Perpendicular shape anisotropy spin transfer torque magnetic random-access memory: towards sub-10 nm devices
A new concept to increase the downsize scalability of perpendicular spin transfer torque magnetic random-access memory (p-STT-MRAM), called perpendicular shape anisotropy (PSA) STT-MRAM is presented. This approach consists of significantly increasing the thickness of the storage layer in p-STT-MRAM...
Saved in:
Published in | Journal of physics. D, Applied physics Vol. 52; no. 23; pp. 234001 - 234010 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
05.06.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A new concept to increase the downsize scalability of perpendicular spin transfer torque magnetic random-access memory (p-STT-MRAM), called perpendicular shape anisotropy (PSA) STT-MRAM is presented. This approach consists of significantly increasing the thickness of the storage layer in p-STT-MRAM to values comparable to the cell diameter so as to induce a PSA in this layer which comes on top of the MgO/FeCoB interfacial anisotropy. This PSA-STT-MRAM is provided by depositing a thick ferromagnetic (FM) layer on top of an MgO/FeCoB based magnetic tunnel junction (MTJ) so that the thickness of the storage layer becomes of the order or larger than the diameter of the MTJ pillar. In contrast to conventional spin transfer torque (STT) magnetic random access memory, wherein the demagnetizing energy opposes the interfacial perpendicular magnetic anisotropy (iPMA), in these novel memory cells, both PSA and iPMA contributions favor out-of-plane orientation of the storage layer magnetization. Using thicker storage layers in these PSA-STT-MRAM has several advantages. Thanks to this robust source of bulk anisotropy, PSA-STT-MRAM offers a greatly improved downsize scalability over conventional perpendicular p-STT-MRAM. Despite the large thickness of the storage layer, PSA-STT-MRAM cells can still be written by STT provided their thermal stability factor Δ is adjusted in the same range as in conventional p-STT-MRAM, i.e. Δ of the order of 60-100 depending on the memory capacity and required bit error rate. Moreover, a low damping material can be used for the thick FM material, thus leading to a reduction of the write current. Thanks to the PSA, very high and easily tunable thermal stability factors can be achieved, even down to sub-10 nm diameters. The paper describes this new PSA-STT-MRAM concept, practical realization of such memory arrays, magnetic characterization demonstrating thermal stability factor above 200 for MTJs as small as 8 nm in diameter and the possibility to maintain thermal stability factor above 60 down to 4 nm diameter. We also show that thanks to the increased thickness of the storage layer, the anisotropy and therefore the memory retention are much less sensitive on temperature than in conventional p-STT-MRAM. This is very interesting for applications operating on a wide range of temperatures (e.g. automotive −40 °C to +150 °C), as well as to fulfill solder reflow compliance. |
---|---|
AbstractList | A new concept to increase the downsize scalability of perpendicular spin transfer torque magnetic random-access memory (p-STT-MRAM), called perpendicular shape anisotropy (PSA) STT-MRAM is presented. This approach consists of significantly increasing the thickness of the storage layer in p-STT-MRAM to values comparable to the cell diameter so as to induce a PSA in this layer which comes on top of the MgO/FeCoB interfacial anisotropy. This PSA-STT-MRAM is provided by depositing a thick ferromagnetic (FM) layer on top of an MgO/FeCoB based magnetic tunnel junction (MTJ) so that the thickness of the storage layer becomes of the order or larger than the diameter of the MTJ pillar. In contrast to conventional spin transfer torque (STT) magnetic random access memory, wherein the demagnetizing energy opposes the interfacial perpendicular magnetic anisotropy (iPMA), in these novel memory cells, both PSA and iPMA contributions favor out-of-plane orientation of the storage layer magnetization. Using thicker storage layers in these PSA-STT-MRAM has several advantages. Thanks to this robust source of bulk anisotropy, PSA-STT-MRAM offers a greatly improved downsize scalability over conventional perpendicular p-STT-MRAM. Despite the large thickness of the storage layer, PSA-STT-MRAM cells can still be written by STT provided their thermal stability factor Δ is adjusted in the same range as in conventional p-STT-MRAM, i.e. Δ of the order of 60-100 depending on the memory capacity and required bit error rate. Moreover, a low damping material can be used for the thick FM material, thus leading to a reduction of the write current. Thanks to the PSA, very high and easily tunable thermal stability factors can be achieved, even down to sub-10 nm diameters. The paper describes this new PSA-STT-MRAM concept, practical realization of such memory arrays, magnetic characterization demonstrating thermal stability factor above 200 for MTJs as small as 8 nm in diameter and the possibility to maintain thermal stability factor above 60 down to 4 nm diameter. We also show that thanks to the increased thickness of the storage layer, the anisotropy and therefore the memory retention are much less sensitive on temperature than in conventional p-STT-MRAM. This is very interesting for applications operating on a wide range of temperatures (e.g. automotive −40 °C to +150 °C), as well as to fulfill solder reflow compliance. |
Author | Buda-Prejbeanu, L D Vila, L Tillie, L Strelkov, N Lequeux, S Gregoire, G Sousa, R C Perrissin, N Prejbeanu, I L Dieny, B Auffret, S |
Author_xml | – sequence: 1 givenname: N surname: Perrissin fullname: Perrissin, N organization: Lomonosov Moscow State University Department of Physics, Moscow 119991, Russia – sequence: 2 givenname: G surname: Gregoire fullname: Gregoire, G organization: Lomonosov Moscow State University Department of Physics, Moscow 119991, Russia – sequence: 3 givenname: S surname: Lequeux fullname: Lequeux, S organization: Lomonosov Moscow State University Department of Physics, Moscow 119991, Russia – sequence: 4 givenname: L surname: Tillie fullname: Tillie, L organization: Lomonosov Moscow State University Department of Physics, Moscow 119991, Russia – sequence: 5 givenname: N surname: Strelkov fullname: Strelkov, N organization: Lomonosov Moscow State University Department of Physics, Moscow 119991, Russia – sequence: 6 givenname: S surname: Auffret fullname: Auffret, S organization: Lomonosov Moscow State University Department of Physics, Moscow 119991, Russia – sequence: 7 givenname: L D surname: Buda-Prejbeanu fullname: Buda-Prejbeanu, L D organization: Lomonosov Moscow State University Department of Physics, Moscow 119991, Russia – sequence: 8 givenname: R C surname: Sousa fullname: Sousa, R C organization: Lomonosov Moscow State University Department of Physics, Moscow 119991, Russia – sequence: 9 givenname: L surname: Vila fullname: Vila, L organization: Lomonosov Moscow State University Department of Physics, Moscow 119991, Russia – sequence: 10 givenname: B orcidid: 0000-0002-0575-5301 surname: Dieny fullname: Dieny, B organization: Lomonosov Moscow State University Department of Physics, Moscow 119991, Russia – sequence: 11 givenname: I L orcidid: 0000-0001-6577-032X surname: Prejbeanu fullname: Prejbeanu, I L email: lucian.prejbeanu@cea.fr organization: Lomonosov Moscow State University Department of Physics, Moscow 119991, Russia |
BackLink | https://hal.science/hal-02136390$$DView record in HAL |
BookMark | eNp1kD1PwzAQhi1UJNrCzugVidBz3HyxVRVQpEowwGw5zoW6auxgp0XdWPmb_BIcBbExnfTqeU93z4SMjDVIyCWDGwZ5PmM8ZVE6T_lMllDh_ISM_6IRGQPEccSzODsjE--3AJCkORsT84yuRVNptd9JR_1Gtkil0d52zrZH6lttaOek8TU62ln3vkfayDeDnVY05JVtIqkUek8bbKw73gbqQ7rKU78vIwbfn1-moRUedIDOyWktdx4vfueUvN7fvSxX0frp4XG5WEeK59BFKi7nCRaFgnB9lkL4MBxcpwwxYVABVzJFKGIOJSQsyUrGkiRU8gRqUDzlU3I17N3InWidbqQ7Ciu1WC3Wos8gDnZ4AQcWWBhY5az3Duu_AgPRuxW9SNGLFIPbULkeKtq2Ymv3zoRn_sd_APNofYI |
CODEN | JPAPBE |
CitedBy_id | crossref_primary_10_1109_LMAG_2021_3088399 crossref_primary_10_1063_5_0054356 crossref_primary_10_1063_5_0018909 crossref_primary_10_3390_app112311254 crossref_primary_10_1038_s41598_022_07277_2 crossref_primary_10_1088_1361_6463_ac8816 crossref_primary_10_1103_PhysRevB_102_024444 crossref_primary_10_1063_5_0029031 crossref_primary_10_1063_5_0096761 crossref_primary_10_1063_1_5144691 crossref_primary_10_1109_TMAG_2021_3055338 crossref_primary_10_1002_aisy_202000105 crossref_primary_10_1016_j_susmat_2021_e00270 crossref_primary_10_1088_1361_648X_ad19a0 crossref_primary_10_1088_1402_4896_ad5143 crossref_primary_10_1103_PhysRevApplied_16_024020 crossref_primary_10_1088_1361_6463_ad2120 crossref_primary_10_1103_PhysRevApplied_13_034016 crossref_primary_10_1088_1361_6463_ac80dd crossref_primary_10_1088_1361_6463_ad4a85 crossref_primary_10_1103_PhysRevB_102_014405 crossref_primary_10_1038_s41598_021_02185_3 crossref_primary_10_1088_1361_6463_ace062 crossref_primary_10_1038_s44306_023_00003_2 |
Cites_doi | 10.1063/1.2898888 10.1109/LMAG.2017.2707331 10.1109/TMAG.2010.2045354 10.1063/1.1459605 10.1063/1.4870917 10.1103/PhysRevB.54.9353 10.1109/IEDM.2008.4796680 10.1063/1.1667808 10.1038/srep05895 10.1103/RevModPhys.89.025008 10.1038/s41467-018-03003-7 10.1016/S0304-8853(03)00306-8 10.1063/1.4985720 10.1063/1.2159076 10.1063/1.1483122 10.1103/PhysRevB.79.184421 10.1038/s41598-018-32641-6 10.1038/nmat1256 10.1063/1.343481 10.1109/TMAG.2010.2045484 10.1063/1.2976435 10.1063/1.4927580 10.1209/epl/i2002-00430-0 10.1038/nmat2844 10.1073/pnas.1613864114 10.1038/nmat1257 10.1088/0953-8984/15/4/201 10.1016/0304-8853(96)00062-5 10.1038/nmat2804 10.1103/PhysRevLett.88.117601 10.1039/C8NR01365A 10.1063/1.1555292 10.1063/1.1536737 |
ContentType | Journal Article |
Copyright | 2019 IOP Publishing Ltd Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2019 IOP Publishing Ltd – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC |
DOI | 10.1088/1361-6463/ab0de4 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
DocumentTitleAlternate | Perpendicular shape anisotropy spin transfer torque magnetic random-access memory: towards sub-10 nm devices |
EISSN | 1361-6463 |
ExternalDocumentID | oai_HAL_hal_02136390v1 10_1088_1361_6463_ab0de4 dab0de4 |
GrantInformation_xml | – fundername: ERC Advanced Grant Magical grantid: 669204 |
GroupedDBID | -ET -~X 1JI 4.4 5B3 5GY 5PX 5VS 5ZH 6TJ 7.M 7.Q AAGCD AAGID AAJIO AAJKP AATNI ABCXL ABHWH ABJNI ABQJV ABVAM ACAFW ACGFO ACGFS ACHIP ACNCT AEFHF AFFNX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 EBS EDWGO EJD EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A P2P PJBAE RIN RKQ RNS RO9 ROL RPA SY9 TAE TN5 UCJ W28 WH7 XPP XSW YQT ZMT AAYXX CITATION 1XC |
ID | FETCH-LOGICAL-c380t-c2b45e99c0463760108005f61ee510d03ca6e09230b05157b1155b45850f0c363 |
IEDL.DBID | IOP |
ISSN | 0022-3727 |
IngestDate | Wed Sep 04 07:23:47 EDT 2024 Fri Aug 23 02:53:13 EDT 2024 Wed Aug 21 03:40:24 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c380t-c2b45e99c0463760108005f61ee510d03ca6e09230b05157b1155b45850f0c363 |
Notes | JPhysD-119517.R2 |
ORCID | 0000-0002-0575-5301 0000-0001-6577-032X 0000-0002-2183-3568 0000-0002-1171-2391 0000-0002-6105-151X 0000-0001-9047-2965 |
PageCount | 10 |
ParticipantIDs | hal_primary_oai_HAL_hal_02136390v1 iop_journals_10_1088_1361_6463_ab0de4 crossref_primary_10_1088_1361_6463_ab0de4 |
PublicationCentury | 2000 |
PublicationDate | 2019-06-05 |
PublicationDateYYYYMMDD | 2019-06-05 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-05 day: 05 |
PublicationDecade | 2010 |
PublicationTitle | Journal of physics. D, Applied physics |
PublicationTitleAbbrev | JPhysD |
PublicationTitleAlternate | J. Phys. D: Appl. Phys |
PublicationYear | 2019 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | 22 24 25 26 Khvalkovskiy A V (9) 2013; 46 27 28 29 Tsymbal E (37) 2003; 15 30 31 10 32 11 33 12 34 Skomski R (36) 2002; 58 13 35 14 38 17 18 19 Dieny B (15) 2016 Lee H (21) 2008; 41 1 2 3 4 Okada A (23) 2019; 87 5 6 7 8 Sato H (16) 2017; 56 20 |
References_xml | – ident: 28 doi: 10.1063/1.2898888 – ident: 13 doi: 10.1109/LMAG.2017.2707331 – ident: 24 doi: 10.1109/TMAG.2010.2045354 – ident: 10 doi: 10.1063/1.1459605 – ident: 35 doi: 10.1063/1.4870917 – ident: 5 doi: 10.1103/PhysRevB.54.9353 – ident: 18 doi: 10.1109/IEDM.2008.4796680 – ident: 34 doi: 10.1063/1.1667808 – ident: 12 doi: 10.1038/srep05895 – ident: 14 doi: 10.1103/RevModPhys.89.025008 – ident: 26 doi: 10.1038/s41467-018-03003-7 – ident: 29 doi: 10.1016/S0304-8853(03)00306-8 – volume: 56 issn: 0021-4922 year: 2017 ident: 16 publication-title: Japan. J. Appl. Phys. contributor: fullname: Sato H – ident: 17 doi: 10.1063/1.4985720 – ident: 19 doi: 10.1063/1.2159076 – ident: 1 doi: 10.1063/1.1483122 – ident: 31 doi: 10.1103/PhysRevB.79.184421 – ident: 38 doi: 10.1038/s41598-018-32641-6 – ident: 3 doi: 10.1038/nmat1256 – ident: 27 doi: 10.1063/1.343481 – ident: 32 doi: 10.1109/TMAG.2010.2045484 – ident: 4 doi: 10.1063/1.2976435 – ident: 33 doi: 10.1063/1.4927580 – volume: 58 start-page: 544 issn: 0295-5075 year: 2002 ident: 36 publication-title: Europhys. Lett. doi: 10.1209/epl/i2002-00430-0 contributor: fullname: Skomski R – ident: 11 doi: 10.1038/nmat2844 – ident: 22 doi: 10.1073/pnas.1613864114 – volume: 87 year: 2019 ident: 23 publication-title: Rev. Sci. Instrum. contributor: fullname: Okada A – ident: 2 doi: 10.1038/nmat1257 – volume: 46 issn: 0022-3727 year: 2013 ident: 9 publication-title: J. Phys. Appl. Phys. contributor: fullname: Khvalkovskiy A V – year: 2016 ident: 15 publication-title: Introduction to Magnetic Random-Access Memory contributor: fullname: Dieny B – volume: 15 start-page: R109 issn: 0953-8984 year: 2003 ident: 37 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/15/4/201 contributor: fullname: Tsymbal E – ident: 6 doi: 10.1016/0304-8853(96)00062-5 – ident: 7 doi: 10.1038/nmat2804 – volume: 41 issn: 0022-3727 year: 2008 ident: 21 publication-title: J. Phys. Appl. Phys. contributor: fullname: Lee H – ident: 20 doi: 10.1103/PhysRevLett.88.117601 – ident: 25 doi: 10.1039/C8NR01365A – ident: 8 doi: 10.1063/1.1555292 – ident: 30 doi: 10.1063/1.1536737 |
SSID | ssj0005681 |
Score | 2.4639845 |
Snippet | A new concept to increase the downsize scalability of perpendicular spin transfer torque magnetic random-access memory (p-STT-MRAM), called perpendicular shape... |
SourceID | hal crossref iop |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 234001 |
SubjectTerms | Condensed Matter magnetic tunnel junctions MRAM perpendicular magnetic anisotropy Physics spin transfer torque |
Title | Perpendicular shape anisotropy spin transfer torque magnetic random-access memory: towards sub-10 nm devices |
URI | https://iopscience.iop.org/article/10.1088/1361-6463/ab0de4 https://hal.science/hal-02136390 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS_QwEB5cRdCD3-L6RZDXg4eu6abNpnoSUVbxffWg4EEoSZq6i2y3bLuCnrz6N_0lTtq6r4qCeCthmjSTZuYJeWYG4I8OWpFkPnUiI_GAomLfEToWTswMV81m7DFtg5P__uPtK-_02r8eg_1RLEw_rUx_Ax_LRMGlCitCnNh1GXcd7nG2KxWNjFeDCYZbxZ68Ts4v_vM7uHBHqcLRS1d3lF_18MEn1TqWEVnD0d85muNZuHn7xJJfctcY5qqhHz9lb_zlHOZgpgKg5KAUnYcxkyzA9Lu0hAswWdBCdbYIyYUZ2CK53YKtSrKOTA2RSTfr54N--kCytJuQvMC-ZkDw-I5ehvTkbWJDIwm2R2iCZVGTkfQsp_dhD6UsUTcj2VChdX55ek56JDKFwVqCq-Ojy8O2U1VocDQTNHd0U3m-CQJt845Zdo3Fn37MXWNwr0eUackNRQxJla0l01KIP318Rfg0pppxtgzjST8xK0BkC11AJD3XRuJiF0GgvMAVUjDPsJYSddh5W6MwLRNxhMUFuhCh1WZotRmW2qzDFi7iSMxm0G4fnIW2DSENDhvQe7cO27g6YbVls287W_2h3BpMIZgKChqZvw7j-WBoNhCw5Gqz-DFfAbon5Ac |
link.rule.ids | 230,315,783,787,888,27936,27937,38877,53854 |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2xRUXtAUop6kKhFioHDtl11rHX6a0qrLbfe6BSb8F2HLqqNhttskjlxJW_yS_p2Em_EJWQeousiZOM45ln-fkNwJaJ-6linAapVbhA0RkPpMlkkDErdK-XRcy4w8lHx2J4Gu2f8bOmzqk_CzMtmtDfwctaKLh2YUOIk92QiTAQkWBdpWlqo26RZi14ijOXO_H8vZPRLcdDyPBGLhwzdbNP-a9e7uWl1rljRbbwDe4km8EL-Hb9mjXH5KIzr3TH_PxLwfER37ECzxsgSnZq85fwxOarsHxHnnAVFj091JSvIB_ZmSuWO_asVVKeq8ISlY_LaTWbFpekLMY5qTwGtjOCy3jMNmSivufuiCTB9hRDsfK1GcnEcXsvt9HKEXZLUs41Ruk_v37nE5JaH7jW4HTw5evuMGgqNQSGSVoFpqcjbuPYOP0xx7JxOJRnIrQW53xKmVHCUsSSVLuaMn2NOJTjLZLTjBom2GtYyKe5XQei-pgKUhWF7kQudhHHOopDqSSLLOtr2YZP1-OUFLUgR-I30qVMnEcT59Gk9mgbPuBA3pg5Je3hzmHi2hDa4GNj-iNsw0ccoaSZuuWDnb35T7tNeDb6PEgO944P3sIS4qvYM8v4BixUs7l9hxim0u_9f3oF-iHpZw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Perpendicular+shape+anisotropy+spin+transfer+torque+magnetic+random-access+memory%3A+towards+sub-10%E2%80%89nm+devices&rft.jtitle=Journal+of+physics.+D%2C+Applied+physics&rft.au=Perrissin%2C+N.&rft.au=Gr%C3%A9goire%2C+G.&rft.au=Lequeux%2C+S.&rft.au=Tillie%2C+L.&rft.date=2019-06-05&rft.pub=IOP+Publishing&rft.issn=0022-3727&rft.eissn=1361-6463&rft.volume=52&rft.issue=23&rft_id=info:doi/10.1088%2F1361-6463%2Fab0de4&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02136390v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3727&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3727&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3727&client=summon |