Development and validation of a neural network for the automated detection of horn flies on cattle

•Framework for two-stage processing of high-resolution images for fly counting.•Deep learning methods for detecting and counting horn flies on cattle.•In-depth comparison of the automated method with human scorers.•Insights into the limitations of using computer vision for horn fly burden estimation...

Full description

Saved in:
Bibliographic Details
Published inComputers and electronics in agriculture Vol. 180; p. 105927
Main Authors Psota, E.T., Luc, E.K., Pighetti, G.M., Schneider, L.G., Trout Fryxell, R.T., Keele, J.W., Kuehn, L.A.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.01.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Framework for two-stage processing of high-resolution images for fly counting.•Deep learning methods for detecting and counting horn flies on cattle.•In-depth comparison of the automated method with human scorers.•Insights into the limitations of using computer vision for horn fly burden estimation. When the number of horn flies that blood feed on cattle exceeds the economic threshold, they can adversely affect the health and wellbeing of their hosts. Excessive horn fly burdens also lead to reduced weight gain and, consequently, diminished profits for livestock producers. Effective management and treatment require reliable surveillance methods for estimating the degree of horn fly burden (i.e., counting the number of flies on cattle). Traditionally, these estimates are obtained through human visual estimation, either in-person or by counting images on a photo; however, these methods are costly both in terms of time and labor and are prone to subjectivity and bias. In contrast, automated methods can expedite the counting process and remove subjectivity and bias. To this end, a 2-stage method is presented here that uses computer vision and deep learning to identify the location of flies in digital images. The first stage segments the salient cow from all other parts of the image to remove flies on neighboring cattle from consideration. The second stage processes full-resolution patches of the original image and produces a heat map at the location of flies in the images. The method was trained on a set of 375 human-annotated images and tested on 120 images, where significant variation was observed amongst the human scorers. Counting results are compared to four separate human scorers and demonstrate that the neural network produces consistent results and that the method is reliable. Thus, the developed method can be used for monitoring changes in horn fly populations over time by anyone and allows for increased rigor and repeatability. An examination of individual images where the method was closest to and farthest from the human counts provides valuable insights regarding photographic processes that lead to success and failure.
AbstractList •Framework for two-stage processing of high-resolution images for fly counting.•Deep learning methods for detecting and counting horn flies on cattle.•In-depth comparison of the automated method with human scorers.•Insights into the limitations of using computer vision for horn fly burden estimation. When the number of horn flies that blood feed on cattle exceeds the economic threshold, they can adversely affect the health and wellbeing of their hosts. Excessive horn fly burdens also lead to reduced weight gain and, consequently, diminished profits for livestock producers. Effective management and treatment require reliable surveillance methods for estimating the degree of horn fly burden (i.e., counting the number of flies on cattle). Traditionally, these estimates are obtained through human visual estimation, either in-person or by counting images on a photo; however, these methods are costly both in terms of time and labor and are prone to subjectivity and bias. In contrast, automated methods can expedite the counting process and remove subjectivity and bias. To this end, a 2-stage method is presented here that uses computer vision and deep learning to identify the location of flies in digital images. The first stage segments the salient cow from all other parts of the image to remove flies on neighboring cattle from consideration. The second stage processes full-resolution patches of the original image and produces a heat map at the location of flies in the images. The method was trained on a set of 375 human-annotated images and tested on 120 images, where significant variation was observed amongst the human scorers. Counting results are compared to four separate human scorers and demonstrate that the neural network produces consistent results and that the method is reliable. Thus, the developed method can be used for monitoring changes in horn fly populations over time by anyone and allows for increased rigor and repeatability. An examination of individual images where the method was closest to and farthest from the human counts provides valuable insights regarding photographic processes that lead to success and failure.
When the number of horn flies that blood feed on cattle exceeds the economic threshold, they can adversely affect the health and wellbeing of their hosts. Excessive horn fly burdens also lead to reduced weight gain and, consequently, diminished profits for livestock producers. Effective management and treatment require reliable surveillance methods for estimating the degree of horn fly burden (i.e., counting the number of flies on cattle). Traditionally, these estimates are obtained through human visual estimation, either in-person or by counting images on a photo; however, these methods are costly both in terms of time and labor and are prone to subjectivity and bias. In contrast, automated methods can expedite the counting process and remove subjectivity and bias. To this end, a 2-stage method is presented here that uses computer vision and deep learning to identify the location of flies in digital images. The first stage segments the salient cow from all other parts of the image to remove flies on neighboring cattle from consideration. The second stage processes full-resolution patches of the original image and produces a heat map at the location of flies in the images. The method was trained on a set of 375 human-annotated images and tested on 120 images, where significant variation was observed amongst the human scorers. Counting results are compared to four separate human scorers and demonstrate that the neural network produces consistent results and that the method is reliable. Thus, the developed method can be used for monitoring changes in horn fly populations over time by anyone and allows for increased rigor and repeatability. An examination of individual images where the method was closest to and farthest from the human counts provides valuable insights regarding photographic processes that lead to success and failure.
ArticleNumber 105927
Author Pighetti, G.M.
Luc, E.K.
Schneider, L.G.
Kuehn, L.A.
Keele, J.W.
Trout Fryxell, R.T.
Psota, E.T.
Author_xml – sequence: 1
  givenname: E.T.
  surname: Psota
  fullname: Psota, E.T.
  email: epsota@unl.edu
  organization: University of Nebraska, Lincoln, NE, USA
– sequence: 2
  givenname: E.K.
  surname: Luc
  fullname: Luc, E.K.
  organization: University of Tennessee, Knoxville, TN, USA
– sequence: 3
  givenname: G.M.
  surname: Pighetti
  fullname: Pighetti, G.M.
  organization: University of Tennessee, Knoxville, TN, USA
– sequence: 4
  givenname: L.G.
  surname: Schneider
  fullname: Schneider, L.G.
  organization: University of Tennessee, Knoxville, TN, USA
– sequence: 5
  givenname: R.T.
  surname: Trout Fryxell
  fullname: Trout Fryxell, R.T.
  organization: University of Tennessee, Knoxville, TN, USA
– sequence: 6
  givenname: J.W.
  surname: Keele
  fullname: Keele, J.W.
  organization: USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, USA
– sequence: 7
  givenname: L.A.
  surname: Kuehn
  fullname: Kuehn, L.A.
  organization: USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, USA
BookMark eNp9kEtPwzAQhC1UJNrCP-BgiXOK83DiXJBQeUqVuMDZcu01dUjs4DhF_HscBa6cRjv6Zlc7K7SwzgJClynZpCQtr5uNdF0v3jcZySaL1ll1gpYpq7KkSkm1QMuIsSQt6_oMrYahIXGuWbVE-zs4Quv6DmzAwip8FK1RIhhnsdNYYAujF22U8OX8B9bO43AALMbgOhFAYQUB5B9_cN5i3RoYcDSkCKGFc3SqRTvAxa-u0dvD_ev2Kdm9PD5vb3eJzBkJiVTpXpdFAaKqhSTACC1prgRVhSYMctAlkbRglGRlRRmjoiw0hUxkMaWlzNfoat7be_c5whB440Zv40meFawmU1V1pIqZkt4NgwfNe2864b95SviE8IbPbfKpTT63GWM3cwziB0cDng_SgJWgjI_vc-XM_wt-AHSngfc
CitedBy_id crossref_primary_10_1007_s00521_023_09238_w
crossref_primary_10_1093_jipm_pmab019
crossref_primary_10_1016_j_compag_2021_106313
crossref_primary_10_32634_0869_8155_2024_381_4_114_122
crossref_primary_10_1093_jipm_pmac010
crossref_primary_10_1016_j_iot_2024_101229
crossref_primary_10_1109_ACCESS_2022_3168295
Cites_doi 10.1109/CVPR.2016.90
10.1603/ME10050
10.1089/fpd.2017.2393
10.1354/vp.37-4-360
10.1016/j.vetpar.2009.07.037
10.1016/j.vetpar.2003.07.004
10.1016/j.compag.2016.02.003
10.1093/jme/tjw248
10.1109/JBHI.2019.2939121
10.3168/jds.S0022-0302(99)75386-5
10.3168/jds.2015-10607
10.1111/j.1365-2915.2008.00733.x
10.1603/ME13217
10.1603/0022-0493-96.5.1612
10.3168/jds.2011-4913
10.1016/j.compag.2017.08.005
10.1093/jme/tjv246
10.1093/jmedent/35.4.591
10.1111/j.1744-7976.1984.tb02134.x
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier BV Jan 2021
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier BV Jan 2021
DBID AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.compag.2020.105927
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-7107
ExternalDocumentID 10_1016_j_compag_2020_105927
S016816992033132X
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
AAYFN
ABBOA
ABBQC
ABFNM
ABFRF
ABGRD
ABJNI
ABKYH
ABLVK
ABMAC
ABMZM
ABRWV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AESVU
AEXOQ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLV
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
LG9
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
QYZTP
R2-
RIG
ROL
RPZ
SAB
SBC
SDF
SDG
SES
SEW
SNL
SPC
SPCBC
SSA
SSH
SSV
SSZ
T5K
UHS
UNMZH
WUQ
Y6R
~G-
~KM
AAHBH
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c380t-cd1bf644ea79ac0e805653da5d4f08e3ef60c548502675885a64f5e2a2f64fcc3
IEDL.DBID AIKHN
ISSN 0168-1699
IngestDate Thu Oct 10 17:08:26 EDT 2024
Thu Sep 26 16:02:01 EDT 2024
Fri Feb 23 02:48:18 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Precision livestock
Fly counting
Horn flies
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c380t-cd1bf644ea79ac0e805653da5d4f08e3ef60c548502675885a64f5e2a2f64fcc3
OpenAccessLink https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1579&context=hruskareports
PQID 2489010169
PQPubID 2045491
ParticipantIDs proquest_journals_2489010169
crossref_primary_10_1016_j_compag_2020_105927
elsevier_sciencedirect_doi_10_1016_j_compag_2020_105927
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computers and electronics in agriculture
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Haufe, E.O., 1979. Reduced productivity of beef cattle infested with horn flies En: Croome G.C.R., Holmes N.D., Research highlights, Agriculture Canadian Research Station, Lethbridges, Alberta, p. 61-63.
Anderson, Lyman, Moury, Ray, Watson, Correa (b0005) 2012; 95
Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollár, Zitnick (b0085) 2014
Deudon, M., Kalaitzis, A., Goytom, I., Arefin, M.R., Lin, Z., Sankaran, K., Michalski, V., Kahou, S.E., Cornebise, J., Bengio, Y., 2020. HighRes-net: recursive fusion for multi-frame super-resolution of satellite imagery. arXiv Prepr. 2002.06460.
Portney, Watkins (b0125) 2009
Oyarzún, Quiroz, Birkett (b0120) 2008; 22
Arther, R.G., 1991. Management of horn fly resistance, p. 7pages. In: 40th Annu. Florida Beef Cattle Short Course Proc.
Oliver, Gillespie, Headrick, Lewis, Dowlen (b0110) 2005; 3
Olafson, Lohmeyer, Edrington, Loneragan (b0105) 2014; 51
Smythe, Urias, Wise, Scholljegerdes, Summers, Bailey (b0135) 2017; 54
Mathworks. 2020. Deep learning toolbox TM user’s guide how to contact MathWorks. (https://www.mathworks.com/help/pdf_doc/deeplearning/nnet_ug.pdf).
DeRouen, Foil, MacKay, Franke, Sanson, Wyatt (b0035) 2003; 96
Cheng, Zhang, Chen, Wu, Yue (b0025) 2017; 141
Geden, C.J., Hogsette, J., 2001. Research and extension needs for integrated pest management for arthropods of veterinary importance. In: Proc. a Work. Lincoln, Nebraska, April 12-14, 1991.
Omer, M.K., Álvarez-Ordoñez, A., Prieto, M., Skjerve, E., Asehun, T., Alvseike, O.A., 2017. A systematic review of bacterial foodborne outbreaks related to red meat and meat products. Foodborne Pathog Dis. 2018 Oct, 15(10), 598–611. doi: 10.1089/fpd.2017.2393. Epub 2018 Jun 29. PMID: 29957085.
Cupp, Cupp, Ribeiro, Kunz (b0030) 1998; 35
Kunz, S.E., Murrell, K.D., Lambert, G., James, L.F., Terrill, C.E., 1991. Estimated losses of livestock to pests. In: Pimental, D. (ed.), CRC Handb. Pest Management Agric. Vol 1. CDC, Boca Raton, Florida, pp. 68–69.
Gordon, Haufe, Klein (b0065) 1984; 32
Pruett, Steelman, Miller, Pound, George (b0130) 2003; 116
Taylor, Moon, Mark (b0145) 2012; 49
Ding, Taylor (b0045) 2016; 123
Mullens, Soto, Gerry (b0100) 2016; 53
Gillespie, Owens, Nickerson, Oliver (b0060) 1999; 82
Edwards, Wikse, Field, Hoelscher, Herd (b0050) 2000; 37
Spoliansky, Edan, Parmet, Halachmi (b0140) 2016; 99
Yang, Poostchi, Yu, Zhou, Silamut, Yu, Maude, Jaeger, Antani (b0150) 2019; 24
He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Eur. Conf. Comput. Vis., pp. 770–778.
Bruce (b0015) 1964; No. 157
Mochi, Monteiro, Simi, Sampaio (b0095) 2009; 166
Chen, Zhu, Papandreou, Schroff, Adam (b0020) 2018
10.1016/j.compag.2020.105927_b0080
Ding (10.1016/j.compag.2020.105927_b0045) 2016; 123
Lin (10.1016/j.compag.2020.105927_b0085) 2014
Pruett (10.1016/j.compag.2020.105927_b0130) 2003; 116
Gillespie (10.1016/j.compag.2020.105927_b0060) 1999; 82
10.1016/j.compag.2020.105927_b0115
Olafson (10.1016/j.compag.2020.105927_b0105) 2014; 51
Portney (10.1016/j.compag.2020.105927_b0125) 2009
Taylor (10.1016/j.compag.2020.105927_b0145) 2012; 49
10.1016/j.compag.2020.105927_b0055
Mochi (10.1016/j.compag.2020.105927_b0095) 2009; 166
10.1016/j.compag.2020.105927_b0010
10.1016/j.compag.2020.105927_b0075
10.1016/j.compag.2020.105927_b0070
10.1016/j.compag.2020.105927_b0090
Chen (10.1016/j.compag.2020.105927_b0020) 2018
Cupp (10.1016/j.compag.2020.105927_b0030) 1998; 35
Edwards (10.1016/j.compag.2020.105927_b0050) 2000; 37
Spoliansky (10.1016/j.compag.2020.105927_b0140) 2016; 99
DeRouen (10.1016/j.compag.2020.105927_b0035) 2003; 96
Mullens (10.1016/j.compag.2020.105927_b0100) 2016; 53
Gordon (10.1016/j.compag.2020.105927_b0065) 1984; 32
Cheng (10.1016/j.compag.2020.105927_b0025) 2017; 141
Anderson (10.1016/j.compag.2020.105927_b0005) 2012; 95
Oliver (10.1016/j.compag.2020.105927_b0110) 2005; 3
Yang (10.1016/j.compag.2020.105927_b0150) 2019; 24
Bruce (10.1016/j.compag.2020.105927_b0015) 1964; No. 157
Smythe (10.1016/j.compag.2020.105927_b0135) 2017; 54
Oyarzún (10.1016/j.compag.2020.105927_b0120) 2008; 22
10.1016/j.compag.2020.105927_b0040
References_xml – volume: 96
  start-page: 1612
  year: 2003
  end-page: 1616
  ident: b0035
  article-title: Effect of Horn Fly (
  publication-title: J. Econ. Entomol.
  contributor:
    fullname: Wyatt
– volume: 99
  start-page: 7714
  year: 2016
  end-page: 7725
  ident: b0140
  article-title: Development of automatic body condition scoring using a low-cost 3-dimensional Kinect camera
  publication-title: J. Dairy Sci.
  contributor:
    fullname: Halachmi
– start-page: 740
  year: 2014
  end-page: 755
  ident: b0085
  article-title: Microsoft coco: Common objects in context
  publication-title: European conference on computer vision
  contributor:
    fullname: Zitnick
– volume: 51
  start-page: 993
  year: 2014
  end-page: 1001
  ident: b0105
  article-title: Survival and fate of
  publication-title: J. Med. Entomol.
  contributor:
    fullname: Loneragan
– volume: 49
  start-page: 198
  year: 2012
  end-page: 209
  ident: b0145
  article-title: Economic impact of stable flies (Diptera: Muscidae) on dairy and beef cattle production
  publication-title: J. Med. Entomol.
  contributor:
    fullname: Mark
– start-page: 801
  year: 2018
  end-page: 818
  ident: b0020
  article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation
  contributor:
    fullname: Adam
– volume: 54
  start-page: 980
  year: 2017
  end-page: 984
  ident: b0135
  article-title: Comparing visual and digital counting methods to estimate horn fly (Diptera: Muscidae) populations on cattle
  publication-title: J. Med. Entomol.
  contributor:
    fullname: Bailey
– volume: 22
  start-page: 188
  year: 2008
  end-page: 202
  ident: b0120
  article-title: Insecticide resistance in the horn fly: alternative control strategies
  publication-title: Med. Vet. Entomol.
  contributor:
    fullname: Birkett
– volume: 116
  start-page: 251
  year: 2003
  end-page: 258
  ident: b0130
  article-title: Distribution of horn flies on individual cows as a percentage of the total horn fly population
  publication-title: Vet. Parasitol.
  contributor:
    fullname: George
– volume: 37
  start-page: 360
  year: 2000
  end-page: 364
  ident: b0050
  article-title: Bovine teat atresia associated with horn fly (
  publication-title: Vet. Pathol.
  contributor:
    fullname: Herd
– volume: 24
  start-page: 1427
  year: 2019
  end-page: 1438
  ident: b0150
  article-title: Deep learning for smartphone-based malaria parasite detection in thick blood smears
  publication-title: IEEE J. Biomed. Heal. Informatics.
  contributor:
    fullname: Antani
– volume: 141
  start-page: 351
  year: 2017
  end-page: 356
  ident: b0025
  article-title: Pest identification via deep residual learning in complex background
  publication-title: Comput. Electron. Agric.
  contributor:
    fullname: Yue
– volume: No. 157
  year: 1964
  ident: b0015
  article-title: The history and biology of the horn fly,
  publication-title: United States Department of Agriculture -
  contributor:
    fullname: Bruce
– volume: 82
  start-page: 1581
  year: 1999
  end-page: 1585
  ident: b0060
  article-title: Deoxyribonucleic acid fingerprinting of
  publication-title: J. Dairy Sci.
  contributor:
    fullname: Oliver
– volume: 166
  start-page: 136
  year: 2009
  end-page: 143
  ident: b0095
  article-title: Susceptibility of adult and larval stages of the horn fly,
  publication-title: Vet. Parasitol.
  contributor:
    fullname: Sampaio
– volume: 3
  start-page: 150
  year: 2005
  end-page: 162
  ident: b0110
  article-title: Prevalence, risk factors, and strategies for controlling mastitis in heifers during the periparturient period
  publication-title: Int. J. Appl. Res. Vet. Med.
  contributor:
    fullname: Dowlen
– volume: 53
  start-page: 703
  year: 2016
  end-page: 706
  ident: b0100
  article-title: Estimating field densities of
  publication-title: J. Med. Entomol.
  contributor:
    fullname: Gerry
– volume: 95
  start-page: 4921
  year: 2012
  end-page: 4930
  ident: b0005
  article-title: Molecular epidemiology of
  publication-title: J. Dairy Sci.
  contributor:
    fullname: Correa
– volume: 35
  start-page: 591
  year: 1998
  end-page: 595
  ident: b0030
  article-title: Blood-feeding strategy of
  publication-title: J. Med. Entomol.
  contributor:
    fullname: Kunz
– volume: 32
  start-page: 399
  year: 1984
  end-page: 421
  ident: b0065
  article-title: Determination of economic thresholds for horn fly control in western Canada: a farm level simulation approach
  publication-title: Candian J. Agric. Econ.
  contributor:
    fullname: Klein
– volume: 123
  start-page: 17
  year: 2016
  end-page: 28
  ident: b0045
  article-title: Automatic moth detection from trap images for pest management
  publication-title: Comput. Electron. Agric.
  contributor:
    fullname: Taylor
– start-page: 892
  year: 2009
  ident: b0125
  article-title: Foundations of clinical research: applications to practice
  contributor:
    fullname: Watkins
– ident: 10.1016/j.compag.2020.105927_b0070
  doi: 10.1109/CVPR.2016.90
– volume: 49
  start-page: 198
  year: 2012
  ident: 10.1016/j.compag.2020.105927_b0145
  article-title: Economic impact of stable flies (Diptera: Muscidae) on dairy and beef cattle production
  publication-title: J. Med. Entomol.
  doi: 10.1603/ME10050
  contributor:
    fullname: Taylor
– ident: 10.1016/j.compag.2020.105927_b0115
  doi: 10.1089/fpd.2017.2393
– volume: 37
  start-page: 360
  year: 2000
  ident: 10.1016/j.compag.2020.105927_b0050
  article-title: Bovine teat atresia associated with horn fly (Haematobia irritans irritans (L.))-induced dermatitis
  publication-title: Vet. Pathol.
  doi: 10.1354/vp.37-4-360
  contributor:
    fullname: Edwards
– start-page: 740
  year: 2014
  ident: 10.1016/j.compag.2020.105927_b0085
  article-title: Microsoft coco: Common objects in context
  contributor:
    fullname: Lin
– ident: 10.1016/j.compag.2020.105927_b0055
– volume: 3
  start-page: 150
  year: 2005
  ident: 10.1016/j.compag.2020.105927_b0110
  article-title: Prevalence, risk factors, and strategies for controlling mastitis in heifers during the periparturient period
  publication-title: Int. J. Appl. Res. Vet. Med.
  contributor:
    fullname: Oliver
– volume: No. 157
  year: 1964
  ident: 10.1016/j.compag.2020.105927_b0015
  article-title: The history and biology of the horn fly, Haematobia irritans (L.): with comments on control
  publication-title: United States Department of Agriculture -
  contributor:
    fullname: Bruce
– volume: 166
  start-page: 136
  year: 2009
  ident: 10.1016/j.compag.2020.105927_b0095
  article-title: Susceptibility of adult and larval stages of the horn fly, Haematobia irritans, to the entomopathogenic fungus Metarhizium anisopliae under field conditions
  publication-title: Vet. Parasitol.
  doi: 10.1016/j.vetpar.2009.07.037
  contributor:
    fullname: Mochi
– volume: 116
  start-page: 251
  year: 2003
  ident: 10.1016/j.compag.2020.105927_b0130
  article-title: Distribution of horn flies on individual cows as a percentage of the total horn fly population
  publication-title: Vet. Parasitol.
  doi: 10.1016/j.vetpar.2003.07.004
  contributor:
    fullname: Pruett
– volume: 123
  start-page: 17
  year: 2016
  ident: 10.1016/j.compag.2020.105927_b0045
  article-title: Automatic moth detection from trap images for pest management
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2016.02.003
  contributor:
    fullname: Ding
– volume: 54
  start-page: 980
  year: 2017
  ident: 10.1016/j.compag.2020.105927_b0135
  article-title: Comparing visual and digital counting methods to estimate horn fly (Diptera: Muscidae) populations on cattle
  publication-title: J. Med. Entomol.
  doi: 10.1093/jme/tjw248
  contributor:
    fullname: Smythe
– volume: 24
  start-page: 1427
  year: 2019
  ident: 10.1016/j.compag.2020.105927_b0150
  article-title: Deep learning for smartphone-based malaria parasite detection in thick blood smears
  publication-title: IEEE J. Biomed. Heal. Informatics.
  doi: 10.1109/JBHI.2019.2939121
  contributor:
    fullname: Yang
– volume: 82
  start-page: 1581
  year: 1999
  ident: 10.1016/j.compag.2020.105927_b0060
  article-title: Deoxyribonucleic acid fingerprinting of Staphylococcus aureus from heifer mammary secretions and from horn flies
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.S0022-0302(99)75386-5
  contributor:
    fullname: Gillespie
– start-page: 801
  year: 2018
  ident: 10.1016/j.compag.2020.105927_b0020
  contributor:
    fullname: Chen
– volume: 99
  start-page: 7714
  year: 2016
  ident: 10.1016/j.compag.2020.105927_b0140
  article-title: Development of automatic body condition scoring using a low-cost 3-dimensional Kinect camera
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2015-10607
  contributor:
    fullname: Spoliansky
– ident: 10.1016/j.compag.2020.105927_b0090
– ident: 10.1016/j.compag.2020.105927_b0040
– volume: 22
  start-page: 188
  year: 2008
  ident: 10.1016/j.compag.2020.105927_b0120
  article-title: Insecticide resistance in the horn fly: alternative control strategies
  publication-title: Med. Vet. Entomol.
  doi: 10.1111/j.1365-2915.2008.00733.x
  contributor:
    fullname: Oyarzún
– volume: 51
  start-page: 993
  year: 2014
  ident: 10.1016/j.compag.2020.105927_b0105
  article-title: Survival and fate of Salmonella enterica serovar Montevideo in adult horn flies (Diptera: Muscidae)
  publication-title: J. Med. Entomol.
  doi: 10.1603/ME13217
  contributor:
    fullname: Olafson
– volume: 96
  start-page: 1612
  year: 2003
  ident: 10.1016/j.compag.2020.105927_b0035
  article-title: Effect of Horn Fly (Haematobia irritans) Control on Growth and Reproduction of Beef Heifers
  publication-title: J. Econ. Entomol.
  doi: 10.1603/0022-0493-96.5.1612
  contributor:
    fullname: DeRouen
– ident: 10.1016/j.compag.2020.105927_b0080
– volume: 95
  start-page: 4921
  year: 2012
  ident: 10.1016/j.compag.2020.105927_b0005
  article-title: Molecular epidemiology of Staphylococcus aureus mastitis in dairy heifers
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2011-4913
  contributor:
    fullname: Anderson
– volume: 141
  start-page: 351
  year: 2017
  ident: 10.1016/j.compag.2020.105927_b0025
  article-title: Pest identification via deep residual learning in complex background
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2017.08.005
  contributor:
    fullname: Cheng
– volume: 53
  start-page: 703
  year: 2016
  ident: 10.1016/j.compag.2020.105927_b0100
  article-title: Estimating field densities of Haematobia irritans (Diptera: Muscidae) using direct visual field counts versus photographic assessments
  publication-title: J. Med. Entomol.
  doi: 10.1093/jme/tjv246
  contributor:
    fullname: Mullens
– volume: 35
  start-page: 591
  year: 1998
  ident: 10.1016/j.compag.2020.105927_b0030
  article-title: Blood-feeding strategy of Haematobia irritans (Diptera: Muscidae)
  publication-title: J. Med. Entomol.
  doi: 10.1093/jmedent/35.4.591
  contributor:
    fullname: Cupp
– volume: 32
  start-page: 399
  year: 1984
  ident: 10.1016/j.compag.2020.105927_b0065
  article-title: Determination of economic thresholds for horn fly control in western Canada: a farm level simulation approach
  publication-title: Candian J. Agric. Econ.
  doi: 10.1111/j.1744-7976.1984.tb02134.x
  contributor:
    fullname: Gordon
– ident: 10.1016/j.compag.2020.105927_b0010
– start-page: 892
  year: 2009
  ident: 10.1016/j.compag.2020.105927_b0125
  contributor:
    fullname: Portney
– ident: 10.1016/j.compag.2020.105927_b0075
SSID ssj0016987
Score 2.3845687
Snippet •Framework for two-stage processing of high-resolution images for fly counting.•Deep learning methods for detecting and counting horn flies on cattle.•In-depth...
When the number of horn flies that blood feed on cattle exceeds the economic threshold, they can adversely affect the health and wellbeing of their hosts....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 105927
SubjectTerms Automation
Bias
Cattle
Computer vision
Deep learning
Digital imaging
Flies
Fly counting
Horn flies
Livestock
Neural networks
Precision livestock
Weight reduction
Title Development and validation of a neural network for the automated detection of horn flies on cattle
URI https://dx.doi.org/10.1016/j.compag.2020.105927
https://www.proquest.com/docview/2489010169
Volume 180
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED1BWWBAfIryUXlgDU1ix7HHqgIVkLoAUjfLcWwoQ4radOW3c7ETBAgJidXKWdGzc_ccv7sDuKRcGMELHUnrWMSSOI6042VUMIPB0hrNgsp3yidP7G6WzTZg3OXCNLLK1vcHn-69dTsybNEcvs3nwwckKyLhUqYxbeoPzjZhy18S9WBrdHs_mX5eJnApQtY0xwMTGnQZdF7m5aXez3hQTH3PW9m0l_k9Qv3w1T4A3ezBbsscySi83D5s2OoAdkbPy7Z6hj2E4osEiOiqJLiN5qFpElk4oklTvRLnqIL2myBhJUgAiV7XC2SutiSlrb02yz__slhWxCFJXREcML7c8RE83Vw_jidR20QhMlTEdWTKpHBIeqzOpTaxFch4MlrqrGQuFpZax2ODx5asaUWVCZFpzlxmU52ilTOGHkOvWlT2BIihqaZo4nLNmMuNNAzNC-o0c9wksg9RB5x6C7UyVCcie1UBaNUArQLQfcg7dNW3NVfozv-wPO8WQ7Xf3EqlTEhfMU-e_nviM9hOG9GK_8dyDr16ubYXyDrqYgCbV-_JoN1bH3zp2Bc
link.rule.ids 315,783,787,4511,24130,27938,27939,45599,45693
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELVKGYAB8SkKBTywhqax49pjVYEKlC60UjfLcexShqRq05XfzsVOECAkJFbrzorO9t1z9PwOoRvCuOYsUYEwlga0G4aBsiwNEqqhWBqtqGf5jtlwSh9n8ayBBvVbmJJWWeV-n9Ndtq5GOlU0O8vFovMCYIV3mRBRSEr9wdkW2qalfhZs6tv3T54HWHD_ZprBdQnM6_dzjuTliN5zuCZGruOtKJvL_F6ffmRqV37uD9B-hRtx33_aIWqY7Ajt9eerSjvDHKPkCwEIqyzFsIkWvmUSzi1WuNSuhDkyz_zGAFcxwD-sNkUOuNWkODWFY2Y5-9d8lWELEHWNYUA7seMTNL2_mwyGQdVCIdCEh0Wg025iAfIY1RNKh4YD3olJquKU2pAbYiwLNVxa4rIRVcx5rBi1sYlUBF5Wa3KKmlmemTOENYkUARfbU5TanhaagntCrKKW6a5ooaAOnFx6pQxZU8jepA-0LAMtfaBbqFdHV35bcQnJ_A_Pdr0YsjpxaxlRLpxenjj_98TXaGc4eR7J0cP46QLtRiV9xf1taaNmsdqYS8AfRXLl9tcHhqnY-Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+and+validation+of+a+neural+network+for+the+automated+detection+of+horn+flies+on+cattle&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Psota%2C+ET&rft.au=Luc%2C+EK&rft.au=Pighetti%2C+GM&rft.au=Schneider%2C+LG&rft.date=2021-01-01&rft.pub=Elsevier+BV&rft.issn=0168-1699&rft.eissn=1872-7107&rft.volume=180&rft.spage=1&rft_id=info:doi/10.1016%2Fj.compag.2020.105927&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon