Modeling and simulation framework for dynamic strain localization in elasto-viscoplastic metallic materials subject to large deformations
This paper describes a theoretical and computational framework for the treatment of adiabatic shear band formation in rate-sensitive polycrystalline metallic materials. From a computational perspective, accurate representation of strain localization behavior has been a long-standing challenge. In ad...
Saved in:
Published in | International journal of plasticity Vol. 88; pp. 1 - 26 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
01.01.2017
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0749-6419 1879-2154 |
DOI | 10.1016/j.ijplas.2016.09.009 |
Cover
Loading…
Abstract | This paper describes a theoretical and computational framework for the treatment of adiabatic shear band formation in rate-sensitive polycrystalline metallic materials. From a computational perspective, accurate representation of strain localization behavior has been a long-standing challenge. In addition, the underlying physical mechanisms leading to the localization of plastic deformation are still not fully understood. The proposed framework is built around an enhanced-strain finite element formulation, designed to alleviate numerical pathologies known to arise in localization problems, by allowing a localization band of given finite width (weak discontinuity) to be embedded within individual elements. The mechanical threshold strength (MTS) model is used to represent the temperature and strain rate-dependent viscoplastic response of the material. This classical flow stress model employs an internal state variable to quantify the effect of dislocation structure evolution (work hardening and recovery). In light of growing evidence suggesting that the softening effect of dynamic recrystallization may play a significant role, alongside thermal softening, in the process of shear band formation and growth, a simple dynamic recrystallization model is proposed and cast within the context of the MTS model with the aid of the aforementioned internal state variable. An initiation criterion for shear localization in rate and temperature-sensitive materials is introduced and used in the present context of high-rate loading, where material rate-dependence is pronounced and substantial temperature increases are achieved due to the dissipative nature of viscoplastic processes. In addition, explicit time integration is adopted to facilitate treatment of the dynamic problems under consideration, where strain rates in excess of 104 s−1 are typically attained. Two series of experiments are conducted on AISI 316L stainless steel, employing the commonly used top-hat sample geometry and the Split-Hopkinson Pressure Bar dynamic test system. Axi-symmetric finite element simulation results are compared to cross-sectional micrographs of recovered samples and experimental load–displacement results, in order to examine the performance of the proposed framework and demonstrate its effectiveness in treating the initiation and growth of adiabatic shear banding in dynamically loaded metallic materials. These comparisons demonstrate that thermal softening alone is insufficient to induce shear localization behaviors observed in some materials, such as stainless steel, and support the hypothesis that dynamic recrystallization and/or other softening mechanisms play an essential role in this process.
•We present a computational treatment of shear banding in elasto–viscoplastic metals.•The proposed framework uses enhanced-strain finite element methods for regularization.•The MTS model is used to represent the material's temperature and rate sensitivity.•Results show that thermal softening may be insufficient to induce shear localization.•In stainless steel, dynamic recrystallization provides the required extra softening. |
---|---|
AbstractList | This paper describes a theoretical and computational framework for the treatment of adiabatic shear band formation in rate-sensitive polycrystalline metallic materials. From a computational perspective, accurate representation of strain localization behavior has been a long-standing challenge. In addition, the underlying physical mechanisms leading to the localization of plastic deformation are still not fully understood. The proposed framework is built around an enhanced-strain finite element formulation, designed to alleviate numerical pathologies known to arise in localization problems, by allowing a localization band of given finite width (weak discontinuity) to be embedded within individual elements. The mechanical threshold strength (MTS) model is used to represent the temperature and strain rate-dependent viscoplastic response of the material. This classical flow stress model employs an internal state variable to quantify the effect of dislocation structure evolution (work hardening and recovery). In light of growing evidence suggesting that the softening effect of dynamic recrystallization may play a significant role, alongside thermal softening, in the process of shear band formation and growth, a simple dynamic recrystallization model is proposed and cast within the context of the MTS model with the aid of the aforementioned internal state variable. An initiation criterion for shear localization in rate and temperature-sensitive materials is introduced and used in the present context of high-rate loading, where material rate-dependence is pronounced and substantial temperature increases are achieved due to the dissipative nature of viscoplastic processes. In addition, explicit time integration is adopted to facilitate treatment of the dynamic problems under consideration, where strain rates in excess of 104 s-1 are typically attained. Two series of experiments are conducted on AISI 316L stainless steel, employing the commonly used top-hat sample geometry and the Split-Hopkinson Pressure Bar dynamic test system. Axi-symmetric finite element simulation results are compared to cross-sectional micrographs of recovered samples and experimental load-displacement results, in order to examine the performance of the proposed framework and demonstrate its effectiveness in treating the initiation and growth of adiabatic shear banding in dynamically loaded metallic materials. These comparisons demonstrate that thermal softening alone is insufficient to induce shear localization behaviors observed in some materials, such as stainless steel, and support the hypothesis that dynamic recrystallization and/or other softening mechanisms play an essential role in this process. This paper describes a theoretical and computational framework for the treatment of adiabatic shear band formation in rate-sensitive polycrystalline metallic materials. From a computational perspective, accurate representation of strain localization behavior has been a long-standing challenge. In addition, the underlying physical mechanisms leading to the localization of plastic deformation are still not fully understood. The proposed framework is built around an enhanced-strain finite element formulation, designed to alleviate numerical pathologies known to arise in localization problems, by allowing a localization band of given finite width (weak discontinuity) to be embedded within individual elements. The mechanical threshold strength (MTS) model is used to represent the temperature and strain rate-dependent viscoplastic response of the material. This classical flow stress model employs an internal state variable to quantify the effect of dislocation structure evolution (work hardening and recovery). In light of growing evidence suggesting that the softening effect of dynamic recrystallization may play a significant role, alongside thermal softening, in the process of shear band formation and growth, a simple dynamic recrystallization model is proposed and cast within the context of the MTS model with the aid of the aforementioned internal state variable. An initiation criterion for shear localization in rate and temperature-sensitive materials is introduced and used in the present context of high-rate loading, where material rate-dependence is pronounced and substantial temperature increases are achieved due to the dissipative nature of viscoplastic processes. In addition, explicit time integration is adopted to facilitate treatment of the dynamic problems under consideration, where strain rates in excess of 104 s−1 are typically attained. Two series of experiments are conducted on AISI 316L stainless steel, employing the commonly used top-hat sample geometry and the Split-Hopkinson Pressure Bar dynamic test system. Axi-symmetric finite element simulation results are compared to cross-sectional micrographs of recovered samples and experimental load–displacement results, in order to examine the performance of the proposed framework and demonstrate its effectiveness in treating the initiation and growth of adiabatic shear banding in dynamically loaded metallic materials. These comparisons demonstrate that thermal softening alone is insufficient to induce shear localization behaviors observed in some materials, such as stainless steel, and support the hypothesis that dynamic recrystallization and/or other softening mechanisms play an essential role in this process. •We present a computational treatment of shear banding in elasto–viscoplastic metals.•The proposed framework uses enhanced-strain finite element methods for regularization.•The MTS model is used to represent the material's temperature and rate sensitivity.•Results show that thermal softening may be insufficient to induce shear localization.•In stainless steel, dynamic recrystallization provides the required extra softening. |
Author | Mourad, H.M. Cerreta, E.K. Livescu, V. Bronkhorst, C.A. Plohr, J.N. |
Author_xml | – sequence: 1 givenname: H.M. surname: Mourad fullname: Mourad, H.M. email: hmourad@lanl.gov organization: Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA – sequence: 2 givenname: C.A. surname: Bronkhorst fullname: Bronkhorst, C.A. organization: Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA – sequence: 3 givenname: V. surname: Livescu fullname: Livescu, V. organization: Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA – sequence: 4 givenname: J.N. surname: Plohr fullname: Plohr, J.N. organization: Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA – sequence: 5 givenname: E.K. surname: Cerreta fullname: Cerreta, E.K. organization: Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA |
BookMark | eNqFkE1uFDEQhS2USEwSbsDCUtbdsad_nQUSisiPFMQG1la1XR25cduD7Uk0HIFTcBZOFneaFYuwskt671W974QcOe-QkPeclZzx9mIqzbSzEMttnkomSsbEG7LhfSeKLW_qI7JhXS2KtubiLTmJcWKMNX3FN-TXZ6_RGvdAwWkazby3kIx3dAww45MP3-noA9UHB7NRNKYAxlHrFVjzc1XmGfPy5ItHE5VfDklZOmMCa5cPJAwGbKRxP0yoEk3-z28L4QGpxpw-v-TEM3I8ZhW--_uekm_Xn75e3Rb3X27urj7eF6rqWSoEKIFj1cAohk43umkqzXg3DF3VbHFoQfVQNyhqaAVrMVfmGnsYoWX1KLZddUrO19xd8D_2GJOc_D64vFJyUXVtX_VtnVX1qlLBxxhwlLtgZggHyZlcqMtJrtTlQl0yITP1bLv8x6ZMeum3kLP_M39YzZjrPxoMMiqDTqE2IXOT2pvXA54BWAeoBg |
CitedBy_id | crossref_primary_10_1016_j_eml_2018_10_002 crossref_primary_10_1016_j_ijsolstr_2022_111837 crossref_primary_10_1016_j_msea_2021_142062 crossref_primary_10_1016_j_engfracmech_2021_107554 crossref_primary_10_1016_j_jmps_2020_103905 crossref_primary_10_1108_EC_08_2021_0482 crossref_primary_10_1016_j_jmps_2022_104910 crossref_primary_10_1016_j_ijplas_2018_07_011 crossref_primary_10_1016_j_jcp_2020_109746 crossref_primary_10_1016_j_ijplas_2023_103782 crossref_primary_10_1016_j_mechmat_2018_04_004 crossref_primary_10_1016_j_msea_2019_01_016 crossref_primary_10_1016_j_cma_2019_05_011 crossref_primary_10_1016_j_ijplas_2019_03_005 crossref_primary_10_1007_s00466_017_1470_8 crossref_primary_10_1016_j_ijplas_2023_103787 crossref_primary_10_1016_j_ijplas_2023_103616 crossref_primary_10_1016_j_ijplas_2024_103915 crossref_primary_10_1016_j_mechmat_2017_03_021 crossref_primary_10_1016_j_ijplas_2018_02_002 crossref_primary_10_1080_14786435_2018_1524586 crossref_primary_10_1016_j_jmps_2019_103723 crossref_primary_10_1007_s12540_020_00827_1 crossref_primary_10_1016_j_ijplas_2021_103150 crossref_primary_10_1016_j_ijsolstr_2021_111195 crossref_primary_10_1016_j_mechmat_2017_10_003 crossref_primary_10_1016_j_ijplas_2018_04_012 crossref_primary_10_1016_j_ijimpeng_2019_103322 crossref_primary_10_1016_j_mtcomm_2022_103156 crossref_primary_10_1016_j_ijplas_2018_01_005 crossref_primary_10_1016_j_jmst_2019_05_075 crossref_primary_10_1016_j_mechmat_2022_104288 crossref_primary_10_1016_j_ijplas_2020_102684 crossref_primary_10_1016_j_ijplas_2020_102862 crossref_primary_10_1016_j_finel_2018_11_001 |
Cites_doi | 10.1115/1.4006171 10.1016/0022-5096(62)90024-8 10.1016/j.scriptamat.2011.09.014 10.1016/j.ijplas.2011.10.002 10.1016/j.ijplas.2012.06.005 10.1103/PhysRevLett.101.165501 10.1002/nme.1620151210 10.1016/S0045-7825(00)00253-X 10.1016/j.cma.2008.01.019 10.1016/j.msea.2008.10.029 10.1016/j.jmps.2008.04.010 10.1007/BF02586218 10.1007/s00466-014-1002-8 10.1002/nme.1620150914 10.1016/j.jmps.2009.10.006 10.1016/j.ijplas.2004.11.003 10.1002/nme.4314 10.1016/j.cma.2015.02.010 10.1002/nme.1199 10.1016/S0020-7683(01)00188-3 10.1016/j.actamat.2007.07.015 10.1016/j.msea.2014.05.053 10.1016/S0045-7825(99)00156-5 10.1016/0001-6160(88)90030-2 10.1007/s00466-012-0765-z 10.1007/BF02669407 10.1016/S0045-7825(01)00245-6 10.1007/s10704-009-9413-9 10.1016/j.jmps.2007.03.019 10.1016/S0045-7825(99)00154-1 10.1007/s00466-013-0941-9 10.1016/j.cma.2014.11.013 10.1016/j.msea.2014.05.082 10.1016/j.ijplas.2005.04.010 10.1016/0749-6419(85)90003-8 10.1115/1.4023775 10.1016/j.matdes.2010.11.048 10.1063/1.4941928 10.1016/j.ijplas.2009.03.005 10.1016/j.cma.2006.06.005 10.1016/j.cma.2008.02.021 10.1016/0022-5096(87)90045-7 10.1016/0045-7949(88)90230-1 10.1016/0045-7825(87)90004-1 10.1016/j.mechmat.2012.09.008 10.1007/s10853-013-7412-8 10.1007/BF02644427 10.1115/1.4006822 10.1115/1.3171737 10.1016/j.jmps.2006.12.006 10.1016/S0921-5093(00)01412-X 10.1016/j.ijimpeng.2015.04.004 10.1007/s00466-013-0940-x 10.1016/0045-7825(86)90107-6 10.1007/s11661-005-0239-4 10.1016/S1359-6462(96)00331-4 10.1016/j.cma.2005.09.020 10.1016/S1359-6454(96)00193-0 10.1002/nme.2042 10.1016/j.ijplas.2005.10.002 10.1016/j.ijplas.2011.05.010 10.1103/PhysRevLett.96.075502 10.1016/j.msea.2007.09.005 10.1016/0045-7825(88)90180-6 10.1002/nme.1652 10.1002/nag.1610140203 10.1016/0956-7151(90)90195-M 10.1063/1.1524706 10.1063/1.4941823 10.1016/j.msea.2007.04.048 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd Copyright Elsevier BV Jan 2017 |
Copyright_xml | – notice: 2016 Elsevier Ltd – notice: Copyright Elsevier BV Jan 2017 |
DBID | AAYXX CITATION 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.1016/j.ijplas.2016.09.009 |
DatabaseName | CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1879-2154 |
EndPage | 26 |
ExternalDocumentID | 10_1016_j_ijplas_2016_09_009 S0749641916301668 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SST SSZ T5K TN5 UNMZH VH1 WUQ XFK XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SR 7TB 8BQ 8FD EFKBS FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c380t-9ac9ef35af9b7d5d553d017bb7352eb6ac8a45e94a6906e4191de8afa604f9273 |
IEDL.DBID | .~1 |
ISSN | 0749-6419 |
IngestDate | Fri Jul 25 01:21:43 EDT 2025 Thu Apr 24 22:59:31 EDT 2025 Tue Jul 01 01:37:09 EDT 2025 Fri Feb 23 02:27:38 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | B. Finite strain C. Finite elements Adiabatic shear bands B. Elastic-viscoplastic material |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c380t-9ac9ef35af9b7d5d553d017bb7352eb6ac8a45e94a6906e4191de8afa604f9273 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.osti.gov/biblio/1329600 |
PQID | 1937683864 |
PQPubID | 2045460 |
PageCount | 26 |
ParticipantIDs | proquest_journals_1937683864 crossref_primary_10_1016_j_ijplas_2016_09_009 crossref_citationtrail_10_1016_j_ijplas_2016_09_009 elsevier_sciencedirect_doi_10_1016_j_ijplas_2016_09_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2017 2017-01-00 20170101 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: January 2017 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | International journal of plasticity |
PublicationYear | 2017 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Hughes, Winget (bib40) 1980; 15 Dodd, Bai (bib27) 2014 Wu, Li, Xu (bib76) 2015; 285 Bronkhorst, Gray, Addessio, Livescu, Bourne, MacDonald, Withers (bib20) 2016; 119 Arriaga, McAuliffe, Waisman (bib11) 2015; 289 Armero, Linder (bib9) 2008; 197 Meyers, Chen, Marquis, Kim (bib55) 1995; 26 Oliver, Huespe, Sanchez (bib59) 2006; 195 Wang, Liu, Wang, Li (bib73) 2014; 610 Abed, Makarem, Voyiadjis (bib3) 2013; 135 Anand, Aslan, Chester (bib6) 2012; 30 Mourad, Garikipati (bib57) 2006; 196 Osovski, Rittel, Landau, Venkert (bib61) 2012; 66 ABAQUS (bib1) 2014 Abed, Makarem (bib2) 2012; 134 Armero, Kim (bib8) 2012; 91 Yang, Mota, Ortiz (bib81) 2005; 62 Preston, Tonks, Wallace (bib65) 2003; 93 Huespe, Needleman, Oliver, Sanchez (bib38) 2012; 28 Dodd, Bai (bib26) 2012 Talonen, Hanninen (bib71) 2007; 55 McAuliffe, Waisman (bib50) 2014; 53 Ortiz, Leroy, Needleman (bib60) 1987; 61 Xue, Bingert, Henrie, Gray (bib78) 2008; 473 Li, Liu, Qian, Guduru, Rosakis (bib44) 2001; 191 Simo, Hughes (bib69) 1998 Leroy, Ortiz (bib43) 1990; 14 Rittel, Landau, Venkert (bib66) 2008; 101 Plohr, Plohr (bib63) 2016; 6 Li, Liu, Rosakis, Belytschko, Hao (bib45) 2002; 39 Hines, Vecchio (bib36) 1997; 45 Wright (bib74) 2002 Rittel, Wang, Merzer (bib67) 2006; 96 Hughes (bib39) 1980; 15 Borja (bib17) 2008; 197 Follansbee (bib29) 2012; 134 Okayasu, Fukui, Ohfuji, Shiraishi (bib58) 2013; 48 Cerreta, Bingert, Gray, Trujillo, Lopez, Bronkhorst, Hansen (bib22) 2013; 40 Osovski, Rittel, Venkert (bib62) 2013; 56 Meyers, Manwaring (bib53) 1986 Borja, Regueiro (bib18) 2001; 190 Arriaga, McAuliffe, Waisman (bib12) 2016; 87 Wang, Liu, Wang, Zhao, Sun (bib72) 2014; 611 Belytschko, Fish, Engelmann (bib14) 1988; 70 Porter, Easterling (bib64) 1992 Kocks, Argon, Ashby (bib42) 1975 Ling, Belytschko (bib48) 2009; 57 Follansbee, Huang, Gray (bib31) 1990; 38 Huespe, Needleman, Oliver, Sanchez (bib37) 2009; 25 Xue, Gray (bib79) 2006; 37 Follansbee (bib30) 2014 Xu, Zhong, Chen, Shen, Liu, Bai, Meyers (bib77) 2001; 299 Abu Al-Rub, Voyiadjis (bib5) 2006; 22 Linder, Armero (bib47) 2007; 72 Hill (bib35) 1962; 10 Das, Sivaprasad, Ghosh, Chakraborti, Tarafder (bib24) 2008; 486 Xue, Gray, Henrie, Maloy, Chen (bib80) 2005; 36 Jirásek (bib41) 2000; 188 Garikipati, Hughes (bib33) 2000; 188 Lin, Chen (bib46) 2011; 32 Bronkhorst, Hansen, Cerreta, Bingert (bib21) 2007; 55 McVeigh, Liu (bib51) 2010; 58 Fish, Belytschko (bib28) 1988; 30 Song, Areias, Belytschko (bib70) 2006; 67 Meyers (bib54) 1994 Armero, Linder (bib10) 2009; 160 Mourad, Bronkhorst, Addessio, Cady, Brown, Chen, Gray (bib56) 2014; 53 Hecker, Stout, Staudhammer, Smith (bib34) 1982; 13 Wright, Batra (bib75) 1985; 1 Anand, Kim, Shawki (bib7) 1987; 35 Berger-Vergiat, McAuliffe, Waisman (bib16) 2014; 54 Bronkhorst, Cerreta, Xue, Maudlin, Mason, Gray (bib19) 2006; 22 Cerreta, Frank, Gray, Trujillo, Korzekwa, Dougherty (bib23) 2009; 501 Belytschko, Liu, Moran, Elkhodary (bib15) 2013 Simo, Hughes (bib68) 1986; 53 Medyanik, Liu, Li (bib52) 2007; 55 Belytschko, Bachrach (bib13) 1986; 54 McAuliffe, Waisman (bib49) 2013; 51 Davies (bib25) 1997; 36 Abed, Voyiadjis (bib4) 2005; 21 Follansbee, Kocks (bib32) 1988; 36 Hines (10.1016/j.ijplas.2016.09.009_bib36) 1997; 45 Huespe (10.1016/j.ijplas.2016.09.009_bib38) 2012; 28 Osovski (10.1016/j.ijplas.2016.09.009_bib61) 2012; 66 Abed (10.1016/j.ijplas.2016.09.009_bib3) 2013; 135 Fish (10.1016/j.ijplas.2016.09.009_bib28) 1988; 30 Wu (10.1016/j.ijplas.2016.09.009_bib76) 2015; 285 Borja (10.1016/j.ijplas.2016.09.009_bib17) 2008; 197 Plohr (10.1016/j.ijplas.2016.09.009_bib63) 2016; 6 Davies (10.1016/j.ijplas.2016.09.009_bib25) 1997; 36 Abed (10.1016/j.ijplas.2016.09.009_bib2) 2012; 134 Cerreta (10.1016/j.ijplas.2016.09.009_bib22) 2013; 40 Follansbee (10.1016/j.ijplas.2016.09.009_bib29) 2012; 134 Dodd (10.1016/j.ijplas.2016.09.009_bib26) 2012 Jirásek (10.1016/j.ijplas.2016.09.009_bib41) 2000; 188 Song (10.1016/j.ijplas.2016.09.009_bib70) 2006; 67 Leroy (10.1016/j.ijplas.2016.09.009_bib43) 1990; 14 Wang (10.1016/j.ijplas.2016.09.009_bib73) 2014; 610 Anand (10.1016/j.ijplas.2016.09.009_bib7) 1987; 35 Kocks (10.1016/j.ijplas.2016.09.009_bib42) 1975 Arriaga (10.1016/j.ijplas.2016.09.009_bib11) 2015; 289 Garikipati (10.1016/j.ijplas.2016.09.009_bib33) 2000; 188 Bronkhorst (10.1016/j.ijplas.2016.09.009_bib19) 2006; 22 Xue (10.1016/j.ijplas.2016.09.009_bib80) 2005; 36 Follansbee (10.1016/j.ijplas.2016.09.009_bib32) 1988; 36 Ling (10.1016/j.ijplas.2016.09.009_bib48) 2009; 57 Arriaga (10.1016/j.ijplas.2016.09.009_bib12) 2016; 87 Li (10.1016/j.ijplas.2016.09.009_bib44) 2001; 191 Medyanik (10.1016/j.ijplas.2016.09.009_bib52) 2007; 55 Belytschko (10.1016/j.ijplas.2016.09.009_bib13) 1986; 54 Abed (10.1016/j.ijplas.2016.09.009_bib4) 2005; 21 Belytschko (10.1016/j.ijplas.2016.09.009_bib14) 1988; 70 McAuliffe (10.1016/j.ijplas.2016.09.009_bib49) 2013; 51 Meyers (10.1016/j.ijplas.2016.09.009_bib54) 1994 Oliver (10.1016/j.ijplas.2016.09.009_bib59) 2006; 195 Porter (10.1016/j.ijplas.2016.09.009_bib64) 1992 McVeigh (10.1016/j.ijplas.2016.09.009_bib51) 2010; 58 Talonen (10.1016/j.ijplas.2016.09.009_bib71) 2007; 55 Wright (10.1016/j.ijplas.2016.09.009_bib74) 2002 Armero (10.1016/j.ijplas.2016.09.009_bib8) 2012; 91 Belytschko (10.1016/j.ijplas.2016.09.009_bib15) 2013 Follansbee (10.1016/j.ijplas.2016.09.009_bib30) 2014 Hill (10.1016/j.ijplas.2016.09.009_bib35) 1962; 10 Preston (10.1016/j.ijplas.2016.09.009_bib65) 2003; 93 Cerreta (10.1016/j.ijplas.2016.09.009_bib23) 2009; 501 Hughes (10.1016/j.ijplas.2016.09.009_bib39) 1980; 15 Armero (10.1016/j.ijplas.2016.09.009_bib10) 2009; 160 Hecker (10.1016/j.ijplas.2016.09.009_bib34) 1982; 13 Xu (10.1016/j.ijplas.2016.09.009_bib77) 2001; 299 Bronkhorst (10.1016/j.ijplas.2016.09.009_bib21) 2007; 55 Dodd (10.1016/j.ijplas.2016.09.009_bib27) 2014 Borja (10.1016/j.ijplas.2016.09.009_bib18) 2001; 190 Das (10.1016/j.ijplas.2016.09.009_bib24) 2008; 486 Armero (10.1016/j.ijplas.2016.09.009_bib9) 2008; 197 Li (10.1016/j.ijplas.2016.09.009_bib45) 2002; 39 McAuliffe (10.1016/j.ijplas.2016.09.009_bib50) 2014; 53 Bronkhorst (10.1016/j.ijplas.2016.09.009_bib20) 2016; 119 Mourad (10.1016/j.ijplas.2016.09.009_bib57) 2006; 196 Ortiz (10.1016/j.ijplas.2016.09.009_bib60) 1987; 61 Osovski (10.1016/j.ijplas.2016.09.009_bib62) 2013; 56 Linder (10.1016/j.ijplas.2016.09.009_bib47) 2007; 72 Xue (10.1016/j.ijplas.2016.09.009_bib78) 2008; 473 Yang (10.1016/j.ijplas.2016.09.009_bib81) 2005; 62 Huespe (10.1016/j.ijplas.2016.09.009_bib37) 2009; 25 Mourad (10.1016/j.ijplas.2016.09.009_bib56) 2014; 53 ABAQUS (10.1016/j.ijplas.2016.09.009_bib1) 2014 Lin (10.1016/j.ijplas.2016.09.009_bib46) 2011; 32 Wang (10.1016/j.ijplas.2016.09.009_bib72) 2014; 611 Meyers (10.1016/j.ijplas.2016.09.009_bib53) 1986 Hughes (10.1016/j.ijplas.2016.09.009_bib40) 1980; 15 Okayasu (10.1016/j.ijplas.2016.09.009_bib58) 2013; 48 Follansbee (10.1016/j.ijplas.2016.09.009_bib31) 1990; 38 Rittel (10.1016/j.ijplas.2016.09.009_bib66) 2008; 101 Simo (10.1016/j.ijplas.2016.09.009_bib69) 1998 Abu Al-Rub (10.1016/j.ijplas.2016.09.009_bib5) 2006; 22 Meyers (10.1016/j.ijplas.2016.09.009_bib55) 1995; 26 Simo (10.1016/j.ijplas.2016.09.009_bib68) 1986; 53 Wright (10.1016/j.ijplas.2016.09.009_bib75) 1985; 1 Berger-Vergiat (10.1016/j.ijplas.2016.09.009_bib16) 2014; 54 Rittel (10.1016/j.ijplas.2016.09.009_bib67) 2006; 96 Anand (10.1016/j.ijplas.2016.09.009_bib6) 2012; 30 Xue (10.1016/j.ijplas.2016.09.009_bib79) 2006; 37 |
References_xml | – volume: 54 start-page: 279 year: 1986 end-page: 301 ident: bib13 article-title: Efficient implementation of quadrilaterals with high coarse-mesh accuracy publication-title: Comput. Methods Appl. Mech. Eng. – year: 2014 ident: bib30 article-title: Fundamentals of Strength: Principles, Experiment, and Applications of an Internal State Variable Constitutive Formulation – volume: 473 start-page: 279 year: 2008 end-page: 289 ident: bib78 article-title: EBSD characterization of dynamic shear band regions in pre-shocked and as-received 304 strainless steels publication-title: Mater. Sci. Eng. A – volume: 55 start-page: 2351 year: 2007 end-page: 2383 ident: bib21 article-title: Modeling the microstructural evolution of metallic polycrystalline materials under localization conditions publication-title: J. Mech. Phys. Solids – volume: 53 start-page: 941 year: 2014 end-page: 955 ident: bib56 article-title: Incrementally objective implicit integration of hypoelastic–viscoplastic constitutive equations based on the mechanical threshold strength model publication-title: Comput. Mech. – volume: 66 start-page: 9 year: 2012 end-page: 12 ident: bib61 article-title: Microstructural effects on adiabatic shear band formation publication-title: Scr. Mater. – volume: 35 start-page: 407 year: 1987 end-page: 429 ident: bib7 article-title: Onset of shear localization in viscoplastic solids publication-title: J. Mech. Phys. Solids – volume: 67 start-page: 868 year: 2006 end-page: 893 ident: bib70 article-title: A method for dynamic crack and shear band propagation with phantom nodes publication-title: Int. J. Numer. Methods Eng. – year: 2013 ident: bib15 article-title: Nonlinear Finite Elements for Continua and Structures – volume: 191 start-page: 73 year: 2001 end-page: 92 ident: bib44 article-title: Dynamic shear band propagation and micro-structure of adiabatic shear band publication-title: Comput. Methods Appl. Mech. Eng. – volume: 58 start-page: 187 year: 2010 end-page: 205 ident: bib51 article-title: Multiresolution continuum modeling of micro-void assisted dynamic adiabatic shear band propagation publication-title: J. Mech. Phys. Solids – volume: 611 start-page: 100 year: 2014 end-page: 107 ident: bib72 article-title: Microstructural evolution in adiabatic shear band in the ultrafine-grained austenitic stainless steel processed by multi-axial compression publication-title: Mater. Sci. Eng. A – volume: 40 start-page: 23 year: 2013 end-page: 38 ident: bib22 article-title: Microstructural examination of quasi-static and dynamic shear in high-purity iron publication-title: Int. J. Plast. – year: 2012 ident: bib26 article-title: Adiabatic Shear Localization: Frontiers and Advances – volume: 54 start-page: 503 year: 2014 end-page: 521 ident: bib16 article-title: Isogeometric analysis of shear bands publication-title: Comput. Mech. – volume: 53 start-page: 925 year: 2014 end-page: 940 ident: bib50 article-title: A Pian–Sumihara type element for modeling shear bands at finite deformation publication-title: Comput. Mech. – volume: 195 start-page: 4732 year: 2006 end-page: 4752 ident: bib59 article-title: A comparative study on finite elements for capturing strong discontinuities: E-FEM vs X-FEM publication-title: Comput. Methods Appl. Mech. Eng. – volume: 119 start-page: 085103 year: 2016 ident: bib20 article-title: Response and representation of ductile damage under varying shock loading conditions in tantalum publication-title: J. Appl. Phys. – volume: 1 start-page: 205 year: 1985 end-page: 212 ident: bib75 article-title: The initiation and growth of adiabatic shear bands publication-title: Int. J. Plast. – volume: 160 start-page: 119 year: 2009 end-page: 141 ident: bib10 article-title: Numerical simulation of dynamic fracture using finite elements with embedded discontinuities publication-title: Int. J. Fract. – volume: 93 start-page: 211 year: 2003 end-page: 220 ident: bib65 article-title: Model of plastic deformation for extreme loading conditions publication-title: J. Appl. Phys. – volume: 53 start-page: 51 year: 1986 end-page: 54 ident: bib68 article-title: On the variational foundations of assumed strain methods publication-title: J. Appl. Mech. – volume: 30 start-page: 116 year: 2012 end-page: 143 ident: bib6 article-title: A large-deformation gradient theory for elastic–plastic materials: strain softening and regularization of shear bands publication-title: Int. J. Plast. – volume: 101 year: 2008 ident: bib66 article-title: Dynamic recrystallization as a potential cause for adiabatic shear failure publication-title: Phys. Rev. Lett. – volume: 197 start-page: 3138 year: 2008 end-page: 3170 ident: bib9 article-title: New finite elements with embedded strong discontinuities in the finite deformation range publication-title: Comput. Methods Appl. Mech. Eng. – volume: 56 start-page: 11 year: 2013 end-page: 22 ident: bib62 article-title: The respective influence of microstructural and thermal softening on adiabatic shear localization publication-title: Mech. Mater. – year: 2014 ident: bib1 article-title: Abaqus 6.14 Theory Guide – start-page: 657 year: 1986 end-page: 674 ident: bib53 article-title: Critical adiabatic shear strength of low alloyed steel under compressive loading publication-title: Metallurgical Applications of Shock-wave and High-strain Rate Phenomena – volume: 87 start-page: 156 year: 2016 end-page: 168 ident: bib12 article-title: Instability analysis of shear bands using the instantaneous growth-rate method publication-title: Int. J. Impact Eng. – volume: 36 start-page: 1471 year: 2005 end-page: 1486 ident: bib80 article-title: Influence of shock prestraining on the formation of shear localization in 304 stainless steel publication-title: Metall. Mater. Trans. A – volume: 72 start-page: 1391 year: 2007 end-page: 1433 ident: bib47 article-title: Finite elements with embedded strong discontinuities for the modeling of failure in solids publication-title: Int. J. Numer. Methods Eng. – volume: 51 start-page: 807 year: 2013 end-page: 823 ident: bib49 article-title: Mesh insensitive formulation for initiation and growth of shear bands using mixed finite elements publication-title: Comput. Mech. – volume: 57 start-page: 788 year: 2009 end-page: 802 ident: bib48 article-title: Thermal softening induced plastic instability in rate-dependent materials publication-title: J. Mech. Phys. Solids – volume: 36 start-page: 81 year: 1988 end-page: 93 ident: bib32 article-title: A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable publication-title: Acta Metall. – volume: 30 start-page: 247 year: 1988 end-page: 256 ident: bib28 article-title: Elements with embedded localization zones for large deformation problems publication-title: Comp. Struct. – start-page: 448 year: 1994 end-page: 487 ident: bib54 article-title: Dynamic Behavior of Materials – volume: 62 start-page: 1013 year: 2005 end-page: 1037 ident: bib81 article-title: A class of variational strain-localization finite elements. Int publication-title: J. Numer. Methods Eng. – volume: 45 start-page: 635 year: 1997 end-page: 649 ident: bib36 article-title: Recrystallization kinetics within adiabatic shear bands publication-title: Acta Mater. – volume: 486 start-page: 283 year: 2008 end-page: 286 ident: bib24 article-title: Morphologies and characteristics of deformation induced martensite during tensile deformation of 304 LN stainless steel publication-title: Mater. Sci. Eng. A – volume: 26 start-page: 2493 year: 1995 end-page: 2501 ident: bib55 article-title: High-strain, high-strain-rate behavior of tantalum publication-title: Metall. Mater. Trans. A – volume: 48 start-page: 6157 year: 2013 end-page: 6166 ident: bib58 article-title: Strain-induced martensite formation in austenitic stainless steel publication-title: J. Mater. Sci. – volume: 61 start-page: 189 year: 1987 end-page: 214 ident: bib60 article-title: A finite element method for localized failure analysis publication-title: Comput. Methods Appl. Mech. Eng. – volume: 22 start-page: 1304 year: 2006 end-page: 1335 ident: bib19 article-title: An experimental and numerical study of the localization behavior of tantalum and stainless steel publication-title: Int. J. Plast. – volume: 38 start-page: 1241 year: 1990 end-page: 1254 ident: bib31 article-title: Low-temperature and high-strain-rate deformation of nickel and nickel-carbon alloys and analysis of the constitutive behavior according to an internal state variable model publication-title: Acta Metall. Mater – year: 2002 ident: bib74 article-title: The Physics and Mathematics of Adiabatic Shear Bands – volume: 70 start-page: 59 year: 1988 end-page: 89 ident: bib14 article-title: A finite element with embedded localization zones publication-title: Comput. Methods Appl. Mech. Eng. – volume: 188 start-page: 307 year: 2000 end-page: 330 ident: bib41 article-title: Comparative study on finite elements with embedded discontinuities publication-title: Comput. Methods Appl. Mech. Eng. – volume: 39 start-page: 1213 year: 2002 end-page: 1240 ident: bib45 article-title: Mesh-free Galerkin simulations of dynamic shear band propagation and failure mode transition publication-title: Int. J. Solids Struct. – volume: 21 start-page: 1618 year: 2005 end-page: 1639 ident: bib4 article-title: Plastic deformation modeling of AL-6XN strainless steel at low and high strain rates and temperatures using a combination of bcc and fcc mechanisms of metals publication-title: Int. J. Plast. – year: 2014 ident: bib27 article-title: Introduction to Adiabatic Shear Localization: Revised Edition – volume: 610 start-page: 301 year: 2014 end-page: 308 ident: bib73 article-title: An EBSD investigation on deformation-induced shear bands in a low nickel austenitic stainless steel under controlled shock-loading conditions publication-title: Mater. Sci. Eng. A – volume: 36 start-page: 35 year: 1997 end-page: 40 ident: bib25 article-title: Growth of nuclei in a cellular automaton simulation of recrystallisation publication-title: Scr. Mater. – volume: 501 start-page: 207 year: 2009 end-page: 219 ident: bib23 article-title: The influence of microstructure on the mechanical response of copper in shear publication-title: Mater. Sci. Eng. A – year: 1998 ident: bib69 article-title: Computational Inelasticity – volume: 55 start-page: 6108 year: 2007 end-page: 6118 ident: bib71 article-title: Formation of shear bands and strain-induced martensitie during plastic deformation of metastable austenitic stainless steels publication-title: Acta Mater. – volume: 96 year: 2006 ident: bib67 article-title: Adiabatic shear failure and dynamic stored energy of cold work publication-title: Phys. Rev. Lett. – volume: 15 start-page: 1862 year: 1980 end-page: 1867 ident: bib40 article-title: Finite rotation effects in numerical integration of rate constitutive equations arising in large-deformation analysis publication-title: Int. J. Numer. Methods Eng. – volume: 37 start-page: 2447 year: 2006 end-page: 2458 ident: bib79 article-title: Development of adiabatic shear bands in annealed 316l stainless steel: part II. TEM studies of the evolution of microstructure during deformation localization publication-title: Metall. Mater. Trans. A – year: 1975 ident: bib42 article-title: Thermodynamics and Kinetics of Slip – volume: 289 start-page: 179 year: 2015 end-page: 208 ident: bib11 article-title: Onset of shear band localization by a local generalized eigenvalue analysis publication-title: Comput. Methods Appl. Mech. Eng. – volume: 6 start-page: 025008 year: 2016 ident: bib63 article-title: Numerical simulation of systems of shear bands in ductile metal with inclusions publication-title: AIP Adv. – volume: 285 start-page: 346 year: 2015 end-page: 378 ident: bib76 article-title: Extended embedded finite elements with continuous displacement jumps for the modeling of localized failure in solids publication-title: Comput. Methods Appl. Mech. Eng. – volume: 190 start-page: 2555 year: 2001 end-page: 2580 ident: bib18 article-title: Strain localization in frictional materials exhibiting displacement jumps publication-title: Comput. Methods Appl. Mech. Eng. – volume: 197 start-page: 2789 year: 2008 end-page: 2803 ident: bib17 article-title: Assumed enhanced strain and the extended finite element methods: a unification of concepts publication-title: Comput. Methods Appl. Mech. Eng. – volume: 135 year: 2013 ident: bib3 article-title: Dynamic localizations in HSLA-65 and DH-36 structural steel at elevated temperatures publication-title: J. Eng. Mater. Technol. – volume: 15 start-page: 1413 year: 1980 end-page: 1418 ident: bib39 article-title: Generalization of selective integration procedures to anisotropic and nonlinear media publication-title: Int. J. Numer. Methods Eng. – volume: 134 year: 2012 ident: bib29 article-title: An internal state variable constitutive model for deformation of austenitic stainless steels publication-title: J. Eng. Mater. Technol. – volume: 25 start-page: 2349 year: 2009 end-page: 2365 ident: bib37 article-title: A finite thickness band method for ductile fracture analysis publication-title: Int. J. Plast. – year: 1992 ident: bib64 article-title: Phase Transformations in Metals and Alloys – volume: 22 start-page: 654 year: 2006 end-page: 684 ident: bib5 article-title: A physically based gradient plasticity theory publication-title: Int. J. Plast. – volume: 188 start-page: 39 year: 2000 end-page: 60 ident: bib33 article-title: A variational multiscale approach to strain localization–formulation for multidimensional problems publication-title: Comput. Methods Appl. Mech. Eng. – volume: 10 start-page: 1 year: 1962 end-page: 16 ident: bib35 article-title: Acceleration waves in solids publication-title: J. Mech. Phys. Solids – volume: 14 start-page: 93 year: 1990 end-page: 124 ident: bib43 article-title: Finite element analysis of transient strain localization phenomena in frictional solids publication-title: Int. J. Numer. Anal. Methods Geomech. – volume: 32 start-page: 1733 year: 2011 end-page: 1759 ident: bib46 article-title: A critical review of experimental results and constitutive descriptions for metals and alloys in hot working publication-title: Mater. Des. – volume: 299 start-page: 287 year: 2001 end-page: 295 ident: bib77 article-title: Shear localization and recrystallization in dynamic deformation of 8090 Al–Li alloy publication-title: Mater. Sci. Eng. A – volume: 28 start-page: 53 year: 2012 end-page: 69 ident: bib38 article-title: A finite strain, finite band method for modeling ductile fracture publication-title: Int. J. Plast. – volume: 134 year: 2012 ident: bib2 article-title: Comparisons of constitutive models for steel over a wide range of temperatures and strain rates publication-title: J. Eng. Mater. Technol. – volume: 55 start-page: 1439 year: 2007 end-page: 1461 ident: bib52 article-title: On criteria for dynamic adiabatic shear band propagation publication-title: J. Mech. Phys. Solids – volume: 196 start-page: 595 year: 2006 end-page: 607 ident: bib57 article-title: Advances in the numerical treatment of grain-boundary migration: coupling with mass transport and mechanics publication-title: Comput. Methods Appl. Mech. Eng. – volume: 13 start-page: 619 year: 1982 end-page: 626 ident: bib34 article-title: Effects of strain state and strain rate on deformation-induced transformation in 304 stainless steel: part I. magnetic measurements and mechanical behavior publication-title: Metall. Trans. A – volume: 91 start-page: 1291 year: 2012 end-page: 1330 ident: bib8 article-title: Three-dimensional finite elements with embedded strong discontinuities to model material failure in the infinitesimal range publication-title: Int. J. Numer. Methods Eng. – volume: 134 year: 2012 ident: 10.1016/j.ijplas.2016.09.009_bib2 article-title: Comparisons of constitutive models for steel over a wide range of temperatures and strain rates publication-title: J. Eng. Mater. Technol. doi: 10.1115/1.4006171 – volume: 10 start-page: 1 year: 1962 ident: 10.1016/j.ijplas.2016.09.009_bib35 article-title: Acceleration waves in solids publication-title: J. Mech. Phys. Solids doi: 10.1016/0022-5096(62)90024-8 – volume: 66 start-page: 9 year: 2012 ident: 10.1016/j.ijplas.2016.09.009_bib61 article-title: Microstructural effects on adiabatic shear band formation publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2011.09.014 – year: 2014 ident: 10.1016/j.ijplas.2016.09.009_bib1 – volume: 30 start-page: 116 year: 2012 ident: 10.1016/j.ijplas.2016.09.009_bib6 article-title: A large-deformation gradient theory for elastic–plastic materials: strain softening and regularization of shear bands publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2011.10.002 – year: 1992 ident: 10.1016/j.ijplas.2016.09.009_bib64 – volume: 40 start-page: 23 year: 2013 ident: 10.1016/j.ijplas.2016.09.009_bib22 article-title: Microstructural examination of quasi-static and dynamic shear in high-purity iron publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2012.06.005 – volume: 101 year: 2008 ident: 10.1016/j.ijplas.2016.09.009_bib66 article-title: Dynamic recrystallization as a potential cause for adiabatic shear failure publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.165501 – volume: 15 start-page: 1862 year: 1980 ident: 10.1016/j.ijplas.2016.09.009_bib40 article-title: Finite rotation effects in numerical integration of rate constitutive equations arising in large-deformation analysis publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.1620151210 – volume: 190 start-page: 2555 year: 2001 ident: 10.1016/j.ijplas.2016.09.009_bib18 article-title: Strain localization in frictional materials exhibiting displacement jumps publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(00)00253-X – volume: 197 start-page: 2789 year: 2008 ident: 10.1016/j.ijplas.2016.09.009_bib17 article-title: Assumed enhanced strain and the extended finite element methods: a unification of concepts publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2008.01.019 – volume: 501 start-page: 207 year: 2009 ident: 10.1016/j.ijplas.2016.09.009_bib23 article-title: The influence of microstructure on the mechanical response of copper in shear publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2008.10.029 – volume: 57 start-page: 788 year: 2009 ident: 10.1016/j.ijplas.2016.09.009_bib48 article-title: Thermal softening induced plastic instability in rate-dependent materials publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2008.04.010 – volume: 37 start-page: 2447 year: 2006 ident: 10.1016/j.ijplas.2016.09.009_bib79 article-title: Development of adiabatic shear bands in annealed 316l stainless steel: part II. TEM studies of the evolution of microstructure during deformation localization publication-title: Metall. Mater. Trans. A doi: 10.1007/BF02586218 – volume: 54 start-page: 503 year: 2014 ident: 10.1016/j.ijplas.2016.09.009_bib16 article-title: Isogeometric analysis of shear bands publication-title: Comput. Mech. doi: 10.1007/s00466-014-1002-8 – volume: 15 start-page: 1413 year: 1980 ident: 10.1016/j.ijplas.2016.09.009_bib39 article-title: Generalization of selective integration procedures to anisotropic and nonlinear media publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.1620150914 – volume: 58 start-page: 187 year: 2010 ident: 10.1016/j.ijplas.2016.09.009_bib51 article-title: Multiresolution continuum modeling of micro-void assisted dynamic adiabatic shear band propagation publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2009.10.006 – volume: 21 start-page: 1618 year: 2005 ident: 10.1016/j.ijplas.2016.09.009_bib4 article-title: Plastic deformation modeling of AL-6XN strainless steel at low and high strain rates and temperatures using a combination of bcc and fcc mechanisms of metals publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2004.11.003 – year: 2013 ident: 10.1016/j.ijplas.2016.09.009_bib15 – year: 2002 ident: 10.1016/j.ijplas.2016.09.009_bib74 – volume: 91 start-page: 1291 year: 2012 ident: 10.1016/j.ijplas.2016.09.009_bib8 article-title: Three-dimensional finite elements with embedded strong discontinuities to model material failure in the infinitesimal range publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.4314 – volume: 289 start-page: 179 year: 2015 ident: 10.1016/j.ijplas.2016.09.009_bib11 article-title: Onset of shear band localization by a local generalized eigenvalue analysis publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2015.02.010 – volume: 62 start-page: 1013 year: 2005 ident: 10.1016/j.ijplas.2016.09.009_bib81 article-title: A class of variational strain-localization finite elements. Int publication-title: J. Numer. Methods Eng. doi: 10.1002/nme.1199 – volume: 39 start-page: 1213 year: 2002 ident: 10.1016/j.ijplas.2016.09.009_bib45 article-title: Mesh-free Galerkin simulations of dynamic shear band propagation and failure mode transition publication-title: Int. J. Solids Struct. doi: 10.1016/S0020-7683(01)00188-3 – volume: 55 start-page: 6108 year: 2007 ident: 10.1016/j.ijplas.2016.09.009_bib71 article-title: Formation of shear bands and strain-induced martensitie during plastic deformation of metastable austenitic stainless steels publication-title: Acta Mater. doi: 10.1016/j.actamat.2007.07.015 – volume: 610 start-page: 301 year: 2014 ident: 10.1016/j.ijplas.2016.09.009_bib73 article-title: An EBSD investigation on deformation-induced shear bands in a low nickel austenitic stainless steel under controlled shock-loading conditions publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2014.05.053 – year: 2014 ident: 10.1016/j.ijplas.2016.09.009_bib30 – year: 1998 ident: 10.1016/j.ijplas.2016.09.009_bib69 – volume: 188 start-page: 39 year: 2000 ident: 10.1016/j.ijplas.2016.09.009_bib33 article-title: A variational multiscale approach to strain localization–formulation for multidimensional problems publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(99)00156-5 – volume: 36 start-page: 81 year: 1988 ident: 10.1016/j.ijplas.2016.09.009_bib32 article-title: A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable publication-title: Acta Metall. doi: 10.1016/0001-6160(88)90030-2 – volume: 51 start-page: 807 year: 2013 ident: 10.1016/j.ijplas.2016.09.009_bib49 article-title: Mesh insensitive formulation for initiation and growth of shear bands using mixed finite elements publication-title: Comput. Mech. doi: 10.1007/s00466-012-0765-z – volume: 26 start-page: 2493 year: 1995 ident: 10.1016/j.ijplas.2016.09.009_bib55 article-title: High-strain, high-strain-rate behavior of tantalum publication-title: Metall. Mater. Trans. A doi: 10.1007/BF02669407 – volume: 191 start-page: 73 year: 2001 ident: 10.1016/j.ijplas.2016.09.009_bib44 article-title: Dynamic shear band propagation and micro-structure of adiabatic shear band publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(01)00245-6 – volume: 160 start-page: 119 year: 2009 ident: 10.1016/j.ijplas.2016.09.009_bib10 article-title: Numerical simulation of dynamic fracture using finite elements with embedded discontinuities publication-title: Int. J. Fract. doi: 10.1007/s10704-009-9413-9 – volume: 55 start-page: 2351 year: 2007 ident: 10.1016/j.ijplas.2016.09.009_bib21 article-title: Modeling the microstructural evolution of metallic polycrystalline materials under localization conditions publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2007.03.019 – volume: 188 start-page: 307 year: 2000 ident: 10.1016/j.ijplas.2016.09.009_bib41 article-title: Comparative study on finite elements with embedded discontinuities publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(99)00154-1 – volume: 53 start-page: 941 year: 2014 ident: 10.1016/j.ijplas.2016.09.009_bib56 article-title: Incrementally objective implicit integration of hypoelastic–viscoplastic constitutive equations based on the mechanical threshold strength model publication-title: Comput. Mech. doi: 10.1007/s00466-013-0941-9 – volume: 285 start-page: 346 year: 2015 ident: 10.1016/j.ijplas.2016.09.009_bib76 article-title: Extended embedded finite elements with continuous displacement jumps for the modeling of localized failure in solids publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2014.11.013 – volume: 611 start-page: 100 year: 2014 ident: 10.1016/j.ijplas.2016.09.009_bib72 article-title: Microstructural evolution in adiabatic shear band in the ultrafine-grained austenitic stainless steel processed by multi-axial compression publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2014.05.082 – volume: 22 start-page: 654 year: 2006 ident: 10.1016/j.ijplas.2016.09.009_bib5 article-title: A physically based gradient plasticity theory publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2005.04.010 – volume: 1 start-page: 205 year: 1985 ident: 10.1016/j.ijplas.2016.09.009_bib75 article-title: The initiation and growth of adiabatic shear bands publication-title: Int. J. Plast. doi: 10.1016/0749-6419(85)90003-8 – volume: 135 year: 2013 ident: 10.1016/j.ijplas.2016.09.009_bib3 article-title: Dynamic localizations in HSLA-65 and DH-36 structural steel at elevated temperatures publication-title: J. Eng. Mater. Technol. doi: 10.1115/1.4023775 – volume: 32 start-page: 1733 year: 2011 ident: 10.1016/j.ijplas.2016.09.009_bib46 article-title: A critical review of experimental results and constitutive descriptions for metals and alloys in hot working publication-title: Mater. Des. doi: 10.1016/j.matdes.2010.11.048 – volume: 6 start-page: 025008 year: 2016 ident: 10.1016/j.ijplas.2016.09.009_bib63 article-title: Numerical simulation of systems of shear bands in ductile metal with inclusions publication-title: AIP Adv. doi: 10.1063/1.4941928 – volume: 25 start-page: 2349 year: 2009 ident: 10.1016/j.ijplas.2016.09.009_bib37 article-title: A finite thickness band method for ductile fracture analysis publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2009.03.005 – volume: 196 start-page: 595 year: 2006 ident: 10.1016/j.ijplas.2016.09.009_bib57 article-title: Advances in the numerical treatment of grain-boundary migration: coupling with mass transport and mechanics publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2006.06.005 – volume: 197 start-page: 3138 year: 2008 ident: 10.1016/j.ijplas.2016.09.009_bib9 article-title: New finite elements with embedded strong discontinuities in the finite deformation range publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2008.02.021 – volume: 35 start-page: 407 year: 1987 ident: 10.1016/j.ijplas.2016.09.009_bib7 article-title: Onset of shear localization in viscoplastic solids publication-title: J. Mech. Phys. Solids doi: 10.1016/0022-5096(87)90045-7 – volume: 30 start-page: 247 year: 1988 ident: 10.1016/j.ijplas.2016.09.009_bib28 article-title: Elements with embedded localization zones for large deformation problems publication-title: Comp. Struct. doi: 10.1016/0045-7949(88)90230-1 – volume: 61 start-page: 189 year: 1987 ident: 10.1016/j.ijplas.2016.09.009_bib60 article-title: A finite element method for localized failure analysis publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/0045-7825(87)90004-1 – volume: 56 start-page: 11 year: 2013 ident: 10.1016/j.ijplas.2016.09.009_bib62 article-title: The respective influence of microstructural and thermal softening on adiabatic shear localization publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2012.09.008 – year: 1975 ident: 10.1016/j.ijplas.2016.09.009_bib42 – volume: 48 start-page: 6157 year: 2013 ident: 10.1016/j.ijplas.2016.09.009_bib58 article-title: Strain-induced martensite formation in austenitic stainless steel publication-title: J. Mater. Sci. doi: 10.1007/s10853-013-7412-8 – start-page: 657 year: 1986 ident: 10.1016/j.ijplas.2016.09.009_bib53 article-title: Critical adiabatic shear strength of low alloyed steel under compressive loading – volume: 13 start-page: 619 year: 1982 ident: 10.1016/j.ijplas.2016.09.009_bib34 article-title: Effects of strain state and strain rate on deformation-induced transformation in 304 stainless steel: part I. magnetic measurements and mechanical behavior publication-title: Metall. Trans. A doi: 10.1007/BF02644427 – volume: 134 year: 2012 ident: 10.1016/j.ijplas.2016.09.009_bib29 article-title: An internal state variable constitutive model for deformation of austenitic stainless steels publication-title: J. Eng. Mater. Technol. doi: 10.1115/1.4006822 – volume: 53 start-page: 51 year: 1986 ident: 10.1016/j.ijplas.2016.09.009_bib68 article-title: On the variational foundations of assumed strain methods publication-title: J. Appl. Mech. doi: 10.1115/1.3171737 – volume: 55 start-page: 1439 year: 2007 ident: 10.1016/j.ijplas.2016.09.009_bib52 article-title: On criteria for dynamic adiabatic shear band propagation publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2006.12.006 – volume: 299 start-page: 287 year: 2001 ident: 10.1016/j.ijplas.2016.09.009_bib77 article-title: Shear localization and recrystallization in dynamic deformation of 8090 Al–Li alloy publication-title: Mater. Sci. Eng. A doi: 10.1016/S0921-5093(00)01412-X – volume: 87 start-page: 156 year: 2016 ident: 10.1016/j.ijplas.2016.09.009_bib12 article-title: Instability analysis of shear bands using the instantaneous growth-rate method publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2015.04.004 – volume: 53 start-page: 925 year: 2014 ident: 10.1016/j.ijplas.2016.09.009_bib50 article-title: A Pian–Sumihara type element for modeling shear bands at finite deformation publication-title: Comput. Mech. doi: 10.1007/s00466-013-0940-x – volume: 54 start-page: 279 year: 1986 ident: 10.1016/j.ijplas.2016.09.009_bib13 article-title: Efficient implementation of quadrilaterals with high coarse-mesh accuracy publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/0045-7825(86)90107-6 – volume: 36 start-page: 1471 year: 2005 ident: 10.1016/j.ijplas.2016.09.009_bib80 article-title: Influence of shock prestraining on the formation of shear localization in 304 stainless steel publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-005-0239-4 – volume: 36 start-page: 35 year: 1997 ident: 10.1016/j.ijplas.2016.09.009_bib25 article-title: Growth of nuclei in a cellular automaton simulation of recrystallisation publication-title: Scr. Mater. doi: 10.1016/S1359-6462(96)00331-4 – volume: 195 start-page: 4732 year: 2006 ident: 10.1016/j.ijplas.2016.09.009_bib59 article-title: A comparative study on finite elements for capturing strong discontinuities: E-FEM vs X-FEM publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2005.09.020 – year: 2014 ident: 10.1016/j.ijplas.2016.09.009_bib27 – volume: 45 start-page: 635 year: 1997 ident: 10.1016/j.ijplas.2016.09.009_bib36 article-title: Recrystallization kinetics within adiabatic shear bands publication-title: Acta Mater. doi: 10.1016/S1359-6454(96)00193-0 – volume: 72 start-page: 1391 year: 2007 ident: 10.1016/j.ijplas.2016.09.009_bib47 article-title: Finite elements with embedded strong discontinuities for the modeling of failure in solids publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.2042 – volume: 22 start-page: 1304 year: 2006 ident: 10.1016/j.ijplas.2016.09.009_bib19 article-title: An experimental and numerical study of the localization behavior of tantalum and stainless steel publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2005.10.002 – year: 2012 ident: 10.1016/j.ijplas.2016.09.009_bib26 – volume: 28 start-page: 53 year: 2012 ident: 10.1016/j.ijplas.2016.09.009_bib38 article-title: A finite strain, finite band method for modeling ductile fracture publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2011.05.010 – volume: 96 year: 2006 ident: 10.1016/j.ijplas.2016.09.009_bib67 article-title: Adiabatic shear failure and dynamic stored energy of cold work publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.075502 – volume: 486 start-page: 283 year: 2008 ident: 10.1016/j.ijplas.2016.09.009_bib24 article-title: Morphologies and characteristics of deformation induced martensite during tensile deformation of 304 LN stainless steel publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2007.09.005 – volume: 70 start-page: 59 year: 1988 ident: 10.1016/j.ijplas.2016.09.009_bib14 article-title: A finite element with embedded localization zones publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/0045-7825(88)90180-6 – volume: 67 start-page: 868 year: 2006 ident: 10.1016/j.ijplas.2016.09.009_bib70 article-title: A method for dynamic crack and shear band propagation with phantom nodes publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.1652 – volume: 14 start-page: 93 year: 1990 ident: 10.1016/j.ijplas.2016.09.009_bib43 article-title: Finite element analysis of transient strain localization phenomena in frictional solids publication-title: Int. J. Numer. Anal. Methods Geomech. doi: 10.1002/nag.1610140203 – start-page: 448 year: 1994 ident: 10.1016/j.ijplas.2016.09.009_bib54 – volume: 38 start-page: 1241 year: 1990 ident: 10.1016/j.ijplas.2016.09.009_bib31 article-title: Low-temperature and high-strain-rate deformation of nickel and nickel-carbon alloys and analysis of the constitutive behavior according to an internal state variable model publication-title: Acta Metall. Mater doi: 10.1016/0956-7151(90)90195-M – volume: 93 start-page: 211 year: 2003 ident: 10.1016/j.ijplas.2016.09.009_bib65 article-title: Model of plastic deformation for extreme loading conditions publication-title: J. Appl. Phys. doi: 10.1063/1.1524706 – volume: 119 start-page: 085103 year: 2016 ident: 10.1016/j.ijplas.2016.09.009_bib20 article-title: Response and representation of ductile damage under varying shock loading conditions in tantalum publication-title: J. Appl. Phys. doi: 10.1063/1.4941823 – volume: 473 start-page: 279 year: 2008 ident: 10.1016/j.ijplas.2016.09.009_bib78 article-title: EBSD characterization of dynamic shear band regions in pre-shocked and as-received 304 strainless steels publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2007.04.048 |
SSID | ssj0005831 |
Score | 2.3968832 |
Snippet | This paper describes a theoretical and computational framework for the treatment of adiabatic shear band formation in rate-sensitive polycrystalline metallic... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Adiabatic flow Adiabatic shear bands B. Elastic-viscoplastic material B. Finite strain Banding C. Finite elements Computation Computational mathematics Computer simulation Deformation Deformation mechanisms Dissipation Dynamic recrystallization Edge dislocations Finite element analysis Finite element method Mathematical analysis Mathematical models Photomicrographs Plastic deformation Recrystallization Shear Shear localization Shear strength Softening Split Hopkinson pressure bars Stainless steel Stainless steels State variable Strain localization Strain rate Studies Time integration Work hardening Yield strength |
Title | Modeling and simulation framework for dynamic strain localization in elasto-viscoplastic metallic materials subject to large deformations |
URI | https://dx.doi.org/10.1016/j.ijplas.2016.09.009 https://www.proquest.com/docview/1937683864 |
Volume | 88 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSsQwEA6LXvTgz6r4s0oOXuOubZptjiIuq4IXXfAWkk0ClXV3sdWjD-BT-Cw-mTNpKqsIgre0pCXtTGa-lm--IeQ4S7zJUXI2dXnGuEks054nTCbeS-2CgAyyLW7EcMSv7rP7FjlvamGQVhljfx3TQ7SOZ7rxbXbnRdG9heQnBYfvDQFOKgQW_HLeRy8_eV2geeR1T0KYzHB2Uz4XOF7FwxwwKhK8RFA7RVri7-npR6AO2WewQdYibKRn9co2SctN22Q9QkgaN2jZJqsL-oJb5A07nWG9OdVTS8viMfbqor6hZFHArNTWXelpGfpF0JDeYnkmhWMHi69m7KXAChYcw9RHB6B9ggNd1T5My2eD_3RoNft4nyC_nFr3VRpZbpPR4OLufMhi8wU2TvNexaQeS-fTTHtp-jazWZZa2L3G9AGyOSP0ONc8c5JrlDp2aAfrcu216HEvARTtkKXpbOp2CXUiQVk2l1iUwkE1HQ0Rlp8aB9juNPd7JG3euRpHZXJ84IlqKGgPqraUQkupnlRgqT3Cvq6a18ocf8zvN-ZU3zxMQfL448pOY30Vd3ipAPjCl1qaC77_7xsfkJUEUUL4o9MhS9XTszsEjFOZo-DER2T57PJ6ePMJUDoALw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTtwwEB3R5dD2AC1tVQptfejV2iWxvfYRIdBS6F4KEjfLXttS0LK7agIfwVfwLXxZZxKH0goJqbcksqPEY888W2_eAHyTRfKaJGfLqCUXvgjcJVFwU6RkXGwFZIhtMVWTc_H9Ql6swUGfC0O0yuz7O5_eeuv8ZJhHc7iqquFPDH5GCdxvKJykSukXsE7qVHIA6_vHJ5PpH6aH7soSYntOHfoMupbmVV2uEKYSx0u1gqfETHw6Qv3jq9sAdPQGNjJyZPvdx72FtbjYgs2MIlleo_UWvH4kMfgObqnYGaWcM7cIrK6ucrkulnpWFkPYykJXmJ7VbckI1ka4nKHJ8D7ixzdLflNREgtdY9OriLh9Theu6aYxq689HeuwZnl_NyeKOQvxITuyfg_nR4dnBxOe6y_wWalHDTduZmIqpUvGj4MMUpYBF7D3Y0Rt0Ss3007IaIQjteNIpghRu-TUSCSDuOgDDBbLRfwILKqClNliEUgNhwR1HDpZsecjwrs9nbah7MfczrI4Of3w3PYstEvbWcqSpezIWLTUNvCHXqtOnOOZ9uPenPavSWYxfjzTc7e3vs2LvLaIfXGzVmolPv33i7_Cy8nZj1N7ejw92YFXBYGG9oBnFwbNr-v4GSFP47_kKf0bBzYC4A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+and+simulation+framework+for+dynamic+strain+localization+in+elasto-viscoplastic+metallic+materials+subject+to%C2%A0large+deformations&rft.jtitle=International+journal+of+plasticity&rft.au=Mourad%2C+H.M.&rft.au=Bronkhorst%2C+C.A.&rft.au=Livescu%2C+V.&rft.au=Plohr%2C+J.N.&rft.date=2017-01-01&rft.issn=0749-6419&rft.volume=88&rft.spage=1&rft.epage=26&rft_id=info:doi/10.1016%2Fj.ijplas.2016.09.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijplas_2016_09_009 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6419&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6419&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6419&client=summon |