Simultaneous removal of ammonia and N-nitrosamine precursors from high ammonia water by zeolite and powdered activated carbon
When adding sufficient chlorine to achieve breakpoint chlorination to source water containing high concentration of ammonia during drinking water treatment, high concentrations of disinfection by-products(DBPs) may form. If N-nitrosamine precursors are present, highly toxic N-nitrosamines, primarily...
Saved in:
Published in | Journal of environmental sciences (China) Vol. 64; no. 2; pp. 82 - 91 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.02.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | When adding sufficient chlorine to achieve breakpoint chlorination to source water containing high concentration of ammonia during drinking water treatment, high concentrations of disinfection by-products(DBPs) may form. If N-nitrosamine precursors are present, highly toxic N-nitrosamines, primarily N-nitrosodimethylamine(NDMA), may also form. Removing their precursors before disinfection should be a more effective way to minimize these DBPs formation. In this study, zeolites and activated carbon were examined for ammonia and N-nitrosamine precursor removal when incorporated into drinking water treatment processes.The test results indicate that Mordenite zeolite can remove ammonia and five of seven N-nitrosamine precursors efficiently by single step adsorption test. The practical applicability was evaluated by simulation of typical drinking water treatment processes using six-gang stirring system. The Mordenite zeolite was applied at the steps of lime softening, alum coagulation, and alum coagulation with powdered activated carbon(PAC) sorption. While the lime softening process resulted in poor zeolite performance, alum coagulation did not impact ammonia and N-nitrosamine precursor removal. During alum coagulation, more than67% ammonia and 70%–100% N-nitrosamine precursors were removed by Mordenite zeolite(except 3-(dimethylaminomethyl)indole(DMAI) and 4-dimethylaminoantipyrine(DMAP)). PAC effectively removed DMAI and DMAP when added during alum coagulation. A combination of the zeolite and PAC selected efficiently removed ammonia and all tested seven N-nitrosamine precursors(dimethylamine(DMA), ethylmethylamine(EMA), diethylamine(DEA), dipropylamine(DPA), trimethylamine(TMA), DMAP, and DMAI) during the alum coagulation process. |
---|---|
AbstractList | When adding sufficient chlorine to achieve breakpoint chlorination to source water containing high concentration of ammonia during drinking water treatment, high concentrations of disinfection by-products (DBPs) may form. If N-nitrosamine precursors are present, highly toxic N-nitrosamines, primarily N-nitrosodimethylamine (NDMA), may also form. Removing their precursors before disinfection should be a more effective way to minimize these DBPs formation. In this study, zeolites and activated carbon were examined for ammonia and N-nitrosamine precursor removal when incorporated into drinking water treatment processes. The test results indicate that Mordenite zeolite can remove ammonia and five of seven N-nitrosamine precursors efficiently by single step adsorption test. The practical applicability was evaluated by simulation of typical drinking water treatment processes using six-gang stirring system. The Mordenite zeolite was applied at the steps of lime softening, alum coagulation, and alum coagulation with powdered activated carbon (PAC) sorption. While the lime softening process resulted in poor zeolite performance, alum coagulation did not impact ammonia and N-nitrosamine precursor removal. During alum coagulation, more than 67% ammonia and 70%-100% N-nitrosamine precursors were removed by Mordenite zeolite (except 3-(dimethylaminomethyl)indole (DMAI) and 4-dimethylaminoantipyrine (DMAP)). PAC effectively removed DMAI and DMAP when added during alum coagulation. A combination of the zeolite and PAC selected efficiently removed ammonia and all tested seven N-nitrosamine precursors (dimethylamine (DMA), ethylmethylamine (EMA), diethylamine (DEA), dipropylamine (DPA), trimethylamine (TMA), DMAP, and DMAI) during the alum coagulation process. When adding sufficient chlorine to achieve breakpoint chlorination to source water containing high concentration of ammonia during drinking water treatment, high concentrations of disinfection by-products(DBPs) may form. If N-nitrosamine precursors are present, highly toxic N-nitrosamines, primarily N-nitrosodimethylamine(NDMA), may also form. Removing their precursors before disinfection should be a more effective way to minimize these DBPs formation. In this study, zeolites and activated carbon were examined for ammonia and N-nitrosamine precursor removal when incorporated into drinking water treatment processes.The test results indicate that Mordenite zeolite can remove ammonia and five of seven N-nitrosamine precursors efficiently by single step adsorption test. The practical applicability was evaluated by simulation of typical drinking water treatment processes using six-gang stirring system. The Mordenite zeolite was applied at the steps of lime softening, alum coagulation, and alum coagulation with powdered activated carbon(PAC) sorption. While the lime softening process resulted in poor zeolite performance, alum coagulation did not impact ammonia and N-nitrosamine precursor removal. During alum coagulation, more than67% ammonia and 70%–100% N-nitrosamine precursors were removed by Mordenite zeolite(except 3-(dimethylaminomethyl)indole(DMAI) and 4-dimethylaminoantipyrine(DMAP)). PAC effectively removed DMAI and DMAP when added during alum coagulation. A combination of the zeolite and PAC selected efficiently removed ammonia and all tested seven N-nitrosamine precursors(dimethylamine(DMA), ethylmethylamine(EMA), diethylamine(DEA), dipropylamine(DPA), trimethylamine(TMA), DMAP, and DMAI) during the alum coagulation process. When adding sufficient chlorine to achieve breakpoint chlorination to source water containing high concentration of ammonia during drinking water treatment, high concentrations of disinfection by-products (DBPs) may form. If N-nitrosamine precursors are present, highly toxic N-nitrosamines, primarily N-nitrosodimethylamine (NDMA), may also form. Removing their precursors before disinfection should be a more effective way to minimize these DBPs formation. In this study, zeolites and activated carbon were examined for ammonia and N-nitrosamine precursor removal when incorporated into drinking water treatment processes. The test results indicate that Mordenite zeolite can remove ammonia and five of seven N-nitrosamine precursors efficiently by single step adsorption test. The practical applicability was evaluated by simulation of typical drinking water treatment processes using six-gang stirring system. The Mordenite zeolite was applied at the steps of lime softening, alum coagulation, and alum coagulation with powdered activated carbon (PAC) sorption. While the lime softening process resulted in poor zeolite performance, alum coagulation did not impact ammonia and N-nitrosamine precursor removal. During alum coagulation, more than 67% ammonia and 70%-100% N-nitrosamine precursors were removed by Mordenite zeolite (except 3-(dimethylaminomethyl)indole (DMAI) and 4-dimethylaminoantipyrine (DMAP)). PAC effectively removed DMAI and DMAP when added during alum coagulation. A combination of the zeolite and PAC selected efficiently removed ammonia and all tested seven N-nitrosamine precursors (dimethylamine (DMA), ethylmethylamine (EMA), diethylamine (DEA), dipropylamine (DPA), trimethylamine (TMA), DMAP, and DMAI) during the alum coagulation process.When adding sufficient chlorine to achieve breakpoint chlorination to source water containing high concentration of ammonia during drinking water treatment, high concentrations of disinfection by-products (DBPs) may form. If N-nitrosamine precursors are present, highly toxic N-nitrosamines, primarily N-nitrosodimethylamine (NDMA), may also form. Removing their precursors before disinfection should be a more effective way to minimize these DBPs formation. In this study, zeolites and activated carbon were examined for ammonia and N-nitrosamine precursor removal when incorporated into drinking water treatment processes. The test results indicate that Mordenite zeolite can remove ammonia and five of seven N-nitrosamine precursors efficiently by single step adsorption test. The practical applicability was evaluated by simulation of typical drinking water treatment processes using six-gang stirring system. The Mordenite zeolite was applied at the steps of lime softening, alum coagulation, and alum coagulation with powdered activated carbon (PAC) sorption. While the lime softening process resulted in poor zeolite performance, alum coagulation did not impact ammonia and N-nitrosamine precursor removal. During alum coagulation, more than 67% ammonia and 70%-100% N-nitrosamine precursors were removed by Mordenite zeolite (except 3-(dimethylaminomethyl)indole (DMAI) and 4-dimethylaminoantipyrine (DMAP)). PAC effectively removed DMAI and DMAP when added during alum coagulation. A combination of the zeolite and PAC selected efficiently removed ammonia and all tested seven N-nitrosamine precursors (dimethylamine (DMA), ethylmethylamine (EMA), diethylamine (DEA), dipropylamine (DPA), trimethylamine (TMA), DMAP, and DMAI) during the alum coagulation process. When adding sufficient chlorine to achieve breakpoint chlorination to source water containing high concentration of ammonia during drinking water treatment, high concentrations of disinfection by-products (DBPs) may form. If N-nitrosamine precursors are present, highly toxic N-nitrosamines, primarily N-nitrosodimethylamine (NDMA), may also form. Removing their precursors before disinfection should be a more effective way to minimize these DBPs formation. In this study, zeolites and activated carbon were examined for ammonia and N-nitrosamine precursor removal when incorporated into drinking water treatment processes. The test results indicate that Mordenite zeolite can remove ammonia and five of seven N-nitrosamine precursors efficiently by single step adsorption test. The practical applicability was evaluated by simulation of typical drinking water treatment processes using six-gang stirring system. The Mordenite zeolite was applied at the steps of lime softening, alum coagulation, and alum coagulation with powdered activated carbon (PAC) sorption. While the lime softening process resulted in poor zeolite performance, alum coagulation did not impact ammonia and N-nitrosamine precursor removal. During alum coagulation, more than 67% ammonia and 70%–100% N-nitrosamine precursors were removed by Mordenite zeolite (except 3-(dimethylaminomethyl)indole (DMAI) and 4-dimethylaminoantipyrine (DMAP)). PAC effectively removed DMAI and DMAP when added during alum coagulation. A combination of the zeolite and PAC selected efficiently removed ammonia and all tested seven N-nitrosamine precursors (dimethylamine (DMA), ethylmethylamine (EMA), diethylamine (DEA), dipropylamine (DPA), trimethylamine (TMA), DMAP, and DMAI) during the alum coagulation process. [Display omitted] |
Author | Runmiao Xue;Ariel Donovan;Haiting Zhang;Yinfa Ma;Craig Adams;John Yang;Bin Hua;Enos Inniss;Todd Eichholz;Honglan Shi |
AuthorAffiliation | Department of Chemistry and Environmental Research Center, Missouri University of Science and Technology, RoIIa, MO 65409, USA;Center for Single Nanoparticle, Single Cell, and Single Molecule Monitorin9 (CS3M), Missouri University of Science and Technology, Rolla,MO 6S409, USA;Department of Civil Engineering, Saint Louis University, St. Louis, MO 63103, USA;Department of Agriculture and Environmental Sciences, Lincoln University of Missouri, Jefferson City, MO 65101, USA;Department of Civil & Environmental Engineering, University of Missouri-Columbia, Columbia, MO 65211, USA;Missouri Department of Natural Resources, Jefferson City, MO 65102, USA |
Author_xml | – sequence: 1 givenname: Runmiao surname: Xue fullname: Xue, Runmiao email: rx3h2@mst.edu organization: Department of Chemistry and Environmental Research Center, Missouri University of Science and Technology, Rolla, MO 65409, USA – sequence: 2 givenname: Ariel surname: Donovan fullname: Donovan, Ariel organization: Department of Chemistry and Environmental Research Center, Missouri University of Science and Technology, Rolla, MO 65409, USA – sequence: 3 givenname: Haiting surname: Zhang fullname: Zhang, Haiting organization: Department of Chemistry and Environmental Research Center, Missouri University of Science and Technology, Rolla, MO 65409, USA – sequence: 4 givenname: Yinfa surname: Ma fullname: Ma, Yinfa organization: Department of Chemistry and Environmental Research Center, Missouri University of Science and Technology, Rolla, MO 65409, USA – sequence: 5 givenname: Craig surname: Adams fullname: Adams, Craig organization: Center for Single Nanoparticle, Single Cell, and Single Molecule Monitoring (CS3M), Missouri University of Science and Technology, Rolla, MO 65409, USA – sequence: 6 givenname: John surname: Yang fullname: Yang, John organization: Center for Single Nanoparticle, Single Cell, and Single Molecule Monitoring (CS3M), Missouri University of Science and Technology, Rolla, MO 65409, USA – sequence: 7 givenname: Bin surname: Hua fullname: Hua, Bin organization: Department of Agriculture and Environmental Sciences, Lincoln University of Missouri, Jefferson City, MO 65101, USA – sequence: 8 givenname: Enos surname: Inniss fullname: Inniss, Enos organization: Center for Single Nanoparticle, Single Cell, and Single Molecule Monitoring (CS3M), Missouri University of Science and Technology, Rolla, MO 65409, USA – sequence: 9 givenname: Todd surname: Eichholz fullname: Eichholz, Todd organization: Missouri Department of Natural Resources, Jefferson City, MO 65102, USA – sequence: 10 givenname: Honglan surname: Shi fullname: Shi, Honglan email: honglan@mst.edu organization: Department of Chemistry and Environmental Research Center, Missouri University of Science and Technology, Rolla, MO 65409, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29478664$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kb2O1DAUhSO0iP2BB6BBFhVNwrWdxI6o0Io_aQUFUFuOfTPjUWLP2p5ZLRLvjpcZpqDYyrf4Pl_7nMvqzAePVfWSQkOB9m83zQZTw4CKBlgDFJ5UF1QKWQvO4KzMALQG0bLz6jKlDQC0HXTPqnM2tEL2fXtR_f7ult2ctcewSyTiEvZ6JmEielmCd5pob8nX2rscQ9KL80i2Ec0uphATmWJYyNqt1if8TmeMZLwnvzDMLuNffxvuLEa0RJvs9oWwxOg4Bv-8ejrpOeGL43lV_fz44cf15_rm26cv1-9vasMl5FoPo2WDEMYiAu8Y72ULE7YwsFFbLpjknHej4J3VmhqpOaXIuJjk0HItR35VvTncu43hdocpq8Ulg_N8-LdiAJILSjkt6KsjuhsXtGob3aLjvfoXWQHoATAlkRRxOiEU1EMtaqNKLeqhFgVMlVqKI_5zjMs6u-Bz1G5-1Hx3MLHEs3cYVTIOvUHrSg1Z2eAetV8f966DX906vzo9thetGARve_4HqeWz_A |
CitedBy_id | crossref_primary_10_1002_wer_1557 crossref_primary_10_1016_j_colsurfa_2021_126583 crossref_primary_10_1007_s11270_023_06704_y crossref_primary_10_1007_s13201_023_01894_6 crossref_primary_10_1007_s13369_018_3567_6 crossref_primary_10_1016_j_enconman_2024_118893 crossref_primary_10_1016_j_scitotenv_2021_146982 crossref_primary_10_1038_s41598_024_72067_x crossref_primary_10_1007_s11356_021_14525_x crossref_primary_10_1016_j_jenvman_2023_119172 crossref_primary_10_1016_j_jhazmat_2018_12_102 crossref_primary_10_1016_j_seppur_2020_116741 crossref_primary_10_1016_j_scitotenv_2021_149415 crossref_primary_10_3390_min12020256 crossref_primary_10_1016_j_jes_2019_09_005 crossref_primary_10_2139_ssrn_4048882 crossref_primary_10_1016_j_cej_2021_129918 crossref_primary_10_1021_acsanm_2c01246 crossref_primary_10_14233_ajchem_2019_21810 crossref_primary_10_1051_bioconf_202515602014 crossref_primary_10_3389_fpls_2024_1404077 crossref_primary_10_1016_j_envres_2023_116957 crossref_primary_10_1007_s10163_021_01216_5 crossref_primary_10_1016_j_cej_2020_124062 crossref_primary_10_1016_j_psep_2021_04_033 crossref_primary_10_1021_acsestengg_3c00613 crossref_primary_10_1016_j_jenvman_2019_109342 crossref_primary_10_1016_j_eti_2021_101407 crossref_primary_10_1016_j_jes_2022_03_004 crossref_primary_10_1016_j_seta_2022_102011 crossref_primary_10_1016_j_watres_2024_122434 crossref_primary_10_1016_j_chemosphere_2024_143559 crossref_primary_10_1515_chem_2019_0149 crossref_primary_10_1016_j_jwpe_2024_105713 crossref_primary_10_1016_j_jhazmat_2024_136432 crossref_primary_10_1016_j_eti_2019_100557 crossref_primary_10_1088_1755_1315_555_1_012049 crossref_primary_10_3390_ijms21072383 crossref_primary_10_1038_s41598_019_55906_0 crossref_primary_10_1080_21622515_2018_1473504 crossref_primary_10_1016_j_aquaculture_2019_734605 crossref_primary_10_1016_j_jhazmat_2019_02_003 crossref_primary_10_3390_ma14164359 crossref_primary_10_1016_j_desal_2023_117018 crossref_primary_10_1039_C9RA10114D |
Cites_doi | 10.4314/wsa.v28i3.4903 10.1016/j.aquaeng.2012.07.005 10.1021/es060978h 10.1016/j.watres.2014.10.044 10.2166/ws.2002.0102 10.1016/j.aquaculture.2014.05.019 10.1016/j.seppur.2012.10.005 10.1016/j.chemosphere.2013.08.020 10.1016/j.seppur.2015.09.061 10.1016/j.jhazmat.2006.06.124 10.1016/j.jhazmat.2008.04.047 10.1016/j.jhazmat.2004.05.035 10.1016/j.jhazmat.2008.04.053 10.1007/s00253-006-0534-z 10.1016/j.watres.2015.10.062 10.1016/j.jhazmat.2014.01.037 10.1089/109287503768335896 10.1016/j.watres.2009.06.048 10.1016/j.seppur.2004.04.011 10.1016/j.cej.2012.12.038 10.1016/j.seppur.2012.07.025 10.1061/(ASCE)EE.1943-7870.0000043 10.1016/j.cej.2009.10.029 10.1021/es302922w 10.2134/jeq2016.05.0175 10.1016/j.scitotenv.2012.09.078 10.1021/es026070i 10.1021/es034020n 10.1016/j.biortech.2013.01.057 10.1016/j.watres.2014.10.047 10.1039/C5RA15419G 10.1016/j.watres.2012.11.014 10.1016/j.jenvman.2015.05.033 10.1016/j.jhazmat.2012.06.001 10.1021/ie950303f 10.1016/j.biortech.2013.12.122 10.1016/j.desal.2013.07.021 10.1016/j.desal.2010.05.036 10.1016/j.jhazmat.2006.07.074 10.1016/j.jhazmat.2009.09.156 10.1016/j.minpro.2004.01.003 10.1016/j.jhazmat.2010.01.123 10.5991/OPF.2012.38.0025 10.1016/j.desal.2011.10.030 10.1016/j.watres.2013.04.050 10.1021/es010684q 10.1016/j.psep.2016.06.021 10.1016/j.jhazmat.2005.12.042 10.1016/j.talanta.2014.08.003 10.1016/S0043-1354(00)00113-5 10.1016/j.jenvman.2013.06.020 |
ContentType | Journal Article |
Copyright | 2017 Copyright © 2017. Published by Elsevier B.V. |
Copyright_xml | – notice: 2017 – notice: Copyright © 2017. Published by Elsevier B.V. |
DBID | 2RA 92L CQIGP W92 ~WA AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.jes.2017.02.010 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
DocumentTitleAlternate | Simultaneous removal of ammonia and N-nitrosamine precursors from high ammonia water by zeolite and powdered activated carbon |
EISSN | 1878-7320 |
EndPage | 91 |
ExternalDocumentID | 29478664 10_1016_j_jes_2017_02_010 S1001074216315066 674797346 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 2B. 2C0 2RA 36B 4.4 457 4G. 4P2 53G 5GY 5VR 5VS 7-5 71M 8P~ 92H 92I 92L 92R 93N AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABUBZ ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD ADZMO AEBSH AEKER AFKWA AFRHK AFRXA AFTJW AFUIB AFXIZ AGHFR AGUBO AGYEJ AHEUO AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CAG CCEZO CDRFL CHBEP COF CQIGP CS3 CW9 EBS EDH EFJIC EFLBG EJD EMB EMOBN EO9 EP2 EP3 F5P FA0 FDB FIRID FNPLU FYGXN GBLVA HZ~ I-F IHE IOS J1W KCYFY KOM M41 MET MIO ML. MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 ROL RPZ SDC SDF SDG SDP SES SSJ SSZ SV3 T5K TCJ TGT W92 ~G- ~WA ACPQW -SB -S~ 5XA 5XC AAFNC AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CAJEB CITATION Q-- SPCBC SSH U1G U5L AAXDM CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c380t-a9bd2977cdee035236840fe4092bad37283335b735daa1c8a311e237f8943a8b3 |
IEDL.DBID | .~1 |
ISSN | 1001-0742 |
IngestDate | Fri Jul 11 11:27:11 EDT 2025 Wed Feb 19 02:43:08 EST 2025 Tue Jul 01 02:32:00 EDT 2025 Thu Apr 24 23:10:52 EDT 2025 Fri Feb 23 02:19:32 EST 2024 Wed Feb 14 09:56:21 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Drinking water treatment Disinfection by-products Ammonia removal by zeolite N-nitrosamine precursor removal by zeolite and powdered activated carbon N-nitrosamines N-nitrosodimethylamine (NDMA) |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2017. Published by Elsevier B.V. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c380t-a9bd2977cdee035236840fe4092bad37283335b735daa1c8a311e237f8943a8b3 |
Notes | When adding sufficient chlorine to achieve breakpoint chlorination to source water containing high concentration of ammonia during drinking water treatment, high concentrations of disinfection by-products(DBPs) may form. If N-nitrosamine precursors are present, highly toxic N-nitrosamines, primarily N-nitrosodimethylamine(NDMA), may also form. Removing their precursors before disinfection should be a more effective way to minimize these DBPs formation. In this study, zeolites and activated carbon were examined for ammonia and N-nitrosamine precursor removal when incorporated into drinking water treatment processes.The test results indicate that Mordenite zeolite can remove ammonia and five of seven N-nitrosamine precursors efficiently by single step adsorption test. The practical applicability was evaluated by simulation of typical drinking water treatment processes using six-gang stirring system. The Mordenite zeolite was applied at the steps of lime softening, alum coagulation, and alum coagulation with powdered activated carbon(PAC) sorption. While the lime softening process resulted in poor zeolite performance, alum coagulation did not impact ammonia and N-nitrosamine precursor removal. During alum coagulation, more than67% ammonia and 70%–100% N-nitrosamine precursors were removed by Mordenite zeolite(except 3-(dimethylaminomethyl)indole(DMAI) and 4-dimethylaminoantipyrine(DMAP)). PAC effectively removed DMAI and DMAP when added during alum coagulation. A combination of the zeolite and PAC selected efficiently removed ammonia and all tested seven N-nitrosamine precursors(dimethylamine(DMA), ethylmethylamine(EMA), diethylamine(DEA), dipropylamine(DPA), trimethylamine(TMA), DMAP, and DMAI) during the alum coagulation process. Disinfection by-products;Drinking water treatment;Ammonia removal by zeolite;N-nitrosodimethylamine(NDMA);N-nitrosamines;N-nitrosamine precursor removal by zeolite and powdered activated carbon 11-2629/X ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 29478664 |
PQID | 2008371131 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2008371131 pubmed_primary_29478664 crossref_primary_10_1016_j_jes_2017_02_010 crossref_citationtrail_10_1016_j_jes_2017_02_010 elsevier_sciencedirect_doi_10_1016_j_jes_2017_02_010 chongqing_primary_674797346 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-01 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of environmental sciences (China) |
PublicationTitleAlternate | Journal of Environmental Sciences |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhang, Li, Blatchley, Wang, Ren (bb0260) 2015; 68 Šiljeg, Foglar, Kukučka (bb0220) 2010; 178 Du, Liu, Cao, Wang (bb0045) 2005; 44 Fujioka, Khan, Poussade, Drewes, Nghiem (bb0070) 2012; 98 Wang, Lin, Pang (bb0235) 2007; 142 Selbes, Kim, Ates, Karanfil (bb0215) 2013; 47 Almutairi, Weatherley (bb0005) 2015; 160 Saltalı, Sarı, Aydın (bb0205) 2007; 141 Brennan, Healy, Grant, Ibrahim, Fenton (bb0025) 2012; 441 Wang, Peng (bb0230) 2010; 156 Huo, Lin, Dong, Cheng, Wang, Cao (bb0100) 2012; 229 Zhou, Chen, Lou, Yang, Zhu (bb0270) 2014; 95 Qu, Sun, Wang, Yun (bb0190) 2013; 326 O'Flynn, Healy, Lanigan, Troy, Somers, Fenton (bb0180) 2013; 128 Peng, Zhu (bb0185) 2006; 73 Hanigan, Zhang, Herckes, Krasner, Chen, Westerhoff (bb0090) 2012; 46 Mitch, Sedlak (bb0155) 2002; 36 Lin, Wu (bb0125) 1996; 35 Mitch, Sharp, Trussell, Valentine, Alvarez-Cohen, Sedlak (bb0160) 2003; 20 Beita-Sandí, Ersan, Uzun, Karanfil (bb0010) 2016; 88 Markou, Vandamme, Muylaert (bb0145) 2014; 155 Choi, Valentine (bb0030) 2003; 37 Gerecke, Sedlak (bb0080) 2003; 37 Yuan, Chen, Tsai, Chang (bb0255) 2016; 102 Zhou, Boyd (bb0265) 2014; 432 Mailler, Gasperi, Coquet, Deshayes, Zedek, Cren-Olivé, Cartiser, Eudes, Bressy, Caupos, Moilleron (bb0140) 2015; 72 Rezakazemi, Shirazian, Ashrafizadeh (bb0195) 2012; 285 Soetardji, Claudia, Ju, Hriljac, Chen, Soetaredjo, Santoso, Kurniawan, Ismadji (bb0225) 2015; 5 Karadag, Koc, Turan, Armagan (bb0105) 2006; 136 Englert, Rubio (bb0055) 2005; 75 Gendel, Lahav (bb0075) 2013; 52 Farkaš, Rožić, Barbarić-Mikočević (bb0065) 2005; 117 Halim, Aziz, Johari, Ariffin (bb0085) 2010; 262 Bhatnagar, Hogland, Marques, Sillanpää (bb0015) 2013; 219 Couto, Oliveira, Guarino, Perez, Marques (bb0035) 2016 Wijekoon, Fujioka, McDonald, Khan, Hai, Price, Nghiem (bb0240) 2013; 141 Li, Liu (bb0120) 2009; 161 Wu, Shi, Ma, Adams, Jiang, Wang, Eichholz, Timmons (bb0250) 2015; 156 Wu, Shi, Ma, Adams, Eichholz, Timmons, Jiang (bb0245) 2015; 131 Mitch, Sedlak (bb0150) 2002; 2 Demir, Gunay, Debik (bb0040) 2002; 28 Miyashita, Park, Hyung, Huang, Kim (bb0165) 2009; 135 Rožić, Cerjan-Stefanović, Kurajica, Vančina, Hodžić (bb0200) 2000; 34 Eaton, Franson (bb0050) 2005 Nam, Choi, Kim, Her, Zoh (bb0175) 2014; 270 Blute, Ghosh, Lytle (bb0020) 2012; 38 Lin, Yuan, Chen, Xu, Lu (bb0130) 2009; 161 Krasner, Mitch, McCurry, Hanigan, Westerhoff (bb0110) 2013; 47 Schreiber, Mitch (bb0210) 2006; 40 Huang, Xiao, Yan, Yang (bb0095) 2010; 175 Lin, Lei, Wang, Liu, Zhang, Wan, Lee, Tay (bb0135) 2013; 103 Krauss, Longrée, Dorusch, Ort, Hollender (bb0115) 2009; 43 Murnane, Brennan, Fenton, Healy (bb0170) 2016; 45 Couto (10.1016/j.jes.2017.02.010_bb0035) 2016 Brennan (10.1016/j.jes.2017.02.010_bb0025) 2012; 441 Huang (10.1016/j.jes.2017.02.010_bb0095) 2010; 175 Beita-Sandí (10.1016/j.jes.2017.02.010_bb0010) 2016; 88 Šiljeg (10.1016/j.jes.2017.02.010_bb0220) 2010; 178 Wijekoon (10.1016/j.jes.2017.02.010_bb0240) 2013; 141 Wu (10.1016/j.jes.2017.02.010_bb0250) 2015; 156 Eaton (10.1016/j.jes.2017.02.010_bb0050) 2005 Murnane (10.1016/j.jes.2017.02.010_bb0170) 2016; 45 Nam (10.1016/j.jes.2017.02.010_bb0175) 2014; 270 Lin (10.1016/j.jes.2017.02.010_bb0125) 1996; 35 Du (10.1016/j.jes.2017.02.010_bb0045) 2005; 44 Farkaš (10.1016/j.jes.2017.02.010_bb0065) 2005; 117 Wang (10.1016/j.jes.2017.02.010_bb0230) 2010; 156 Mailler (10.1016/j.jes.2017.02.010_bb0140) 2015; 72 Zhou (10.1016/j.jes.2017.02.010_bb0265) 2014; 432 Saltalı (10.1016/j.jes.2017.02.010_bb0205) 2007; 141 Qu (10.1016/j.jes.2017.02.010_bb0190) 2013; 326 Mitch (10.1016/j.jes.2017.02.010_bb0155) 2002; 36 Rožić (10.1016/j.jes.2017.02.010_bb0200) 2000; 34 Lin (10.1016/j.jes.2017.02.010_bb0130) 2009; 161 Zhang (10.1016/j.jes.2017.02.010_bb0260) 2015; 68 Gerecke (10.1016/j.jes.2017.02.010_bb0080) 2003; 37 Peng (10.1016/j.jes.2017.02.010_bb0185) 2006; 73 Halim (10.1016/j.jes.2017.02.010_bb0085) 2010; 262 Wang (10.1016/j.jes.2017.02.010_bb0235) 2007; 142 Soetardji (10.1016/j.jes.2017.02.010_bb0225) 2015; 5 Zhou (10.1016/j.jes.2017.02.010_bb0270) 2014; 95 Li (10.1016/j.jes.2017.02.010_bb0120) 2009; 161 Englert (10.1016/j.jes.2017.02.010_bb0055) 2005; 75 Krauss (10.1016/j.jes.2017.02.010_bb0115) 2009; 43 Hanigan (10.1016/j.jes.2017.02.010_bb0090) 2012; 46 Wu (10.1016/j.jes.2017.02.010_bb0245) 2015; 131 Bhatnagar (10.1016/j.jes.2017.02.010_bb0015) 2013; 219 Rezakazemi (10.1016/j.jes.2017.02.010_bb0195) 2012; 285 Almutairi (10.1016/j.jes.2017.02.010_bb0005) 2015; 160 Markou (10.1016/j.jes.2017.02.010_bb0145) 2014; 155 Karadag (10.1016/j.jes.2017.02.010_bb0105) 2006; 136 Blute (10.1016/j.jes.2017.02.010_bb0020) 2012; 38 Gendel (10.1016/j.jes.2017.02.010_bb0075) 2013; 52 Choi (10.1016/j.jes.2017.02.010_bb0030) 2003; 37 O'Flynn (10.1016/j.jes.2017.02.010_bb0180) 2013; 128 Mitch (10.1016/j.jes.2017.02.010_bb0150) 2002; 2 Mitch (10.1016/j.jes.2017.02.010_bb0160) 2003; 20 Huo (10.1016/j.jes.2017.02.010_bb0100) 2012; 229 Krasner (10.1016/j.jes.2017.02.010_bb0110) 2013; 47 Schreiber (10.1016/j.jes.2017.02.010_bb0210) 2006; 40 Miyashita (10.1016/j.jes.2017.02.010_bb0165) 2009; 135 Selbes (10.1016/j.jes.2017.02.010_bb0215) 2013; 47 Lin (10.1016/j.jes.2017.02.010_bb0135) 2013; 103 Fujioka (10.1016/j.jes.2017.02.010_bb0070) 2012; 98 Yuan (10.1016/j.jes.2017.02.010_bb0255) 2016; 102 Demir (10.1016/j.jes.2017.02.010_bb0040) 2002; 28 |
References_xml | – volume: 155 start-page: 373 year: 2014 end-page: 378 ident: bb0145 article-title: Using natural zeolite for ammonia sorption from wastewater and as nitrogen releaser for the cultivation of publication-title: Bioresour. Technol. – volume: 161 start-page: 1010 year: 2009 end-page: 1016 ident: bb0120 article-title: Ammonia removal in electrochemical oxidation: mechanism and pseudo-kinetics publication-title: J. Hazard. Mater. – volume: 103 start-page: 15 year: 2013 end-page: 20 ident: bb0135 article-title: Adsorption mechanisms of high-levels of ammonium onto natural and NaCl-modified zeolites publication-title: Sep. Purif. Technol. – volume: 88 start-page: 711 year: 2016 end-page: 718 ident: bb0010 article-title: Removal of N-nitrosodimethylamine precursors with powdered activated carbon adsorption publication-title: Water Res. – volume: 40 start-page: 6007 year: 2006 end-page: 6014 ident: bb0210 article-title: Nitrosamine formation pathway revisited: the importance of chloramine speciation and dissolved oxygen publication-title: Environ. Sci. Technol. – volume: 156 start-page: 972 year: 2015 end-page: 979 ident: bb0250 article-title: Removal of N-nitrosamine precursors in drinking water system using adsorption methods publication-title: Sep. Purif. Technol. – volume: 326 start-page: 135 year: 2013 end-page: 140 ident: bb0190 article-title: Experimental study of ammonia removal from water by modified direct contact membrane distillation publication-title: Desalination – volume: 75 start-page: 21 year: 2005 end-page: 29 ident: bb0055 article-title: Characterization and environmental application of a Chilean natural zeolite publication-title: Int. J. Miner. Process. – volume: 46 start-page: 12630 year: 2012 end-page: 12639 ident: bb0090 article-title: Adsorption of N-nitrosodimethylamine precursors by powdered and granular activated carbon publication-title: Environ. Sci. Technol. – volume: 270 start-page: 144 year: 2014 end-page: 152 ident: bb0175 article-title: Adsorption characteristics of selected hydrophilic and hydrophobic micropollutants in water using activated carbon publication-title: J. Hazard. Mater. – volume: 5 start-page: 83689 year: 2015 end-page: 83699 ident: bb0225 article-title: Ammonia removal from water using sodium hydroxide modified zeolite mordenite publication-title: RSC Adv. – volume: 98 start-page: 503 year: 2012 end-page: 515 ident: bb0070 article-title: N-nitrosamine removal by reverse osmosis for indirect potable water reuse–A critical review based on observations from laboratory-, pilot-and full-scale studies publication-title: Sep. Purif. Technol. – volume: 35 start-page: 553 year: 1996 end-page: 558 ident: bb0125 article-title: Ammonia removal from aqueous solution by ion exchange publication-title: Ind. Eng. Chem. Res. – volume: 136 start-page: 604 year: 2006 end-page: 609 ident: bb0105 article-title: Removal of ammonium ion from aqueous solution using natural Turkish clinoptilolite publication-title: J. Hazard. Mater. – volume: 95 start-page: 81 year: 2014 end-page: 87 ident: bb0270 article-title: Formation potential of nine nitrosamines from corresponding secondary amines by chloramination publication-title: Chemosphere – volume: 36 start-page: 588 year: 2002 end-page: 595 ident: bb0155 article-title: Formation of N-nitrosodimethylamine (NDMA) from dimethylamine during chlorination publication-title: Environ. Sci. Technol. – volume: 34 start-page: 3675 year: 2000 end-page: 3681 ident: bb0200 article-title: Ammoniacal nitrogen removal from water by treatment with clays and zeolites publication-title: Water Res. – volume: 68 start-page: 804 year: 2015 end-page: 811 ident: bb0260 article-title: UV/chlorine process for ammonia removal and disinfection by-product reduction: comparison with chlorination publication-title: Water Res. – volume: 47 start-page: 4433 year: 2013 end-page: 4450 ident: bb0110 article-title: Formation, precursors, control, and occurrence of nitrosamines in drinking water: a review publication-title: Water Res. – volume: 432 start-page: 252 year: 2014 end-page: 257 ident: bb0265 article-title: Total ammonia nitrogen removal from aqueous solutions by the natural zeolite, mordenite: a laboratory test and experimental study publication-title: Aquaculture – volume: 160 start-page: 128 year: 2015 end-page: 138 ident: bb0005 article-title: Intensification of ammonia removal from waste water in biologically active zeolitic ion exchange columns publication-title: J. Environ. Manag. – volume: 131 start-page: 736 year: 2015 end-page: 741 ident: bb0245 article-title: Determination of secondary and tertiary amines as N-nitrosamine precursors in drinking water system using ultra-fast liquid chromatography–tandem mass spectrometry publication-title: Talanta – volume: 47 start-page: 945 year: 2013 end-page: 953 ident: bb0215 article-title: The roles of tertiary amine structure, background organic matter and chloramine species on NDMA formation publication-title: Water Res. – volume: 102 start-page: 777 year: 2016 end-page: 785 ident: bb0255 article-title: Ammonia removal from ammonia-rich wastewater by air stripping using a rotating packed bed publication-title: Process Saf. Environ. – volume: 117 start-page: 25 year: 2005 end-page: 33 ident: bb0065 article-title: Ammonium exchange in leakage waters of waste dumps using natural zeolite from the Krapina region, Croatia publication-title: J. Hazard. Mater. – year: 2005 ident: bb0050 article-title: Standard Methods for the Examination of Water and Wastewater – volume: 37 start-page: 4871 year: 2003 end-page: 4876 ident: bb0030 article-title: N-Nitrosodimethylamine formation by free-chlorine-enhanced nitrosation of dimethylamine publication-title: Environ. Sci. Technol. – volume: 72 start-page: 315 year: 2015 end-page: 330 ident: bb0140 article-title: Study of a large scale powdered activated carbon pilot: removals of a wide range of emerging and priority micropollutants from wastewater treatment plant effluents publication-title: Water Res. – volume: 45 start-page: 1941 year: 2016 end-page: 1948 ident: bb0170 article-title: Zeolite combined with alum and polyaluminum chloride mixed with agricultural slurries reduces carbon losses in runoff from grassed soil boxes publication-title: J. Environ. Qual. – volume: 38 start-page: 14 year: 2012 end-page: 17 ident: bb0020 article-title: Assessing Ammonia Treatment Options publication-title: Opflow – volume: 28 start-page: 329 year: 2002 end-page: 336 ident: bb0040 article-title: Ammonium removal from aqueous solution by ion-exchange using packed bed natural zeolite publication-title: Water SA – volume: 175 start-page: 247 year: 2010 end-page: 252 ident: bb0095 article-title: Ammonium removal from aqueous solutions by using natural Chinese (Chende) zeolite as adsorbent publication-title: J. Hazard. Mater. – volume: 135 start-page: 788 year: 2009 end-page: 795 ident: bb0165 article-title: Removal of N-nitrosamines and their precursors by nanofiltration and reverse osmosis membranes publication-title: J. Environ. Eng. – volume: 441 start-page: 132 year: 2012 end-page: 140 ident: bb0025 article-title: Incidental phosphorus and nitrogen loss from grassland plots receiving chemically amended dairy cattle slurry publication-title: Sci. Total Environ. – volume: 262 start-page: 31 year: 2010 end-page: 35 ident: bb0085 article-title: Comparison study of ammonia and COD adsorption on zeolite, activated carbon and composite materials in landfill leachate treatment publication-title: Desalination – volume: 43 start-page: 4381 year: 2009 end-page: 4391 ident: bb0115 article-title: Occurrence and removal of N-nitrosamines in wastewater treatment plants publication-title: Water Res. – volume: 161 start-page: 1063 year: 2009 end-page: 1068 ident: bb0130 article-title: Removal of ammonia nitrogen in wastewater by microwave radiation publication-title: J. Hazard. Mater. – volume: 73 start-page: 15 year: 2006 end-page: 26 ident: bb0185 article-title: Biological nitrogen removal with nitrification and denitrification via nitrite pathway publication-title: Appl. Microbiol. Biotechnol. – volume: 141 start-page: 41 year: 2013 end-page: 45 ident: bb0240 article-title: Removal of N-nitrosamines by an aerobic membrane bioreactor publication-title: Bioresour. Technol. – volume: 37 start-page: 1331 year: 2003 end-page: 1336 ident: bb0080 article-title: Precursors of N-nitrosodimethylamine in natural waters publication-title: Environ. Sci. Technol. – volume: 52 start-page: 27 year: 2013 end-page: 38 ident: bb0075 article-title: A novel approach for ammonia removal from fresh-water recirculated aquaculture systems, comprising ion exchange and electrochemical regeneration publication-title: Aquac. Eng. – volume: 219 start-page: 499 year: 2013 end-page: 511 ident: bb0015 article-title: An overview of the modification methods of activated carbon for its water treatment applications publication-title: Chem. Eng. J. – volume: 142 start-page: 160 year: 2007 end-page: 164 ident: bb0235 article-title: Ammonium exchange in aqueous solution using Chinese natural clinoptilolite and modified zeolite publication-title: J. Hazard. Mater. – volume: 229 start-page: 292 year: 2012 end-page: 297 ident: bb0100 article-title: Ammonia-nitrogen and phosphates sorption from simulated reclaimed waters by modified clinoptilolite publication-title: J. Hazard. Mater. – start-page: 1 year: 2016 end-page: 11 ident: bb0035 article-title: Removal of ammonia nitrogen from distilled old landfill leachate by adsorption on raw and modified aluminosilicate publication-title: Environ. Technol. – volume: 285 start-page: 383 year: 2012 end-page: 392 ident: bb0195 article-title: Simulation of ammonia removal from industrial wastewater streams by means of a hollow-fiber membrane contactor publication-title: Desalination – volume: 20 start-page: 389 year: 2003 end-page: 404 ident: bb0160 article-title: N-nitrosodimethylamine (NDMA) as a drinking water contaminant: a review publication-title: Environ. Eng. Sci. – volume: 156 start-page: 11 year: 2010 end-page: 24 ident: bb0230 article-title: Natural zeolites as effective adsorbents in water and wastewater treatment publication-title: Chem. Eng. J. – volume: 141 start-page: 258 year: 2007 end-page: 263 ident: bb0205 article-title: Removal of ammonium ion from aqueous solution by natural Turkish (Yıldızeli) zeolite for environmental quality publication-title: J. Hazard. Mater. – volume: 128 start-page: 690 year: 2013 end-page: 698 ident: bb0180 article-title: Impact of chemically amended pig slurry on greenhouse gas emissions, soil properties and leachate publication-title: J. Environ. Manag. – volume: 44 start-page: 229 year: 2005 end-page: 234 ident: bb0045 article-title: Ammonia removal from aqueous solution using natural Chinese clinoptilolite publication-title: Sep. Purif. Technol. – volume: 2 start-page: 191 year: 2002 end-page: 198 ident: bb0150 article-title: Factors controlling nitrosamine formation during wastewater chlorination publication-title: Water Supply – volume: 178 start-page: 572 year: 2010 end-page: 577 ident: bb0220 article-title: The ground water ammonium sorption onto Croatian and Serbian clinoptilolite publication-title: J. Hazard. Mater. – volume: 28 start-page: 329 issue: 3 year: 2002 ident: 10.1016/j.jes.2017.02.010_bb0040 article-title: Ammonium removal from aqueous solution by ion-exchange using packed bed natural zeolite publication-title: Water SA doi: 10.4314/wsa.v28i3.4903 – volume: 52 start-page: 27 year: 2013 ident: 10.1016/j.jes.2017.02.010_bb0075 article-title: A novel approach for ammonia removal from fresh-water recirculated aquaculture systems, comprising ion exchange and electrochemical regeneration publication-title: Aquac. Eng. doi: 10.1016/j.aquaeng.2012.07.005 – volume: 40 start-page: 6007 issue: 19 year: 2006 ident: 10.1016/j.jes.2017.02.010_bb0210 article-title: Nitrosamine formation pathway revisited: the importance of chloramine speciation and dissolved oxygen publication-title: Environ. Sci. Technol. doi: 10.1021/es060978h – volume: 68 start-page: 804 year: 2015 ident: 10.1016/j.jes.2017.02.010_bb0260 article-title: UV/chlorine process for ammonia removal and disinfection by-product reduction: comparison with chlorination publication-title: Water Res. doi: 10.1016/j.watres.2014.10.044 – volume: 2 start-page: 191 issue: 3 year: 2002 ident: 10.1016/j.jes.2017.02.010_bb0150 article-title: Factors controlling nitrosamine formation during wastewater chlorination publication-title: Water Supply doi: 10.2166/ws.2002.0102 – volume: 432 start-page: 252 year: 2014 ident: 10.1016/j.jes.2017.02.010_bb0265 article-title: Total ammonia nitrogen removal from aqueous solutions by the natural zeolite, mordenite: a laboratory test and experimental study publication-title: Aquaculture doi: 10.1016/j.aquaculture.2014.05.019 – volume: 103 start-page: 15 year: 2013 ident: 10.1016/j.jes.2017.02.010_bb0135 article-title: Adsorption mechanisms of high-levels of ammonium onto natural and NaCl-modified zeolites publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2012.10.005 – volume: 95 start-page: 81 year: 2014 ident: 10.1016/j.jes.2017.02.010_bb0270 article-title: Formation potential of nine nitrosamines from corresponding secondary amines by chloramination publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.08.020 – volume: 156 start-page: 972 year: 2015 ident: 10.1016/j.jes.2017.02.010_bb0250 article-title: Removal of N-nitrosamine precursors in drinking water system using adsorption methods publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2015.09.061 – volume: 141 start-page: 258 issue: 1 year: 2007 ident: 10.1016/j.jes.2017.02.010_bb0205 article-title: Removal of ammonium ion from aqueous solution by natural Turkish (Yıldızeli) zeolite for environmental quality publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2006.06.124 – volume: 161 start-page: 1010 issue: 2 year: 2009 ident: 10.1016/j.jes.2017.02.010_bb0120 article-title: Ammonia removal in electrochemical oxidation: mechanism and pseudo-kinetics publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2008.04.047 – volume: 117 start-page: 25 issue: 1 year: 2005 ident: 10.1016/j.jes.2017.02.010_bb0065 article-title: Ammonium exchange in leakage waters of waste dumps using natural zeolite from the Krapina region, Croatia publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2004.05.035 – volume: 161 start-page: 1063 issue: 2 year: 2009 ident: 10.1016/j.jes.2017.02.010_bb0130 article-title: Removal of ammonia nitrogen in wastewater by microwave radiation publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2008.04.053 – volume: 73 start-page: 15 issue: 1 year: 2006 ident: 10.1016/j.jes.2017.02.010_bb0185 article-title: Biological nitrogen removal with nitrification and denitrification via nitrite pathway publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-006-0534-z – volume: 88 start-page: 711 year: 2016 ident: 10.1016/j.jes.2017.02.010_bb0010 article-title: Removal of N-nitrosodimethylamine precursors with powdered activated carbon adsorption publication-title: Water Res. doi: 10.1016/j.watres.2015.10.062 – volume: 270 start-page: 144 year: 2014 ident: 10.1016/j.jes.2017.02.010_bb0175 article-title: Adsorption characteristics of selected hydrophilic and hydrophobic micropollutants in water using activated carbon publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2014.01.037 – volume: 20 start-page: 389 issue: 5 year: 2003 ident: 10.1016/j.jes.2017.02.010_bb0160 article-title: N-nitrosodimethylamine (NDMA) as a drinking water contaminant: a review publication-title: Environ. Eng. Sci. doi: 10.1089/109287503768335896 – volume: 43 start-page: 4381 issue: 17 year: 2009 ident: 10.1016/j.jes.2017.02.010_bb0115 article-title: Occurrence and removal of N-nitrosamines in wastewater treatment plants publication-title: Water Res. doi: 10.1016/j.watres.2009.06.048 – volume: 44 start-page: 229 issue: 3 year: 2005 ident: 10.1016/j.jes.2017.02.010_bb0045 article-title: Ammonia removal from aqueous solution using natural Chinese clinoptilolite publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2004.04.011 – volume: 219 start-page: 499 year: 2013 ident: 10.1016/j.jes.2017.02.010_bb0015 article-title: An overview of the modification methods of activated carbon for its water treatment applications publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.12.038 – volume: 98 start-page: 503 year: 2012 ident: 10.1016/j.jes.2017.02.010_bb0070 article-title: N-nitrosamine removal by reverse osmosis for indirect potable water reuse–A critical review based on observations from laboratory-, pilot-and full-scale studies publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2012.07.025 – year: 2005 ident: 10.1016/j.jes.2017.02.010_bb0050 – volume: 135 start-page: 788 issue: 9 year: 2009 ident: 10.1016/j.jes.2017.02.010_bb0165 article-title: Removal of N-nitrosamines and their precursors by nanofiltration and reverse osmosis membranes publication-title: J. Environ. Eng. doi: 10.1061/(ASCE)EE.1943-7870.0000043 – volume: 156 start-page: 11 issue: 1 year: 2010 ident: 10.1016/j.jes.2017.02.010_bb0230 article-title: Natural zeolites as effective adsorbents in water and wastewater treatment publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2009.10.029 – start-page: 1 year: 2016 ident: 10.1016/j.jes.2017.02.010_bb0035 article-title: Removal of ammonia nitrogen from distilled old landfill leachate by adsorption on raw and modified aluminosilicate publication-title: Environ. Technol. – volume: 46 start-page: 12630 issue: 22 year: 2012 ident: 10.1016/j.jes.2017.02.010_bb0090 article-title: Adsorption of N-nitrosodimethylamine precursors by powdered and granular activated carbon publication-title: Environ. Sci. Technol. doi: 10.1021/es302922w – volume: 45 start-page: 1941 issue: 6 year: 2016 ident: 10.1016/j.jes.2017.02.010_bb0170 article-title: Zeolite combined with alum and polyaluminum chloride mixed with agricultural slurries reduces carbon losses in runoff from grassed soil boxes publication-title: J. Environ. Qual. doi: 10.2134/jeq2016.05.0175 – volume: 441 start-page: 132 year: 2012 ident: 10.1016/j.jes.2017.02.010_bb0025 article-title: Incidental phosphorus and nitrogen loss from grassland plots receiving chemically amended dairy cattle slurry publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2012.09.078 – volume: 37 start-page: 1331 issue: 7 year: 2003 ident: 10.1016/j.jes.2017.02.010_bb0080 article-title: Precursors of N-nitrosodimethylamine in natural waters publication-title: Environ. Sci. Technol. doi: 10.1021/es026070i – volume: 37 start-page: 4871 issue: 21 year: 2003 ident: 10.1016/j.jes.2017.02.010_bb0030 article-title: N-Nitrosodimethylamine formation by free-chlorine-enhanced nitrosation of dimethylamine publication-title: Environ. Sci. Technol. doi: 10.1021/es034020n – volume: 141 start-page: 41 year: 2013 ident: 10.1016/j.jes.2017.02.010_bb0240 article-title: Removal of N-nitrosamines by an aerobic membrane bioreactor publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.01.057 – volume: 72 start-page: 315 year: 2015 ident: 10.1016/j.jes.2017.02.010_bb0140 article-title: Study of a large scale powdered activated carbon pilot: removals of a wide range of emerging and priority micropollutants from wastewater treatment plant effluents publication-title: Water Res. doi: 10.1016/j.watres.2014.10.047 – volume: 5 start-page: 83689 issue: 102 year: 2015 ident: 10.1016/j.jes.2017.02.010_bb0225 article-title: Ammonia removal from water using sodium hydroxide modified zeolite mordenite publication-title: RSC Adv. doi: 10.1039/C5RA15419G – volume: 47 start-page: 945 issue: 2 year: 2013 ident: 10.1016/j.jes.2017.02.010_bb0215 article-title: The roles of tertiary amine structure, background organic matter and chloramine species on NDMA formation publication-title: Water Res. doi: 10.1016/j.watres.2012.11.014 – volume: 160 start-page: 128 year: 2015 ident: 10.1016/j.jes.2017.02.010_bb0005 article-title: Intensification of ammonia removal from waste water in biologically active zeolitic ion exchange columns publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2015.05.033 – volume: 229 start-page: 292 year: 2012 ident: 10.1016/j.jes.2017.02.010_bb0100 article-title: Ammonia-nitrogen and phosphates sorption from simulated reclaimed waters by modified clinoptilolite publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2012.06.001 – volume: 35 start-page: 553 issue: 2 year: 1996 ident: 10.1016/j.jes.2017.02.010_bb0125 article-title: Ammonia removal from aqueous solution by ion exchange publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie950303f – volume: 155 start-page: 373 year: 2014 ident: 10.1016/j.jes.2017.02.010_bb0145 article-title: Using natural zeolite for ammonia sorption from wastewater and as nitrogen releaser for the cultivation of Arthrospira platensis publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.12.122 – volume: 326 start-page: 135 year: 2013 ident: 10.1016/j.jes.2017.02.010_bb0190 article-title: Experimental study of ammonia removal from water by modified direct contact membrane distillation publication-title: Desalination doi: 10.1016/j.desal.2013.07.021 – volume: 262 start-page: 31 issue: 1 year: 2010 ident: 10.1016/j.jes.2017.02.010_bb0085 article-title: Comparison study of ammonia and COD adsorption on zeolite, activated carbon and composite materials in landfill leachate treatment publication-title: Desalination doi: 10.1016/j.desal.2010.05.036 – volume: 142 start-page: 160 issue: 1 year: 2007 ident: 10.1016/j.jes.2017.02.010_bb0235 article-title: Ammonium exchange in aqueous solution using Chinese natural clinoptilolite and modified zeolite publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2006.07.074 – volume: 175 start-page: 247 issue: 1 year: 2010 ident: 10.1016/j.jes.2017.02.010_bb0095 article-title: Ammonium removal from aqueous solutions by using natural Chinese (Chende) zeolite as adsorbent publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2009.09.156 – volume: 75 start-page: 21 year: 2005 ident: 10.1016/j.jes.2017.02.010_bb0055 article-title: Characterization and environmental application of a Chilean natural zeolite publication-title: Int. J. Miner. Process. doi: 10.1016/j.minpro.2004.01.003 – volume: 178 start-page: 572 issue: 1 year: 2010 ident: 10.1016/j.jes.2017.02.010_bb0220 article-title: The ground water ammonium sorption onto Croatian and Serbian clinoptilolite publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.01.123 – volume: 38 start-page: 14 issue: 5 year: 2012 ident: 10.1016/j.jes.2017.02.010_bb0020 article-title: Assessing Ammonia Treatment Options publication-title: Opflow doi: 10.5991/OPF.2012.38.0025 – volume: 285 start-page: 383 year: 2012 ident: 10.1016/j.jes.2017.02.010_bb0195 article-title: Simulation of ammonia removal from industrial wastewater streams by means of a hollow-fiber membrane contactor publication-title: Desalination doi: 10.1016/j.desal.2011.10.030 – volume: 47 start-page: 4433 issue: 13 year: 2013 ident: 10.1016/j.jes.2017.02.010_bb0110 article-title: Formation, precursors, control, and occurrence of nitrosamines in drinking water: a review publication-title: Water Res. doi: 10.1016/j.watres.2013.04.050 – volume: 36 start-page: 588 issue: 4 year: 2002 ident: 10.1016/j.jes.2017.02.010_bb0155 article-title: Formation of N-nitrosodimethylamine (NDMA) from dimethylamine during chlorination publication-title: Environ. Sci. Technol. doi: 10.1021/es010684q – volume: 102 start-page: 777 year: 2016 ident: 10.1016/j.jes.2017.02.010_bb0255 article-title: Ammonia removal from ammonia-rich wastewater by air stripping using a rotating packed bed publication-title: Process Saf. Environ. doi: 10.1016/j.psep.2016.06.021 – volume: 136 start-page: 604 issue: 3 year: 2006 ident: 10.1016/j.jes.2017.02.010_bb0105 article-title: Removal of ammonium ion from aqueous solution using natural Turkish clinoptilolite publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2005.12.042 – volume: 131 start-page: 736 year: 2015 ident: 10.1016/j.jes.2017.02.010_bb0245 article-title: Determination of secondary and tertiary amines as N-nitrosamine precursors in drinking water system using ultra-fast liquid chromatography–tandem mass spectrometry publication-title: Talanta doi: 10.1016/j.talanta.2014.08.003 – volume: 34 start-page: 3675 issue: 14 year: 2000 ident: 10.1016/j.jes.2017.02.010_bb0200 article-title: Ammoniacal nitrogen removal from water by treatment with clays and zeolites publication-title: Water Res. doi: 10.1016/S0043-1354(00)00113-5 – volume: 128 start-page: 690 year: 2013 ident: 10.1016/j.jes.2017.02.010_bb0180 article-title: Impact of chemically amended pig slurry on greenhouse gas emissions, soil properties and leachate publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2013.06.020 |
SSID | ssj0004505 |
Score | 2.3749464 |
Snippet | When adding sufficient chlorine to achieve breakpoint chlorination to source water containing high concentration of ammonia during drinking water treatment,... |
SourceID | proquest pubmed crossref elsevier chongqing |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 82 |
SubjectTerms | Adsorption Alum Compounds Ammonia - analysis Ammonia - chemistry Ammonia removal by zeolite Charcoal - chemistry Dimethylnitrosamine Disinfection Disinfection by-products Drinking Water Drinking water treatment N-nitrosamine precursor removal by zeolite and powdered activated carbon N-nitrosamines N-nitrosodimethylamine (NDMA) Nitrosamines - analysis Nitrosamines - chemistry Water Pollutants, Chemical - analysis Water Pollutants, Chemical - chemistry Water Purification - methods Zeolites - chemistry 氨水;沸石;激活;移动;粉状;直接存储器存取;凝结过程;水处理过程 |
Title | Simultaneous removal of ammonia and N-nitrosamine precursors from high ammonia water by zeolite and powdered activated carbon |
URI | http://lib.cqvip.com/qk/85265X/201802/674797346.html https://dx.doi.org/10.1016/j.jes.2017.02.010 https://www.ncbi.nlm.nih.gov/pubmed/29478664 https://www.proquest.com/docview/2008371131 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V5QAcKigUlkJlJE5IYePYibPHqmq1gNhLqdSb5VfQVjTZZretqFR-OzNOspRDe-CWRGPHyjz8OZ75DPAh99K40vPElDJL5MTYxFbeJKlzhSU8kksqcP42K6Yn8stpfroBB0MtDKVV9rG_i-kxWvdPxv3XHC_m8_ExsQfRyg4RBdHkEe22lIqs_NNvfocxPKYx8pg6hNLDzmbM8ToLxNjNVaTtpCLaxxhz6h8XOGvcN0_dh0PjfHT0DLZ6IMn2u7E-h41Qb8PTO_SC27Bz-LeKDUV7N16-gNvjOSUSmjrgup-14bxBe2NNxQxZ5dwwU3s2S9DbcWzmHHtki5Z-zC-bdsmoIoURzfFa_BoBa8vsL3YTKJ0uxPaL5joeBMqodOIKJTxzprVN_RJOjg6_H0yT_hyGxIkyXSVmYn2GONH5EIg-VRBBTBVwZZhZ44VChCJEbpXIvTHclUZwHjKhKuJ2N6UVO7BZN3V4DUxWKbeIIHERo2ReVSVeGQRx3LsKbSMbwe5aA3rR8W1okp4oIYsRpINOtOspzOkkjZ96yFU706hSTSrVaaZRpSP4uG4y9PeAsBwUrf8xQo3zy0PN3g9GodE5acelU2A841MozgUfwavOWtajyCZSlUUh3_zfS3fhCd6VXQL5W9hctZfhHeKjld2LDrAHj_Y_f53O_gDaXw-W |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7R5UB7qFpa2i19uFJPlaKNY-exR4RAS4G9ABI3y69UiyDZZrdFrcR_Z8ZJFjjAobcomXGszIz9OZ75DPAtdVLbwvFIFzKJ5FibyJROR7G1mSE8kkoqcD6eZpMz-eM8PV-D3b4WhtIqu7G_HdPDaN3dGXVfczSfzUYnxB5EKztEFESTlz2DdWKnSgewvnNwOJneIw0PmYw8ZA-hQr-5GdK8LjyRdvM8MHdSHe0GDjvVz184cTw2VT0GRcOUtP8KXnZYku203X0Na77ahBf3GAY3YWvvrpANRbtIXryBm5MZ5RLqyuPSnzX-qkaXY3XJNDnmTDNdOTaNMOCxb_oKW2Tzhv7NL-pmwagohRHT8Ur8GjFrw8xf9s9TRp0P-vP6OpwFyqh64g9KOGZ1Y-rqLZzt753uTqLuKIbIiiJeRnpsXIJQ0TrviUFVEEdM6XFxmBjtRI4gRYjU5CJ1WnNbaMG5T0ReEr27LozYgkFVV_49MFnG3CCIxHVMLtOyLPBKI47jzpboHskQtlcWUPOWckOR9DgXMhtC3NtE2Y7FnA7TuFR9utqFQpMqMqmKE4UmHcL3lUrf3hPCsje0euCHCqeYp9S-9k6hMD5p06U1YDjmU-ScCz6Ed623rHqRjGVeZJn88H8v_QIbk9PjI3V0MD3chuf4pGjzyT_CYNn89p8QLi3N5y4cbgEdgBJH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneous+removal+of+ammonia+and+N-nitrosamine+precursors+from+high+ammonia+water+by+zeolite+and+powdered+activated+carbon&rft.jtitle=%E7%8E%AF%E5%A2%83%E7%A7%91%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=Runmiao+Xue%3BAriel+Donovan%3BHaiting+Zhang%3BYinfa+Ma%3BCraig+Adams%3BJohn+Yang%3BBin+Hua%3BEnos+Inniss%3BTodd+Eichholz%3BHonglan+Shi&rft.date=2018-02-01&rft.issn=1001-0742&rft.eissn=1878-7320&rft.issue=2&rft.spage=82&rft.epage=91&rft_id=info:doi/10.1016%2Fj.jes.2017.02.010&rft.externalDocID=674797346 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85265X%2F85265X.jpg |