On numerical stability analysis of double-diffusive convection in confined enclosures

The onset of thermosolutal convection and finite-amplitude flows, due to vertical gradients of heat and solute, in a horizontal rectangular enclosure are investigated analytically and numerically. Dirichlet or Neumann boundary conditions for temperature and solute concentration are applied to the tw...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluid mechanics Vol. 433; pp. 209 - 250
Main Authors MAMOU, M., VASSEUR, P., HASNAOUI, M.
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 25.04.2001
Subjects
Online AccessGet full text
ISSN0022-1120
1469-7645
DOI10.1017/S0022112000003451

Cover

Abstract The onset of thermosolutal convection and finite-amplitude flows, due to vertical gradients of heat and solute, in a horizontal rectangular enclosure are investigated analytically and numerically. Dirichlet or Neumann boundary conditions for temperature and solute concentration are applied to the two horizontal walls of the enclosure, while the two vertical ones are assumed impermeable and insulated. The cases of stress-free and non-slip horizontal boundaries are considered. The governing equations are solved numerically using a finite element method. To study the linear stability of the quiescent state and of the fully developed flows, a reliable numerical technique is implemented on the basis of Galerkin and finite element methods. The thresholds for finite-amplitude, oscillatory and monotonic convection instabilities are determined explicitly in terms of the governing parameters. In the diffusive mode (solute is stabilizing) it is demonstrated that overstability and subcritical convection may set in at a Rayleigh number well below the threshold of monotonic instability, when the thermal to solutal diffusivity ratio is greater than unity. In an infinite layer with rigid boundaries, the wavelength at the onset of overstability was found to be a function of the governing parameters. Analytical solutions, for finite-amplitude convection, are derived on the basis of a weak nonlinear perturbation theory for general cases and on the basis of the parallel flow approximation for a shallow enclosure subject to Neumann boundary conditions. The stability of the parallel flow solution is studied and the threshold for Hopf bifurcation is determined. For a relatively large aspect ratio enclosure, the numerical solution indicates horizontally travelling waves developing near the threshold of the oscillatory convection. Multiple confined steady and unsteady states are found to coexist. Finally, note that all the numerical solutions presented in this paper were found to be stable.
AbstractList The onset of thermosolutal convection and finite-amplitude flows, due to vertical gradients of heat and solute, in a horizontal rectangular enclosure are investigated analytically and numerically. Dirichlet or Neumann boundary conditions for temperature and solute concentration are applied to the two horizontal walls of the enclosure, while the two vertical ones are assumed impermeable and insulated. The cases of stress-free and non-slip horizontal boundaries are considered. The governing equations are solved numerically using a finite element method. To study the linear stability of the quiescent state and of the fully developed flows, a reliable numerical technique is implemented on the basis of Galerkin and finite element methods. The thresholds for finite-amplitude, oscillatory and monotonic convection instabilities are determined explicitly in terms of the governing parameters. In the diffusive mode (solute is stabilizing) it is demonstrated that overstability and subcritical convection may set in at a Rayleigh number well below the threshold of monotonic instability, when the thermal to solutal diffusivity ratio is greater than unity. In an infinite layer with rigid boundaries, the wavelength at the onset of overstability was found to be a function of the governing parameters. Analytical solutions, for finite-amplitude convection, are derived on the basis of a weak nonlinear perturbation theory for general cases and on the basis of the parallel flow approximation for a shallow enclosure subject to Neumann boundary conditions. The stability of the parallel flow solution is studied and the threshold for Hopf bifurcation is determined. For a relatively large aspect ratio enclosure, the numerical solution indicates horizontally travelling waves developing near the threshold of the oscillatory convection. Multiple confined steady and unsteady states are found to coexist. Finally, note that all the numerical solutions presented in this paper were found to be stable.
The onset of thermosolutal convection and finite-amplitude flows, due to vertical gradients of heat and solute, in a horizontal rectangular enclosure are investigated analytically and numerically. Dirichlet or Neumann boundary conditions for temperature and solute concentration are applied to the two horizontal walls of the enclosure, while the two vertical ones are assumed impermeable and insulated. The cases of stress-free and non-slip horizontal boundaries are considered. The governing equations are solved numerically using a finite element method. To study the linear stability of the quiescent state and of the fully developed flows, a reliable numerical technique is implemented on the basis of Galerkin and finite element methods. The thresholds for finite-amplitude, oscillatory and monotonic convection instabilities are determined explicitly in terms of the governing parameters. In the diffusive mode (solute is stabilizing) it is demonstrated that overstability and subcritical convection may set in at a Rayleigh number well below the threshold of monotonic instability, when the thermal to solutal diffusivity ratio is greater than unity. In an infinite layer with rigid boundaries, the wavelength at the onset of overstability was found to be a function of the governing parameters. Analytical solutions, for finite-amplitude convection, are derived on the basis of a weak nonlinear perturbation theory for general cases and on the basis of the parallel flow approximation for a shallow enclosure subject to Neumann boundary conditions. The stability of the parallel flow solution is studied and the threshold for Hopf bifurcation is determined. For a relatively large aspect ratio enclosure, the numerical solution indicates horizontally travelling waves developing near the threshold of the oscillatory convection. Multiple confined steady and unsteady states are found to coexist. Finally, note that all the numerical solutions presented in this paper were found to be stable. [PUBLICATION ABSTRACT]
Author VASSEUR, P.
HASNAOUI, M.
MAMOU, M.
Author_xml – sequence: 1
  givenname: M.
  surname: MAMOU
  fullname: MAMOU, M.
  organization: Institute for Aerospace Research, National Research Council, Ottawa, Ontario, K1A 0R6, Canada
– sequence: 2
  givenname: P.
  surname: VASSEUR
  fullname: VASSEUR, P.
  organization: Department of Mechanical Engineering, Ecole Polytechnique of Montreal, C.P. 6079, Succ. ‘Down-Town’ Montreal, Quebec, H3C 3A7, Canada
– sequence: 3
  givenname: M.
  surname: HASNAOUI
  fullname: HASNAOUI, M.
  organization: Physics Department, MFE Laboratory, Faculty of Sciences Semlalia, BP 2390, Marrakesh, Morocco
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=938910$$DView record in Pascal Francis
BookMark eNp9kEtLxDAUhYMoOD5-gLui62rStEmzlMEXDIo4A-5Ckt5ItJNo0orz722ZQUHRbEK438m55-yhbR88IHRE8CnBhJ89YFwUhBR4PLSsyBaakJKJnLOy2kaTcZyP8120l9IzxoRiwSdocecz3y8hOqPaLHVKu9Z1q0x51a6SS1mwWRN63ULeOGv75N4hM8G_g-lc8Jnz48s6D00G3rQh9RHSAdqxqk1wuLn30eLyYj69zmd3VzfT81luaI27XImyoBXowmDLa8KE1qSxTT1GqZnBWmNbMSqM1TVAqYqKKQbaVFbpxhhL99Hx-t_XGN56SJ18Dn0cVk-yILjmVSnKATrZQCoNIW1U3rgkX6NbqriSgtaC4IEia8rEkFIE-wUQLMeK5a-KBw3_oTGuU2MvXVSu_VeZr5UudfDxZaXii2Sc8kqyq3v5MBO3fP44lWMGunFSSx1d8wTfSf92-QTOLaCg
CODEN JFLSA7
CitedBy_id crossref_primary_10_1016_j_ijnonlinmec_2008_02_006
crossref_primary_10_1080_10407780701454055
crossref_primary_10_1017_S0022112010006269
crossref_primary_10_1016_j_ijheatmasstransfer_2007_03_027
crossref_primary_10_1016_j_ijheatmasstransfer_2006_09_008
crossref_primary_10_1016_j_ijheatmasstransfer_2004_07_040
crossref_primary_10_1080_10407780500324988
crossref_primary_10_1016_j_ijheatmasstransfer_2017_07_015
crossref_primary_10_1017_jfm_2018_397
crossref_primary_10_1007_s10652_024_09981_1
crossref_primary_10_1063_5_0059313
crossref_primary_10_1103_PhysRevE_110_065104
crossref_primary_10_1063_5_0051058
crossref_primary_10_1016_j_ijheatfluidflow_2008_03_016
crossref_primary_10_1108_09615530810879710
crossref_primary_10_1016_j_ijheatmasstransfer_2005_09_034
crossref_primary_10_1016_j_ijthermalsci_2005_11_004
crossref_primary_10_1063_1_1636727
crossref_primary_10_1016_j_ijheatfluidflow_2010_06_003
crossref_primary_10_1016_j_ijheatmasstransfer_2016_04_060
crossref_primary_10_1002_zamm_202200363
crossref_primary_10_1142_S0218127410026812
crossref_primary_10_3390_fluids6080292
crossref_primary_10_1016_j_enconman_2008_02_008
crossref_primary_10_1134_S0040579523060040
crossref_primary_10_3390_sym14030565
crossref_primary_10_1016_j_ijthermalsci_2009_12_008
crossref_primary_10_1016_j_ijheatfluidflow_2009_11_008
crossref_primary_10_1134_S1023193512060109
crossref_primary_10_1080_10407780590959899
crossref_primary_10_1108_09615530610683511
crossref_primary_10_1016_S0017_9310_02_00523_9
crossref_primary_10_1108_EC_06_2017_0225
crossref_primary_10_1063_1_4890829
crossref_primary_10_1063_1_3588836
crossref_primary_10_1080_10407780600599513
crossref_primary_10_1115_1_2944241
crossref_primary_10_1016_j_ijheatmasstransfer_2015_01_092
crossref_primary_10_1002_htj_22599
crossref_primary_10_1080_10407780600829662
crossref_primary_10_1007_s00161_009_0117_1
crossref_primary_10_1016_j_ijthermalsci_2007_07_015
crossref_primary_10_1007_s00707_008_0049_z
crossref_primary_10_1080_10407780802483557
crossref_primary_10_1016_j_compfluid_2012_03_007
crossref_primary_10_1016_j_ijthermalsci_2008_05_008
crossref_primary_10_1016_j_ijthermalsci_2016_03_012
crossref_primary_10_1016_j_enconman_2005_10_028
crossref_primary_10_1016_j_ijthermalsci_2010_04_006
crossref_primary_10_1016_S0735_1933_01_00280_9
crossref_primary_10_1016_j_applthermaleng_2016_04_080
crossref_primary_10_1016_j_ijmecsci_2020_105597
crossref_primary_10_1134_S1023193506060012
crossref_primary_10_1007_s11242_014_0298_3
crossref_primary_10_1016_j_icheatmasstransfer_2023_106790
crossref_primary_10_1016_j_aop_2006_10_001
ContentType Journal Article
Copyright 2001 Cambridge University Press
2001 INIST-CNRS
Copyright_xml – notice: 2001 Cambridge University Press
– notice: 2001 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
3V.
7TB
7U5
7UA
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOI 10.1017/S0022112000003451
DatabaseName Istex
CrossRef
Pascal-Francis
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
ProQuest Research Library
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
DatabaseTitleList
Research Library Prep
CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1469-7645
EndPage 250
ExternalDocumentID 1398958001
938910
10_1017_S0022112000003451
ark_67375_6GQ_SL9N7TXC_4
Genre Feature
GroupedDBID -DZ
-E.
-~X
.DC
.FH
09C
09E
0E1
0R~
29K
3V.
4.4
5GY
5VS
6TJ
74X
74Y
7~V
88I
8FE
8FG
8FH
8G5
8R4
8R5
8WZ
A6W
AAAZR
AABES
AABWE
AACJH
AAGFV
AAKTX
AAMNQ
AARAB
AASVR
AATMM
AAUIS
AAUKB
ABBXD
ABGDZ
ABITZ
ABJCF
ABJNI
ABKAW
ABKKG
ABMWE
ABQTM
ABQWD
ABROB
ABTAH
ABTCQ
ABUWG
ABVKB
ABXAU
ABZCX
ABZUI
ACBEA
ACBMC
ACDLN
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACRPL
ACUIJ
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADKIL
ADNMO
ADVJH
AEBAK
AEHGV
AEMFK
AEMTW
AENEX
AENGE
AEUYN
AEYYC
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFRAH
AFUTZ
AFZFC
AGABE
AGBYD
AGJUD
AHQXX
AHRGI
AI.
AIDUJ
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
AZQEC
BBLKV
BENPR
BGHMG
BGLVJ
BHPHI
BKSAR
BLZWO
BPHCQ
BQFHP
C0O
CAG
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CJCSC
COF
CS3
D-I
DOHLZ
DU5
DWQXO
E.L
EBS
EJD
F5P
GNUQQ
GUQSH
HCIFZ
HG-
HST
HZ~
H~9
I.6
IH6
IOEEP
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KCGVB
KFECR
L6V
L98
LHUNA
LK5
LW7
M-V
M2O
M2P
M7R
M7S
NIKVX
O9-
OYBOY
P2P
P62
PCBAR
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RIG
RNS
ROL
RR0
S0W
S6-
S6U
SAAAG
SC5
T9M
TAE
TN5
UT1
VH1
VOH
WFFJZ
WH7
WQ3
WXU
WYP
ZE2
ZY4
ZYDXJ
~02
ABXHF
ADMLS
AGQPQ
AKMAY
BSCLL
PHGZM
PHGZT
PQGLB
PUEGO
AAYXX
CITATION
-1F
-2P
-2V
-~6
-~N
6~7
9M5
AANRG
ABDMP
ABDPE
ABFSI
ABVFV
ABVZP
ACETC
ACKIV
ADOVH
AEBPU
AENCP
AGLWM
ALEEW
BESQT
BMAJL
CCUQV
CDIZJ
DC4
I.7
I.9
IQODW
KAFGG
NMFBF
ZJOSE
ZMEZD
~V1
7TB
7U5
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c380t-a94235eb2c0f78169bb1dfd8022186c0bb0f5639cfb8ee4a256a6ebc5fabdccf3
IEDL.DBID 8FG
ISSN 0022-1120
IngestDate Sat Aug 23 12:56:50 EDT 2025
Mon Jul 21 09:16:57 EDT 2025
Thu Apr 24 23:04:08 EDT 2025
Tue Jul 01 01:45:06 EDT 2025
Sun Aug 31 06:48:33 EDT 2025
Tue Jan 21 06:22:13 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Temperature distribution
Convective instabilities
Cellular convection
Oscillatory instability
Thermohaline convection
Digital simulation
Bifurcation
Cavity flow
Analytical solution
Heat transfer
Concentration distribution
Double diffusion
Language English
License https://www.cambridge.org/core/terms
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c380t-a94235eb2c0f78169bb1dfd8022186c0bb0f5639cfb8ee4a256a6ebc5fabdccf3
Notes ark:/67375/6GQ-SL9N7TXC-4
istex:D407891806F3C494786792380CEE1EDA3CD9AC96
PII:S0022112000003451
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 210875494
PQPubID 34769
PageCount 42
ParticipantIDs proquest_journals_210875494
pascalfrancis_primary_938910
crossref_primary_10_1017_S0022112000003451
crossref_citationtrail_10_1017_S0022112000003451
istex_primary_ark_67375_6GQ_SL9N7TXC_4
cambridge_journals_10_1017_S0022112000003451
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2001-04-25
PublicationDateYYYYMMDD 2001-04-25
PublicationDate_xml – month: 04
  year: 2001
  text: 2001-04-25
  day: 25
PublicationDecade 2000
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Journal of fluid mechanics
PublicationTitleAlternate J. Fluid Mech
PublicationYear 2001
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
SSID ssj0013097
Score 1.9131379
Snippet The onset of thermosolutal convection and finite-amplitude flows, due to vertical gradients of heat and solute, in a horizontal rectangular enclosure are...
The onset of thermosolutal convection and finite-amplitude flows, due to vertical gradients of heat and solute, in a horizontal rectangular enclosure are...
SourceID proquest
pascalfrancis
crossref
istex
cambridge
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 209
SubjectTerms Boundaries
Boundary conditions
Convection
Convection and heat transfer
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Physics
Stability analysis
Turbulent flows, convection, and heat transfer
Title On numerical stability analysis of double-diffusive convection in confined enclosures
URI https://www.cambridge.org/core/product/identifier/S0022112000003451/type/journal_article
https://api.istex.fr/ark:/67375/6GQ-SL9N7TXC-4/fulltext.pdf
https://www.proquest.com/docview/210875494
Volume 433
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFD6CVUjwwKWAKBuTHxAPCAunseP4CcG0bkJQbqvUtyi-SYgqGUsrwb_n2HFTpkl9jGMnis-J_dnn83cAXmZGqKBMRJ2QlnLtJVWeldRMi2mWa6mYDhv6n-fF-YJ_XIpl4uZ0iVa5HRPjQG1bE_bI3-LSBKE1V_zd5W8akkaF4GrKoHEbRhlONMHNy9nZLojAlNyKhSOsGIKaUTEaC0MZiwotIUy5k1a4NkWNQm__CZTJusNe8326ixsjd5yOZg_hfsKR5H1v-EdwyzVjeJAwJUl_bDeGe_8JDo7hTiR8mu4xLL40pNn04ZoVQYgYSbJ_SZ1ESkjriW03euVoyKGyCSx3Einq8SAE-dmEK4-PtgRftWrDTmP3BBaz04uTc5pSLFCTl2xNa4VwSuDq2jAvy6xQWmfW23D-NisLw7RmXiCIMV6XzvEaAVJdOG2Er7U1xudP4aBpG_cMiBdYFxc0OCB4bvO85s7bzDkvEWJNTTmBN0MPV-lH6aqeZCarGwaZANsaoTJJrjxkzVjta_J6aHLZa3Xsq_wqWnaoWV_9CiQ3Kari7Fv145Oay4vlScUncHTN9EMDFUK8bAKHW0_YfdXgrM_33j2Euz2ljdOpOIKD9dXGvUCMs9bH0ZOPYfThdP71-z9kfvak
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VXSHgwGMBdWkBH4ADwiIPJ04OCEFp2dLt8tqV9hZix5YqVklpdgX9UfxHZvJaqkp76zGK7Sie8fiz55sZgGeuDmLKTMRNIDMulJU8tk7EtRd6rq9k7Ci60D-ehKOZ-DQP5lvwt42FIVplaxMrQ50Vmu7IX-PRBKG1iMXb01-cikaRc7WtoFFrxZE5_40ntvLN4QcU73PPO9if7o14U1SAaz9yljyNEUAEeJ7UjpWRG8ZKuZnNKOLUjULtKOXYALdtbVVkjEgREqShUTqwqcq0tj6Oew36ggJae9B_vz_58m3ttnBi2aYnRyDTuVGrHNX0BderULkvyDG6TuZwYVPsk3z_EEkzLVFOti6wcWmvqDbAg7twu0Gu7F2tavdgy-QDuNOgWNbYiHIAt_5LcTiA6xXFVJf3YfY5Z_mqdhAtGILSipZ7ztImLQorLMuKlVoYTlVbVsSrZxUpvgq9YCc5PVkcOmP4qUVBd5vlA5hdyfw_hF5e5GYbmA2wLR6h0ARZkfl-KozNXGOsRFDn6WgIr7oZTpqlWSY1rU0mlwQyBKcVQqKbBOlUp2OxqcvLrstpnR1kU-MXlWS7lunZT6LVySAJP35Nvo_jiZzO9xIxhN0Lou86xORUdoaw02rC-q-65fFo49uncGM0PR4n48PJ0Q7crAl1gnvBLvSWZyvzGBHWUj1p9JrBj6teSv8AFZQ1uA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+numerical+stability+analysis+of+double-diffusive+convection+in+confined+enclosures&rft.jtitle=Journal+of+fluid+mechanics&rft.au=MAMOU%2C+M&rft.au=VASSEUR%2C+P&rft.au=HASNAOUI%2C+M&rft.date=2001-04-25&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=433&rft.spage=209&rft_id=info:doi/10.1017%2FS0022112000003451&rft.externalDocID=1398958001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon