Simultaneous removal of ammonia and N-nitrosamine precursors from high ammonia water by zeolite and powdered activated carbon

When adding sufficient chlorine to achieve breakpoint chlorination to source water containing high concentration of ammonia during drinking water treatment, high concentrations of disinfection by-products(DBPs) may form. If N-nitrosamine precursors are present, highly toxic N-nitrosamines, primarily...

Full description

Saved in:
Bibliographic Details
Published inJournal of environmental sciences (China) Vol. 64; no. 2; pp. 82 - 91
Main Authors Xue, Runmiao, Donovan, Ariel, Zhang, Haiting, Ma, Yinfa, Adams, Craig, Yang, John, Hua, Bin, Inniss, Enos, Eichholz, Todd, Shi, Honglan
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract When adding sufficient chlorine to achieve breakpoint chlorination to source water containing high concentration of ammonia during drinking water treatment, high concentrations of disinfection by-products(DBPs) may form. If N-nitrosamine precursors are present, highly toxic N-nitrosamines, primarily N-nitrosodimethylamine(NDMA), may also form. Removing their precursors before disinfection should be a more effective way to minimize these DBPs formation. In this study, zeolites and activated carbon were examined for ammonia and N-nitrosamine precursor removal when incorporated into drinking water treatment processes.The test results indicate that Mordenite zeolite can remove ammonia and five of seven N-nitrosamine precursors efficiently by single step adsorption test. The practical applicability was evaluated by simulation of typical drinking water treatment processes using six-gang stirring system. The Mordenite zeolite was applied at the steps of lime softening, alum coagulation, and alum coagulation with powdered activated carbon(PAC) sorption. While the lime softening process resulted in poor zeolite performance, alum coagulation did not impact ammonia and N-nitrosamine precursor removal. During alum coagulation, more than67% ammonia and 70%–100% N-nitrosamine precursors were removed by Mordenite zeolite(except 3-(dimethylaminomethyl)indole(DMAI) and 4-dimethylaminoantipyrine(DMAP)). PAC effectively removed DMAI and DMAP when added during alum coagulation. A combination of the zeolite and PAC selected efficiently removed ammonia and all tested seven N-nitrosamine precursors(dimethylamine(DMA), ethylmethylamine(EMA), diethylamine(DEA), dipropylamine(DPA), trimethylamine(TMA), DMAP, and DMAI) during the alum coagulation process.
AbstractList When adding sufficient chlorine to achieve breakpoint chlorination to source water containing high concentration of ammonia during drinking water treatment, high concentrations of disinfection by-products (DBPs) may form. If N-nitrosamine precursors are present, highly toxic N-nitrosamines, primarily N-nitrosodimethylamine (NDMA), may also form. Removing their precursors before disinfection should be a more effective way to minimize these DBPs formation. In this study, zeolites and activated carbon were examined for ammonia and N-nitrosamine precursor removal when incorporated into drinking water treatment processes. The test results indicate that Mordenite zeolite can remove ammonia and five of seven N-nitrosamine precursors efficiently by single step adsorption test. The practical applicability was evaluated by simulation of typical drinking water treatment processes using six-gang stirring system. The Mordenite zeolite was applied at the steps of lime softening, alum coagulation, and alum coagulation with powdered activated carbon (PAC) sorption. While the lime softening process resulted in poor zeolite performance, alum coagulation did not impact ammonia and N-nitrosamine precursor removal. During alum coagulation, more than 67% ammonia and 70%-100% N-nitrosamine precursors were removed by Mordenite zeolite (except 3-(dimethylaminomethyl)indole (DMAI) and 4-dimethylaminoantipyrine (DMAP)). PAC effectively removed DMAI and DMAP when added during alum coagulation. A combination of the zeolite and PAC selected efficiently removed ammonia and all tested seven N-nitrosamine precursors (dimethylamine (DMA), ethylmethylamine (EMA), diethylamine (DEA), dipropylamine (DPA), trimethylamine (TMA), DMAP, and DMAI) during the alum coagulation process.
When adding sufficient chlorine to achieve breakpoint chlorination to source water containing high concentration of ammonia during drinking water treatment, high concentrations of disinfection by-products(DBPs) may form. If N-nitrosamine precursors are present, highly toxic N-nitrosamines, primarily N-nitrosodimethylamine(NDMA), may also form. Removing their precursors before disinfection should be a more effective way to minimize these DBPs formation. In this study, zeolites and activated carbon were examined for ammonia and N-nitrosamine precursor removal when incorporated into drinking water treatment processes.The test results indicate that Mordenite zeolite can remove ammonia and five of seven N-nitrosamine precursors efficiently by single step adsorption test. The practical applicability was evaluated by simulation of typical drinking water treatment processes using six-gang stirring system. The Mordenite zeolite was applied at the steps of lime softening, alum coagulation, and alum coagulation with powdered activated carbon(PAC) sorption. While the lime softening process resulted in poor zeolite performance, alum coagulation did not impact ammonia and N-nitrosamine precursor removal. During alum coagulation, more than67% ammonia and 70%–100% N-nitrosamine precursors were removed by Mordenite zeolite(except 3-(dimethylaminomethyl)indole(DMAI) and 4-dimethylaminoantipyrine(DMAP)). PAC effectively removed DMAI and DMAP when added during alum coagulation. A combination of the zeolite and PAC selected efficiently removed ammonia and all tested seven N-nitrosamine precursors(dimethylamine(DMA), ethylmethylamine(EMA), diethylamine(DEA), dipropylamine(DPA), trimethylamine(TMA), DMAP, and DMAI) during the alum coagulation process.
When adding sufficient chlorine to achieve breakpoint chlorination to source water containing high concentration of ammonia during drinking water treatment, high concentrations of disinfection by-products (DBPs) may form. If N-nitrosamine precursors are present, highly toxic N-nitrosamines, primarily N-nitrosodimethylamine (NDMA), may also form. Removing their precursors before disinfection should be a more effective way to minimize these DBPs formation. In this study, zeolites and activated carbon were examined for ammonia and N-nitrosamine precursor removal when incorporated into drinking water treatment processes. The test results indicate that Mordenite zeolite can remove ammonia and five of seven N-nitrosamine precursors efficiently by single step adsorption test. The practical applicability was evaluated by simulation of typical drinking water treatment processes using six-gang stirring system. The Mordenite zeolite was applied at the steps of lime softening, alum coagulation, and alum coagulation with powdered activated carbon (PAC) sorption. While the lime softening process resulted in poor zeolite performance, alum coagulation did not impact ammonia and N-nitrosamine precursor removal. During alum coagulation, more than 67% ammonia and 70%-100% N-nitrosamine precursors were removed by Mordenite zeolite (except 3-(dimethylaminomethyl)indole (DMAI) and 4-dimethylaminoantipyrine (DMAP)). PAC effectively removed DMAI and DMAP when added during alum coagulation. A combination of the zeolite and PAC selected efficiently removed ammonia and all tested seven N-nitrosamine precursors (dimethylamine (DMA), ethylmethylamine (EMA), diethylamine (DEA), dipropylamine (DPA), trimethylamine (TMA), DMAP, and DMAI) during the alum coagulation process.When adding sufficient chlorine to achieve breakpoint chlorination to source water containing high concentration of ammonia during drinking water treatment, high concentrations of disinfection by-products (DBPs) may form. If N-nitrosamine precursors are present, highly toxic N-nitrosamines, primarily N-nitrosodimethylamine (NDMA), may also form. Removing their precursors before disinfection should be a more effective way to minimize these DBPs formation. In this study, zeolites and activated carbon were examined for ammonia and N-nitrosamine precursor removal when incorporated into drinking water treatment processes. The test results indicate that Mordenite zeolite can remove ammonia and five of seven N-nitrosamine precursors efficiently by single step adsorption test. The practical applicability was evaluated by simulation of typical drinking water treatment processes using six-gang stirring system. The Mordenite zeolite was applied at the steps of lime softening, alum coagulation, and alum coagulation with powdered activated carbon (PAC) sorption. While the lime softening process resulted in poor zeolite performance, alum coagulation did not impact ammonia and N-nitrosamine precursor removal. During alum coagulation, more than 67% ammonia and 70%-100% N-nitrosamine precursors were removed by Mordenite zeolite (except 3-(dimethylaminomethyl)indole (DMAI) and 4-dimethylaminoantipyrine (DMAP)). PAC effectively removed DMAI and DMAP when added during alum coagulation. A combination of the zeolite and PAC selected efficiently removed ammonia and all tested seven N-nitrosamine precursors (dimethylamine (DMA), ethylmethylamine (EMA), diethylamine (DEA), dipropylamine (DPA), trimethylamine (TMA), DMAP, and DMAI) during the alum coagulation process.
When adding sufficient chlorine to achieve breakpoint chlorination to source water containing high concentration of ammonia during drinking water treatment, high concentrations of disinfection by-products (DBPs) may form. If N-nitrosamine precursors are present, highly toxic N-nitrosamines, primarily N-nitrosodimethylamine (NDMA), may also form. Removing their precursors before disinfection should be a more effective way to minimize these DBPs formation. In this study, zeolites and activated carbon were examined for ammonia and N-nitrosamine precursor removal when incorporated into drinking water treatment processes. The test results indicate that Mordenite zeolite can remove ammonia and five of seven N-nitrosamine precursors efficiently by single step adsorption test. The practical applicability was evaluated by simulation of typical drinking water treatment processes using six-gang stirring system. The Mordenite zeolite was applied at the steps of lime softening, alum coagulation, and alum coagulation with powdered activated carbon (PAC) sorption. While the lime softening process resulted in poor zeolite performance, alum coagulation did not impact ammonia and N-nitrosamine precursor removal. During alum coagulation, more than 67% ammonia and 70%–100% N-nitrosamine precursors were removed by Mordenite zeolite (except 3-(dimethylaminomethyl)indole (DMAI) and 4-dimethylaminoantipyrine (DMAP)). PAC effectively removed DMAI and DMAP when added during alum coagulation. A combination of the zeolite and PAC selected efficiently removed ammonia and all tested seven N-nitrosamine precursors (dimethylamine (DMA), ethylmethylamine (EMA), diethylamine (DEA), dipropylamine (DPA), trimethylamine (TMA), DMAP, and DMAI) during the alum coagulation process. [Display omitted]
Author Runmiao Xue;Ariel Donovan;Haiting Zhang;Yinfa Ma;Craig Adams;John Yang;Bin Hua;Enos Inniss;Todd Eichholz;Honglan Shi
AuthorAffiliation Department of Chemistry and Environmental Research Center, Missouri University of Science and Technology, RoIIa, MO 65409, USA;Center for Single Nanoparticle, Single Cell, and Single Molecule Monitorin9 (CS3M), Missouri University of Science and Technology, Rolla,MO 6S409, USA;Department of Civil Engineering, Saint Louis University, St. Louis, MO 63103, USA;Department of Agriculture and Environmental Sciences, Lincoln University of Missouri, Jefferson City, MO 65101, USA;Department of Civil & Environmental Engineering, University of Missouri-Columbia, Columbia, MO 65211, USA;Missouri Department of Natural Resources, Jefferson City, MO 65102, USA
Author_xml – sequence: 1
  givenname: Runmiao
  surname: Xue
  fullname: Xue, Runmiao
  email: rx3h2@mst.edu
  organization: Department of Chemistry and Environmental Research Center, Missouri University of Science and Technology, Rolla, MO 65409, USA
– sequence: 2
  givenname: Ariel
  surname: Donovan
  fullname: Donovan, Ariel
  organization: Department of Chemistry and Environmental Research Center, Missouri University of Science and Technology, Rolla, MO 65409, USA
– sequence: 3
  givenname: Haiting
  surname: Zhang
  fullname: Zhang, Haiting
  organization: Department of Chemistry and Environmental Research Center, Missouri University of Science and Technology, Rolla, MO 65409, USA
– sequence: 4
  givenname: Yinfa
  surname: Ma
  fullname: Ma, Yinfa
  organization: Department of Chemistry and Environmental Research Center, Missouri University of Science and Technology, Rolla, MO 65409, USA
– sequence: 5
  givenname: Craig
  surname: Adams
  fullname: Adams, Craig
  organization: Center for Single Nanoparticle, Single Cell, and Single Molecule Monitoring (CS3M), Missouri University of Science and Technology, Rolla, MO 65409, USA
– sequence: 6
  givenname: John
  surname: Yang
  fullname: Yang, John
  organization: Center for Single Nanoparticle, Single Cell, and Single Molecule Monitoring (CS3M), Missouri University of Science and Technology, Rolla, MO 65409, USA
– sequence: 7
  givenname: Bin
  surname: Hua
  fullname: Hua, Bin
  organization: Department of Agriculture and Environmental Sciences, Lincoln University of Missouri, Jefferson City, MO 65101, USA
– sequence: 8
  givenname: Enos
  surname: Inniss
  fullname: Inniss, Enos
  organization: Center for Single Nanoparticle, Single Cell, and Single Molecule Monitoring (CS3M), Missouri University of Science and Technology, Rolla, MO 65409, USA
– sequence: 9
  givenname: Todd
  surname: Eichholz
  fullname: Eichholz, Todd
  organization: Missouri Department of Natural Resources, Jefferson City, MO 65102, USA
– sequence: 10
  givenname: Honglan
  surname: Shi
  fullname: Shi, Honglan
  email: honglan@mst.edu
  organization: Department of Chemistry and Environmental Research Center, Missouri University of Science and Technology, Rolla, MO 65409, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29478664$$D View this record in MEDLINE/PubMed
BookMark eNp9kb2O1DAUhSO0iP2BB6BBFhVNwrWdxI6o0Io_aQUFUFuOfTPjUWLP2p5ZLRLvjpcZpqDYyrf4Pl_7nMvqzAePVfWSQkOB9m83zQZTw4CKBlgDFJ5UF1QKWQvO4KzMALQG0bLz6jKlDQC0HXTPqnM2tEL2fXtR_f7ult2ctcewSyTiEvZ6JmEielmCd5pob8nX2rscQ9KL80i2Ec0uphATmWJYyNqt1if8TmeMZLwnvzDMLuNffxvuLEa0RJvs9oWwxOg4Bv-8ejrpOeGL43lV_fz44cf15_rm26cv1-9vasMl5FoPo2WDEMYiAu8Y72ULE7YwsFFbLpjknHej4J3VmhqpOaXIuJjk0HItR35VvTncu43hdocpq8Ulg_N8-LdiAJILSjkt6KsjuhsXtGob3aLjvfoXWQHoATAlkRRxOiEU1EMtaqNKLeqhFgVMlVqKI_5zjMs6u-Bz1G5-1Hx3MLHEs3cYVTIOvUHrSg1Z2eAetV8f966DX906vzo9thetGARve_4HqeWz_A
CitedBy_id crossref_primary_10_1002_wer_1557
crossref_primary_10_1016_j_colsurfa_2021_126583
crossref_primary_10_1007_s11270_023_06704_y
crossref_primary_10_1007_s13201_023_01894_6
crossref_primary_10_1007_s13369_018_3567_6
crossref_primary_10_1016_j_enconman_2024_118893
crossref_primary_10_1016_j_scitotenv_2021_146982
crossref_primary_10_1038_s41598_024_72067_x
crossref_primary_10_1007_s11356_021_14525_x
crossref_primary_10_1016_j_jenvman_2023_119172
crossref_primary_10_1016_j_jhazmat_2018_12_102
crossref_primary_10_1016_j_seppur_2020_116741
crossref_primary_10_1016_j_scitotenv_2021_149415
crossref_primary_10_3390_min12020256
crossref_primary_10_1016_j_jes_2019_09_005
crossref_primary_10_2139_ssrn_4048882
crossref_primary_10_1016_j_cej_2021_129918
crossref_primary_10_1021_acsanm_2c01246
crossref_primary_10_14233_ajchem_2019_21810
crossref_primary_10_1051_bioconf_202515602014
crossref_primary_10_3389_fpls_2024_1404077
crossref_primary_10_1016_j_envres_2023_116957
crossref_primary_10_1007_s10163_021_01216_5
crossref_primary_10_1016_j_cej_2020_124062
crossref_primary_10_1016_j_psep_2021_04_033
crossref_primary_10_1021_acsestengg_3c00613
crossref_primary_10_1016_j_jenvman_2019_109342
crossref_primary_10_1016_j_eti_2021_101407
crossref_primary_10_1016_j_jes_2022_03_004
crossref_primary_10_1016_j_seta_2022_102011
crossref_primary_10_1016_j_watres_2024_122434
crossref_primary_10_1016_j_chemosphere_2024_143559
crossref_primary_10_1515_chem_2019_0149
crossref_primary_10_1016_j_jwpe_2024_105713
crossref_primary_10_1016_j_jhazmat_2024_136432
crossref_primary_10_1016_j_eti_2019_100557
crossref_primary_10_1088_1755_1315_555_1_012049
crossref_primary_10_3390_ijms21072383
crossref_primary_10_1038_s41598_019_55906_0
crossref_primary_10_1080_21622515_2018_1473504
crossref_primary_10_1016_j_aquaculture_2019_734605
crossref_primary_10_1016_j_jhazmat_2019_02_003
crossref_primary_10_3390_ma14164359
crossref_primary_10_1016_j_desal_2023_117018
crossref_primary_10_1039_C9RA10114D
Cites_doi 10.4314/wsa.v28i3.4903
10.1016/j.aquaeng.2012.07.005
10.1021/es060978h
10.1016/j.watres.2014.10.044
10.2166/ws.2002.0102
10.1016/j.aquaculture.2014.05.019
10.1016/j.seppur.2012.10.005
10.1016/j.chemosphere.2013.08.020
10.1016/j.seppur.2015.09.061
10.1016/j.jhazmat.2006.06.124
10.1016/j.jhazmat.2008.04.047
10.1016/j.jhazmat.2004.05.035
10.1016/j.jhazmat.2008.04.053
10.1007/s00253-006-0534-z
10.1016/j.watres.2015.10.062
10.1016/j.jhazmat.2014.01.037
10.1089/109287503768335896
10.1016/j.watres.2009.06.048
10.1016/j.seppur.2004.04.011
10.1016/j.cej.2012.12.038
10.1016/j.seppur.2012.07.025
10.1061/(ASCE)EE.1943-7870.0000043
10.1016/j.cej.2009.10.029
10.1021/es302922w
10.2134/jeq2016.05.0175
10.1016/j.scitotenv.2012.09.078
10.1021/es026070i
10.1021/es034020n
10.1016/j.biortech.2013.01.057
10.1016/j.watres.2014.10.047
10.1039/C5RA15419G
10.1016/j.watres.2012.11.014
10.1016/j.jenvman.2015.05.033
10.1016/j.jhazmat.2012.06.001
10.1021/ie950303f
10.1016/j.biortech.2013.12.122
10.1016/j.desal.2013.07.021
10.1016/j.desal.2010.05.036
10.1016/j.jhazmat.2006.07.074
10.1016/j.jhazmat.2009.09.156
10.1016/j.minpro.2004.01.003
10.1016/j.jhazmat.2010.01.123
10.5991/OPF.2012.38.0025
10.1016/j.desal.2011.10.030
10.1016/j.watres.2013.04.050
10.1021/es010684q
10.1016/j.psep.2016.06.021
10.1016/j.jhazmat.2005.12.042
10.1016/j.talanta.2014.08.003
10.1016/S0043-1354(00)00113-5
10.1016/j.jenvman.2013.06.020
ContentType Journal Article
Copyright 2017
Copyright © 2017. Published by Elsevier B.V.
Copyright_xml – notice: 2017
– notice: Copyright © 2017. Published by Elsevier B.V.
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.jes.2017.02.010
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
DocumentTitleAlternate Simultaneous removal of ammonia and N-nitrosamine precursors from high ammonia water by zeolite and powdered activated carbon
EISSN 1878-7320
EndPage 91
ExternalDocumentID 29478664
10_1016_j_jes_2017_02_010
S1001074216315066
674797346
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
2B.
2C0
2RA
36B
4.4
457
4G.
4P2
53G
5GY
5VR
5VS
7-5
71M
8P~
92H
92I
92L
92R
93N
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABLST
ABMAC
ABUBZ
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
ADZMO
AEBSH
AEKER
AFKWA
AFRHK
AFRXA
AFTJW
AFUIB
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CAG
CCEZO
CDRFL
CHBEP
COF
CQIGP
CS3
CW9
EBS
EDH
EFJIC
EFLBG
EJD
EMB
EMOBN
EO9
EP2
EP3
F5P
FA0
FDB
FIRID
FNPLU
FYGXN
GBLVA
HZ~
I-F
IHE
IOS
J1W
KCYFY
KOM
M41
MET
MIO
ML.
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
ROL
RPZ
SDC
SDF
SDG
SDP
SES
SSJ
SSZ
SV3
T5K
TCJ
TGT
W92
~G-
~WA
ACPQW
-SB
-S~
5XA
5XC
AAFNC
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CAJEB
CITATION
Q--
SPCBC
SSH
U1G
U5L
AAXDM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c380t-a9bd2977cdee035236840fe4092bad37283335b735daa1c8a311e237f8943a8b3
IEDL.DBID .~1
ISSN 1001-0742
IngestDate Fri Jul 11 11:27:11 EDT 2025
Wed Feb 19 02:43:08 EST 2025
Tue Jul 01 02:32:00 EDT 2025
Thu Apr 24 23:10:52 EDT 2025
Fri Feb 23 02:19:32 EST 2024
Wed Feb 14 09:56:21 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Drinking water treatment
Disinfection by-products
Ammonia removal by zeolite
N-nitrosamine precursor removal by zeolite and powdered activated carbon
N-nitrosamines
N-nitrosodimethylamine (NDMA)
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2017. Published by Elsevier B.V.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c380t-a9bd2977cdee035236840fe4092bad37283335b735daa1c8a311e237f8943a8b3
Notes When adding sufficient chlorine to achieve breakpoint chlorination to source water containing high concentration of ammonia during drinking water treatment, high concentrations of disinfection by-products(DBPs) may form. If N-nitrosamine precursors are present, highly toxic N-nitrosamines, primarily N-nitrosodimethylamine(NDMA), may also form. Removing their precursors before disinfection should be a more effective way to minimize these DBPs formation. In this study, zeolites and activated carbon were examined for ammonia and N-nitrosamine precursor removal when incorporated into drinking water treatment processes.The test results indicate that Mordenite zeolite can remove ammonia and five of seven N-nitrosamine precursors efficiently by single step adsorption test. The practical applicability was evaluated by simulation of typical drinking water treatment processes using six-gang stirring system. The Mordenite zeolite was applied at the steps of lime softening, alum coagulation, and alum coagulation with powdered activated carbon(PAC) sorption. While the lime softening process resulted in poor zeolite performance, alum coagulation did not impact ammonia and N-nitrosamine precursor removal. During alum coagulation, more than67% ammonia and 70%–100% N-nitrosamine precursors were removed by Mordenite zeolite(except 3-(dimethylaminomethyl)indole(DMAI) and 4-dimethylaminoantipyrine(DMAP)). PAC effectively removed DMAI and DMAP when added during alum coagulation. A combination of the zeolite and PAC selected efficiently removed ammonia and all tested seven N-nitrosamine precursors(dimethylamine(DMA), ethylmethylamine(EMA), diethylamine(DEA), dipropylamine(DPA), trimethylamine(TMA), DMAP, and DMAI) during the alum coagulation process.
Disinfection by-products;Drinking water treatment;Ammonia removal by zeolite;N-nitrosodimethylamine(NDMA);N-nitrosamines;N-nitrosamine precursor removal by zeolite and powdered activated carbon
11-2629/X
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 29478664
PQID 2008371131
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2008371131
pubmed_primary_29478664
crossref_primary_10_1016_j_jes_2017_02_010
crossref_citationtrail_10_1016_j_jes_2017_02_010
elsevier_sciencedirect_doi_10_1016_j_jes_2017_02_010
chongqing_primary_674797346
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-01
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of environmental sciences (China)
PublicationTitleAlternate Journal of Environmental Sciences
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhang, Li, Blatchley, Wang, Ren (bb0260) 2015; 68
Šiljeg, Foglar, Kukučka (bb0220) 2010; 178
Du, Liu, Cao, Wang (bb0045) 2005; 44
Fujioka, Khan, Poussade, Drewes, Nghiem (bb0070) 2012; 98
Wang, Lin, Pang (bb0235) 2007; 142
Selbes, Kim, Ates, Karanfil (bb0215) 2013; 47
Almutairi, Weatherley (bb0005) 2015; 160
Saltalı, Sarı, Aydın (bb0205) 2007; 141
Brennan, Healy, Grant, Ibrahim, Fenton (bb0025) 2012; 441
Wang, Peng (bb0230) 2010; 156
Huo, Lin, Dong, Cheng, Wang, Cao (bb0100) 2012; 229
Zhou, Chen, Lou, Yang, Zhu (bb0270) 2014; 95
Qu, Sun, Wang, Yun (bb0190) 2013; 326
O'Flynn, Healy, Lanigan, Troy, Somers, Fenton (bb0180) 2013; 128
Peng, Zhu (bb0185) 2006; 73
Hanigan, Zhang, Herckes, Krasner, Chen, Westerhoff (bb0090) 2012; 46
Mitch, Sedlak (bb0155) 2002; 36
Lin, Wu (bb0125) 1996; 35
Mitch, Sharp, Trussell, Valentine, Alvarez-Cohen, Sedlak (bb0160) 2003; 20
Beita-Sandí, Ersan, Uzun, Karanfil (bb0010) 2016; 88
Markou, Vandamme, Muylaert (bb0145) 2014; 155
Choi, Valentine (bb0030) 2003; 37
Gerecke, Sedlak (bb0080) 2003; 37
Yuan, Chen, Tsai, Chang (bb0255) 2016; 102
Zhou, Boyd (bb0265) 2014; 432
Mailler, Gasperi, Coquet, Deshayes, Zedek, Cren-Olivé, Cartiser, Eudes, Bressy, Caupos, Moilleron (bb0140) 2015; 72
Rezakazemi, Shirazian, Ashrafizadeh (bb0195) 2012; 285
Soetardji, Claudia, Ju, Hriljac, Chen, Soetaredjo, Santoso, Kurniawan, Ismadji (bb0225) 2015; 5
Karadag, Koc, Turan, Armagan (bb0105) 2006; 136
Englert, Rubio (bb0055) 2005; 75
Gendel, Lahav (bb0075) 2013; 52
Farkaš, Rožić, Barbarić-Mikočević (bb0065) 2005; 117
Halim, Aziz, Johari, Ariffin (bb0085) 2010; 262
Bhatnagar, Hogland, Marques, Sillanpää (bb0015) 2013; 219
Couto, Oliveira, Guarino, Perez, Marques (bb0035) 2016
Wijekoon, Fujioka, McDonald, Khan, Hai, Price, Nghiem (bb0240) 2013; 141
Li, Liu (bb0120) 2009; 161
Wu, Shi, Ma, Adams, Jiang, Wang, Eichholz, Timmons (bb0250) 2015; 156
Wu, Shi, Ma, Adams, Eichholz, Timmons, Jiang (bb0245) 2015; 131
Mitch, Sedlak (bb0150) 2002; 2
Demir, Gunay, Debik (bb0040) 2002; 28
Miyashita, Park, Hyung, Huang, Kim (bb0165) 2009; 135
Rožić, Cerjan-Stefanović, Kurajica, Vančina, Hodžić (bb0200) 2000; 34
Eaton, Franson (bb0050) 2005
Nam, Choi, Kim, Her, Zoh (bb0175) 2014; 270
Blute, Ghosh, Lytle (bb0020) 2012; 38
Lin, Yuan, Chen, Xu, Lu (bb0130) 2009; 161
Krasner, Mitch, McCurry, Hanigan, Westerhoff (bb0110) 2013; 47
Schreiber, Mitch (bb0210) 2006; 40
Huang, Xiao, Yan, Yang (bb0095) 2010; 175
Lin, Lei, Wang, Liu, Zhang, Wan, Lee, Tay (bb0135) 2013; 103
Krauss, Longrée, Dorusch, Ort, Hollender (bb0115) 2009; 43
Murnane, Brennan, Fenton, Healy (bb0170) 2016; 45
Couto (10.1016/j.jes.2017.02.010_bb0035) 2016
Brennan (10.1016/j.jes.2017.02.010_bb0025) 2012; 441
Huang (10.1016/j.jes.2017.02.010_bb0095) 2010; 175
Beita-Sandí (10.1016/j.jes.2017.02.010_bb0010) 2016; 88
Šiljeg (10.1016/j.jes.2017.02.010_bb0220) 2010; 178
Wijekoon (10.1016/j.jes.2017.02.010_bb0240) 2013; 141
Wu (10.1016/j.jes.2017.02.010_bb0250) 2015; 156
Eaton (10.1016/j.jes.2017.02.010_bb0050) 2005
Murnane (10.1016/j.jes.2017.02.010_bb0170) 2016; 45
Nam (10.1016/j.jes.2017.02.010_bb0175) 2014; 270
Lin (10.1016/j.jes.2017.02.010_bb0125) 1996; 35
Du (10.1016/j.jes.2017.02.010_bb0045) 2005; 44
Farkaš (10.1016/j.jes.2017.02.010_bb0065) 2005; 117
Wang (10.1016/j.jes.2017.02.010_bb0230) 2010; 156
Mailler (10.1016/j.jes.2017.02.010_bb0140) 2015; 72
Zhou (10.1016/j.jes.2017.02.010_bb0265) 2014; 432
Saltalı (10.1016/j.jes.2017.02.010_bb0205) 2007; 141
Qu (10.1016/j.jes.2017.02.010_bb0190) 2013; 326
Mitch (10.1016/j.jes.2017.02.010_bb0155) 2002; 36
Rožić (10.1016/j.jes.2017.02.010_bb0200) 2000; 34
Lin (10.1016/j.jes.2017.02.010_bb0130) 2009; 161
Zhang (10.1016/j.jes.2017.02.010_bb0260) 2015; 68
Gerecke (10.1016/j.jes.2017.02.010_bb0080) 2003; 37
Peng (10.1016/j.jes.2017.02.010_bb0185) 2006; 73
Halim (10.1016/j.jes.2017.02.010_bb0085) 2010; 262
Wang (10.1016/j.jes.2017.02.010_bb0235) 2007; 142
Soetardji (10.1016/j.jes.2017.02.010_bb0225) 2015; 5
Zhou (10.1016/j.jes.2017.02.010_bb0270) 2014; 95
Li (10.1016/j.jes.2017.02.010_bb0120) 2009; 161
Englert (10.1016/j.jes.2017.02.010_bb0055) 2005; 75
Krauss (10.1016/j.jes.2017.02.010_bb0115) 2009; 43
Hanigan (10.1016/j.jes.2017.02.010_bb0090) 2012; 46
Wu (10.1016/j.jes.2017.02.010_bb0245) 2015; 131
Bhatnagar (10.1016/j.jes.2017.02.010_bb0015) 2013; 219
Rezakazemi (10.1016/j.jes.2017.02.010_bb0195) 2012; 285
Almutairi (10.1016/j.jes.2017.02.010_bb0005) 2015; 160
Markou (10.1016/j.jes.2017.02.010_bb0145) 2014; 155
Karadag (10.1016/j.jes.2017.02.010_bb0105) 2006; 136
Blute (10.1016/j.jes.2017.02.010_bb0020) 2012; 38
Gendel (10.1016/j.jes.2017.02.010_bb0075) 2013; 52
Choi (10.1016/j.jes.2017.02.010_bb0030) 2003; 37
O'Flynn (10.1016/j.jes.2017.02.010_bb0180) 2013; 128
Mitch (10.1016/j.jes.2017.02.010_bb0150) 2002; 2
Mitch (10.1016/j.jes.2017.02.010_bb0160) 2003; 20
Huo (10.1016/j.jes.2017.02.010_bb0100) 2012; 229
Krasner (10.1016/j.jes.2017.02.010_bb0110) 2013; 47
Schreiber (10.1016/j.jes.2017.02.010_bb0210) 2006; 40
Miyashita (10.1016/j.jes.2017.02.010_bb0165) 2009; 135
Selbes (10.1016/j.jes.2017.02.010_bb0215) 2013; 47
Lin (10.1016/j.jes.2017.02.010_bb0135) 2013; 103
Fujioka (10.1016/j.jes.2017.02.010_bb0070) 2012; 98
Yuan (10.1016/j.jes.2017.02.010_bb0255) 2016; 102
Demir (10.1016/j.jes.2017.02.010_bb0040) 2002; 28
References_xml – volume: 155
  start-page: 373
  year: 2014
  end-page: 378
  ident: bb0145
  article-title: Using natural zeolite for ammonia sorption from wastewater and as nitrogen releaser for the cultivation of
  publication-title: Bioresour. Technol.
– volume: 161
  start-page: 1010
  year: 2009
  end-page: 1016
  ident: bb0120
  article-title: Ammonia removal in electrochemical oxidation: mechanism and pseudo-kinetics
  publication-title: J. Hazard. Mater.
– volume: 103
  start-page: 15
  year: 2013
  end-page: 20
  ident: bb0135
  article-title: Adsorption mechanisms of high-levels of ammonium onto natural and NaCl-modified zeolites
  publication-title: Sep. Purif. Technol.
– volume: 88
  start-page: 711
  year: 2016
  end-page: 718
  ident: bb0010
  article-title: Removal of N-nitrosodimethylamine precursors with powdered activated carbon adsorption
  publication-title: Water Res.
– volume: 40
  start-page: 6007
  year: 2006
  end-page: 6014
  ident: bb0210
  article-title: Nitrosamine formation pathway revisited: the importance of chloramine speciation and dissolved oxygen
  publication-title: Environ. Sci. Technol.
– volume: 156
  start-page: 972
  year: 2015
  end-page: 979
  ident: bb0250
  article-title: Removal of N-nitrosamine precursors in drinking water system using adsorption methods
  publication-title: Sep. Purif. Technol.
– volume: 326
  start-page: 135
  year: 2013
  end-page: 140
  ident: bb0190
  article-title: Experimental study of ammonia removal from water by modified direct contact membrane distillation
  publication-title: Desalination
– volume: 75
  start-page: 21
  year: 2005
  end-page: 29
  ident: bb0055
  article-title: Characterization and environmental application of a Chilean natural zeolite
  publication-title: Int. J. Miner. Process.
– volume: 46
  start-page: 12630
  year: 2012
  end-page: 12639
  ident: bb0090
  article-title: Adsorption of N-nitrosodimethylamine precursors by powdered and granular activated carbon
  publication-title: Environ. Sci. Technol.
– volume: 270
  start-page: 144
  year: 2014
  end-page: 152
  ident: bb0175
  article-title: Adsorption characteristics of selected hydrophilic and hydrophobic micropollutants in water using activated carbon
  publication-title: J. Hazard. Mater.
– volume: 5
  start-page: 83689
  year: 2015
  end-page: 83699
  ident: bb0225
  article-title: Ammonia removal from water using sodium hydroxide modified zeolite mordenite
  publication-title: RSC Adv.
– volume: 98
  start-page: 503
  year: 2012
  end-page: 515
  ident: bb0070
  article-title: N-nitrosamine removal by reverse osmosis for indirect potable water reuse–A critical review based on observations from laboratory-, pilot-and full-scale studies
  publication-title: Sep. Purif. Technol.
– volume: 35
  start-page: 553
  year: 1996
  end-page: 558
  ident: bb0125
  article-title: Ammonia removal from aqueous solution by ion exchange
  publication-title: Ind. Eng. Chem. Res.
– volume: 136
  start-page: 604
  year: 2006
  end-page: 609
  ident: bb0105
  article-title: Removal of ammonium ion from aqueous solution using natural Turkish clinoptilolite
  publication-title: J. Hazard. Mater.
– volume: 95
  start-page: 81
  year: 2014
  end-page: 87
  ident: bb0270
  article-title: Formation potential of nine nitrosamines from corresponding secondary amines by chloramination
  publication-title: Chemosphere
– volume: 36
  start-page: 588
  year: 2002
  end-page: 595
  ident: bb0155
  article-title: Formation of N-nitrosodimethylamine (NDMA) from dimethylamine during chlorination
  publication-title: Environ. Sci. Technol.
– volume: 34
  start-page: 3675
  year: 2000
  end-page: 3681
  ident: bb0200
  article-title: Ammoniacal nitrogen removal from water by treatment with clays and zeolites
  publication-title: Water Res.
– volume: 68
  start-page: 804
  year: 2015
  end-page: 811
  ident: bb0260
  article-title: UV/chlorine process for ammonia removal and disinfection by-product reduction: comparison with chlorination
  publication-title: Water Res.
– volume: 47
  start-page: 4433
  year: 2013
  end-page: 4450
  ident: bb0110
  article-title: Formation, precursors, control, and occurrence of nitrosamines in drinking water: a review
  publication-title: Water Res.
– volume: 432
  start-page: 252
  year: 2014
  end-page: 257
  ident: bb0265
  article-title: Total ammonia nitrogen removal from aqueous solutions by the natural zeolite, mordenite: a laboratory test and experimental study
  publication-title: Aquaculture
– volume: 160
  start-page: 128
  year: 2015
  end-page: 138
  ident: bb0005
  article-title: Intensification of ammonia removal from waste water in biologically active zeolitic ion exchange columns
  publication-title: J. Environ. Manag.
– volume: 131
  start-page: 736
  year: 2015
  end-page: 741
  ident: bb0245
  article-title: Determination of secondary and tertiary amines as N-nitrosamine precursors in drinking water system using ultra-fast liquid chromatography–tandem mass spectrometry
  publication-title: Talanta
– volume: 47
  start-page: 945
  year: 2013
  end-page: 953
  ident: bb0215
  article-title: The roles of tertiary amine structure, background organic matter and chloramine species on NDMA formation
  publication-title: Water Res.
– volume: 102
  start-page: 777
  year: 2016
  end-page: 785
  ident: bb0255
  article-title: Ammonia removal from ammonia-rich wastewater by air stripping using a rotating packed bed
  publication-title: Process Saf. Environ.
– volume: 117
  start-page: 25
  year: 2005
  end-page: 33
  ident: bb0065
  article-title: Ammonium exchange in leakage waters of waste dumps using natural zeolite from the Krapina region, Croatia
  publication-title: J. Hazard. Mater.
– year: 2005
  ident: bb0050
  article-title: Standard Methods for the Examination of Water and Wastewater
– volume: 37
  start-page: 4871
  year: 2003
  end-page: 4876
  ident: bb0030
  article-title: N-Nitrosodimethylamine formation by free-chlorine-enhanced nitrosation of dimethylamine
  publication-title: Environ. Sci. Technol.
– volume: 72
  start-page: 315
  year: 2015
  end-page: 330
  ident: bb0140
  article-title: Study of a large scale powdered activated carbon pilot: removals of a wide range of emerging and priority micropollutants from wastewater treatment plant effluents
  publication-title: Water Res.
– volume: 45
  start-page: 1941
  year: 2016
  end-page: 1948
  ident: bb0170
  article-title: Zeolite combined with alum and polyaluminum chloride mixed with agricultural slurries reduces carbon losses in runoff from grassed soil boxes
  publication-title: J. Environ. Qual.
– volume: 38
  start-page: 14
  year: 2012
  end-page: 17
  ident: bb0020
  article-title: Assessing Ammonia Treatment Options
  publication-title: Opflow
– volume: 28
  start-page: 329
  year: 2002
  end-page: 336
  ident: bb0040
  article-title: Ammonium removal from aqueous solution by ion-exchange using packed bed natural zeolite
  publication-title: Water SA
– volume: 175
  start-page: 247
  year: 2010
  end-page: 252
  ident: bb0095
  article-title: Ammonium removal from aqueous solutions by using natural Chinese (Chende) zeolite as adsorbent
  publication-title: J. Hazard. Mater.
– volume: 135
  start-page: 788
  year: 2009
  end-page: 795
  ident: bb0165
  article-title: Removal of N-nitrosamines and their precursors by nanofiltration and reverse osmosis membranes
  publication-title: J. Environ. Eng.
– volume: 441
  start-page: 132
  year: 2012
  end-page: 140
  ident: bb0025
  article-title: Incidental phosphorus and nitrogen loss from grassland plots receiving chemically amended dairy cattle slurry
  publication-title: Sci. Total Environ.
– volume: 262
  start-page: 31
  year: 2010
  end-page: 35
  ident: bb0085
  article-title: Comparison study of ammonia and COD adsorption on zeolite, activated carbon and composite materials in landfill leachate treatment
  publication-title: Desalination
– volume: 43
  start-page: 4381
  year: 2009
  end-page: 4391
  ident: bb0115
  article-title: Occurrence and removal of N-nitrosamines in wastewater treatment plants
  publication-title: Water Res.
– volume: 161
  start-page: 1063
  year: 2009
  end-page: 1068
  ident: bb0130
  article-title: Removal of ammonia nitrogen in wastewater by microwave radiation
  publication-title: J. Hazard. Mater.
– volume: 73
  start-page: 15
  year: 2006
  end-page: 26
  ident: bb0185
  article-title: Biological nitrogen removal with nitrification and denitrification via nitrite pathway
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 141
  start-page: 41
  year: 2013
  end-page: 45
  ident: bb0240
  article-title: Removal of N-nitrosamines by an aerobic membrane bioreactor
  publication-title: Bioresour. Technol.
– volume: 37
  start-page: 1331
  year: 2003
  end-page: 1336
  ident: bb0080
  article-title: Precursors of N-nitrosodimethylamine in natural waters
  publication-title: Environ. Sci. Technol.
– volume: 52
  start-page: 27
  year: 2013
  end-page: 38
  ident: bb0075
  article-title: A novel approach for ammonia removal from fresh-water recirculated aquaculture systems, comprising ion exchange and electrochemical regeneration
  publication-title: Aquac. Eng.
– volume: 219
  start-page: 499
  year: 2013
  end-page: 511
  ident: bb0015
  article-title: An overview of the modification methods of activated carbon for its water treatment applications
  publication-title: Chem. Eng. J.
– volume: 142
  start-page: 160
  year: 2007
  end-page: 164
  ident: bb0235
  article-title: Ammonium exchange in aqueous solution using Chinese natural clinoptilolite and modified zeolite
  publication-title: J. Hazard. Mater.
– volume: 229
  start-page: 292
  year: 2012
  end-page: 297
  ident: bb0100
  article-title: Ammonia-nitrogen and phosphates sorption from simulated reclaimed waters by modified clinoptilolite
  publication-title: J. Hazard. Mater.
– start-page: 1
  year: 2016
  end-page: 11
  ident: bb0035
  article-title: Removal of ammonia nitrogen from distilled old landfill leachate by adsorption on raw and modified aluminosilicate
  publication-title: Environ. Technol.
– volume: 285
  start-page: 383
  year: 2012
  end-page: 392
  ident: bb0195
  article-title: Simulation of ammonia removal from industrial wastewater streams by means of a hollow-fiber membrane contactor
  publication-title: Desalination
– volume: 20
  start-page: 389
  year: 2003
  end-page: 404
  ident: bb0160
  article-title: N-nitrosodimethylamine (NDMA) as a drinking water contaminant: a review
  publication-title: Environ. Eng. Sci.
– volume: 156
  start-page: 11
  year: 2010
  end-page: 24
  ident: bb0230
  article-title: Natural zeolites as effective adsorbents in water and wastewater treatment
  publication-title: Chem. Eng. J.
– volume: 141
  start-page: 258
  year: 2007
  end-page: 263
  ident: bb0205
  article-title: Removal of ammonium ion from aqueous solution by natural Turkish (Yıldızeli) zeolite for environmental quality
  publication-title: J. Hazard. Mater.
– volume: 128
  start-page: 690
  year: 2013
  end-page: 698
  ident: bb0180
  article-title: Impact of chemically amended pig slurry on greenhouse gas emissions, soil properties and leachate
  publication-title: J. Environ. Manag.
– volume: 44
  start-page: 229
  year: 2005
  end-page: 234
  ident: bb0045
  article-title: Ammonia removal from aqueous solution using natural Chinese clinoptilolite
  publication-title: Sep. Purif. Technol.
– volume: 2
  start-page: 191
  year: 2002
  end-page: 198
  ident: bb0150
  article-title: Factors controlling nitrosamine formation during wastewater chlorination
  publication-title: Water Supply
– volume: 178
  start-page: 572
  year: 2010
  end-page: 577
  ident: bb0220
  article-title: The ground water ammonium sorption onto Croatian and Serbian clinoptilolite
  publication-title: J. Hazard. Mater.
– volume: 28
  start-page: 329
  issue: 3
  year: 2002
  ident: 10.1016/j.jes.2017.02.010_bb0040
  article-title: Ammonium removal from aqueous solution by ion-exchange using packed bed natural zeolite
  publication-title: Water SA
  doi: 10.4314/wsa.v28i3.4903
– volume: 52
  start-page: 27
  year: 2013
  ident: 10.1016/j.jes.2017.02.010_bb0075
  article-title: A novel approach for ammonia removal from fresh-water recirculated aquaculture systems, comprising ion exchange and electrochemical regeneration
  publication-title: Aquac. Eng.
  doi: 10.1016/j.aquaeng.2012.07.005
– volume: 40
  start-page: 6007
  issue: 19
  year: 2006
  ident: 10.1016/j.jes.2017.02.010_bb0210
  article-title: Nitrosamine formation pathway revisited: the importance of chloramine speciation and dissolved oxygen
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es060978h
– volume: 68
  start-page: 804
  year: 2015
  ident: 10.1016/j.jes.2017.02.010_bb0260
  article-title: UV/chlorine process for ammonia removal and disinfection by-product reduction: comparison with chlorination
  publication-title: Water Res.
  doi: 10.1016/j.watres.2014.10.044
– volume: 2
  start-page: 191
  issue: 3
  year: 2002
  ident: 10.1016/j.jes.2017.02.010_bb0150
  article-title: Factors controlling nitrosamine formation during wastewater chlorination
  publication-title: Water Supply
  doi: 10.2166/ws.2002.0102
– volume: 432
  start-page: 252
  year: 2014
  ident: 10.1016/j.jes.2017.02.010_bb0265
  article-title: Total ammonia nitrogen removal from aqueous solutions by the natural zeolite, mordenite: a laboratory test and experimental study
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2014.05.019
– volume: 103
  start-page: 15
  year: 2013
  ident: 10.1016/j.jes.2017.02.010_bb0135
  article-title: Adsorption mechanisms of high-levels of ammonium onto natural and NaCl-modified zeolites
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2012.10.005
– volume: 95
  start-page: 81
  year: 2014
  ident: 10.1016/j.jes.2017.02.010_bb0270
  article-title: Formation potential of nine nitrosamines from corresponding secondary amines by chloramination
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.08.020
– volume: 156
  start-page: 972
  year: 2015
  ident: 10.1016/j.jes.2017.02.010_bb0250
  article-title: Removal of N-nitrosamine precursors in drinking water system using adsorption methods
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2015.09.061
– volume: 141
  start-page: 258
  issue: 1
  year: 2007
  ident: 10.1016/j.jes.2017.02.010_bb0205
  article-title: Removal of ammonium ion from aqueous solution by natural Turkish (Yıldızeli) zeolite for environmental quality
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2006.06.124
– volume: 161
  start-page: 1010
  issue: 2
  year: 2009
  ident: 10.1016/j.jes.2017.02.010_bb0120
  article-title: Ammonia removal in electrochemical oxidation: mechanism and pseudo-kinetics
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2008.04.047
– volume: 117
  start-page: 25
  issue: 1
  year: 2005
  ident: 10.1016/j.jes.2017.02.010_bb0065
  article-title: Ammonium exchange in leakage waters of waste dumps using natural zeolite from the Krapina region, Croatia
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2004.05.035
– volume: 161
  start-page: 1063
  issue: 2
  year: 2009
  ident: 10.1016/j.jes.2017.02.010_bb0130
  article-title: Removal of ammonia nitrogen in wastewater by microwave radiation
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2008.04.053
– volume: 73
  start-page: 15
  issue: 1
  year: 2006
  ident: 10.1016/j.jes.2017.02.010_bb0185
  article-title: Biological nitrogen removal with nitrification and denitrification via nitrite pathway
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-006-0534-z
– volume: 88
  start-page: 711
  year: 2016
  ident: 10.1016/j.jes.2017.02.010_bb0010
  article-title: Removal of N-nitrosodimethylamine precursors with powdered activated carbon adsorption
  publication-title: Water Res.
  doi: 10.1016/j.watres.2015.10.062
– volume: 270
  start-page: 144
  year: 2014
  ident: 10.1016/j.jes.2017.02.010_bb0175
  article-title: Adsorption characteristics of selected hydrophilic and hydrophobic micropollutants in water using activated carbon
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2014.01.037
– volume: 20
  start-page: 389
  issue: 5
  year: 2003
  ident: 10.1016/j.jes.2017.02.010_bb0160
  article-title: N-nitrosodimethylamine (NDMA) as a drinking water contaminant: a review
  publication-title: Environ. Eng. Sci.
  doi: 10.1089/109287503768335896
– volume: 43
  start-page: 4381
  issue: 17
  year: 2009
  ident: 10.1016/j.jes.2017.02.010_bb0115
  article-title: Occurrence and removal of N-nitrosamines in wastewater treatment plants
  publication-title: Water Res.
  doi: 10.1016/j.watres.2009.06.048
– volume: 44
  start-page: 229
  issue: 3
  year: 2005
  ident: 10.1016/j.jes.2017.02.010_bb0045
  article-title: Ammonia removal from aqueous solution using natural Chinese clinoptilolite
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2004.04.011
– volume: 219
  start-page: 499
  year: 2013
  ident: 10.1016/j.jes.2017.02.010_bb0015
  article-title: An overview of the modification methods of activated carbon for its water treatment applications
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.12.038
– volume: 98
  start-page: 503
  year: 2012
  ident: 10.1016/j.jes.2017.02.010_bb0070
  article-title: N-nitrosamine removal by reverse osmosis for indirect potable water reuse–A critical review based on observations from laboratory-, pilot-and full-scale studies
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2012.07.025
– year: 2005
  ident: 10.1016/j.jes.2017.02.010_bb0050
– volume: 135
  start-page: 788
  issue: 9
  year: 2009
  ident: 10.1016/j.jes.2017.02.010_bb0165
  article-title: Removal of N-nitrosamines and their precursors by nanofiltration and reverse osmosis membranes
  publication-title: J. Environ. Eng.
  doi: 10.1061/(ASCE)EE.1943-7870.0000043
– volume: 156
  start-page: 11
  issue: 1
  year: 2010
  ident: 10.1016/j.jes.2017.02.010_bb0230
  article-title: Natural zeolites as effective adsorbents in water and wastewater treatment
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2009.10.029
– start-page: 1
  year: 2016
  ident: 10.1016/j.jes.2017.02.010_bb0035
  article-title: Removal of ammonia nitrogen from distilled old landfill leachate by adsorption on raw and modified aluminosilicate
  publication-title: Environ. Technol.
– volume: 46
  start-page: 12630
  issue: 22
  year: 2012
  ident: 10.1016/j.jes.2017.02.010_bb0090
  article-title: Adsorption of N-nitrosodimethylamine precursors by powdered and granular activated carbon
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es302922w
– volume: 45
  start-page: 1941
  issue: 6
  year: 2016
  ident: 10.1016/j.jes.2017.02.010_bb0170
  article-title: Zeolite combined with alum and polyaluminum chloride mixed with agricultural slurries reduces carbon losses in runoff from grassed soil boxes
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2016.05.0175
– volume: 441
  start-page: 132
  year: 2012
  ident: 10.1016/j.jes.2017.02.010_bb0025
  article-title: Incidental phosphorus and nitrogen loss from grassland plots receiving chemically amended dairy cattle slurry
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2012.09.078
– volume: 37
  start-page: 1331
  issue: 7
  year: 2003
  ident: 10.1016/j.jes.2017.02.010_bb0080
  article-title: Precursors of N-nitrosodimethylamine in natural waters
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es026070i
– volume: 37
  start-page: 4871
  issue: 21
  year: 2003
  ident: 10.1016/j.jes.2017.02.010_bb0030
  article-title: N-Nitrosodimethylamine formation by free-chlorine-enhanced nitrosation of dimethylamine
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es034020n
– volume: 141
  start-page: 41
  year: 2013
  ident: 10.1016/j.jes.2017.02.010_bb0240
  article-title: Removal of N-nitrosamines by an aerobic membrane bioreactor
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.01.057
– volume: 72
  start-page: 315
  year: 2015
  ident: 10.1016/j.jes.2017.02.010_bb0140
  article-title: Study of a large scale powdered activated carbon pilot: removals of a wide range of emerging and priority micropollutants from wastewater treatment plant effluents
  publication-title: Water Res.
  doi: 10.1016/j.watres.2014.10.047
– volume: 5
  start-page: 83689
  issue: 102
  year: 2015
  ident: 10.1016/j.jes.2017.02.010_bb0225
  article-title: Ammonia removal from water using sodium hydroxide modified zeolite mordenite
  publication-title: RSC Adv.
  doi: 10.1039/C5RA15419G
– volume: 47
  start-page: 945
  issue: 2
  year: 2013
  ident: 10.1016/j.jes.2017.02.010_bb0215
  article-title: The roles of tertiary amine structure, background organic matter and chloramine species on NDMA formation
  publication-title: Water Res.
  doi: 10.1016/j.watres.2012.11.014
– volume: 160
  start-page: 128
  year: 2015
  ident: 10.1016/j.jes.2017.02.010_bb0005
  article-title: Intensification of ammonia removal from waste water in biologically active zeolitic ion exchange columns
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2015.05.033
– volume: 229
  start-page: 292
  year: 2012
  ident: 10.1016/j.jes.2017.02.010_bb0100
  article-title: Ammonia-nitrogen and phosphates sorption from simulated reclaimed waters by modified clinoptilolite
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2012.06.001
– volume: 35
  start-page: 553
  issue: 2
  year: 1996
  ident: 10.1016/j.jes.2017.02.010_bb0125
  article-title: Ammonia removal from aqueous solution by ion exchange
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie950303f
– volume: 155
  start-page: 373
  year: 2014
  ident: 10.1016/j.jes.2017.02.010_bb0145
  article-title: Using natural zeolite for ammonia sorption from wastewater and as nitrogen releaser for the cultivation of Arthrospira platensis
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.12.122
– volume: 326
  start-page: 135
  year: 2013
  ident: 10.1016/j.jes.2017.02.010_bb0190
  article-title: Experimental study of ammonia removal from water by modified direct contact membrane distillation
  publication-title: Desalination
  doi: 10.1016/j.desal.2013.07.021
– volume: 262
  start-page: 31
  issue: 1
  year: 2010
  ident: 10.1016/j.jes.2017.02.010_bb0085
  article-title: Comparison study of ammonia and COD adsorption on zeolite, activated carbon and composite materials in landfill leachate treatment
  publication-title: Desalination
  doi: 10.1016/j.desal.2010.05.036
– volume: 142
  start-page: 160
  issue: 1
  year: 2007
  ident: 10.1016/j.jes.2017.02.010_bb0235
  article-title: Ammonium exchange in aqueous solution using Chinese natural clinoptilolite and modified zeolite
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2006.07.074
– volume: 175
  start-page: 247
  issue: 1
  year: 2010
  ident: 10.1016/j.jes.2017.02.010_bb0095
  article-title: Ammonium removal from aqueous solutions by using natural Chinese (Chende) zeolite as adsorbent
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2009.09.156
– volume: 75
  start-page: 21
  year: 2005
  ident: 10.1016/j.jes.2017.02.010_bb0055
  article-title: Characterization and environmental application of a Chilean natural zeolite
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/j.minpro.2004.01.003
– volume: 178
  start-page: 572
  issue: 1
  year: 2010
  ident: 10.1016/j.jes.2017.02.010_bb0220
  article-title: The ground water ammonium sorption onto Croatian and Serbian clinoptilolite
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.01.123
– volume: 38
  start-page: 14
  issue: 5
  year: 2012
  ident: 10.1016/j.jes.2017.02.010_bb0020
  article-title: Assessing Ammonia Treatment Options
  publication-title: Opflow
  doi: 10.5991/OPF.2012.38.0025
– volume: 285
  start-page: 383
  year: 2012
  ident: 10.1016/j.jes.2017.02.010_bb0195
  article-title: Simulation of ammonia removal from industrial wastewater streams by means of a hollow-fiber membrane contactor
  publication-title: Desalination
  doi: 10.1016/j.desal.2011.10.030
– volume: 47
  start-page: 4433
  issue: 13
  year: 2013
  ident: 10.1016/j.jes.2017.02.010_bb0110
  article-title: Formation, precursors, control, and occurrence of nitrosamines in drinking water: a review
  publication-title: Water Res.
  doi: 10.1016/j.watres.2013.04.050
– volume: 36
  start-page: 588
  issue: 4
  year: 2002
  ident: 10.1016/j.jes.2017.02.010_bb0155
  article-title: Formation of N-nitrosodimethylamine (NDMA) from dimethylamine during chlorination
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es010684q
– volume: 102
  start-page: 777
  year: 2016
  ident: 10.1016/j.jes.2017.02.010_bb0255
  article-title: Ammonia removal from ammonia-rich wastewater by air stripping using a rotating packed bed
  publication-title: Process Saf. Environ.
  doi: 10.1016/j.psep.2016.06.021
– volume: 136
  start-page: 604
  issue: 3
  year: 2006
  ident: 10.1016/j.jes.2017.02.010_bb0105
  article-title: Removal of ammonium ion from aqueous solution using natural Turkish clinoptilolite
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2005.12.042
– volume: 131
  start-page: 736
  year: 2015
  ident: 10.1016/j.jes.2017.02.010_bb0245
  article-title: Determination of secondary and tertiary amines as N-nitrosamine precursors in drinking water system using ultra-fast liquid chromatography–tandem mass spectrometry
  publication-title: Talanta
  doi: 10.1016/j.talanta.2014.08.003
– volume: 34
  start-page: 3675
  issue: 14
  year: 2000
  ident: 10.1016/j.jes.2017.02.010_bb0200
  article-title: Ammoniacal nitrogen removal from water by treatment with clays and zeolites
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(00)00113-5
– volume: 128
  start-page: 690
  year: 2013
  ident: 10.1016/j.jes.2017.02.010_bb0180
  article-title: Impact of chemically amended pig slurry on greenhouse gas emissions, soil properties and leachate
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2013.06.020
SSID ssj0004505
Score 2.3749464
Snippet When adding sufficient chlorine to achieve breakpoint chlorination to source water containing high concentration of ammonia during drinking water treatment,...
SourceID proquest
pubmed
crossref
elsevier
chongqing
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 82
SubjectTerms Adsorption
Alum Compounds
Ammonia - analysis
Ammonia - chemistry
Ammonia removal by zeolite
Charcoal - chemistry
Dimethylnitrosamine
Disinfection
Disinfection by-products
Drinking Water
Drinking water treatment
N-nitrosamine precursor removal by zeolite and powdered activated carbon
N-nitrosamines
N-nitrosodimethylamine (NDMA)
Nitrosamines - analysis
Nitrosamines - chemistry
Water Pollutants, Chemical - analysis
Water Pollutants, Chemical - chemistry
Water Purification - methods
Zeolites - chemistry
氨水;沸石;激活;移动;粉状;直接存储器存取;凝结过程;水处理过程
Title Simultaneous removal of ammonia and N-nitrosamine precursors from high ammonia water by zeolite and powdered activated carbon
URI http://lib.cqvip.com/qk/85265X/201802/674797346.html
https://dx.doi.org/10.1016/j.jes.2017.02.010
https://www.ncbi.nlm.nih.gov/pubmed/29478664
https://www.proquest.com/docview/2008371131
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V5QAcKigUlkJlJE5IYePYibPHqmq1gNhLqdSb5VfQVjTZZretqFR-OzNOspRDe-CWRGPHyjz8OZ75DPAh99K40vPElDJL5MTYxFbeJKlzhSU8kksqcP42K6Yn8stpfroBB0MtDKVV9rG_i-kxWvdPxv3XHC_m8_ExsQfRyg4RBdHkEe22lIqs_NNvfocxPKYx8pg6hNLDzmbM8ToLxNjNVaTtpCLaxxhz6h8XOGvcN0_dh0PjfHT0DLZ6IMn2u7E-h41Qb8PTO_SC27Bz-LeKDUV7N16-gNvjOSUSmjrgup-14bxBe2NNxQxZ5dwwU3s2S9DbcWzmHHtki5Z-zC-bdsmoIoURzfFa_BoBa8vsL3YTKJ0uxPaL5joeBMqodOIKJTxzprVN_RJOjg6_H0yT_hyGxIkyXSVmYn2GONH5EIg-VRBBTBVwZZhZ44VChCJEbpXIvTHclUZwHjKhKuJ2N6UVO7BZN3V4DUxWKbeIIHERo2ReVSVeGQRx3LsKbSMbwe5aA3rR8W1okp4oIYsRpINOtOspzOkkjZ96yFU706hSTSrVaaZRpSP4uG4y9PeAsBwUrf8xQo3zy0PN3g9GodE5acelU2A841MozgUfwavOWtajyCZSlUUh3_zfS3fhCd6VXQL5W9hctZfhHeKjld2LDrAHj_Y_f53O_gDaXw-W
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7R5UB7qFpa2i19uFJPlaKNY-exR4RAS4G9ABI3y69UiyDZZrdFrcR_Z8ZJFjjAobcomXGszIz9OZ75DPAtdVLbwvFIFzKJ5FibyJROR7G1mSE8kkoqcD6eZpMz-eM8PV-D3b4WhtIqu7G_HdPDaN3dGXVfczSfzUYnxB5EKztEFESTlz2DdWKnSgewvnNwOJneIw0PmYw8ZA-hQr-5GdK8LjyRdvM8MHdSHe0GDjvVz184cTw2VT0GRcOUtP8KXnZYku203X0Na77ahBf3GAY3YWvvrpANRbtIXryBm5MZ5RLqyuPSnzX-qkaXY3XJNDnmTDNdOTaNMOCxb_oKW2Tzhv7NL-pmwagohRHT8Ur8GjFrw8xf9s9TRp0P-vP6OpwFyqh64g9KOGZ1Y-rqLZzt753uTqLuKIbIiiJeRnpsXIJQ0TrviUFVEEdM6XFxmBjtRI4gRYjU5CJ1WnNbaMG5T0ReEr27LozYgkFVV_49MFnG3CCIxHVMLtOyLPBKI47jzpboHskQtlcWUPOWckOR9DgXMhtC3NtE2Y7FnA7TuFR9utqFQpMqMqmKE4UmHcL3lUrf3hPCsje0euCHCqeYp9S-9k6hMD5p06U1YDjmU-ScCz6Ed623rHqRjGVeZJn88H8v_QIbk9PjI3V0MD3chuf4pGjzyT_CYNn89p8QLi3N5y4cbgEdgBJH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneous+removal+of+ammonia+and+N-nitrosamine+precursors+from+high+ammonia+water+by+zeolite+and+powdered+activated+carbon&rft.jtitle=%E7%8E%AF%E5%A2%83%E7%A7%91%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=Runmiao+Xue%3BAriel+Donovan%3BHaiting+Zhang%3BYinfa+Ma%3BCraig+Adams%3BJohn+Yang%3BBin+Hua%3BEnos+Inniss%3BTodd+Eichholz%3BHonglan+Shi&rft.date=2018-02-01&rft.issn=1001-0742&rft.eissn=1878-7320&rft.issue=2&rft.spage=82&rft.epage=91&rft_id=info:doi/10.1016%2Fj.jes.2017.02.010&rft.externalDocID=674797346
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85265X%2F85265X.jpg