Silicon nanosheets derived from silicate minerals: controllable synthesis and energy storage application
Silicon plays a crucial part in developing high-performance energy storage materials, owing to a high specific capacity compared to carbon. Moreover, nanoscale silicon is beneficial for reducing the inherent disadvantage of large volume change during repeated lithiation/de-lithiation, while artifici...
Saved in:
Published in | Nanoscale Vol. 13; no. 44; pp. 1841 - 1842 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
18.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Silicon plays a crucial part in developing high-performance energy storage materials, owing to a high specific capacity compared to carbon. Moreover, nanoscale silicon is beneficial for reducing the inherent disadvantage of large volume change during repeated lithiation/de-lithiation, while artificial synthesis methods usually involve complex procedures and high costs. On account of the abundant natural reserve and low cost, the manipulation of silicate minerals is a simple and economical approach to prepare silicon nanosheets. In this regard, this mini review introduces different classes of silicate minerals and summarizes some typical molten salt-assisted reduction methods and other valuable methods applied to prepare silicon nanosheets for energy storage. Finally, the challenges and perspectives in this field are also proposed.
Progress in developing advanced Si nanosheets from silicate minerals for energy storage is reviewed. |
---|---|
AbstractList | Silicon plays a crucial part in developing high-performance energy storage materials, owing to a high specific capacity compared to carbon. Moreover, nanoscale silicon is beneficial for reducing the inherent disadvantage of large volume change during repeated lithiation/de-lithiation, while artificial synthesis methods usually involve complex procedures and high costs. On account of the abundant natural reserve and low cost, the manipulation of silicate minerals is a simple and economical approach to prepare silicon nanosheets. In this regard, this mini review introduces different classes of silicate minerals and summarizes some typical molten salt-assisted reduction methods and other valuable methods applied to prepare silicon nanosheets for energy storage. Finally, the challenges and perspectives in this field are also proposed.Silicon plays a crucial part in developing high-performance energy storage materials, owing to a high specific capacity compared to carbon. Moreover, nanoscale silicon is beneficial for reducing the inherent disadvantage of large volume change during repeated lithiation/de-lithiation, while artificial synthesis methods usually involve complex procedures and high costs. On account of the abundant natural reserve and low cost, the manipulation of silicate minerals is a simple and economical approach to prepare silicon nanosheets. In this regard, this mini review introduces different classes of silicate minerals and summarizes some typical molten salt-assisted reduction methods and other valuable methods applied to prepare silicon nanosheets for energy storage. Finally, the challenges and perspectives in this field are also proposed. Silicon plays a crucial part in developing high-performance energy storage materials, owing to a high specific capacity compared to carbon. Moreover, nanoscale silicon is beneficial for reducing the inherent disadvantage of large volume change during repeated lithiation/de-lithiation, while artificial synthesis methods usually involve complex procedures and high costs. On account of the abundant natural reserve and low cost, the manipulation of silicate minerals is a simple and economical approach to prepare silicon nanosheets. In this regard, this mini review introduces different classes of silicate minerals and summarizes some typical molten salt-assisted reduction methods and other valuable methods applied to prepare silicon nanosheets for energy storage. Finally, the challenges and perspectives in this field are also proposed. Silicon plays a crucial part in developing high-performance energy storage materials, owing to a high specific capacity compared to carbon. Moreover, nanoscale silicon is beneficial for reducing the inherent disadvantage of large volume change during repeated lithiation/de-lithiation, while artificial synthesis methods usually involve complex procedures and high costs. On account of the abundant natural reserve and low cost, the manipulation of silicate minerals is a simple and economical approach to prepare silicon nanosheets. In this regard, this mini review introduces different classes of silicate minerals and summarizes some typical molten salt-assisted reduction methods and other valuable methods applied to prepare silicon nanosheets for energy storage. Finally, the challenges and perspectives in this field are also proposed. Progress in developing advanced Si nanosheets from silicate minerals for energy storage is reviewed. |
Author | Ma, Renzhi Zhang, Ying He, Yuanqing Zhang, Zihan Liu, Xiaohe Chen, Gen |
AuthorAffiliation | National Institute for Materials Science (NIMS) Central South University International Center for Materials Nanoarchitectonics (WPI-MANA) School of Materials Science and Engineering Henan Province Industrial Technology Research Institute of Resources and Materials Zhengzhou University |
AuthorAffiliation_xml | – name: Zhengzhou University – name: International Center for Materials Nanoarchitectonics (WPI-MANA) – name: Henan Province Industrial Technology Research Institute of Resources and Materials – name: National Institute for Materials Science (NIMS) – name: School of Materials Science and Engineering – name: Central South University |
Author_xml | – sequence: 1 givenname: Yuanqing surname: He fullname: He, Yuanqing – sequence: 2 givenname: Zihan surname: Zhang fullname: Zhang, Zihan – sequence: 3 givenname: Gen surname: Chen fullname: Chen, Gen – sequence: 4 givenname: Ying surname: Zhang fullname: Zhang, Ying – sequence: 5 givenname: Xiaohe surname: Liu fullname: Liu, Xiaohe – sequence: 6 givenname: Renzhi surname: Ma fullname: Ma, Renzhi |
BookMark | eNpt0UtLAzEQB_AgCtbHxbsQ8CJCdbLZTTfeROsDRMHHeUmTSRvZJjVJhX57t61UEE8J5PcfZiZ7ZNsHj4QcMThnwOWFYT5CKcQAt0ivgBL6nA-K7c1dlLtkL6UPACG54D0yeXWt08FTr3xIE8ScqMHovtBQG8OUpuW7ykinzmNUbbqkHc8xtK0atUjTwucJJpeo8oZiZ8YLmnKIaoxUzWartAv-gOzYLo2HP-c-eb8dvl3f9x-f7x6urx77mteQ-4ZZIyRgNbKSlxYEWKWYtfWoVrLiaEaS15oPdClrsBYNg7ritWGFZgUrON8np-u6sxg-55hyM3VJY9etxzBPTVHJspCMVUt68od-hHn0XXdLVQsOooBOna2VjiGliLaZRTdVcdEwaJZLb27Y08tq6cMOwx-sXV7Nn6Ny7f-R43UkJr0p_fuP_BuBoZG7 |
CitedBy_id | crossref_primary_10_1088_2053_1583_ad569b crossref_primary_10_1088_1361_648X_ad44fa crossref_primary_10_1016_j_jcis_2024_06_243 crossref_primary_10_1039_D3TC04167K crossref_primary_10_1016_j_jallcom_2022_166134 crossref_primary_10_1021_acsnano_4c01814 crossref_primary_10_1080_14686996_2022_2054666 |
Cites_doi | 10.1002/anie.200703941 10.1039/c3nr05354g 10.1007/s12274-018-2153-2 10.1126/science.1194975 10.1021/acs.chemmater.9b04180 10.1039/C6CS00937A 10.1016/j.ensm.2020.07.006 10.1016/j.ensm.2017.08.011 10.1039/C7CS00858A 10.1039/C9NR01440C 10.1002/adma.201304327 10.1180/EMU-notes.11 10.2138/rmg.2002.46.01 10.1088/0256-307X/30/1/017103 10.1021/acsnano.9b06653 10.1039/C8EE00160J 10.1002/adma.201902654 10.34133/2021/8140964 10.1039/C8DT01242C 10.1016/j.jpowsour.2015.02.020 10.1016/j.jpowsour.2016.05.058 10.1038/s41586-018-0298-5 10.1126/science.aal4373 10.1039/C7NR00284J 10.1002/adma.201701777 10.1088/1674-1056/25/1/017101 10.1002/aenm.201400622 10.1346/CCMN.1980.0280606 10.1002/adfm.202002200 10.1021/ja310246r 10.1039/c3ra43481h 10.1016/j.clay.2019.105429 10.1016/j.nanoen.2013.12.002 10.1063/1.4952442 10.1039/C8CS00324F 10.1180/claymin.1963.005.29.05 10.1002/adma.201606716 10.1021/cm902787u 10.1002/adma.201402182 10.1073/pnas.96.7.3358 10.1016/j.electacta.2016.04.043 10.1021/acsnano.7b03942 10.1016/j.biomaterials.2004.07.058 10.1021/nn302328x 10.1038/nclimate1332 10.1021/cr300263a 10.1016/B978-0-08-098258-8.00002-X 10.1021/acsnano.5b07977 10.1016/j.jpowsour.2018.10.031 10.1021/acsami.9b06976 10.1002/aenm.201902535 10.1016/j.jpowsour.2018.11.014 10.1002/anie.200600321 10.1002/adfm.201908721 10.1002/adma.201800838 10.3390/ma12020201 10.1016/S1572-4352(05)01001-9 10.1016/j.pmatsci.2020.100712 10.1002/adfm.201301094 10.1038/nmat2507 10.1016/j.electacta.2015.12.192 10.1038/s41586-018-0109-z 10.1021/ja908827z 10.1021/nn501683f 10.1038/s41570-016-0014 10.1002/adma.201400578 10.1016/j.ensm.2018.09.019 10.1039/c3ra43326a 10.1149/2.1301915jes 10.1021/nl400830u 10.1021/acs.nanolett.6b03762 10.1007/s12274-015-0772-4 10.1126/science.1209150 10.1073/pnas.0905723106 10.1016/j.clay.2018.07.004 10.1016/j.nanoen.2016.11.013 10.1126/science.aau4146 10.1038/174799a0 10.1063/1.116811 10.1038/s41586-019-1904-x 10.1016/j.jpcs.2019.109227 10.1016/S1387-1811(99)00196-1 10.1016/j.electacta.2009.12.095 10.1002/adfm.201900649 10.1038/s41586-019-1573-9 10.1103/PhysRevB.86.224511 10.1126/science.aba1416 10.7567/JJAP.56.05DE02 10.1016/j.jpowsour.2018.01.030 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2021 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2021 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
DOI | 10.1039/d1nr04667e |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
EndPage | 1842 |
ExternalDocumentID | 10_1039_D1NR04667E d1nr04667e |
GroupedDBID | - 0-7 0R 29M 4.4 53G 705 7~J AAEMU AAGNR AAIWI AAJAE AANOJ AAPBV ABASK ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFVBQ AGRSR AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX DU5 EBS ECGLT EE0 EF- F5P HZ H~N J3I JG O-G O9- OK1 P2P RCNCU RIG RNS RPMJG RRC RSCEA --- 0R~ AARTK AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AHGCF AKBGW AKMSF ALUYA APEMP CITATION GGIMP H13 HZ~ RAOCF RVUXY 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c380t-d1fd690e5bf934f060faa1ff8b8a953edb938c37c4980ffed108538d12c121233 |
ISSN | 2040-3364 2040-3372 |
IngestDate | Fri Jul 11 15:26:31 EDT 2025 Sun Jun 29 15:13:56 EDT 2025 Tue Jul 01 01:14:15 EDT 2025 Thu Apr 24 22:59:48 EDT 2025 Sun May 08 06:02:02 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 44 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c380t-d1fd690e5bf934f060faa1ff8b8a953edb938c37c4980ffed108538d12c121233 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-2417-4710 0000-0003-1297-9597 0000-0001-7126-2006 0000-0003-3504-3572 |
PQID | 2598630620 |
PQPubID | 2047485 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1039_D1NR04667E proquest_miscellaneous_2594291153 proquest_journals_2598630620 crossref_primary_10_1039_D1NR04667E rsc_primary_d1nr04667e |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-18 |
PublicationDateYYYYMMDD | 2021-11-18 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Nanoscale |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Kong (D1NR04667E/cit16) 2017; 46 Park (D1NR04667E/cit46) 2000; 37 Ma (D1NR04667E/cit44) 2008; 47 White (D1NR04667E/cit55) 1954; 174 Ryu (D1NR04667E/cit58) 2016; 10 Zuo (D1NR04667E/cit5) 2017; 31 An (D1NR04667E/cit19) 2020; 32 Kong (D1NR04667E/cit49) 2014; 26 Jin (D1NR04667E/cit45) 2019; 29 Tang (D1NR04667E/cit22) 2021; 2021 Reddy (D1NR04667E/cit47) 2010; 55 Adpakpang (D1NR04667E/cit56) 2016; 204 Yoo (D1NR04667E/cit57) 2014; 4 Coleman (D1NR04667E/cit23) 2011; 331 Bergaya (D1NR04667E/cit35) 2006; 1 Xu (D1NR04667E/cit17) 2013; 113 Liang (D1NR04667E/cit42) 2010; 22 Kim (D1NR04667E/cit33) 2014; 6 Abdullayev (D1NR04667E/cit64) 2012; 6 Gao (D1NR04667E/cit91) 2020; 30 Akinwande (D1NR04667E/cit24) 2019; 573 Varghese (D1NR04667E/cit51) 2017; 9 Wan (D1NR04667E/cit68) 2018; 47 Brigatti (D1NR04667E/cit41) 2013; 5 Wu (D1NR04667E/cit62) 2016; 190 Tritsaris (D1NR04667E/cit89) 2013; 13 Mannix (D1NR04667E/cit20) 2017; 1 Zhou (D1NR04667E/cit65) 2016; 324 Brigatti (D1NR04667E/cit38) 2002; 46 Mukherjee (D1NR04667E/cit70) 1963; 5 Huang (D1NR04667E/cit85) 2013; 30 Guggenheim (D1NR04667E/cit40) 2011; 11 Yue (D1NR04667E/cit71) 2019; 410–411 Tang (D1NR04667E/cit80) 2019; 11 Liu (D1NR04667E/cit88) 2019; 166 Tang (D1NR04667E/cit67) 2018; 162 Liu (D1NR04667E/cit27) 2014; 26 Takahashi (D1NR04667E/cit50) 2009; 8 Lin (D1NR04667E/cit86) 2012; 86 Wang (D1NR04667E/cit72) 2021; 116 Rogers (D1NR04667E/cit2) 2009; 106 Brigatti (D1NR04667E/cit39) 2011; 11 An (D1NR04667E/cit6) 2019; 13 Han (D1NR04667E/cit60) 2018; 11 Liu (D1NR04667E/cit10) 2019; 18 Sullivan (D1NR04667E/cit28) 1996; 69 Kim (D1NR04667E/cit32) 2014; 8 Sposito (D1NR04667E/cit36) 1999; 96 Thian (D1NR04667E/cit26) 2005; 26 Ryan (D1NR04667E/cit75) 2019; 32 Huang (D1NR04667E/cit82) 2014; 26 Nakano (D1NR04667E/cit25) 2016; 3 Liu (D1NR04667E/cit90) 2018; 30 Cho (D1NR04667E/cit61) 2016; 16 Adams (D1NR04667E/cit69) 1980; 28 Weaver (D1NR04667E/cit37) 2011 Okamoto (D1NR04667E/cit77) 2010; 132 Du (D1NR04667E/cit13) 2020; 577 Xu (D1NR04667E/cit92) 2015; 8 Zhuang (D1NR04667E/cit87) 2017; 29 Chen (D1NR04667E/cit18) 2019; 10 Ma (D1NR04667E/cit43) 2012; 134 Liu (D1NR04667E/cit54) 2014; 4 Deng (D1NR04667E/cit84) 2013; 3 Choi (D1NR04667E/cit7) 2017; 357 Meng (D1NR04667E/cit78) 2017; 56 Zhang (D1NR04667E/cit30) 2017; 11 Krishnamoorthy (D1NR04667E/cit34) 2018; 11 Wang (D1NR04667E/cit74) 2019; 12 Cao (D1NR04667E/cit31) 2013; 3 Wang (D1NR04667E/cit81) 2018; 379 Huang (D1NR04667E/cit83) 2019; 11 Liu (D1NR04667E/cit14) 2020; 367 Guo (D1NR04667E/cit4) 2016; 25 Chen (D1NR04667E/cit12) 2018; 362 Yeom (D1NR04667E/cit29) 2014; 24 Chen (D1NR04667E/cit59) 2018; 405 He (D1NR04667E/cit48) 2020; 186 Zhang (D1NR04667E/cit63) 2015; 281 Kwon (D1NR04667E/cit9) 2018; 47 Jiang (D1NR04667E/cit15) 2018; 559 Kovalenko (D1NR04667E/cit8) 2011; 334 Pang (D1NR04667E/cit11) 2019; 48 Xia (D1NR04667E/cit21) 2018; 557 Wang (D1NR04667E/cit66) 2020; 137 Nakano (D1NR04667E/cit76) 2006; 45 Coleman (D1NR04667E/cit73) 2011; 331 Xiong (D1NR04667E/cit53) 2020; 32 Lang (D1NR04667E/cit79) 2017; 29 Wu (D1NR04667E/cit52) 2018; 10 Peters (D1NR04667E/cit1) 2012; 2 An (D1NR04667E/cit3) 2019; 30 |
References_xml | – issn: 2011 publication-title: The chemistry of clay minerals doi: Weaver Pollard – issn: 2011 issue: 11 end-page: 1-71 publication-title: Layered mineral structures and their application in advanced technologies doi: Brigatti Malferrari Laurora Elmi Mottana – issn: 2011 issue: 11 end-page: 72-111 publication-title: Layered mineral structures and their application in advanced technologies doi: Guggenheim Brigatti Mottana – volume: 47 start-page: 86 year: 2008 ident: D1NR04667E/cit44 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200703941 – volume: 6 start-page: 4297 year: 2014 ident: D1NR04667E/cit33 publication-title: Nanoscale doi: 10.1039/c3nr05354g – volume: 11 start-page: 6294 year: 2018 ident: D1NR04667E/cit60 publication-title: Nano Res. doi: 10.1007/s12274-018-2153-2 – volume: 331 start-page: 568 year: 2011 ident: D1NR04667E/cit73 publication-title: Science doi: 10.1126/science.1194975 – volume: 32 start-page: 795 year: 2019 ident: D1NR04667E/cit75 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b04180 – volume: 46 start-page: 2127 year: 2017 ident: D1NR04667E/cit16 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00937A – volume: 32 start-page: 115 year: 2020 ident: D1NR04667E/cit19 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.07.006 – volume: 10 start-page: 122 year: 2018 ident: D1NR04667E/cit52 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2017.08.011 – volume: 47 start-page: 2145 year: 2018 ident: D1NR04667E/cit9 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00858A – volume: 11 start-page: 10984 year: 2019 ident: D1NR04667E/cit80 publication-title: Nanoscale doi: 10.1039/C9NR01440C – volume: 26 start-page: 1410 year: 2014 ident: D1NR04667E/cit27 publication-title: Adv. Mater. doi: 10.1002/adma.201304327 – volume: 11 start-page: 1 volume-title: Layered mineral structures and their application in advanced technologies year: 2011 ident: D1NR04667E/cit39 doi: 10.1180/EMU-notes.11 – volume: 46 start-page: 1 year: 2002 ident: D1NR04667E/cit38 publication-title: Rev. Mineral. Geochem. doi: 10.2138/rmg.2002.46.01 – volume: 30 start-page: 017103 year: 2013 ident: D1NR04667E/cit85 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/30/1/017103 – volume: 13 start-page: 13690 year: 2019 ident: D1NR04667E/cit6 publication-title: ACS Nano doi: 10.1021/acsnano.9b06653 – volume: 11 start-page: 1595 year: 2018 ident: D1NR04667E/cit34 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00160J – volume: 32 start-page: e1902654 year: 2020 ident: D1NR04667E/cit53 publication-title: Adv. Mater. doi: 10.1002/adma.201902654 – volume: 2021 start-page: 8140964 year: 2021 ident: D1NR04667E/cit22 publication-title: Energy Mater. Adv. doi: 10.34133/2021/8140964 – volume: 47 start-page: 7522 year: 2018 ident: D1NR04667E/cit68 publication-title: Dalton Trans. doi: 10.1039/C8DT01242C – volume: 11 start-page: 72 volume-title: Layered mineral structures and their application in advanced technologies year: 2011 ident: D1NR04667E/cit40 – volume: 281 start-page: 425 year: 2015 ident: D1NR04667E/cit63 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.02.020 – volume: 324 start-page: 33 year: 2016 ident: D1NR04667E/cit65 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.05.058 – volume: 559 start-page: 343 year: 2018 ident: D1NR04667E/cit15 publication-title: Nature doi: 10.1038/s41586-018-0298-5 – volume: 357 start-page: 279 year: 2017 ident: D1NR04667E/cit7 publication-title: Science doi: 10.1126/science.aal4373 – volume: 9 start-page: 3818 year: 2017 ident: D1NR04667E/cit51 publication-title: Nanoscale doi: 10.1039/C7NR00284J – volume: 29 start-page: 1701777 year: 2017 ident: D1NR04667E/cit79 publication-title: Adv. Mater. doi: 10.1002/adma.201701777 – volume: 25 start-page: 017101 year: 2016 ident: D1NR04667E/cit4 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/25/1/017101 – volume: 4 start-page: 1400622 year: 2014 ident: D1NR04667E/cit57 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201400622 – volume: 28 start-page: 444 year: 1980 ident: D1NR04667E/cit69 publication-title: Clays Clay Miner. doi: 10.1346/CCMN.1980.0280606 – volume: 30 start-page: 2002200 year: 2020 ident: D1NR04667E/cit91 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202002200 – volume: 134 start-page: 19915 year: 2012 ident: D1NR04667E/cit43 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja310246r – volume: 3 start-page: 20157 year: 2013 ident: D1NR04667E/cit31 publication-title: RSC Adv. doi: 10.1039/c3ra43481h – volume: 186 start-page: 105429 year: 2020 ident: D1NR04667E/cit48 publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2019.105429 – volume: 4 start-page: 31 year: 2014 ident: D1NR04667E/cit54 publication-title: Nano Energy doi: 10.1016/j.nanoen.2013.12.002 – volume: 3 start-page: 040803 year: 2016 ident: D1NR04667E/cit25 publication-title: Appl. Phys. Rev. doi: 10.1063/1.4952442 – volume: 48 start-page: 72 year: 2019 ident: D1NR04667E/cit11 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00324F – volume: 5 start-page: 194 year: 1963 ident: D1NR04667E/cit70 publication-title: Clay Miner. Bull. doi: 10.1180/claymin.1963.005.29.05 – volume: 29 start-page: 1606716 year: 2017 ident: D1NR04667E/cit87 publication-title: Adv. Mater. doi: 10.1002/adma.201606716 – volume: 22 start-page: 371 year: 2010 ident: D1NR04667E/cit42 publication-title: Chem. Mater. doi: 10.1021/cm902787u – volume: 26 start-page: 6275 year: 2014 ident: D1NR04667E/cit49 publication-title: Adv. Mater. doi: 10.1002/adma.201402182 – volume: 96 start-page: 3358 year: 1999 ident: D1NR04667E/cit36 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.96.7.3358 – volume: 204 start-page: 60 year: 2016 ident: D1NR04667E/cit56 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.04.043 – volume: 11 start-page: 7476 year: 2017 ident: D1NR04667E/cit30 publication-title: ACS Nano doi: 10.1021/acsnano.7b03942 – volume: 26 start-page: 2947 year: 2005 ident: D1NR04667E/cit26 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2004.07.058 – volume: 6 start-page: 7216 year: 2012 ident: D1NR04667E/cit64 publication-title: ACS Nano doi: 10.1021/nn302328x – volume: 2 start-page: 2 year: 2012 ident: D1NR04667E/cit1 publication-title: Nat. Clim. Change doi: 10.1038/nclimate1332 – volume: 113 start-page: 3766 year: 2013 ident: D1NR04667E/cit17 publication-title: Chem. Rev. doi: 10.1021/cr300263a – volume: 5 start-page: 21 year: 2013 ident: D1NR04667E/cit41 publication-title: Dev. Clay Sci. doi: 10.1016/B978-0-08-098258-8.00002-X – volume: 10 start-page: 2843 year: 2016 ident: D1NR04667E/cit58 publication-title: ACS Nano doi: 10.1021/acsnano.5b07977 – volume: 405 start-page: 61 year: 2018 ident: D1NR04667E/cit59 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.10.031 – volume: 11 start-page: 26854 year: 2019 ident: D1NR04667E/cit83 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b06976 – volume-title: The chemistry of clay minerals year: 2011 ident: D1NR04667E/cit37 – volume: 10 start-page: 1902535 year: 2019 ident: D1NR04667E/cit18 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201902535 – volume: 410–411 start-page: 132 year: 2019 ident: D1NR04667E/cit71 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.11.014 – volume: 45 start-page: 6303 year: 2006 ident: D1NR04667E/cit76 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200600321 – volume: 30 start-page: 1908721 year: 2019 ident: D1NR04667E/cit3 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201908721 – volume: 30 start-page: 1800838 year: 2018 ident: D1NR04667E/cit90 publication-title: Adv. Mater. doi: 10.1002/adma.201800838 – volume: 12 start-page: 201 year: 2019 ident: D1NR04667E/cit74 publication-title: Materials doi: 10.3390/ma12020201 – volume: 1 start-page: 1 year: 2006 ident: D1NR04667E/cit35 publication-title: Dev. Clay Sci. doi: 10.1016/S1572-4352(05)01001-9 – volume: 116 start-page: 100712 year: 2021 ident: D1NR04667E/cit72 publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2020.100712 – volume: 24 start-page: 106 year: 2014 ident: D1NR04667E/cit29 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201301094 – volume: 8 start-page: 721 year: 2009 ident: D1NR04667E/cit50 publication-title: Nat. Mater. doi: 10.1038/nmat2507 – volume: 190 start-page: 628 year: 2016 ident: D1NR04667E/cit62 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.12.192 – volume: 557 start-page: 409 year: 2018 ident: D1NR04667E/cit21 publication-title: Nature doi: 10.1038/s41586-018-0109-z – volume: 132 start-page: 2710 year: 2010 ident: D1NR04667E/cit77 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja908827z – volume: 8 start-page: 6556 year: 2014 ident: D1NR04667E/cit32 publication-title: ACS Nano doi: 10.1021/nn501683f – volume: 1 start-page: 1 year: 2017 ident: D1NR04667E/cit20 publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-016-0014 – volume: 26 start-page: 4326 year: 2014 ident: D1NR04667E/cit82 publication-title: Adv. Mater. doi: 10.1002/adma.201400578 – volume: 18 start-page: 165 year: 2019 ident: D1NR04667E/cit10 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.09.019 – volume: 331 start-page: 568 year: 2011 ident: D1NR04667E/cit23 publication-title: Science doi: 10.1126/science.1194975 – volume: 3 start-page: 20338 year: 2013 ident: D1NR04667E/cit84 publication-title: RSC Adv. doi: 10.1039/c3ra43326a – volume: 166 start-page: A3886 year: 2019 ident: D1NR04667E/cit88 publication-title: J. Electrochem. Soc. doi: 10.1149/2.1301915jes – volume: 13 start-page: 2258 year: 2013 ident: D1NR04667E/cit89 publication-title: Nano Lett. doi: 10.1021/nl400830u – volume: 16 start-page: 7261 year: 2016 ident: D1NR04667E/cit61 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03762 – volume: 8 start-page: 2654 year: 2015 ident: D1NR04667E/cit92 publication-title: Nano Res. doi: 10.1007/s12274-015-0772-4 – volume: 334 start-page: 75 year: 2011 ident: D1NR04667E/cit8 publication-title: Science doi: 10.1126/science.1209150 – volume: 106 start-page: 10875 year: 2009 ident: D1NR04667E/cit2 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0905723106 – volume: 162 start-page: 499 year: 2018 ident: D1NR04667E/cit67 publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2018.07.004 – volume: 31 start-page: 113 year: 2017 ident: D1NR04667E/cit5 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.11.013 – volume: 362 start-page: 1135 year: 2018 ident: D1NR04667E/cit12 publication-title: Science doi: 10.1126/science.aau4146 – volume: 174 start-page: 799 year: 1954 ident: D1NR04667E/cit55 publication-title: Nature doi: 10.1038/174799a0 – volume: 69 start-page: 3149 year: 1996 ident: D1NR04667E/cit28 publication-title: Appl. Phys. Lett. doi: 10.1063/1.116811 – volume: 577 start-page: 492 year: 2020 ident: D1NR04667E/cit13 publication-title: Nature doi: 10.1038/s41586-019-1904-x – volume: 137 start-page: 109227 year: 2020 ident: D1NR04667E/cit66 publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2019.109227 – volume: 37 start-page: 81 year: 2000 ident: D1NR04667E/cit46 publication-title: Microporous Mesoporous Mater. doi: 10.1016/S1387-1811(99)00196-1 – volume: 55 start-page: 3109 year: 2010 ident: D1NR04667E/cit47 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2009.12.095 – volume: 29 start-page: 1900649 year: 2019 ident: D1NR04667E/cit45 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201900649 – volume: 573 start-page: 507 year: 2019 ident: D1NR04667E/cit24 publication-title: Nature doi: 10.1038/s41586-019-1573-9 – volume: 86 start-page: 224511 year: 2012 ident: D1NR04667E/cit86 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.86.224511 – volume: 367 start-page: 903 year: 2020 ident: D1NR04667E/cit14 publication-title: Science doi: 10.1126/science.aba1416 – volume: 56 start-page: 05DE02 year: 2017 ident: D1NR04667E/cit78 publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.56.05DE02 – volume: 379 start-page: 20 year: 2018 ident: D1NR04667E/cit81 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.01.030 |
SSID | ssj0069363 |
Score | 2.4038122 |
SecondaryResourceType | review_article |
Snippet | Silicon plays a crucial part in developing high-performance energy storage materials, owing to a high specific capacity compared to carbon. Moreover, nanoscale... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1841 |
SubjectTerms | Energy storage Minerals Molten salts Nanosheets Silicon Synthesis |
Title | Silicon nanosheets derived from silicate minerals: controllable synthesis and energy storage application |
URI | https://www.proquest.com/docview/2598630620 https://www.proquest.com/docview/2594291153 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe67QIHxNdEYSAjuKAqI47TzOY2RreJTUWCVnRcojix1UrF3ZoUCf56nh07CaKHwSWqXDuO8vvl-T37fSD0OlGM5ZQUpmpAHsRSDAOWhDxQIo6UCJVZ1Iy3xTg5n8YfZ8NZr3fR8VraVOIw_7U1ruR_UIU2wNVEyf4Dss1NoQF-A75wBYTheiuMvyyWAKQe6EyvyrmUVTkoYN4foETasJFyUYe4Db4vbHJp6_7mnNOXNmaq_KlBAzRJScwGuqwDAY3DpHHl6Rxud3XYsZkNoG0pYTdFrzaZvvELYXcr-tti3lLwxEWDnLUhaE3HKz_a7UJExITjdQVnZDwTKa3L8BzKLW1e2tIOq-K4IzvB1qw9XP-S6iE1SVELotdgzSdHsl27_Hn9-FN6Or28TCej2WQH7UVgM4DQ2zu-eH_21S_MCae2sF7zWD5bLeVv23v_qZ-0RsfO2leEsZrH5D6650wGfFzj_wD1pH6I7nYSST5Cc8cE3DIBOyZgwwTsmYA9E97hLg9wwwMMPMA1D7DjAe7w4DGano4mJ-eBq6ER5JSFVVAQVSQ8lEOhOI1VmIQqy4hSTLCMD6ksBKfwsR7lMWehUrIw0SiUFSTKidFq6D7a1SstnyA8jAoG6moOw_JYELgN44pkiiXCDBZ99Ma_uTR3CeZNnZNlah0dKE8_kPFn-5ZHffSq6Xtdp1XZ2uvAA5C6z65MI1NRAAzdKOyjl83fIBTNSVem5Wpj-4CeBcYO7aN9AK6Zo8X56S0GP0N3Wq4foN1qvZHPQQetxAvHrd80ZIu1 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Silicon+nanosheets+derived+from+silicate+minerals%3A+controllable+synthesis+and+energy+storage+application&rft.jtitle=Nanoscale&rft.au=He%2C+Yuanqing&rft.au=Zhang%2C+Zihan&rft.au=Chen%2C+Gen&rft.au=Zhang%2C+Ying&rft.date=2021-11-18&rft.issn=2040-3372&rft.eissn=2040-3372&rft.volume=13&rft.issue=44&rft.spage=18410&rft_id=info:doi/10.1039%2Fd1nr04667e&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |