barley (Hordeum vulgare L.) dehydrin multigene family: sequences, allele types, chromosome assignments, and expression characteristics of 11 Dhn genes of cv Dicktoo

Dehydrins (LEA D11 proteins) have been identified in both higher and lower plants, and are associated with tolerance to, or response to the onset of, low temperature or dehydration. Several studies have suggested that specific alleles of Dhn genes may contribute to a number of phenotypic traits, inc...

Full description

Saved in:
Bibliographic Details
Published inTheoretical and applied genetics Vol. 98; no. 8; pp. 1234 - 1247
Main Authors Choi, D.W, Zhu, B, Close, T.J
Format Journal Article
LanguageEnglish
Published Heidelberg Springer 01.06.1999
Berlin Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Dehydrins (LEA D11 proteins) have been identified in both higher and lower plants, and are associated with tolerance to, or response to the onset of, low temperature or dehydration. Several studies have suggested that specific alleles of Dhn genes may contribute to a number of phenotypic traits, including the emergence of seedlings in cool or saline soils and the frost tolerance of more-mature plants. However, an incomplete collection of the Dhn multigene family in any system and nucleic acid cross-hybridization between Dhn gene-family members have limited the precision of these studies. We attempted to overcome these impediments by determining the nucleotide sequences of the entire Dhn multigene family in barley and by developing gene-specific probes. We identified 11 unique Dicktoo Dhn genes. Seven appear to be alleles of Dhn genes identified previously in other barley cultivars. Another, Dhn9, appears to be orthologous to a Triticum durum Dhn gene. A statistical analysis of the total collection of genomic clones brings the estimated size of the barley Dhn gene family to 13. Allelic differences in the protein-coding regions appear to result principally from duplications of entire phi-segments or single amino-acid substitutions, suggesting that polypeptide structural constraints have been a strong force in the evolution of Dhn alleles. Chromosome mapping by PCR with wheat-barley addition lines established the presence of Dhn genes in four barley chromosomes (3H, 4H, 5H, 6H). RT-PCR demonstrated that the Dhn genes are differentially regulated under dehydration, low temperature and ABA treatment, consistent with putative regulatory elements located upstream of the respective Dhn coding regions. This whole-genome, gene-specific study unifies what previously seemed to be disparate-mapping, expression, and genetic-variation data for Dhn genes in the Triticeae and other plant systems.
AbstractList Dehydrins (LEA D11 proteins) have been identified in both higher and lower plants, and are associated with tolerance to, or response to the onset of, low temperature or dehydration. Several studies have suggested that specific alleles of Dhn genes may contribute to a number of phenotypic traits, including the emergence of seedlings in cool or saline soils and the frost tolerance of more-mature plants. However, an incomplete collection of the Dhn multigene family in any system and nucleic acid cross-hybridization between Dhn gene-family members have limited the precision of these studies. We attempted to overcome these impediments by determining the nucleotide sequences of the entire Dhn multigene family in barley and by developing gene-specific probes. We identified 11 unique Dicktoo Dhn genes. Seven appear to be alleles of Dhn genes identified previously in other barley cultivars. Another, Dhn9, appears to be orthologous to a Triticum durum Dhn gene. A statistical analysis of the total collection of genomic clones brings the estimated size of the barley Dhn gene family to 13. Allelic differences in the protein-coding regions appear to result principally from duplications of entire phi-segments or single amino-acid substitutions, suggesting that polypeptide structural constraints have been a strong force in the evolution of Dhn alleles. Chromosome mapping by PCR with wheat-barley addition lines established the presence of Dhn genes in four barley chromosomes (3H, 4H, 5H, 6H). RT-PCR demonstrated that the Dhn genes are differentially regulated under dehydration, low temperature and ABA treatment, consistent with putative regulatory elements located upstream of the respective Dhn coding regions. This whole-genome, gene-specific study unifies what previously seemed to be disparate-mapping, expression, and genetic-variation data for Dhn genes in the Triticeae and other plant systems.
Dehydrins (LEA D11 proteins) have been identified in both higher and lower plants, and are associated with tolerance to, or response to the onset of, low temperature or dehydration. Several studies have suggested that specific alleles of Dhn genes may contribute to a number of phenotypic traits, including the emergence of seedlings in cool or saline soils and the frost tolerance of more-mature plants. However, an incomplete collection of the Dhn multigene family in any system and nucleic acid cross-hybridization between Dhn gene-family members have limited the precision of these studies. We attempted to overcome these impediments by determining the nucleotide sequences of the entire Dhn multigene family in barley and by developing gene-speciic probes. We identified 11 unique Dicktoo Dhn genes. Seven appear to be alleles of Dhn genes identified previously in other barley cultivars. Another, Dhn9, appears to be orthologous to a Triticum durum Dhn gene. A statistical analysis of the total collection of genomic clones brings the estimated size of the barley Dhn gene family to 13. Allelic differences in the protein-coding regions appear to result principally from duplications of entire Φ-segments or single amino-acid substitutions, suggesting that polypeptide structural constraints have been a strong force in the evolution of Dhn alleles. Chromosome mapping by PCR with wheat-barley addition lines established the presence of Dhn genes in four barley chromosomes (3H, 4H, 5H, 6H). RT-PCR demonstrated that the Dhn genes are differentially regulated under dehydration, low temperature and ABA treatment, consistent with putative regulatory elements located upstream of the respective Dhn coding regions. This whole-genome, gene-speciic study unifies what previously seemed to be disparate-mapping, expression, and genetic-variation data for Dhn genes in the Triticeae and other plant systems.
Dehydrins (LEA D11 proteins) have been identified in both higher and lower plants, and are associated with tolerance to, or response to the onset of, low temperature or dehydration. Several studies have suggested that specific alleles of Dhn genes may contribute to a number of phenotypic traits, including the emergence of seedlings in cool or saline soils and the frost tolerance of more-mature plants. However, an incomplete collection of the Dhn multigene family in any system and nucleic acid cross-hybridization between Dhn gene-family members have limited the precision of these studies. We attempted to overcome these impediments by determining the nucleotide sequences of the entire Dhn multigene family in barley and by developing gene-specific probes. We identified 11 unique Dicktoo Dhn genes. Seven appear to be alleles of Dhn genes identified previously in other barley cultivars. Another, Dhn9, appears to be orthologous to a Triticum durum Dhn gene. A statistical analysis of the total collection of genomic clones brings the estimated size of the barley Dhn gene family to 13. Allelic differences in the protein-coding regions appear to result principally from duplications of entire Φ-segments or single amino-acid substitutions, suggesting that polypeptide structural constraints have been a strong force in the evolution of Dhn alleles. Chromosome mapping by PCR with wheat-barley addition lines established the presence of Dhn genes in four barley chromosomes (3H, 4H, 5H, 6H). RT-PCR demonstrated that the Dhn genes are differentially regulated under dehydration, low temperature and ABA treatment, consistent with putative regulatory elements located upstream of the respective Dhn coding regions. This whole-genome, gene-specific study unifies what previously seemed to be disparate-mapping, expression, and genetic-variation data for Dhn genes in the Triticeae and other plant systems.[PUBLICATION ABSTRACT]
Audience Academic
Author Zhu, B
Choi, D.W
Close, T.J
Author_xml – sequence: 1
  fullname: Choi, D.W
– sequence: 2
  fullname: Zhu, B
– sequence: 3
  fullname: Close, T.J
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1860249$$DView record in Pascal Francis
BookMark eNpd0VFrFDEQAOBFKng9ffTZICIW3DpJdm-zvpVWbeFAsPY5ZJPZbWo2OZPd0vs__lCzXkE0L2HCl8xM5rg48sFjUbykcEoBmg8JgDIGUFMq2ifFilaclYxV7KhYAVRQ1k3NnhXHKd0BAKuBr4pfnYoO9-TdZYgG55Hcz25QEcn29IQYvN2baD0ZZzfZAT2SXo3W7T-ShD9n9BrTe6KcQ4dk2u-WSN_GMIYURiQqJTv4Ef20KG8IPuwi5sPgM1NR6QmjTZPViYSeUEoubj1Z0vyJ9T25sPrHFMLz4mmvXMIXj_u6uPn86fv5Zbn9-uXq_Gxbai5gKlvsQFRdu2mpbo2ozAaBoVkaRTA9F6xqEKmpEZTuus5QzZHyTui-741SfF28Pby7iyG3lyY52qTROeUxzEnShm04E3WGr_-Dd2GOPtcmRVU3WeS1Lk4OaFAOpfU6-AkfpkHNKcmr62_yjAPNRYlmseXB6hhSitjLXbSjintJQS7Dlf8MN_s3jwWopJXro_Lapr-XxAZYtbBXB9arINWQP1veXLOcFVjLKa8F_w1557BZ
CODEN THAGA6
CitedBy_id crossref_primary_10_1007_s10535_014_0465_y
crossref_primary_10_1134_S1021443709030078
crossref_primary_10_1371_journal_pone_0058713
crossref_primary_10_17221_90_2010_CJGPB
crossref_primary_10_1104_pp_003046
crossref_primary_10_1080_15427528_2014_976802
crossref_primary_10_1038_s41598_019_49759_w
crossref_primary_10_17221_3660_CJGPB
crossref_primary_10_1016_j_jplph_2009_09_020
crossref_primary_10_1038_srep39693
crossref_primary_10_1046_j_1365_3040_2000_00572_x
crossref_primary_10_1007_s10535_007_0133_6
crossref_primary_10_1007_s10681_011_0445_7
crossref_primary_10_1111_j_1399_3054_2008_01164_x
crossref_primary_10_3390_ijms20081989
crossref_primary_10_1007_BF03031126
crossref_primary_10_1104_pp_103_034462
crossref_primary_10_1111_j_1438_8677_2009_00269_x
crossref_primary_10_1007_s00122_003_1249_5
crossref_primary_10_3390_genes10020148
crossref_primary_10_1016_j_colsurfb_2018_05_068
crossref_primary_10_1016_j_plantsci_2004_11_007
crossref_primary_10_1007_s10265_017_0941_5
crossref_primary_10_1007_s10142_008_0081_z
crossref_primary_10_17221_118_2014_CJGPB
crossref_primary_10_1007_s11103_013_0119_z
crossref_primary_10_1134_S1021443707010177
crossref_primary_10_2478_s11756_010_0090_y
crossref_primary_10_1111_j_1438_8677_2011_00446_x
crossref_primary_10_1111_j_1365_313X_2005_02603_x
crossref_primary_10_1016_j_plantsci_2015_03_014
crossref_primary_10_1007_s10142_010_0166_3
crossref_primary_10_1071_AR06300
crossref_primary_10_1371_journal_pone_0087575
crossref_primary_10_1078_0176_1617_00925
crossref_primary_10_1073_pnas_96_23_13566
crossref_primary_10_3390_biom11111662
crossref_primary_10_1007_s00299_006_0258_7
crossref_primary_10_1007_s11103_004_0906_7
crossref_primary_10_1186_1471_2229_11_146
crossref_primary_10_1186_1471_2229_11_6
crossref_primary_10_1007_s00299_009_0710_6
crossref_primary_10_1093_jxb_ert095
crossref_primary_10_1371_journal_pone_0175848
crossref_primary_10_3390_cells12222606
crossref_primary_10_1007_s11105_013_0681_1
crossref_primary_10_1016_j_envexpbot_2022_104965
crossref_primary_10_1046_j_1365_313X_2003_01697_x
crossref_primary_10_1371_journal_pone_0136433
crossref_primary_10_1007_s12298_008_0026_y
crossref_primary_10_3923_ijb_2008_315_320
crossref_primary_10_4236_ajmb_2013_31004
crossref_primary_10_1016_j_plantsci_2003_12_025
crossref_primary_10_1111_j_1365_3040_2004_01237_x
crossref_primary_10_1093_jxb_erh045
crossref_primary_10_1186_s12870_015_0524_3
crossref_primary_10_1007_s10142_011_0231_6
crossref_primary_10_1186_s12862_018_1318_7
crossref_primary_10_3390_ijms18081828
crossref_primary_10_3724_SP_J_1005_2009_00236
crossref_primary_10_1016_j_bse_2016_04_003
crossref_primary_10_1007_s11105_011_0395_1
crossref_primary_10_1111_j_1439_0523_2009_01640_x
crossref_primary_10_3390_plants10122664
crossref_primary_10_1007_s11105_012_0483_x
crossref_primary_10_1111_j_1469_8137_2003_01001_x
crossref_primary_10_18832_kp2011017
crossref_primary_10_3390_plants10040789
crossref_primary_10_1016_j_plantsci_2004_07_006
crossref_primary_10_1016_j_sajb_2018_09_021
crossref_primary_10_1034_j_1399_3054_2003_00060_x
crossref_primary_10_1080_17429145_2017_1308568
crossref_primary_10_1093_jxb_erv526
crossref_primary_10_3389_fpls_2017_01316
crossref_primary_10_3389_fpls_2023_1213188
crossref_primary_10_1007_s13562_011_0074_1
crossref_primary_10_1007_s11032_010_9473_6
crossref_primary_10_2478_s11658_006_0044_0
crossref_primary_10_3389_fpls_2017_00470
crossref_primary_10_1007_s00122_004_1851_1
crossref_primary_10_1111_nph_13919
crossref_primary_10_1016_j_jplph_2007_10_009
crossref_primary_10_1534_genetics_105_054502
crossref_primary_10_1186_s12870_023_04450_1
crossref_primary_10_1007_s11105_010_0203_3
crossref_primary_10_1016_S0167_4781_02_00410_4
crossref_primary_10_1080_15228860902901710
crossref_primary_10_7783_KJMCS_2014_22_5_339
crossref_primary_10_1104_pp_111_183988
crossref_primary_10_1007_s11295_015_0938_y
crossref_primary_10_1104_pp_110_159079
crossref_primary_10_1046_j_1365_313X_2003_01963_x
crossref_primary_10_1104_pp_109_136697
crossref_primary_10_3923_ijb_2008_77_84
crossref_primary_10_7717_peerj_10933
crossref_primary_10_1073_pnas_1633708100
crossref_primary_10_1186_s12870_016_0922_1
crossref_primary_10_1006_prep_2000_1297
crossref_primary_10_4081_pb_2015_5826
crossref_primary_10_1046_j_1469_8137_2003_00906_x
crossref_primary_10_1111_j_1365_294X_2009_04140_x
crossref_primary_10_1111_j_1399_3054_2012_01611_x
crossref_primary_10_1007_s00299_021_02720_6
crossref_primary_10_1007_s10681_017_1924_2
crossref_primary_10_1080_13102818_2019_1638300
crossref_primary_10_3390_proteomes6010003
crossref_primary_10_1016_j_phytochem_2010_10_020
crossref_primary_10_1007_s10709_012_9641_1
crossref_primary_10_1093_jxb_ern186
crossref_primary_10_1016_j_plantsci_2010_07_003
crossref_primary_10_1016_S1016_8478_23_13745_9
crossref_primary_10_1371_journal_pone_0142746
crossref_primary_10_3390_plants9010083
crossref_primary_10_1016_j_pmpp_2004_11_010
crossref_primary_10_11118_actaun201563010087
crossref_primary_10_1007_s11738_013_1266_1
crossref_primary_10_1034_j_1399_3054_1999_106205_x
crossref_primary_10_1134_S1021443709050203
crossref_primary_10_1007_BF03195689
crossref_primary_10_3389_fpls_2016_01154
crossref_primary_10_1186_1471_2229_12_140
crossref_primary_10_1007_s10535_012_0237_5
crossref_primary_10_1104_pp_105_072645
crossref_primary_10_1534_g3_119_400401
crossref_primary_10_3389_fpls_2014_00343
crossref_primary_10_1016_j_gep_2018_10_002
crossref_primary_10_1111_j_1469_8137_2012_04136_x
crossref_primary_10_1038_srep19467
crossref_primary_10_1007_s00122_004_1877_4
crossref_primary_10_1007_BF03030534
crossref_primary_10_1038_srep20966
crossref_primary_10_1104_pp_015891
crossref_primary_10_1007_s12042_012_9106_9
crossref_primary_10_1080_07352689_2014_870408
crossref_primary_10_1111_j_1399_3054_2006_00826_x
crossref_primary_10_1007_s00299_006_0151_4
crossref_primary_10_1016_j_jplph_2010_07_007
crossref_primary_10_17221_1903_CJGPB
crossref_primary_10_1007_s00425_010_1279_6
crossref_primary_10_1007_s12298_017_0434_y
crossref_primary_10_1007_s10628_005_0035_5
crossref_primary_10_1007_s40415_020_00633_4
crossref_primary_10_1007_s10535_008_0120_6
crossref_primary_10_1007_s00122_011_1590_z
crossref_primary_10_1016_j_envexpbot_2024_105802
crossref_primary_10_1007_s11738_010_0580_0
crossref_primary_10_1111_j_1365_313X_2007_0141_x
crossref_primary_10_1007_s11295_008_0188_3
crossref_primary_10_1073_pnas_0409804102
crossref_primary_10_1016_j_compbiolchem_2019_06_005
crossref_primary_10_1007_s10722_024_01873_z
crossref_primary_10_3390_molecules23051196
crossref_primary_10_1371_journal_pone_0161073
ContentType Journal Article
Copyright 1999 INIST-CNRS
COPYRIGHT 1999 Springer
Springer-Verlag Berlin Heidelberg 1999
Copyright_xml – notice: 1999 INIST-CNRS
– notice: COPYRIGHT 1999 Springer
– notice: Springer-Verlag Berlin Heidelberg 1999
DBID FBQ
IQODW
AAYXX
CITATION
ISR
3V.
7SS
7TK
7X7
7XB
88A
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PQEST
PQQKQ
PQUKI
PRINS
RC3
DOI 10.1007/s001220051189
DatabaseName AGRIS
Pascal-Francis
CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
DatabaseTitle CrossRef
ProQuest Central Student
Technology Research Database
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList

ProQuest Central Student
Genetics Abstracts
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
– sequence: 2
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
EISSN 1432-2242
EndPage 1247
ExternalDocumentID 2244338701
A301382873
10_1007_s001220051189
1860249
US201302931358
Genre Feature
GeographicLocations Japan
GeographicLocations_xml – name: Japan
GroupedDBID ---
-4W
-56
-5G
-BR
-DZ
-EM
-Y2
-~C
-~X
.86
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29Q
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3SX
3V.
4.4
406
408
409
40D
40E
53G
5QI
5VS
67N
67Z
6NX
78A
7X7
88A
88E
8AO
8FE
8FH
8FI
8FJ
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANXM
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABELW
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACTTH
ACVWB
ACWMK
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOAH
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHMBA
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKMHD
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
AOSHJ
ARMRJ
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BVXVI
CAG
CCPQU
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
ESTFP
F5P
FBQ
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IFM
IHE
IHR
IJ-
IKXTQ
INH
INR
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LK8
LLZTM
M0L
M1P
M4Y
M7P
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P0-
P19
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK6
WK8
Y6R
YLTOR
Z45
Z7R
Z7S
Z7U
Z7V
Z7W
Z7Y
Z83
Z85
Z87
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8S
Z8W
Z8Z
Z91
ZMTXR
ZOVNA
~EX
08R
ABFLS
ADTIX
BBAFP
H13
IPNFZ
IQODW
N95
PQEST
PQUKI
AACDK
AAEOY
AAHBH
AAJBT
AAQLM
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
ALIPV
CITATION
7SS
7TK
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PRINS
RC3
ID FETCH-LOGICAL-c380t-9eb084b9691c9d84d6e02ed2503e0df38247ee1d5e0acbbbd1c3e13b8cfffdaa3
IEDL.DBID BENPR
ISSN 0040-5752
IngestDate Sun Sep 29 07:29:18 EDT 2024
Fri Sep 13 06:03:57 EDT 2024
Thu Aug 01 19:08:56 EDT 2024
Thu Sep 12 18:59:34 EDT 2024
Fri Nov 25 01:06:09 EST 2022
Wed Dec 27 18:45:28 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Genetic mapping
Monocotyledones
Hordeum vulgare
Nucleotide sequence
Chromosome
Dehydration
Cereal crop
Stress
Molecular evolution
Allele
Gramineae
Drought resistance
Angiospermae
Multigene family
Spermatophyta
Gene duplication
Cultivar
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c380t-9eb084b9691c9d84d6e02ed2503e0df38247ee1d5e0acbbbd1c3e13b8cfffdaa3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 845785333
PQPubID 54040
PageCount 14
ParticipantIDs proquest_miscellaneous_17263285
proquest_journals_845785333
gale_incontextgauss_ISR_A301382873
crossref_primary_10_1007_s001220051189
pascalfrancis_primary_1860249
fao_agris_US201302931358
PublicationCentury 1900
PublicationDate 1999-06-01
PublicationDateYYYYMMDD 1999-06-01
PublicationDate_xml – month: 06
  year: 1999
  text: 1999-06-01
  day: 01
PublicationDecade 1990
PublicationPlace Heidelberg
Berlin
PublicationPlace_xml – name: Berlin
– name: Heidelberg
PublicationTitle Theoretical and applied genetics
PublicationYear 1999
Publisher Springer
Springer Nature B.V
Publisher_xml – name: Springer
– name: Springer Nature B.V
SSID ssj0002503
Score 2.0696511
Snippet Dehydrins (LEA D11 proteins) have been identified in both higher and lower plants, and are associated with tolerance to, or response to the onset of, low...
SourceID proquest
gale
crossref
pascalfrancis
fao
SourceType Aggregation Database
Index Database
Publisher
StartPage 1234
SubjectTerms abscisic acid
Acids
alleles
Allelomorphism
amino acid sequences
Barley
Biological and medical sciences
chromosome mapping
Chromosomes
Classical genetics, quantitative genetics, hybrids
Cold
cultivars
desiccation
dhn genes
DNA
DNA primers
DNA sequencing
exons
Fundamental and applied biological sciences. Psychology
genbank/af043086
genbank/af043087
genbank/af043088
genbank/af043089
genbank/af043090
genbank/af043091
genbank/af043092
genbank/af043093
genbank/af043094
genbank/af043095
genbank/af043096
gene copy number
Gene expression
gene location
Genetic aspects
Genetic engineering
genetic regulation
Genetics of eukaryotes. Biological and molecular evolution
Hordeum vulgare
introns
linkage (genetics)
messenger RNA
molecular sequence data
multigene family
nucleotide sequences
Nucleotide sequencing
Physiological aspects
Plant genetics
plant proteins
Proteins
Pteridophyta, spermatophyta
regulatory sequences
restriction mapping
Salinity
Vegetals
Title barley (Hordeum vulgare L.) dehydrin multigene family: sequences, allele types, chromosome assignments, and expression characteristics of 11 Dhn genes of cv Dicktoo
URI https://www.proquest.com/docview/845785333/abstract/
https://search.proquest.com/docview/17263285
Volume 98
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ta9RAEF56LYIiolXpWVsXEVEw3m52c0n8IqdtPUWLtB7ct7BvuTu0yXlJiveP_JnOJLnYIvhxycvCzuzs7Lw8DyHP4ARmiHnnsYApT8Yq8CLHjRdLcO8NbD9tMN7x5XQ4nshP02C6RT5semGwrHJjE2tDbXODMfJBJBGWRQgxUBqDAKYcvF3-9JA-CtOsLZdGj-z4XGK-dufd8enXs84ow0nfFdCBh-K3cJt1F12dXkLt5Ej2fuV46qUq70z17aUqYNnShu_iH9Ndn0cnd8md1pGko0by98iWy3bJrdFs1YJpuF1yoyGaXN8nv0EbqMbE-pq-GCPcZnVBLyts43D08-uX1Lr52q4WGa0LDEGpHG1CH29oV2z9iiLvyg9HMWwLIzPHUr4iv3AUPPDFrOmWg7cyS92vtsA2o-Y6JDTNU8o5PZpnFKepx-aSHi3M9zLPH5DJyfG392Ov5WjwjIhY6cVOs0jqeBhzE9tI2qFjvrO43I7ZVES-DJ3jNnBMGa215UY4LnRk0jS1SomHZDvLM7dHqIgCC-6PMMxocDPwrhWm8K4faiaNkH3yfCOaZNlAcSQd6PJVGfbJHgguUbDiRTI59-vkbCy4CKI-eYrSTBD5IsPSmpmqiiL5eH6WjAQmbeECKfrk4Jqs_86GhF0S_r-_kX3S7vgi6fSzT550T2GrYv5FZS6vigR8xaHwo-DRf7_fJzdbaAiP8cdku1xV7gAcn1Ifkl44DQ9b1f4DIoYB0w
link.rule.ids 315,786,790,12083,21416,27957,27958,31754,31755,33779,33780,43345,43840,74102,74659
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1tb9MwELZYJwQIIRighTFmIYRAWsCJnTbhCypsUwddhbZV2jcrfklbwZLSNBP9R_xM7hI3bELio5UXS77z3eO783OEvAIPzJDzzmcRS32RpJEf20D7iQB4r2H7KY3xjpNRdzAWXy6iC1ebU7qyyrVNrA21KTTGyN_HAmlZOOcf5z99bBqFyVXXQWODbAoOJ5UO2fx0OPp22ppi8O9t2RzgktCRbNZ35-qkEupkgC3erzmljSwtWgN9f56WsFhZ0-XiH4Nde6Gjh-SBg4-038j7Ebll8y1yrz9ZOAoNu0VuN-0lV4_Jb9ABqjCdvqJvBkiyWV3Sqwovb1g6fPeWGjtdmcUsp3VZIaiSpU3A4wNtS6z3KXZb-WEpBmthpKdYwFcWl5YC7p5Nmjty8FZuqP3lympzqm8SQdMio0FAD6Y5xWnqsb6iBzP9fVkUT8j46PD888B3nRl8zWO29BOrWCxU0k0CnZhYmK5loTW43JaZjMeh6FkbmMiyVCulTKC5DbiKdZZlJk35U9LJi9xuE8rjyADo4ZppBeACT1i9DN4Ne4oJzYVHXq9FI-cNAYdsqZavy9Aj2yA4mcKKl3J8FtYp2YQHPIo98hKlKZHvIseCmklalaU8PjuVfY6pWjg2co_s3pD139mwTZeA_--sZS_dPi9lq5Ue2WufwgbFrEua26IqJSDELg_j6Nl_v98jdwbnJ0M5PB593SF3HTmEz4LnpLNcVHYXoM9SvXAK_gf0UAAf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1tb9MwELbYEGgIIRiglTFmIYRAIsyJk9bhC6ooVQdjQoxK_Wb5LW01lpSmmeg_4mdyl7hhExIfrbxY8p3vznfn5yHkBXhghph3AUuYCuJUJYFwoQnSGMJ7A9tPG8x3fDntjsbxp0ky8ZBCpW-r3NjE2lDbwmCO_EjECMvCOT_KfFfE18Hw_eJngARSWGj1bBpb5CY4SYZkBr1Je_ZCT9820EGEEnm4zfoWXV1eQu0Mkez9invaylTRmuq7C1XCsmUN38U_prv2R8P75J4PJGm_kfwDcsPlu-ROf7r0YBpul9xqiCbXD8lv0AaqsbC-pq9GCLdZXdDLCq9xOHry9jW1bra2y3lO6wZDUCpHm9THO9o2W7-hyLvyw1FM28LIzLCVrywuHIUIfD5tbsvBW7ml7pdvsM2puQ4JTYuMhiEdzHKK09Rjc0kHc3O-KopHZDz8-P3DKPAcDYHhgq2C1GkmYp1209CkVsS261jkLC63YzbjIop7zoU2cUwZrbUNDXch18JkWWaV4o_Jdl7kbo9QLhIL4Q83zGgIM_Cs1cvg3ainWWx43CEvN6KRiwaKQ7agy1dl2CF7IDipYMVLOT6L6uJsykOeiA55jtKUiHyRoxJNVVWW8vjsm-xzLNrCAZJ3yME1Wf-dDQm7Yvj__kb20u_4Urb62SGH7VPYqlh_UbkrqlJCrNjlkUie_Pf7Q3IbNFueHJ9-3ic7HiUiYOFTsr1aVu4AYqCVflZr9x-WNALl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+barley+%28Hordeum+vulgare+L.%29+dehydrin+multigene+family%3A+sequences%2C+allele+types%2C+chromosome+assignments%2C+and+expression+characteristics+of+11+Dhn+genes+of+cv+Dicktoo&rft.jtitle=Theoretical+and+applied+genetics&rft.au=Choi%2C+D-w&rft.au=Zhu%2C+B&rft.au=Close%2C+T+J&rft.date=1999-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0040-5752&rft.eissn=1432-2242&rft.volume=98&rft.issue=8&rft.spage=1234&rft_id=info:doi/10.1007%2Fs001220051189&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2244338701
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-5752&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-5752&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-5752&client=summon