsRSDAOWhDxQIo6UCJVZ1Iy3xTg5n8YfZ8NZr3fR8VraVOIw_7U1ruR_UIU2wNVEyf4Dss1NoQF-A75wBYTheiuMvyyWAKQe6EyvyrmUVTkoYN4foETasJFyUYe4Db4vbHJp6_7mnNOXNmaq_KlBAzRJScwGuqwDAY3DpHHl6Rxud3XYsZkNoG0pYTdFrzaZvvELYXcr-tti3lLwxEWDnLUhaE3HKz_a7UJExITjdQVnZDwTKa3L8BzKLW1e2tIOq-K4IzvB1qw9XP-S6iE1SVELotdgzSdHsl27_Hn9-FN6Or28TCej2WQH7UVgM4DQ2zu-eH_21S_MCae2sF7zWD5bLeVv23v_qZ-0RsfO2leEsZrH5D6650wGfFzj_wD1pH6I7nYSST5Cc8cE3DIBOyZgwwTsmYA9E97hLg9wwwMMPMA1D7DjAe7w4DGano4mJ-eBq6ER5JSFVVAQVSQ8lEOhOI1VmIQqy4hSTLCMD6ksBKfwsR7lMWehUrIw0SiUFSTKidFq6D7a1SstnyA8jAoG6moOw_JYELgN44pkiiXCDBZ99Ma_uTR3CeZNnZNlah0dKE8_kPFn-5ZHffSq6Xtdp1XZ2uvAA5C6z65MI1NRAAzdKOyjl83fIBTNSVem5Wpj-4CeBcYO7aN9AK6Zo8X56S0GP0N3Wq4foN1qvZHPQQetxAvHrd80ZIu1
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Silicon+nanosheets+derived+from+silicate+minerals%3A+controllable+synthesis+and+energy+storage+application&rft.jtitle=Nanoscale&rft.au=He%2C+Yuanqing&rft.au=Zhang%2C+Zihan&rft.au=Chen%2C+Gen&rft.au=Zhang%2C+Ying&rft.date=2021-11-18&rft.issn=2040-3372&rft.eissn=2040-3372&rft.volume=13&rft.issue=44&rft.spage=18410&rft_id=info:doi/10.1039%2Fd1nr04667e&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon