On some geometric properties of sequence spaces of generalized arithmetic divisor sum function

Recently, some new sequence spaces ℓ p ( A α ) ( 0 < p < ∞ ) , c 0 ( A α ) , c ( A α ) , and ℓ ∞ ( A α ) have been studied by Yaying et al. (Forum Math., 2024 , https://doi.org/10.1515/forum-2023-0138 ) as matrix domains of A α = ( a n , v α ) , where a m , v α = { v α ρ ( α ) ( m ) , v ∣ m ,...

Full description

Saved in:
Bibliographic Details
Published inJournal of inequalities and applications Vol. 2024; no. 1; pp. 128 - 10
Main Authors Mursaleen, Mohammad, Herawati, Elvina
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 27.09.2024
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN1029-242X
1025-5834
1029-242X
DOI10.1186/s13660-024-03208-z

Cover

Loading…
Abstract Recently, some new sequence spaces ℓ p ( A α ) ( 0 < p < ∞ ) , c 0 ( A α ) , c ( A α ) , and ℓ ∞ ( A α ) have been studied by Yaying et al. (Forum Math., 2024 , https://doi.org/10.1515/forum-2023-0138 ) as matrix domains of A α = ( a n , v α ) , where a m , v α = { v α ρ ( α ) ( m ) , v ∣ m , 0 , v ∤ m , and ρ ( α ) ( m ) : = sum of the α th power of the positive divisors of m ∈ N . They obtained their duals, matrix transformations and associated compact matrix operators for these matrix classes. This article deals with some geometric properties of these sequence spaces.
AbstractList Recently, some new sequence spaces ℓp(Aα)(0<p<∞), c0(Aα), c(Aα), and ℓ∞(Aα) have been studied by Yaying et al. (Forum Math., 2024, https://doi.org/10.1515/forum-2023-0138) as matrix domains of Aα=(an,vα), where am,vα={vαρ(α)(m),v∣m,0,v∤m,and ρ(α)(m):= sum of the αth power of the positive divisors of m∈N. They obtained their duals, matrix transformations and associated compact matrix operators for these matrix classes.This article deals with some geometric properties of these sequence spaces.
Abstract Recently, some new sequence spaces ℓ p ( A α ) $\ell _{p}(\mathfrak{A}^{\alpha })$ ( 0 < p < ∞ ) $(0< p<\infty )$ , c 0 ( A α ) $c_{0}(\mathfrak{A}^{\alpha })$ , c ( A α ) $c(\mathfrak{A}^{\alpha })$ , and ℓ ∞ ( A α ) $\ell _{\infty }(\mathfrak{A}^{\alpha })$ have been studied by Yaying et al. (Forum Math., 2024, https://doi.org/10.1515/forum-2023-0138 ) as matrix domains of A α = ( a n , v α ) $\mathfrak{A}^{\alpha }=(a_{n,v}^{\alpha })$ , where a m , v α = { v α ρ ( α ) ( m ) , v ∣ m , 0 , v ∤ m , $$ a_{\mathfrak{m},v}^{\alpha }=\left \{ \textstyle\begin{array}{c@{\quad}c@{\quad}c} \dfrac{v^{\alpha }}{\rho ^{(\alpha )}(\mathfrak{m})} & , & v\mid \mathfrak{m}, \\ 0 & , & v\nmid \mathfrak{m},\end{array}\displaystyle \right . $$ and ρ ( α ) ( m ) : = $\rho ^{(\alpha )}(\mathfrak{m}):=$ sum of the α th $\alpha ^{\text{th}}$ power of the positive divisors of m ∈ N $\mathfrak{m}\in \mathbb{N}$ . They obtained their duals, matrix transformations and associated compact matrix operators for these matrix classes. This article deals with some geometric properties of these sequence spaces.
Recently, some new sequence spaces ℓ p ( A α ) ( 0 < p < ∞ ) , c 0 ( A α ) , c ( A α ) , and ℓ ∞ ( A α ) have been studied by Yaying et al. (Forum Math., 2024 , https://doi.org/10.1515/forum-2023-0138 ) as matrix domains of A α = ( a n , v α ) , where a m , v α = { v α ρ ( α ) ( m ) , v ∣ m , 0 , v ∤ m , and ρ ( α ) ( m ) : = sum of the α th power of the positive divisors of m ∈ N . They obtained their duals, matrix transformations and associated compact matrix operators for these matrix classes. This article deals with some geometric properties of these sequence spaces.
ArticleNumber 128
Author Mursaleen, Mohammad
Herawati, Elvina
Author_xml – sequence: 1
  givenname: Mohammad
  surname: Mursaleen
  fullname: Mursaleen, Mohammad
  email: mursaleenm@gmail.com
  organization: China Medical University Hospital, China Medical University (Taiwan), Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Department of Mathematics, Aligarh Muslim University
– sequence: 2
  givenname: Elvina
  surname: Herawati
  fullname: Herawati, Elvina
  organization: Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara
BookMark eNp9kUlLBDEQhYMouP4BTwHPrZWl0-mjiBsIXhQ8GdLp6jHDTDImPYLz6422qCcvWYr3vqTq7ZPtEAMScszglDGtzjITSkEFXFYgOOhqs0X2GPC24pI_bf8575L9nOcAnAkt98jzfaA5LpHOsKxj8o6uUlxhGj1mGgea8XWNwSHNK-um0gwDJrvwG-ypTX58Kcbi6_2bzzHRvF7SYR3c6GM4JDuDXWQ8-t4PyOPV5cPFTXV3f317cX5XOaFhrKyCjjXKgkPsVMtwaDsloWm1tCCtc43i5Q6yUeg6xZqaKV33fYsSHddaHJDbidtHOzer5Jc2vZtovfkqxDQztrTkFmhayWvGur6GDiRz3FrHheqgcKTuhCysk4lVBlF6z6OZx3UK5ftGMAa1bMowi4pPKpdizgmHn1cZmM9MzJSJKZmYr0zMppjEZMpFHGaYftH_uD4AffmRjA
Cites_doi 10.1216/rmj.2022.52.1867
10.1002/mma.6501
10.7153/oam-2019-13-40
10.1142/S1793557122501406
10.1155/2014/427382
10.1515/forum-2023-0138
10.1201/9781003015116
10.1002/mma.6537
10.1006/jmaa.1997.5657
10.56405/dngcrj.2020.05.01.07
10.1186/s13660-024-03149-7
10.1007/978-1-4757-5579-4
10.1007/BF01194848
10.1007/s40009-016-0525-2
10.1007/978-1-4612-0603-3
10.1090/S0002-9947-1940-0004094-3
10.1007/s00009-019-1442-7
10.1016/j.na.2005.09.038
10.1007/s40009-020-00910-6
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOA
DOI 10.1186/s13660-024-03208-z
DatabaseName Springer Nature OA Free Journals (ODIN)
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
DOAJ Directory of Open Access Journals (WRLC)
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals (ODIN)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1029-242X
EndPage 10
ExternalDocumentID oai_doaj_org_article_942511bd50b041c2aac236b0c2848b34
10_1186_s13660_024_03208_z
GroupedDBID -A0
0R~
29K
2WC
4.4
40G
5GY
5VS
8FE
8FG
8R4
8R5
AAFWJ
AAJSJ
AAKKN
ABDBF
ABEEZ
ABFTD
ABJCF
ACACY
ACGFO
ACGFS
ACIPV
ACIWK
ACUHS
ACULB
ADBBV
ADINQ
AENEX
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
D-I
DU5
EBLON
EBS
ESX
GROUPED_DOAJ
HCIFZ
J9A
K6V
K7-
KQ8
L6V
M7S
M~E
OK1
P2P
P62
PIMPY
PROAC
PTHSS
Q2X
REM
RHU
RNS
RSV
SMT
SOJ
TUS
U2A
~8M
AASML
AAYXX
AMVHM
CITATION
OVT
PHGZM
PHGZT
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
JQ2
KR7
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c380t-a60b176a0ceeb691ef9b6407984a04acc7626400476ecb61751685dd9e4ec2883
IEDL.DBID U2A
ISSN 1029-242X
1025-5834
IngestDate Wed Aug 27 01:30:46 EDT 2025
Fri Jul 25 12:20:44 EDT 2025
Tue Jul 01 04:06:24 EDT 2025
Fri Feb 21 02:41:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 47B07
Sequence spaces
Geometric properties
47B37
46A45
46B45
Arithmetic divisor sum function
40C05
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c380t-a60b176a0ceeb691ef9b6407984a04acc7626400476ecb61751685dd9e4ec2883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1186/s13660-024-03208-z
PQID 3110547102
PQPubID 237789
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_942511bd50b041c2aac236b0c2848b34
proquest_journals_3110547102
crossref_primary_10_1186_s13660_024_03208_z
springer_journals_10_1186_s13660_024_03208_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-27
PublicationDateYYYYMMDD 2024-09-27
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-27
  day: 27
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Journal of inequalities and applications
PublicationTitleAbbrev J Inequal Appl
PublicationYear 2024
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References García-FalsetJ.The fixed point property in Banach spaces with the NUS-propertyJ. Math. Anal. Appl.19972152532542149076710.1006/jmaa.1997.5657
NivenI.ZuckermanH.S.MontgomeryH.L.An Introduction to the Theory of Numbers1991New YorkWiley
YayingT.SaikiaN.On sequence spaces defined by arithmetic function and Hausdorff measure of non-compactnessRocky Mt. J. Math.20225251867188510.1216/rmj.2022.52.1867
YayingT.Arithmetic continuity in cone metric spaceDera Natung Gov. Coll. Res. J.202051556210.56405/dngcrj.2020.05.01.07
GurariiV.I.Differential properties of the convexity moduli of Banach spacesMat. Issled.19672141148211245(Russian)
HudzikH.KarakayaV.MursaleenM.SimsekN.Banach-Saks type and Gurariı̌ modulus of convexity of some Banach sequence spacesAbstr. Appl. Anal.2014201410.1155/2014/427382
MursaleenM.BaşarF.Sequence Spaces: Topics in Modern Summability Theory2020Boca RatonCRC Press10.1201/9781003015116
İlkhanM.KaraE.E.UstaF.Compact operators on the Jordan totient sequence spacesMath. Methods Appl. Sci.20214476667675425847810.1002/mma.6537
KnaustH.Orlicz sequence spaces of Banach-Saks typeArch. Math. (Basel)1992596562565118987410.1007/BF01194848
İlkhanM.ŞimşekN.KaraE.E.A new regular infinite matrix defined by Jordan totient function and its matrix domain in ℓp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell _{p}$\end{document}Math. Methods Appl. Sci.20214476227633425847410.1002/mma.6501
İlkhanM.Matrix domain of a regular matrix derived by Euler totient function in the spaces c0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$c_{0}$\end{document} and cMediterr. J. Math.202017411758910.1007/s00009-019-1442-7
PhillipsR.S.On linear transformationsTrans. Am. Math. Soc.19404851654110.1090/S0002-9947-1940-0004094-3
ApostolT.M.Introduction to Analytic Number Theory1976New YorkSpringer10.1007/978-1-4757-5579-4
García-FalsetJ.Stability and fixed points for nonexpansive mappingsHoust. J. Math.19942034955061287990
BrahaN.YayingT.MursaleenM.Sequence spaces derived by qλ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q^{\lambda}$\end{document} operators in ℓp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell _{p}$\end{document} spaces and their geometric propertiesJ. Inequal. Appl.20242024475239510.1186/s13660-024-03149-7
YayingT.HazarikaB.Lacunary arithmetic statistical convergenceNat. Acad. Sci. Lett.202043547551416357110.1007/s40009-020-00910-6
Ayman MursaleenM.A note on matrix domains of Copson matrix of order α and compact operatorsAsian-Eur. J. Math.2022157444902710.1142/S1793557122501406
İlkhanM.KaraE.E.A new Banach space defined by Euler totient matrix operatorOper. Matrices2019132527544398046010.7153/oam-2019-13-40
YayingT.SaikiaN.MursaleenM.New sequence spaces derived by using generalized arithmetic divisor sum function and compact operatorsForum Math.202410.1515/forum-2023-0138
YayingT.HazarikaB.On arithmetical summability and multiplier sequencesNat. Acad. Sci. Lett.2017404346360526510.1007/s40009-016-0525-2
MegginsonR.E.An Introduction to Banach Space Theory1998New YorkSpringer10.1007/978-1-4612-0603-3
MursaleenM.BaşarF.AltayB.On the Euler sequence spaces which include the spaces lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$l_{p}$\end{document} and l∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$l_{\infty }$\end{document}Nonlinear Anal.2006653707717223108410.1016/j.na.2005.09.038
M. İlkhan (3208_CR8) 2020; 17
T. Yaying (3208_CR19) 2017; 40
J. García-Falset (3208_CR4) 1994; 20
M. İlkhan (3208_CR10) 2021; 44
I. Niven (3208_CR16) 1991
M. İlkhan (3208_CR11) 2021; 44
R.E. Megginson (3208_CR13) 1998
N. Braha (3208_CR3) 2024; 2024
V.I. Gurarii (3208_CR6) 1967; 2
M. Ayman Mursaleen (3208_CR2) 2022; 15
H. Hudzik (3208_CR7) 2014; 2014
M. İlkhan (3208_CR9) 2019; 13
T. Yaying (3208_CR22) 2024
J. García-Falset (3208_CR5) 1997; 215
R.S. Phillips (3208_CR17) 1940; 48
T. Yaying (3208_CR20) 2020; 43
M. Mursaleen (3208_CR15) 2006; 65
T. Yaying (3208_CR21) 2022; 52
T.M. Apostol (3208_CR1) 1976
H. Knaust (3208_CR12) 1992; 59
T. Yaying (3208_CR18) 2020; 5
M. Mursaleen (3208_CR14) 2020
References_xml – reference: YayingT.SaikiaN.MursaleenM.New sequence spaces derived by using generalized arithmetic divisor sum function and compact operatorsForum Math.202410.1515/forum-2023-0138
– reference: ApostolT.M.Introduction to Analytic Number Theory1976New YorkSpringer10.1007/978-1-4757-5579-4
– reference: NivenI.ZuckermanH.S.MontgomeryH.L.An Introduction to the Theory of Numbers1991New YorkWiley
– reference: YayingT.Arithmetic continuity in cone metric spaceDera Natung Gov. Coll. Res. J.202051556210.56405/dngcrj.2020.05.01.07
– reference: YayingT.HazarikaB.Lacunary arithmetic statistical convergenceNat. Acad. Sci. Lett.202043547551416357110.1007/s40009-020-00910-6
– reference: İlkhanM.KaraE.E.UstaF.Compact operators on the Jordan totient sequence spacesMath. Methods Appl. Sci.20214476667675425847810.1002/mma.6537
– reference: MursaleenM.BaşarF.AltayB.On the Euler sequence spaces which include the spaces lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$l_{p}$\end{document} and l∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$l_{\infty }$\end{document}Nonlinear Anal.2006653707717223108410.1016/j.na.2005.09.038
– reference: PhillipsR.S.On linear transformationsTrans. Am. Math. Soc.19404851654110.1090/S0002-9947-1940-0004094-3
– reference: KnaustH.Orlicz sequence spaces of Banach-Saks typeArch. Math. (Basel)1992596562565118987410.1007/BF01194848
– reference: İlkhanM.Matrix domain of a regular matrix derived by Euler totient function in the spaces c0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$c_{0}$\end{document} and cMediterr. J. Math.202017411758910.1007/s00009-019-1442-7
– reference: GurariiV.I.Differential properties of the convexity moduli of Banach spacesMat. Issled.19672141148211245(Russian)
– reference: YayingT.SaikiaN.On sequence spaces defined by arithmetic function and Hausdorff measure of non-compactnessRocky Mt. J. Math.20225251867188510.1216/rmj.2022.52.1867
– reference: YayingT.HazarikaB.On arithmetical summability and multiplier sequencesNat. Acad. Sci. Lett.2017404346360526510.1007/s40009-016-0525-2
– reference: García-FalsetJ.Stability and fixed points for nonexpansive mappingsHoust. J. Math.19942034955061287990
– reference: İlkhanM.KaraE.E.A new Banach space defined by Euler totient matrix operatorOper. Matrices2019132527544398046010.7153/oam-2019-13-40
– reference: Ayman MursaleenM.A note on matrix domains of Copson matrix of order α and compact operatorsAsian-Eur. J. Math.2022157444902710.1142/S1793557122501406
– reference: BrahaN.YayingT.MursaleenM.Sequence spaces derived by qλ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q^{\lambda}$\end{document} operators in ℓp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell _{p}$\end{document} spaces and their geometric propertiesJ. Inequal. Appl.20242024475239510.1186/s13660-024-03149-7
– reference: HudzikH.KarakayaV.MursaleenM.SimsekN.Banach-Saks type and Gurariı̌ modulus of convexity of some Banach sequence spacesAbstr. Appl. Anal.2014201410.1155/2014/427382
– reference: İlkhanM.ŞimşekN.KaraE.E.A new regular infinite matrix defined by Jordan totient function and its matrix domain in ℓp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell _{p}$\end{document}Math. Methods Appl. Sci.20214476227633425847410.1002/mma.6501
– reference: MegginsonR.E.An Introduction to Banach Space Theory1998New YorkSpringer10.1007/978-1-4612-0603-3
– reference: García-FalsetJ.The fixed point property in Banach spaces with the NUS-propertyJ. Math. Anal. Appl.19972152532542149076710.1006/jmaa.1997.5657
– reference: MursaleenM.BaşarF.Sequence Spaces: Topics in Modern Summability Theory2020Boca RatonCRC Press10.1201/9781003015116
– volume: 52
  start-page: 1867
  issue: 5
  year: 2022
  ident: 3208_CR21
  publication-title: Rocky Mt. J. Math.
  doi: 10.1216/rmj.2022.52.1867
– volume-title: An Introduction to the Theory of Numbers
  year: 1991
  ident: 3208_CR16
– volume: 44
  start-page: 7622
  year: 2021
  ident: 3208_CR11
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.6501
– volume: 13
  start-page: 527
  issue: 2
  year: 2019
  ident: 3208_CR9
  publication-title: Oper. Matrices
  doi: 10.7153/oam-2019-13-40
– volume: 15
  issue: 7
  year: 2022
  ident: 3208_CR2
  publication-title: Asian-Eur. J. Math.
  doi: 10.1142/S1793557122501406
– volume: 2
  start-page: 141
  year: 1967
  ident: 3208_CR6
  publication-title: Mat. Issled.
– volume: 2014
  year: 2014
  ident: 3208_CR7
  publication-title: Abstr. Appl. Anal.
  doi: 10.1155/2014/427382
– year: 2024
  ident: 3208_CR22
  publication-title: Forum Math.
  doi: 10.1515/forum-2023-0138
– volume: 20
  start-page: 495
  issue: 3
  year: 1994
  ident: 3208_CR4
  publication-title: Houst. J. Math.
– volume-title: Sequence Spaces: Topics in Modern Summability Theory
  year: 2020
  ident: 3208_CR14
  doi: 10.1201/9781003015116
– volume: 44
  start-page: 7666
  year: 2021
  ident: 3208_CR10
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.6537
– volume: 215
  start-page: 532
  issue: 2
  year: 1997
  ident: 3208_CR5
  publication-title: J. Math. Anal. Appl.
  doi: 10.1006/jmaa.1997.5657
– volume: 5
  start-page: 55
  issue: 1
  year: 2020
  ident: 3208_CR18
  publication-title: Dera Natung Gov. Coll. Res. J.
  doi: 10.56405/dngcrj.2020.05.01.07
– volume: 2024
  year: 2024
  ident: 3208_CR3
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-024-03149-7
– volume-title: Introduction to Analytic Number Theory
  year: 1976
  ident: 3208_CR1
  doi: 10.1007/978-1-4757-5579-4
– volume: 59
  start-page: 562
  issue: 6
  year: 1992
  ident: 3208_CR12
  publication-title: Arch. Math. (Basel)
  doi: 10.1007/BF01194848
– volume: 40
  start-page: 43
  year: 2017
  ident: 3208_CR19
  publication-title: Nat. Acad. Sci. Lett.
  doi: 10.1007/s40009-016-0525-2
– volume-title: An Introduction to Banach Space Theory
  year: 1998
  ident: 3208_CR13
  doi: 10.1007/978-1-4612-0603-3
– volume: 48
  start-page: 516
  year: 1940
  ident: 3208_CR17
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1940-0004094-3
– volume: 17
  year: 2020
  ident: 3208_CR8
  publication-title: Mediterr. J. Math.
  doi: 10.1007/s00009-019-1442-7
– volume: 65
  start-page: 707
  issue: 3
  year: 2006
  ident: 3208_CR15
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2005.09.038
– volume: 43
  start-page: 547
  year: 2020
  ident: 3208_CR20
  publication-title: Nat. Acad. Sci. Lett.
  doi: 10.1007/s40009-020-00910-6
SSID ssj0021384
ssib044744598
ssib008501289
Score 2.343884
Snippet Recently, some new sequence spaces ℓ p ( A α ) ( 0 < p < ∞ ) , c 0 ( A α ) , c ( A α ) , and ℓ ∞ ( A α ) have been studied by Yaying et al. (Forum Math., 2024...
Recently, some new sequence spaces ℓp(Aα)(0<p<∞), c0(Aα), c(Aα), and ℓ∞(Aα) have been studied by Yaying et al. (Forum Math., 2024,...
Abstract Recently, some new sequence spaces ℓ p ( A α ) $\ell _{p}(\mathfrak{A}^{\alpha })$ ( 0 < p < ∞ ) $(0< p<\infty )$ , c 0 ( A α )...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 128
SubjectTerms Analysis
Applications of Mathematics
Approximation
Arithmetic divisor sum function
Geometric properties
Mathematical functions
Mathematics
Mathematics and Statistics
Operators (mathematics)
Prime numbers
Sequence spaces
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals (WRLC)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqTr3QB1Tddql84AbW2vEj9rEgVggJuIDEqZbtOLQHErRZLvvrO5MHsJWqXnrJwbEiax6eb2LPN4QcijIIWdaK2SAUUy5kFmIBiatxyRhVGyGwwPnyypzfqos7ffeq1RfeCRvogQfBLZxCEBwrzSNXIhUhpEKayBPsqzbKngkUYt6UTI2plpBWTSUy1iw6IY3hDOIRw4bhlm22wlDP1r8FMf84Fe2DzfI92R1RIv0-rO4DeZObj-TdiBjp6I_dHvlx3dCufcj0PsMTyfbpI_5dXyFNKm1rOt2UprBxpGHofiCa_rWBL0GivP75gHWMFOuyunZFwTIpBjtU2D65XZ7dnJ6zsWMCS9LyNQuGR1GawCH0ReNErl3EkzpnVeAqpARbn0GvLU1OEcCLFsbqqnJZ5YR9hz-RnaZt8mdClZS6UiFUiUdI4UqrdZSS18HpOuQQZuRoEqB_HIgxfJ9QWOMHcXsQt-_F7TczcoIyfp6JpNb9AKjaj6r2_1L1jMwnDfnR0zovAb9ohThpRo4nrb28_vuSvvyPJX0lb4veqhwryjnZWa-e8gGglHX81hvkb9eT4gc
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07j9QwELbgaGh4I5Y7kAs6sM6Ox45dIUAsJySg4aSrsGzHWShus2yWZn_9eRxnT4cETQonsqJ5fTMezwwhr0TrhWx7YMYLYGB9Yj40OXDVNmoNvRYCC5y_fNVn5_D5Ql3UA7exXqucbWIx1N0Q8Yz8VGacUoB4-Hbzm-HUKMyu1hEat8kdkZEGJdwsPx3kySg0vwe4BmgBlD1kGRohy0RigSNdlZEwF9UYfToKqTVnGcEYjhg3bH8DuEp__xtO6V951AJPywfkXvUr6btJEB6SW2n9iNyvPiatGjw-Jj--rek4XCa6SvmJ7fnpBs_jt9hYlQ49ne9W02xq4rS0mlpT_9rnnXJovft5iZWPFCu5xmFLM3EowiOy-Ak5X378_uGM1RkLLErDd8xrHkSrPc9gGbQVqbcBc3vWgOfgY8zGUqOetzrFkN0dJbRRXWcTpIiTip-So_WwTs8IBSlVB953kYcc9LVGqSAl771VvU_eL8jrmYBuM7XScCUEMdpN5HaZ3K6Q2-0X5D3S-PAltsEuC8N25apWOQsYIYVO8cxdERvvYyN14PnPwAQJC3Iyc8hV3RzdtSQtyJuZa9ev__1Lz_-_2zG52xR5saxpT8jRbvsnvcgeyy68LGJ5BYai41c
  priority: 102
  providerName: ProQuest
Title On some geometric properties of sequence spaces of generalized arithmetic divisor sum function
URI https://link.springer.com/article/10.1186/s13660-024-03208-z
https://www.proquest.com/docview/3110547102
https://doaj.org/article/942511bd50b041c2aac236b0c2848b34
Volume 2024
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFLfYdoHDgAFa2Vb5wA0s7Pgj9rGrVqZKGwiotBOW7TiFw5qpKZf-9Xt2kqKhceDyIjlOZL0Pv_ez_Z4ResdKx3hZC6IdE0QYF4nzBQBXZYJSolaMpQTnq2t1uRDzG3nTJ4W1w2n3YUsyz9TZrLX62DKuFCXgU0i69FuT7R46kIDdk14viskOZjGuxZAe8-h3D1xQrtT_ILz8a0c0O5rZC3TYR4h40on0JXoSV0foeR8t4t4W2yP07GpXcbV9hX58XuG2uY14GYGmsvv4Lq2zr1PBVNzUeDgzjWEKCV3Tsis5_WsL_wXIvPl5mzIaccrQaps1Bh3Fye0l0b1Gi9nF9-kl6e9OIIFruiFOUc9K5Sg4Qa8Mi7Xxac_OaOGocCHAJKiS_ZYqBg9hjGRKy6oyUcSQbiB-g_ZXzSoeIyw4l5VwrgrUA5grtZSec1o7I2sXnRuh9wM77V1XIsNmaKGV7Zhvgfk2M99uR-g8cXzXM5W3zg3Neml7a7FGJOTjK0k9FSwUzoWCK09hZEJ7LkbodJCX7W2utRwiGSlSxDRCHwYZ_nn97yG9_b_uJ-hpkbXJkKI8Rfub9e94BpHJxo_RnqCfgOoZ0IPJZP5tDs_zi-svX6F1WohE1XSckf84q-09Q6rj7A
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOcCFN-rSAj7ACazG8SP2ASFey5Y-uLRSTxjbcRYO3Ww3ixD7o_iNzOSxVZHg1ksOTmRZM-P5ZjIef4Q844XnoqgkM55LJq1PzIccEldto9ay0pxjg_PhkZ6cyE-n6nSD_B56YfBY5eATW0dd1hH_ke8KwCklEQ9fz88ZskZhdXWg0OjMYj_9-gkpW_Nq7z3o93mejz8cv5uwnlWARWGyJfM6C7zQPgN4CNryVNmA1SxrpM-kjxHcg0bLLnSKAQBecW1UWdokU0RuXpj3GrkuhbB4hNCMP67t1yh09-vwQMpCSmXXVY2ci5YBmSOFrDJCDk08Ru82XGidMUBMhpTmhq0uAWXLJ3ApCP6rbtvC4fgOudXHsfRNZ3h3yUaa3SO3-5iW9h6juU--fJ7Rpj5LdJrgiXQAdI7__xd4kSutKzqc5abg2mI3NO2uwv6-gpkglV9-O8NOS4qdY029oKAMinCMJvWAnFyJ9B-SzVk9S1uEggZUKb0vYxYgySyMUkGIrPJWVT55PyIvBgG6eXd1h2tTHqNdJ24H4natuN1qRN6ijNdf4rXb7UC9mLp-FzsrMSMLpcpAuzzm3sdc6JDByqQJQo7IzqAh1_uCxl1Y7oi8HLR28frfS3r0_9mekhuT48MDd7B3tL9Nbuat7ViWFztkc7n4kR5DtLQMT1oTpeTrVe-JP0aYH2I
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAX3oiFAj7ACayN40fsA6poy9JSKByo1BPGdpyFQzfLZhHq_jR-HTN5bFUkuPWSgxONrJnxPDKe-Qh5xgvPRVFJZjyXTFqfmA85JK7aRq1lpTnHBucPR3r_WL47UScb5PfQC4PXKgeb2Brqso74j3wswE8pif5wXPXXIj7tTbbnPxgiSGGldYDT6FTkMJ39gvSteXWwB7J-nueTN59391mPMMCiMNmSeZ0FXmifgasI2vJU2YCVLWukz6SPEUyFRi0vdIoBnL3i2qiytEmmiDi9QPcKuVoAMURPMJO3a102Ck3_OlSQspBS2XWFI-eiRUPmCCerjJBDQ4_R44YLrTMG3pMhvLlhqwtOs8UWuBAQ_1XDbV3j5Ba50ce09HWnhLfJRprdITf7-Jb21qO5S758nNGmPk10muCJ0AB0jrWABQ51pXVFh3vdFMxc7Jam3Vjs7yugBGn98tspdl1S7CJr6gUFYVB0zahe98jxpXD_Ptmc1bP0gFAphCql92XMAiSchVEqCJFV3qrKJ-9H5MXAQDfvxni4Nv0x2nXsdsBu17LbrUZkB3m8_hJHcLcL9WLq-hPtrMTsLJQqA-nymHsfc6FDBjuTJgg5IluDhFxvFxp3rsUj8nKQ2vnrf2_p4f-pPSXX4DS49wdHh4_I9bxVHcvyYotsLhc_02MInJbhSauhlHy97CPxB8anI48
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+some+geometric+properties+of+sequence+spaces+of+generalized+arithmetic+divisor+sum+function&rft.jtitle=Journal+of+inequalities+and+applications&rft.au=Mursaleen%2C+Mohammad&rft.au=Herawati%2C+Elvina&rft.date=2024-09-27&rft.issn=1029-242X&rft.eissn=1029-242X&rft.volume=2024&rft.issue=1&rft_id=info:doi/10.1186%2Fs13660-024-03208-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13660_024_03208_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-242X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-242X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-242X&client=summon