EA-LSTM: Evolutionary attention-based LSTM for time series prediction
Time series prediction with deep learning methods, especially Long Short-term Memory Neural Network (LSTM), have scored significant achievements in recent years. Despite the fact that LSTM can help to capture long-term dependencies, its ability to pay different degree of attention on sub-window feat...
Saved in:
Published in | Knowledge-based systems Vol. 181; p. 104785 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.10.2019
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Time series prediction with deep learning methods, especially Long Short-term Memory Neural Network (LSTM), have scored significant achievements in recent years. Despite the fact that LSTM can help to capture long-term dependencies, its ability to pay different degree of attention on sub-window feature within multiple time-steps is insufficient. To address this issue, an evolutionary attention-based LSTM training with competitive random search is proposed for multivariate time series prediction. By transferring shared parameters, an evolutionary attention learning approach is introduced to LSTM. Thus, like that for biological evolution, the pattern for importance-based attention sampling can be confirmed during temporal relationship mining. To refrain from being trapped into partial optimization like traditional gradient-based methods, an evolutionary computation inspired competitive random search method is proposed, which can well configure the parameters in the attention layer. Experimental results have illustrated that the proposed model can achieve competetive prediction performance compared with other baseline methods. |
---|---|
AbstractList | Time series prediction with deep learning methods, especially Long Short-term Memory Neural Network (LSTM), have scored significant achievements in recent years. Despite the fact that LSTM can help to capture long-term dependencies, its ability to pay different degree of attention on sub-window feature within multiple time-steps is insufficient. To address this issue, an evolutionary attention-based LSTM training with competitive random search is proposed for multivariate time series prediction. By transferring shared parameters, an evolutionary attention learning approach is introduced to LSTM. Thus, like that for biological evolution, the pattern for importance-based attention sampling can be confirmed during temporal relationship mining. To refrain from being trapped into partial optimization like traditional gradient-based methods, an evolutionary computation inspired competitive random search method is proposed, which can well configure the parameters in the attention layer. Experimental results have illustrated that the proposed model can achieve competetive prediction performance compared with other baseline methods. |
ArticleNumber | 104785 |
Author | Han, Hua Zhao, Yao Li, Youru Zhu, Zhenfeng Kong, Deqiang |
Author_xml | – sequence: 1 givenname: Youru surname: Li fullname: Li, Youru organization: Institute of Information Science, Beijing Jiaotong University, Beijing, 100044, China – sequence: 2 givenname: Zhenfeng surname: Zhu fullname: Zhu, Zhenfeng email: zhfzhu@bjtu.edu.cn organization: Institute of Information Science, Beijing Jiaotong University, Beijing, 100044, China – sequence: 3 givenname: Deqiang surname: Kong fullname: Kong, Deqiang organization: Microsoft Multimedia, Beijing, 100080, China – sequence: 4 givenname: Hua surname: Han fullname: Han, Hua organization: National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China – sequence: 5 givenname: Yao surname: Zhao fullname: Zhao, Yao organization: Institute of Information Science, Beijing Jiaotong University, Beijing, 100044, China |
BookMark | eNp9kM1qwzAQhEVJoUnaN-jB0LPdlWRZVg-FENIfSOmh6VnY8hrkJlYqOYG-fWXcc0_LwjezO7Mgs971SMgthYwCLe677Kt34SdkDKjKQGTAygsyp6VkqcxBzcgclIBUgqBXZBFCBwCM0XJONptVuv3YvT0km7Pbnwbr-sr_JNUwYD8uaV0FbJIRSVrnk8EeMAnoLYbk6LGxZqSuyWVb7QPe_M0l-Xza7NYv6fb9-XW92qaGlzCkCkUlq7bmtQJVy6LgUAsujKilYhUrGAeMXzHV5FyqWhSFrCPQGMoNb3jOl-Ru8j16933CMOjOnXwfT2rGFANR8lxFKp8o410IHlt99PYQY2kKeixMd3oqTI-FaRA6FhZlj5MMY4KzRa-DsdibGNKjGXTj7P8Gv4kmdjg |
CitedBy_id | crossref_primary_10_1080_23249935_2020_1845250 crossref_primary_10_1029_2023GL104464 crossref_primary_10_3390_info15030124 crossref_primary_10_1016_j_engfailanal_2022_106790 crossref_primary_10_1016_j_jenvman_2023_118006 crossref_primary_10_1287_ijds_2022_0015 crossref_primary_10_3390_su132111596 crossref_primary_10_1016_j_bdr_2023_100377 crossref_primary_10_1021_acsomega_1c00617 crossref_primary_10_1016_j_desal_2021_115107 crossref_primary_10_1109_ACCESS_2023_3339500 crossref_primary_10_1016_j_jag_2022_102828 crossref_primary_10_1016_j_knosys_2023_111230 crossref_primary_10_3390_agriculture12020256 crossref_primary_10_3390_ijerph192013555 crossref_primary_10_1103_PhysRevResearch_6_013182 crossref_primary_10_1016_j_asoc_2022_109714 crossref_primary_10_3390_electronics11182935 crossref_primary_10_1016_j_neunet_2022_10_009 crossref_primary_10_1016_j_inffus_2023_102180 crossref_primary_10_1016_j_measen_2024_101179 crossref_primary_10_1063_5_0137792 crossref_primary_10_3390_s22155742 crossref_primary_10_1016_j_eswa_2022_117600 crossref_primary_10_1108_IJCHM_12_2021_1474 crossref_primary_10_1109_ACCESS_2020_2995044 crossref_primary_10_3390_electronics13071254 crossref_primary_10_1007_s11356_022_18914_8 crossref_primary_10_1016_j_energy_2021_120996 crossref_primary_10_3390_atmos14050869 crossref_primary_10_4081_gh_2023_1176 crossref_primary_10_1016_j_asoc_2020_106574 crossref_primary_10_1016_j_scs_2023_104679 crossref_primary_10_1007_s10278_021_00526_2 crossref_primary_10_1002_er_6093 crossref_primary_10_1016_j_asoc_2023_110582 crossref_primary_10_3390_su12062451 crossref_primary_10_1016_j_matt_2024_04_030 crossref_primary_10_1155_2021_9940232 crossref_primary_10_1016_j_eswa_2023_120843 crossref_primary_10_1016_j_asoc_2023_110335 crossref_primary_10_1016_j_sysarc_2024_103181 crossref_primary_10_1016_j_bspc_2021_102829 crossref_primary_10_1016_j_energy_2021_121756 crossref_primary_10_1016_j_optlastec_2024_111170 crossref_primary_10_1111_coin_12554 crossref_primary_10_1142_S2196888823500033 crossref_primary_10_1016_j_rser_2022_112473 crossref_primary_10_32604_jiot_2022_036066 crossref_primary_10_1145_3447394 crossref_primary_10_1109_ACCESS_2022_3192430 crossref_primary_10_1109_JSTARS_2022_3223423 crossref_primary_10_3390_electronics12010107 crossref_primary_10_1016_j_eswa_2022_119329 crossref_primary_10_1016_j_apenergy_2021_116660 crossref_primary_10_1080_13675567_2021_1945018 crossref_primary_10_3233_JIFS_237250 crossref_primary_10_3390_en16196767 crossref_primary_10_1038_s41597_024_03483_x crossref_primary_10_1109_ACCESS_2020_3020801 crossref_primary_10_1007_s10489_021_02824_2 crossref_primary_10_1016_j_energy_2021_120682 crossref_primary_10_1007_s11227_022_04506_3 crossref_primary_10_3390_agriculture11040359 crossref_primary_10_1109_ACCESS_2020_2995656 crossref_primary_10_3390_s21144826 crossref_primary_10_1016_j_compstruc_2022_106915 crossref_primary_10_1109_TII_2022_3229837 crossref_primary_10_1007_s00034_021_01691_z crossref_primary_10_1016_j_est_2024_110906 crossref_primary_10_1016_j_neucom_2021_03_111 crossref_primary_10_1109_JIOT_2023_3297843 crossref_primary_10_1016_j_aei_2022_101759 crossref_primary_10_1049_itr2_12007 crossref_primary_10_1016_j_isatra_2021_08_030 crossref_primary_10_1029_2022SW003326 crossref_primary_10_1007_s12559_021_09854_5 crossref_primary_10_1016_j_energy_2022_125746 crossref_primary_10_1016_j_jhydrol_2021_126815 crossref_primary_10_1109_TNNLS_2021_3137178 crossref_primary_10_1108_DTA_07_2022_0281 crossref_primary_10_1016_j_egyr_2024_06_010 crossref_primary_10_1007_s10489_022_03833_5 crossref_primary_10_1063_5_0081858 crossref_primary_10_1016_j_chaos_2022_112183 crossref_primary_10_1016_j_najef_2021_101421 crossref_primary_10_1016_j_jpowsour_2023_233788 crossref_primary_10_1016_j_fuel_2024_131826 crossref_primary_10_1109_TII_2024_3383018 crossref_primary_10_5194_essd_14_5605_2022 crossref_primary_10_2514_1_I011269 crossref_primary_10_1002_int_22725 crossref_primary_10_1016_j_measurement_2021_110074 crossref_primary_10_7717_peerj_cs_1292 crossref_primary_10_1145_3526087 crossref_primary_10_1049_stg2_12173 crossref_primary_10_3390_electronics12143084 crossref_primary_10_1109_TEC_2023_3294540 crossref_primary_10_1016_j_eswa_2021_115715 crossref_primary_10_3390_s22114062 crossref_primary_10_1016_j_eswa_2023_119545 crossref_primary_10_1016_j_aej_2022_07_029 crossref_primary_10_1061__ASCE_ME_1943_5479_0000995 crossref_primary_10_1155_2022_6111030 crossref_primary_10_3390_ani13081322 crossref_primary_10_1631_FITEE_2300005 crossref_primary_10_1016_j_energy_2022_126179 crossref_primary_10_1007_s11760_022_02426_6 crossref_primary_10_1145_3604616 crossref_primary_10_1016_j_neucom_2022_06_014 crossref_primary_10_1155_2021_1766743 crossref_primary_10_1109_TII_2022_3163137 crossref_primary_10_1051_ro_2023029 crossref_primary_10_3390_su152115558 crossref_primary_10_1016_j_vehcom_2020_100291 crossref_primary_10_1007_s10479_022_04528_3 crossref_primary_10_1109_TII_2022_3221219 crossref_primary_10_1016_j_oceaneng_2021_109066 crossref_primary_10_3390_ijgi11050294 crossref_primary_10_1007_s11356_023_25606_4 crossref_primary_10_1016_j_engappai_2021_104354 crossref_primary_10_3390_pr11030776 crossref_primary_10_1007_s00521_021_06212_2 crossref_primary_10_1016_j_eswa_2019_113082 crossref_primary_10_1007_s11042_023_14388_z crossref_primary_10_1016_j_wroa_2023_100207 crossref_primary_10_3390_agriculture10120612 crossref_primary_10_1088_1755_1315_1285_1_012014 crossref_primary_10_1016_j_aei_2023_101898 crossref_primary_10_3390_app11209373 crossref_primary_10_3390_en15218128 crossref_primary_10_1007_s10614_023_10432_0 crossref_primary_10_1109_ACCESS_2024_3400588 crossref_primary_10_1016_j_compeleceng_2022_108530 crossref_primary_10_1016_j_snb_2024_136085 crossref_primary_10_1016_j_inffus_2020_10_014 crossref_primary_10_1109_TCBB_2021_3131136 crossref_primary_10_1007_s10462_023_10554_9 crossref_primary_10_1016_j_engappai_2023_107072 crossref_primary_10_3390_s22218450 crossref_primary_10_1007_s00170_023_11352_x crossref_primary_10_1007_s10489_021_02416_0 crossref_primary_10_1016_j_ecoinf_2024_102477 crossref_primary_10_3390_su12041390 crossref_primary_10_1002_int_22370 crossref_primary_10_1088_1742_6596_1550_3_032121 crossref_primary_10_1016_j_egyai_2023_100241 crossref_primary_10_3390_s23156778 crossref_primary_10_1016_j_dt_2022_05_011 crossref_primary_10_1002_we_2762 crossref_primary_10_1109_JIOT_2022_3185010 crossref_primary_10_1016_j_advwatres_2023_104569 crossref_primary_10_1016_j_cmpb_2021_106487 crossref_primary_10_1016_j_measurement_2021_109685 crossref_primary_10_1016_j_egyr_2022_08_195 crossref_primary_10_3390_electronics11040652 crossref_primary_10_1016_j_asoc_2022_109460 crossref_primary_10_1016_j_ecolmodel_2022_110250 crossref_primary_10_1080_17445302_2024_2312749 crossref_primary_10_1155_2023_8962283 crossref_primary_10_1016_j_ijhydene_2022_09_238 crossref_primary_10_1007_s10489_021_02899_x crossref_primary_10_3390_e25091326 crossref_primary_10_3934_mbe_2023739 crossref_primary_10_1016_j_measurement_2023_113053 crossref_primary_10_3390_make3040047 crossref_primary_10_1038_s41598_023_31737_y crossref_primary_10_3390_e26030215 crossref_primary_10_1109_TFUZZ_2024_3355000 crossref_primary_10_1007_s11063_022_11046_7 crossref_primary_10_1108_ECAM_05_2022_0450 crossref_primary_10_1109_TEVC_2021_3079985 crossref_primary_10_1007_s00521_021_05958_z crossref_primary_10_1109_TSM_2023_3324057 crossref_primary_10_1016_j_eswa_2022_117483 crossref_primary_10_1016_j_ins_2020_08_017 crossref_primary_10_1016_j_knosys_2021_106921 crossref_primary_10_3390_w15132380 crossref_primary_10_53433_yyufbed_1335866 crossref_primary_10_1145_3603704 crossref_primary_10_7717_peerj_16192 crossref_primary_10_1016_j_egyr_2023_01_109 crossref_primary_10_1016_j_knosys_2022_109608 crossref_primary_10_1007_s12065_020_00365_0 crossref_primary_10_3390_su14042068 crossref_primary_10_1007_s00500_023_08467_4 crossref_primary_10_3389_fpsyg_2022_980778 crossref_primary_10_1155_2022_6811401 crossref_primary_10_3390_s21041171 crossref_primary_10_1016_j_jhydrol_2022_128463 crossref_primary_10_54525_tbbmd_1031017 crossref_primary_10_1007_s13131_021_1763_9 crossref_primary_10_3390_s22072683 crossref_primary_10_1016_j_enbuild_2021_111718 crossref_primary_10_1016_j_comnet_2023_109865 crossref_primary_10_3390_fractalfract5020038 crossref_primary_10_1016_j_asoc_2022_109275 crossref_primary_10_1142_S2424786322500311 crossref_primary_10_1007_s11269_022_03207_z crossref_primary_10_1016_j_energy_2023_128701 crossref_primary_10_1016_j_asoc_2023_110412 crossref_primary_10_1016_j_eswa_2022_116944 crossref_primary_10_1155_2023_9523230 crossref_primary_10_1016_j_ymssp_2024_111599 crossref_primary_10_3390_s22239043 crossref_primary_10_1186_s12864_023_09866_5 crossref_primary_10_3390_electronics11162555 crossref_primary_10_1007_s11517_024_03120_0 crossref_primary_10_1007_s42979_022_01248_0 crossref_primary_10_1109_ACCESS_2020_2995478 crossref_primary_10_1109_ACCESS_2021_3135261 crossref_primary_10_1155_2023_3815063 crossref_primary_10_1016_j_engappai_2022_105440 crossref_primary_10_3390_data9010013 crossref_primary_10_1016_j_aei_2021_101510 crossref_primary_10_3390_w15173118 crossref_primary_10_1016_j_dcan_2022_06_019 crossref_primary_10_3389_fenrg_2021_730640 crossref_primary_10_3390_e22101134 crossref_primary_10_2166_hydro_2023_001 crossref_primary_10_1016_j_apenergy_2022_119754 |
Cites_doi | 10.1109/ICMLA.2016.0182 10.1109/CVPR.2014.82 10.1007/978-3-642-24797-2_2 10.1137/0202009 10.24963/ijcai.2017/366 10.24963/ijcai.2018/476 10.1109/TNNLS.2016.2582924 10.1016/j.enbuild.2014.04.034 10.1162/neco.1997.9.8.1735 10.1109/ICASSP.2017.7953075 10.1609/aaai.v29i1.9559 10.1080/01621459.1970.10481180 10.1109/CVPR.2015.7298714 10.1145/3219819.3219873 10.1038/323533a0 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright Elsevier Science Ltd. Oct 1, 2019 |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Oct 1, 2019 |
DBID | AAYXX CITATION 7SC 8FD E3H F2A JQ2 L7M L~C L~D |
DOI | 10.1016/j.knosys.2019.05.028 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Library and Information Science Abstracts (LISA) ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-7409 |
ExternalDocumentID | 10_1016_j_knosys_2019_05_028 S0950705119302400 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- 29L AAQXK AAXKI AAYXX ABDPE ABXDB ACNNM ACRPL ADJOM ADMUD ADNMO AFJKZ AKRWK ASPBG AVWKF AZFZN CITATION FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW UHS WUQ 7SC 8FD E3H F2A JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c380t-9e5a7afb3b909b76630b535c5b792a26230e21829d4379b5667bb53dc13c3d343 |
IEDL.DBID | AIKHN |
ISSN | 0950-7051 |
IngestDate | Thu Oct 10 19:42:07 EDT 2024 Fri Dec 06 01:37:21 EST 2024 Fri Feb 23 02:18:39 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep neural network Time series prediction Evolutionary computation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c380t-9e5a7afb3b909b76630b535c5b792a26230e21829d4379b5667bb53dc13c3d343 |
OpenAccessLink | http://arxiv.org/pdf/1811.03760 |
PQID | 2292058349 |
PQPubID | 2035257 |
ParticipantIDs | proquest_journals_2292058349 crossref_primary_10_1016_j_knosys_2019_05_028 elsevier_sciencedirect_doi_10_1016_j_knosys_2019_05_028 |
PublicationCentury | 2000 |
PublicationDate | 2019-10-01 2019-10-00 20191001 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Knowledge-based systems |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier Science Ltd |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
References | Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, Yoshua Bengio, Learning phrase representations using RNN encoder–decoder for statistical machine translation, in: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, 2014, pp. 1724–1734. Zhou Yu, Jun Yu, Jianping Fan, Dacheng Tao, Multi-modal factorized bilinear pooling with co-attention learning for visual question answering, in: Proceedings of the 2015 IEEE International Conference on Computer Vision, 2017, pp. 1839–1848. Pierre Hulot, Daniel Aloise, Sanjay Dominik Jena, Towards station-level demand prediction for effective rebalancing in bike-sharing systems, in: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018, pp. 378–386. Mohammad Abdelaziz Gowayyed, Marwan Torki, Mohamed Elsayed Hussein, Motaz El-Saban, Histogram of oriented displacements (HOD): describing trajectories of human joints for action recognition, in: Proceedings of the 23rd International Joint Conference on Artificial Intelligence, 2013, pp. 1351–1357. Xia Li, Ruibin Bai, Freight vehicle travel time prediction using gradient boosting regression tree, in: Proceedings of the 2016 IEEE International Conference on Machine Learning and Applications, 2016, pp. 1010–1015. Raviteja Vemulapalli, Felipe Arrate, Rama Chellappa, Human action recognition by representing 3d skeletons as points in a lie group, in: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 588–595. Udny Yule (b5) 1927; 226 Plutowski, Cottrell, White (b30) 1996; 9 Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, Yoshua Bengio, On the properties of neural machine translation: Encoder–decoder approaches, in: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, 2014, pp. 103–111. Harris Drucker, Christopher J.C. Burges, Linda Kaufman, Alexander J. Smola, Vladimir Vapnik, Support vector regression machines, in: Proceedings of Conference on Neural Information Processing Systems 1996, 1996, pp. 155–161. Yao Qin, Dongjin Song, Haifeng Chen, Wei Cheng, Guofei Jiang, Garrison W. Cottrell, A dual-stage attention-based recurrent neural network for time series prediction, in: Proceedings of the twenty-sixth International Joint Conference on Artificial Intelligence, 2017, pp. 2627–2633. Rumelhart, Hinton, Williams (b12) 1986; 323 Jiasen Lu, Caiming Xiong, Devi Parikh, Richard Socher, Knowing when to look: Adaptive attention via a visual sentinel for image captioning, in: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 3242–3250. Hochreiter, Schmidhuber (b13) 1997; 9 Yong Du, Wei Wang, Liang Wang, Hierarchical recurrent neural network for skeleton based action recognition, in: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1110–1118. Luchen Liu, Jianhao Shen, Ming Zhang, Zichang Wang, Jian Tang, Learning the joint representation of heterogeneous temporal events for clinical endpoint prediction, in: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, 2018, pp. 109–116. Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, Tie-Yan Liu, Lightgbm: A highly efficient gradient boosting decision tree, in: Proceedings of Conference on Neural Information Processing Systems 2017, 2017, pp. 3149–3157. Suyoun Kim, Takaaki Hori, Shinji Watanabe, Joint ctc-attention based end-to-end speech recognition using multi-task learning, in: Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing, 2017, pp. 4835–4839. Zhang, Clune, Stanley (b22) 2017 Graves (b26) 2012 Huang, Zou, Guo, Li, Zhang, Zhang, Huang, Song (b28) 2015; 471 Kristina Davoian, Wolfram-Manfred Lippe, Time series prediction with parallel evolutionary artificial neural multi-order, in: Proceedings of the 2007 IEEE International Conference on Data Mining, 2007, pp. 10–15. Holland (b21) 1973; 2 Wei Cao, Liang Hu, Longbing Cao, Deep modeling complex couplings within financial markets, in: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015, pp. 2518–2524. Yuxuan Liang, Songyu Ke, Junbo Zhang, Xiuwen Yi, Yu Zheng, Geoman: Multi-level attention multi-order for geo-sensory time series prediction, in: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, 2018, pp. 3428–3434. Kingma, Adam (b27) 2014 Zamora-Martínez, Romeu, Botella-Rocamora, Pardo (b29) 2014; 83 Box, Pierce (b6) 1968; 65 Bahdanau, Cho, Bengio (b16) 2014 Lehman, Chen, Clune, Stanley (b24) 2017 Conti, Madhavan, Petroski Such, Lehman, Stanley, Clune (b23) 2017 Greff, Srivastava, Koutník, Steunebrink, Schmidhuber (b25) 2017; 28 10.1016/j.knosys.2019.05.028_b20 Hochreiter (10.1016/j.knosys.2019.05.028_b13) 1997; 9 Box (10.1016/j.knosys.2019.05.028_b6) 1968; 65 Kingma (10.1016/j.knosys.2019.05.028_b27) 2014 10.1016/j.knosys.2019.05.028_b4 10.1016/j.knosys.2019.05.028_b3 Zamora-Martínez (10.1016/j.knosys.2019.05.028_b29) 2014; 83 10.1016/j.knosys.2019.05.028_b8 10.1016/j.knosys.2019.05.028_b7 Greff (10.1016/j.knosys.2019.05.028_b25) 2017; 28 10.1016/j.knosys.2019.05.028_b9 Huang (10.1016/j.knosys.2019.05.028_b28) 2015; 471 Plutowski (10.1016/j.knosys.2019.05.028_b30) 1996; 9 10.1016/j.knosys.2019.05.028_b2 10.1016/j.knosys.2019.05.028_b1 Graves (10.1016/j.knosys.2019.05.028_b26) 2012 10.1016/j.knosys.2019.05.028_b10 10.1016/j.knosys.2019.05.028_b32 10.1016/j.knosys.2019.05.028_b11 Lehman (10.1016/j.knosys.2019.05.028_b24) 2017 10.1016/j.knosys.2019.05.028_b31 10.1016/j.knosys.2019.05.028_b14 Bahdanau (10.1016/j.knosys.2019.05.028_b16) 2014 10.1016/j.knosys.2019.05.028_b15 Zhang (10.1016/j.knosys.2019.05.028_b22) 2017 Conti (10.1016/j.knosys.2019.05.028_b23) 2017 Rumelhart (10.1016/j.knosys.2019.05.028_b12) 1986; 323 10.1016/j.knosys.2019.05.028_b18 Holland (10.1016/j.knosys.2019.05.028_b21) 1973; 2 Udny Yule (10.1016/j.knosys.2019.05.028_b5) 1927; 226 10.1016/j.knosys.2019.05.028_b19 10.1016/j.knosys.2019.05.028_b17 |
References_xml | – volume: 83 start-page: 162 year: 2014 end-page: 172 ident: b29 article-title: On-line learning of indoor temperature forecasting models towards energy efficiency publication-title: Energy Build. contributor: fullname: Pardo – volume: 2 start-page: 88 year: 1973 end-page: 105 ident: b21 article-title: Genetic algorithms and the optimal allocation of trials publication-title: SIAM J. Comput. contributor: fullname: Holland – volume: 226 start-page: 267 year: 1927 end-page: 298 ident: b5 article-title: On a method of investigating periodicities in disturbed series, with special reference to Wolfer’s sunspot numbers publication-title: Phil. Trans. R. Soc. Lond. contributor: fullname: Udny Yule – year: 2014 ident: b16 article-title: Neural machine translation by jointly learning to align and translate contributor: fullname: Bengio – year: 2014 ident: b27 article-title: A method for stochastic optimization contributor: fullname: Adam – volume: 65 start-page: 1509 year: 1968 end-page: 1526 ident: b6 article-title: Distribution of residual autocorrelations in autoregressive-integrated moving average time series models publication-title: Publ. Am. Stat. Assoc. contributor: fullname: Pierce – year: 2017 ident: b23 article-title: Improving exploration in evolution strategies for deep reinforcement learning via a population of novelty-seeking agents contributor: fullname: Clune – volume: 323 start-page: 533 year: 1986 end-page: 536 ident: b12 article-title: Learning representations by back-propagating errors publication-title: Nature contributor: fullname: Williams – year: 2017 ident: b24 article-title: Safe mutations for deep and recurrent neural multi-order through output gradients contributor: fullname: Stanley – volume: 9 start-page: 273 year: 1996 end-page: 294 ident: b30 article-title: Experience with selecting exemplars from clean data publication-title: Neural Multi-order contributor: fullname: White – year: 2012 ident: b26 article-title: Supervised sequence labelling with recurrent neural multi-order publication-title: Studies in Computational Intelligence, Vol. 385 contributor: fullname: Graves – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b13 article-title: Long short-term memory publication-title: Neural Computation contributor: fullname: Schmidhuber – year: 2017 ident: b22 article-title: On the relationship between the OpenAI evolution strategy and stochastic gradient descent contributor: fullname: Stanley – volume: 28 start-page: 2222 year: 2017 end-page: 2232 ident: b25 article-title: LSTM: A search space odyssey publication-title: IEEE Trans. Neural Netw. Learn. Syst. contributor: fullname: Schmidhuber – volume: 471 year: 2015 ident: b28 article-title: Assessing Beijing’s PM2.5 pollution: severity, weather impact, APEC winter heating publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci. contributor: fullname: Song – ident: 10.1016/j.knosys.2019.05.028_b9 doi: 10.1109/ICMLA.2016.0182 – ident: 10.1016/j.knosys.2019.05.028_b32 doi: 10.1109/CVPR.2014.82 – ident: 10.1016/j.knosys.2019.05.028_b7 – ident: 10.1016/j.knosys.2019.05.028_b1 – ident: 10.1016/j.knosys.2019.05.028_b31 – year: 2012 ident: 10.1016/j.knosys.2019.05.028_b26 article-title: Supervised sequence labelling with recurrent neural multi-order doi: 10.1007/978-3-642-24797-2_2 contributor: fullname: Graves – ident: 10.1016/j.knosys.2019.05.028_b10 – ident: 10.1016/j.knosys.2019.05.028_b17 – volume: 2 start-page: 88 issue: 2 year: 1973 ident: 10.1016/j.knosys.2019.05.028_b21 article-title: Genetic algorithms and the optimal allocation of trials publication-title: SIAM J. Comput. doi: 10.1137/0202009 contributor: fullname: Holland – ident: 10.1016/j.knosys.2019.05.028_b15 – ident: 10.1016/j.knosys.2019.05.028_b11 doi: 10.24963/ijcai.2017/366 – ident: 10.1016/j.knosys.2019.05.028_b20 doi: 10.24963/ijcai.2018/476 – volume: 28 start-page: 2222 issue: 10 year: 2017 ident: 10.1016/j.knosys.2019.05.028_b25 article-title: LSTM: A search space odyssey publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2016.2582924 contributor: fullname: Greff – volume: 83 start-page: 162 year: 2014 ident: 10.1016/j.knosys.2019.05.028_b29 article-title: On-line learning of indoor temperature forecasting models towards energy efficiency publication-title: Energy Build. doi: 10.1016/j.enbuild.2014.04.034 contributor: fullname: Zamora-Martínez – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.knosys.2019.05.028_b13 article-title: Long short-term memory publication-title: Neural Computation doi: 10.1162/neco.1997.9.8.1735 contributor: fullname: Hochreiter – ident: 10.1016/j.knosys.2019.05.028_b19 doi: 10.1109/ICASSP.2017.7953075 – year: 2017 ident: 10.1016/j.knosys.2019.05.028_b22 contributor: fullname: Zhang – ident: 10.1016/j.knosys.2019.05.028_b8 – ident: 10.1016/j.knosys.2019.05.028_b18 – year: 2014 ident: 10.1016/j.knosys.2019.05.028_b16 contributor: fullname: Bahdanau – year: 2017 ident: 10.1016/j.knosys.2019.05.028_b23 contributor: fullname: Conti – ident: 10.1016/j.knosys.2019.05.028_b14 – year: 2014 ident: 10.1016/j.knosys.2019.05.028_b27 contributor: fullname: Kingma – ident: 10.1016/j.knosys.2019.05.028_b2 doi: 10.1609/aaai.v29i1.9559 – volume: 226 start-page: 267 issue: 226 year: 1927 ident: 10.1016/j.knosys.2019.05.028_b5 article-title: On a method of investigating periodicities in disturbed series, with special reference to Wolfer’s sunspot numbers publication-title: Phil. Trans. R. Soc. Lond. contributor: fullname: Udny Yule – volume: 65 start-page: 1509 issue: 332 year: 1968 ident: 10.1016/j.knosys.2019.05.028_b6 article-title: Distribution of residual autocorrelations in autoregressive-integrated moving average time series models publication-title: Publ. Am. Stat. Assoc. doi: 10.1080/01621459.1970.10481180 contributor: fullname: Box – year: 2017 ident: 10.1016/j.knosys.2019.05.028_b24 contributor: fullname: Lehman – volume: 9 start-page: 273 issue: 2 year: 1996 ident: 10.1016/j.knosys.2019.05.028_b30 article-title: Experience with selecting exemplars from clean data publication-title: Neural Multi-order contributor: fullname: Plutowski – ident: 10.1016/j.knosys.2019.05.028_b4 doi: 10.1109/CVPR.2015.7298714 – ident: 10.1016/j.knosys.2019.05.028_b3 doi: 10.1145/3219819.3219873 – volume: 323 start-page: 533 issue: 6088 year: 1986 ident: 10.1016/j.knosys.2019.05.028_b12 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 contributor: fullname: Rumelhart – volume: 471 issue: 2182 year: 2015 ident: 10.1016/j.knosys.2019.05.028_b28 article-title: Assessing Beijing’s PM2.5 pollution: severity, weather impact, APEC winter heating publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci. contributor: fullname: Huang |
SSID | ssj0002218 |
Score | 2.68734 |
Snippet | Time series prediction with deep learning methods, especially Long Short-term Memory Neural Network (LSTM), have scored significant achievements in recent... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 104785 |
SubjectTerms | Deep neural network Evolutionary computation Machine learning Neural networks Optimization Parameters Random search method Time series Time series prediction |
Title | EA-LSTM: Evolutionary attention-based LSTM for time series prediction |
URI | https://dx.doi.org/10.1016/j.knosys.2019.05.028 https://www.proquest.com/docview/2292058349 |
Volume | 181 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4QLl78bUSR9OC10q0bXb0RMoM_4AIk3Jp16xI0AQJowsW_3fe2zkRjYuJx29uyfH1979v6-j1CblLwAenDCGR-FrBApJKZPFdMAneQPEq6Oce9w8NRdzANHmfhrEb61V4YLKt0sb-M6UW0dmc6Ds3Oaj7vjIEcgL_iOphAoS74bm9AOsK12kbv4Wkw-grIvl_85kN7hjdUO-iKMq_XxXKzQ91uTxUSntiW_fcM9SNWFwno_ogcOOZIe-XLHZOaXZyQw6orA3WT9JTEcY89jyfDOxq_O79K1juKOppFZSPDxJVRNKHAWCl2l6foiHZDV2tct0GrMzK9jyf9AXPNElgqIr5lyoaJTHIjjOLKSCAS3IQiTEMjlZ_4wHK4RbV2laECoQEWJw0YZKknUpGJQJyT-mK5sBeEmghl4Hkkk8wE1nCV5VYJz-YoRgjWTcIqgPSq1MTQVbHYiy4B1Qio5qEGQJtEVijqb2OrIWz_cWerAl27uQXXscFWGIlAXf77wVdkH4_KqrwWqW_Xb_Ya2MXWtMne7YfXdj70CWKEzSE |
link.rule.ids | 314,780,784,4502,24116,27924,27925,45585,45679 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jHvTib3E6NQevcVnTLo23IR1Tt122wW6haVOYQje2Kezi3-57bYooguC1eS3ly8vL1-a97xFym4APSA9mIPVSn_kikcxkmWISuIPkYdzJONYOD0ed_tR_mgWzGnmoamEwrdLF_jKmF9HaXWk5NFvL-bw1BnIA_ornYAKFuuC7fccPgP2CU999fOV5eF7xkw-tGZpX9XNFktdrvlhvUbW7rQoBT2zK_vv-9CNSF9tP75DsO95Iu-WrHZGazY_JQdWTgbolekKiqMsG48nwnkbvzqvi1ZaiimaR18hw20opmlDgqxR7y1N0Q7umyxWe2qDVKZn2oslDn7lWCSwRId8wZYNYxpkRRnFlJNAIbgIRJIGRyos94Djcola7SlF_0ACHkwYM0qQtEpEKX5yRer7I7TmhJkQReB7KODW-NVylmVWibTOUIgTrBmEVQHpZKmLoKlXsRZeAagRU80ADoA0iKxT1t5nVELT_uLNZga7dyoJxbK8VhMJXF_9-8A3Z7U-GAz14HD1fkj0cKfPzmqS-Wb3ZK-AZG3Nd-NEnOALN-g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EA-LSTM%3A+Evolutionary+attention-based+LSTM+for+time+series+prediction&rft.jtitle=Knowledge-based+systems&rft.au=Li%2C+Youru&rft.au=Zhu%2C+Zhenfeng&rft.au=Kong%2C+Deqiang&rft.au=Han%2C+Hua&rft.date=2019-10-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=181&rft.spage=1&rft_id=info:doi/10.1016%2Fj.knosys.2019.05.028&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |