Perpendicular shape anisotropy spin transfer torque magnetic random-access memory: towards sub-10 nm devices

A new concept to increase the downsize scalability of perpendicular spin transfer torque magnetic random-access memory (p-STT-MRAM), called perpendicular shape anisotropy (PSA) STT-MRAM is presented. This approach consists of significantly increasing the thickness of the storage layer in p-STT-MRAM...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. D, Applied physics Vol. 52; no. 23; pp. 234001 - 234010
Main Authors Perrissin, N, Gregoire, G, Lequeux, S, Tillie, L, Strelkov, N, Auffret, S, Buda-Prejbeanu, L D, Sousa, R C, Vila, L, Dieny, B, Prejbeanu, I L
Format Journal Article
LanguageEnglish
Published IOP Publishing 05.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A new concept to increase the downsize scalability of perpendicular spin transfer torque magnetic random-access memory (p-STT-MRAM), called perpendicular shape anisotropy (PSA) STT-MRAM is presented. This approach consists of significantly increasing the thickness of the storage layer in p-STT-MRAM to values comparable to the cell diameter so as to induce a PSA in this layer which comes on top of the MgO/FeCoB interfacial anisotropy. This PSA-STT-MRAM is provided by depositing a thick ferromagnetic (FM) layer on top of an MgO/FeCoB based magnetic tunnel junction (MTJ) so that the thickness of the storage layer becomes of the order or larger than the diameter of the MTJ pillar. In contrast to conventional spin transfer torque (STT) magnetic random access memory, wherein the demagnetizing energy opposes the interfacial perpendicular magnetic anisotropy (iPMA), in these novel memory cells, both PSA and iPMA contributions favor out-of-plane orientation of the storage layer magnetization. Using thicker storage layers in these PSA-STT-MRAM has several advantages. Thanks to this robust source of bulk anisotropy, PSA-STT-MRAM offers a greatly improved downsize scalability over conventional perpendicular p-STT-MRAM. Despite the large thickness of the storage layer, PSA-STT-MRAM cells can still be written by STT provided their thermal stability factor Δ is adjusted in the same range as in conventional p-STT-MRAM, i.e. Δ of the order of 60-100 depending on the memory capacity and required bit error rate. Moreover, a low damping material can be used for the thick FM material, thus leading to a reduction of the write current. Thanks to the PSA, very high and easily tunable thermal stability factors can be achieved, even down to sub-10 nm diameters. The paper describes this new PSA-STT-MRAM concept, practical realization of such memory arrays, magnetic characterization demonstrating thermal stability factor above 200 for MTJs as small as 8 nm in diameter and the possibility to maintain thermal stability factor above 60 down to 4 nm diameter. We also show that thanks to the increased thickness of the storage layer, the anisotropy and therefore the memory retention are much less sensitive on temperature than in conventional p-STT-MRAM. This is very interesting for applications operating on a wide range of temperatures (e.g. automotive  −40 °C to  +150 °C), as well as to fulfill solder reflow compliance.
AbstractList A new concept to increase the downsize scalability of perpendicular spin transfer torque magnetic random-access memory (p-STT-MRAM), called perpendicular shape anisotropy (PSA) STT-MRAM is presented. This approach consists of significantly increasing the thickness of the storage layer in p-STT-MRAM to values comparable to the cell diameter so as to induce a PSA in this layer which comes on top of the MgO/FeCoB interfacial anisotropy. This PSA-STT-MRAM is provided by depositing a thick ferromagnetic (FM) layer on top of an MgO/FeCoB based magnetic tunnel junction (MTJ) so that the thickness of the storage layer becomes of the order or larger than the diameter of the MTJ pillar. In contrast to conventional spin transfer torque (STT) magnetic random access memory, wherein the demagnetizing energy opposes the interfacial perpendicular magnetic anisotropy (iPMA), in these novel memory cells, both PSA and iPMA contributions favor out-of-plane orientation of the storage layer magnetization. Using thicker storage layers in these PSA-STT-MRAM has several advantages. Thanks to this robust source of bulk anisotropy, PSA-STT-MRAM offers a greatly improved downsize scalability over conventional perpendicular p-STT-MRAM. Despite the large thickness of the storage layer, PSA-STT-MRAM cells can still be written by STT provided their thermal stability factor Δ is adjusted in the same range as in conventional p-STT-MRAM, i.e. Δ of the order of 60-100 depending on the memory capacity and required bit error rate. Moreover, a low damping material can be used for the thick FM material, thus leading to a reduction of the write current. Thanks to the PSA, very high and easily tunable thermal stability factors can be achieved, even down to sub-10 nm diameters. The paper describes this new PSA-STT-MRAM concept, practical realization of such memory arrays, magnetic characterization demonstrating thermal stability factor above 200 for MTJs as small as 8 nm in diameter and the possibility to maintain thermal stability factor above 60 down to 4 nm diameter. We also show that thanks to the increased thickness of the storage layer, the anisotropy and therefore the memory retention are much less sensitive on temperature than in conventional p-STT-MRAM. This is very interesting for applications operating on a wide range of temperatures (e.g. automotive  −40 °C to  +150 °C), as well as to fulfill solder reflow compliance.
Author Buda-Prejbeanu, L D
Vila, L
Tillie, L
Strelkov, N
Lequeux, S
Gregoire, G
Sousa, R C
Perrissin, N
Prejbeanu, I L
Dieny, B
Auffret, S
Author_xml – sequence: 1
  givenname: N
  surname: Perrissin
  fullname: Perrissin, N
  organization: Lomonosov Moscow State University Department of Physics, Moscow 119991, Russia
– sequence: 2
  givenname: G
  surname: Gregoire
  fullname: Gregoire, G
  organization: Lomonosov Moscow State University Department of Physics, Moscow 119991, Russia
– sequence: 3
  givenname: S
  surname: Lequeux
  fullname: Lequeux, S
  organization: Lomonosov Moscow State University Department of Physics, Moscow 119991, Russia
– sequence: 4
  givenname: L
  surname: Tillie
  fullname: Tillie, L
  organization: Lomonosov Moscow State University Department of Physics, Moscow 119991, Russia
– sequence: 5
  givenname: N
  surname: Strelkov
  fullname: Strelkov, N
  organization: Lomonosov Moscow State University Department of Physics, Moscow 119991, Russia
– sequence: 6
  givenname: S
  surname: Auffret
  fullname: Auffret, S
  organization: Lomonosov Moscow State University Department of Physics, Moscow 119991, Russia
– sequence: 7
  givenname: L D
  surname: Buda-Prejbeanu
  fullname: Buda-Prejbeanu, L D
  organization: Lomonosov Moscow State University Department of Physics, Moscow 119991, Russia
– sequence: 8
  givenname: R C
  surname: Sousa
  fullname: Sousa, R C
  organization: Lomonosov Moscow State University Department of Physics, Moscow 119991, Russia
– sequence: 9
  givenname: L
  surname: Vila
  fullname: Vila, L
  organization: Lomonosov Moscow State University Department of Physics, Moscow 119991, Russia
– sequence: 10
  givenname: B
  orcidid: 0000-0002-0575-5301
  surname: Dieny
  fullname: Dieny, B
  organization: Lomonosov Moscow State University Department of Physics, Moscow 119991, Russia
– sequence: 11
  givenname: I L
  orcidid: 0000-0001-6577-032X
  surname: Prejbeanu
  fullname: Prejbeanu, I L
  email: lucian.prejbeanu@cea.fr
  organization: Lomonosov Moscow State University Department of Physics, Moscow 119991, Russia
BackLink https://hal.science/hal-02136390$$DView record in HAL
BookMark eNp1kD1PwzAQhi1UJNrCzugVidBz3HyxVRVQpEowwGw5zoW6auxgp0XdWPmb_BIcBbExnfTqeU93z4SMjDVIyCWDGwZ5PmM8ZVE6T_lMllDh_ISM_6IRGQPEccSzODsjE--3AJCkORsT84yuRVNptd9JR_1Gtkil0d52zrZH6lttaOek8TU62ln3vkfayDeDnVY05JVtIqkUek8bbKw73gbqQ7rKU78vIwbfn1-moRUedIDOyWktdx4vfueUvN7fvSxX0frp4XG5WEeK59BFKi7nCRaFgnB9lkL4MBxcpwwxYVABVzJFKGIOJSQsyUrGkiRU8gRqUDzlU3I17N3InWidbqQ7Ciu1WC3Wos8gDnZ4AQcWWBhY5az3Duu_AgPRuxW9SNGLFIPbULkeKtq2Ymv3zoRn_sd_APNofYI
CODEN JPAPBE
CitedBy_id crossref_primary_10_1109_LMAG_2021_3088399
crossref_primary_10_1063_5_0054356
crossref_primary_10_1063_5_0018909
crossref_primary_10_3390_app112311254
crossref_primary_10_1038_s41598_022_07277_2
crossref_primary_10_1088_1361_6463_ac8816
crossref_primary_10_1103_PhysRevB_102_024444
crossref_primary_10_1063_5_0029031
crossref_primary_10_1063_5_0096761
crossref_primary_10_1063_1_5144691
crossref_primary_10_1109_TMAG_2021_3055338
crossref_primary_10_1002_aisy_202000105
crossref_primary_10_1016_j_susmat_2021_e00270
crossref_primary_10_1088_1361_648X_ad19a0
crossref_primary_10_1088_1402_4896_ad5143
crossref_primary_10_1103_PhysRevApplied_16_024020
crossref_primary_10_1088_1361_6463_ad2120
crossref_primary_10_1103_PhysRevApplied_13_034016
crossref_primary_10_1088_1361_6463_ac80dd
crossref_primary_10_1088_1361_6463_ad4a85
crossref_primary_10_1103_PhysRevB_102_014405
crossref_primary_10_1038_s41598_021_02185_3
crossref_primary_10_1088_1361_6463_ace062
crossref_primary_10_1038_s44306_023_00003_2
Cites_doi 10.1063/1.2898888
10.1109/LMAG.2017.2707331
10.1109/TMAG.2010.2045354
10.1063/1.1459605
10.1063/1.4870917
10.1103/PhysRevB.54.9353
10.1109/IEDM.2008.4796680
10.1063/1.1667808
10.1038/srep05895
10.1103/RevModPhys.89.025008
10.1038/s41467-018-03003-7
10.1016/S0304-8853(03)00306-8
10.1063/1.4985720
10.1063/1.2159076
10.1063/1.1483122
10.1103/PhysRevB.79.184421
10.1038/s41598-018-32641-6
10.1038/nmat1256
10.1063/1.343481
10.1109/TMAG.2010.2045484
10.1063/1.2976435
10.1063/1.4927580
10.1209/epl/i2002-00430-0
10.1038/nmat2844
10.1073/pnas.1613864114
10.1038/nmat1257
10.1088/0953-8984/15/4/201
10.1016/0304-8853(96)00062-5
10.1038/nmat2804
10.1103/PhysRevLett.88.117601
10.1039/C8NR01365A
10.1063/1.1555292
10.1063/1.1536737
ContentType Journal Article
Copyright 2019 IOP Publishing Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2019 IOP Publishing Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
DOI 10.1088/1361-6463/ab0de4
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
DocumentTitleAlternate Perpendicular shape anisotropy spin transfer torque magnetic random-access memory: towards sub-10 nm devices
EISSN 1361-6463
ExternalDocumentID oai_HAL_hal_02136390v1
10_1088_1361_6463_ab0de4
dab0de4
GrantInformation_xml – fundername: ERC Advanced Grant Magical
  grantid: 669204
GroupedDBID -ET
-~X
1JI
4.4
5B3
5GY
5PX
5VS
5ZH
6TJ
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AATNI
ABCXL
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFO
ACGFS
ACHIP
ACNCT
AEFHF
AFFNX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
P2P
PJBAE
RIN
RKQ
RNS
RO9
ROL
RPA
SY9
TAE
TN5
UCJ
W28
WH7
XPP
XSW
YQT
ZMT
AAYXX
CITATION
1XC
ID FETCH-LOGICAL-c380t-c2b45e99c0463760108005f61ee510d03ca6e09230b05157b1155b45850f0c363
IEDL.DBID IOP
ISSN 0022-3727
IngestDate Wed Sep 04 07:23:47 EDT 2024
Fri Aug 23 02:53:13 EDT 2024
Wed Aug 21 03:40:24 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c380t-c2b45e99c0463760108005f61ee510d03ca6e09230b05157b1155b45850f0c363
Notes JPhysD-119517.R2
ORCID 0000-0002-0575-5301
0000-0001-6577-032X
0000-0002-2183-3568
0000-0002-1171-2391
0000-0002-6105-151X
0000-0001-9047-2965
PageCount 10
ParticipantIDs hal_primary_oai_HAL_hal_02136390v1
iop_journals_10_1088_1361_6463_ab0de4
crossref_primary_10_1088_1361_6463_ab0de4
PublicationCentury 2000
PublicationDate 2019-06-05
PublicationDateYYYYMMDD 2019-06-05
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-05
  day: 05
PublicationDecade 2010
PublicationTitle Journal of physics. D, Applied physics
PublicationTitleAbbrev JPhysD
PublicationTitleAlternate J. Phys. D: Appl. Phys
PublicationYear 2019
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 22
24
25
26
Khvalkovskiy A V (9) 2013; 46
27
28
29
Tsymbal E (37) 2003; 15
30
31
10
32
11
33
12
34
Skomski R (36) 2002; 58
13
35
14
38
17
18
19
Dieny B (15) 2016
Lee H (21) 2008; 41
1
2
3
4
Okada A (23) 2019; 87
5
6
7
8
Sato H (16) 2017; 56
20
References_xml – ident: 28
  doi: 10.1063/1.2898888
– ident: 13
  doi: 10.1109/LMAG.2017.2707331
– ident: 24
  doi: 10.1109/TMAG.2010.2045354
– ident: 10
  doi: 10.1063/1.1459605
– ident: 35
  doi: 10.1063/1.4870917
– ident: 5
  doi: 10.1103/PhysRevB.54.9353
– ident: 18
  doi: 10.1109/IEDM.2008.4796680
– ident: 34
  doi: 10.1063/1.1667808
– ident: 12
  doi: 10.1038/srep05895
– ident: 14
  doi: 10.1103/RevModPhys.89.025008
– ident: 26
  doi: 10.1038/s41467-018-03003-7
– ident: 29
  doi: 10.1016/S0304-8853(03)00306-8
– volume: 56
  issn: 0021-4922
  year: 2017
  ident: 16
  publication-title: Japan. J. Appl. Phys.
  contributor:
    fullname: Sato H
– ident: 17
  doi: 10.1063/1.4985720
– ident: 19
  doi: 10.1063/1.2159076
– ident: 1
  doi: 10.1063/1.1483122
– ident: 31
  doi: 10.1103/PhysRevB.79.184421
– ident: 38
  doi: 10.1038/s41598-018-32641-6
– ident: 3
  doi: 10.1038/nmat1256
– ident: 27
  doi: 10.1063/1.343481
– ident: 32
  doi: 10.1109/TMAG.2010.2045484
– ident: 4
  doi: 10.1063/1.2976435
– ident: 33
  doi: 10.1063/1.4927580
– volume: 58
  start-page: 544
  issn: 0295-5075
  year: 2002
  ident: 36
  publication-title: Europhys. Lett.
  doi: 10.1209/epl/i2002-00430-0
  contributor:
    fullname: Skomski R
– ident: 11
  doi: 10.1038/nmat2844
– ident: 22
  doi: 10.1073/pnas.1613864114
– volume: 87
  year: 2019
  ident: 23
  publication-title: Rev. Sci. Instrum.
  contributor:
    fullname: Okada A
– ident: 2
  doi: 10.1038/nmat1257
– volume: 46
  issn: 0022-3727
  year: 2013
  ident: 9
  publication-title: J. Phys. Appl. Phys.
  contributor:
    fullname: Khvalkovskiy A V
– year: 2016
  ident: 15
  publication-title: Introduction to Magnetic Random-Access Memory
  contributor:
    fullname: Dieny B
– volume: 15
  start-page: R109
  issn: 0953-8984
  year: 2003
  ident: 37
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/15/4/201
  contributor:
    fullname: Tsymbal E
– ident: 6
  doi: 10.1016/0304-8853(96)00062-5
– ident: 7
  doi: 10.1038/nmat2804
– volume: 41
  issn: 0022-3727
  year: 2008
  ident: 21
  publication-title: J. Phys. Appl. Phys.
  contributor:
    fullname: Lee H
– ident: 20
  doi: 10.1103/PhysRevLett.88.117601
– ident: 25
  doi: 10.1039/C8NR01365A
– ident: 8
  doi: 10.1063/1.1555292
– ident: 30
  doi: 10.1063/1.1536737
SSID ssj0005681
Score 2.4639845
Snippet A new concept to increase the downsize scalability of perpendicular spin transfer torque magnetic random-access memory (p-STT-MRAM), called perpendicular shape...
SourceID hal
crossref
iop
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 234001
SubjectTerms Condensed Matter
magnetic tunnel junctions
MRAM
perpendicular magnetic anisotropy
Physics
spin transfer torque
Title Perpendicular shape anisotropy spin transfer torque magnetic random-access memory: towards sub-10 nm devices
URI https://iopscience.iop.org/article/10.1088/1361-6463/ab0de4
https://hal.science/hal-02136390
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS_QwEB5cRdCD3-L6RZDXg4eu6abNpnoSUVbxffWg4EEoSZq6i2y3bLuCnrz6N_0lTtq6r4qCeCthmjSTZuYJeWYG4I8OWpFkPnUiI_GAomLfEToWTswMV81m7DFtg5P__uPtK-_02r8eg_1RLEw_rUx_Ax_LRMGlCitCnNh1GXcd7nG2KxWNjFeDCYZbxZ68Ts4v_vM7uHBHqcLRS1d3lF_18MEn1TqWEVnD0d85muNZuHn7xJJfctcY5qqhHz9lb_zlHOZgpgKg5KAUnYcxkyzA9Lu0hAswWdBCdbYIyYUZ2CK53YKtSrKOTA2RSTfr54N--kCytJuQvMC-ZkDw-I5ehvTkbWJDIwm2R2iCZVGTkfQsp_dhD6UsUTcj2VChdX55ek56JDKFwVqCq-Ojy8O2U1VocDQTNHd0U3m-CQJt845Zdo3Fn37MXWNwr0eUackNRQxJla0l01KIP318Rfg0pppxtgzjST8xK0BkC11AJD3XRuJiF0GgvMAVUjDPsJYSddh5W6MwLRNxhMUFuhCh1WZotRmW2qzDFi7iSMxm0G4fnIW2DSENDhvQe7cO27g6YbVls287W_2h3BpMIZgKChqZvw7j-WBoNhCw5Gqz-DFfAbon5Ac
link.rule.ids 230,315,783,787,888,27936,27937,38877,53854
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2xRUXtAUop6kKhFioHDtl11rHX6a0qrLbfe6BSb8F2HLqqNhttskjlxJW_yS_p2Em_EJWQeousiZOM45ln-fkNwJaJ-6linAapVbhA0RkPpMlkkDErdK-XRcy4w8lHx2J4Gu2f8bOmzqk_CzMtmtDfwctaKLh2YUOIk92QiTAQkWBdpWlqo26RZi14ijOXO_H8vZPRLcdDyPBGLhwzdbNP-a9e7uWl1rljRbbwDe4km8EL-Hb9mjXH5KIzr3TH_PxLwfER37ECzxsgSnZq85fwxOarsHxHnnAVFj091JSvIB_ZmSuWO_asVVKeq8ISlY_LaTWbFpekLMY5qTwGtjOCy3jMNmSivufuiCTB9hRDsfK1GcnEcXsvt9HKEXZLUs41Ruk_v37nE5JaH7jW4HTw5evuMGgqNQSGSVoFpqcjbuPYOP0xx7JxOJRnIrQW53xKmVHCUsSSVLuaMn2NOJTjLZLTjBom2GtYyKe5XQei-pgKUhWF7kQudhHHOopDqSSLLOtr2YZP1-OUFLUgR-I30qVMnEcT59Gk9mgbPuBA3pg5Je3hzmHi2hDa4GNj-iNsw0ccoaSZuuWDnb35T7tNeDb6PEgO944P3sIS4qvYM8v4BixUs7l9hxim0u_9f3oF-iHpZw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Perpendicular+shape+anisotropy+spin+transfer+torque+magnetic+random-access+memory%3A+towards+sub-10%E2%80%89nm+devices&rft.jtitle=Journal+of+physics.+D%2C+Applied+physics&rft.au=Perrissin%2C+N.&rft.au=Gr%C3%A9goire%2C+G.&rft.au=Lequeux%2C+S.&rft.au=Tillie%2C+L.&rft.date=2019-06-05&rft.pub=IOP+Publishing&rft.issn=0022-3727&rft.eissn=1361-6463&rft.volume=52&rft.issue=23&rft_id=info:doi/10.1088%2F1361-6463%2Fab0de4&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02136390v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3727&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3727&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3727&client=summon