Modeling and simulation framework for dynamic strain localization in elasto-viscoplastic metallic materials subject to large deformations

This paper describes a theoretical and computational framework for the treatment of adiabatic shear band formation in rate-sensitive polycrystalline metallic materials. From a computational perspective, accurate representation of strain localization behavior has been a long-standing challenge. In ad...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of plasticity Vol. 88; pp. 1 - 26
Main Authors Mourad, H.M., Bronkhorst, C.A., Livescu, V., Plohr, J.N., Cerreta, E.K.
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 01.01.2017
Elsevier BV
Subjects
Online AccessGet full text
ISSN0749-6419
1879-2154
DOI10.1016/j.ijplas.2016.09.009

Cover

Loading…
Abstract This paper describes a theoretical and computational framework for the treatment of adiabatic shear band formation in rate-sensitive polycrystalline metallic materials. From a computational perspective, accurate representation of strain localization behavior has been a long-standing challenge. In addition, the underlying physical mechanisms leading to the localization of plastic deformation are still not fully understood. The proposed framework is built around an enhanced-strain finite element formulation, designed to alleviate numerical pathologies known to arise in localization problems, by allowing a localization band of given finite width (weak discontinuity) to be embedded within individual elements. The mechanical threshold strength (MTS) model is used to represent the temperature and strain rate-dependent viscoplastic response of the material. This classical flow stress model employs an internal state variable to quantify the effect of dislocation structure evolution (work hardening and recovery). In light of growing evidence suggesting that the softening effect of dynamic recrystallization may play a significant role, alongside thermal softening, in the process of shear band formation and growth, a simple dynamic recrystallization model is proposed and cast within the context of the MTS model with the aid of the aforementioned internal state variable. An initiation criterion for shear localization in rate and temperature-sensitive materials is introduced and used in the present context of high-rate loading, where material rate-dependence is pronounced and substantial temperature increases are achieved due to the dissipative nature of viscoplastic processes. In addition, explicit time integration is adopted to facilitate treatment of the dynamic problems under consideration, where strain rates in excess of 104 s−1 are typically attained. Two series of experiments are conducted on AISI 316L stainless steel, employing the commonly used top-hat sample geometry and the Split-Hopkinson Pressure Bar dynamic test system. Axi-symmetric finite element simulation results are compared to cross-sectional micrographs of recovered samples and experimental load–displacement results, in order to examine the performance of the proposed framework and demonstrate its effectiveness in treating the initiation and growth of adiabatic shear banding in dynamically loaded metallic materials. These comparisons demonstrate that thermal softening alone is insufficient to induce shear localization behaviors observed in some materials, such as stainless steel, and support the hypothesis that dynamic recrystallization and/or other softening mechanisms play an essential role in this process. •We present a computational treatment of shear banding in elasto–viscoplastic metals.•The proposed framework uses enhanced-strain finite element methods for regularization.•The MTS model is used to represent the material's temperature and rate sensitivity.•Results show that thermal softening may be insufficient to induce shear localization.•In stainless steel, dynamic recrystallization provides the required extra softening.
AbstractList This paper describes a theoretical and computational framework for the treatment of adiabatic shear band formation in rate-sensitive polycrystalline metallic materials. From a computational perspective, accurate representation of strain localization behavior has been a long-standing challenge. In addition, the underlying physical mechanisms leading to the localization of plastic deformation are still not fully understood. The proposed framework is built around an enhanced-strain finite element formulation, designed to alleviate numerical pathologies known to arise in localization problems, by allowing a localization band of given finite width (weak discontinuity) to be embedded within individual elements. The mechanical threshold strength (MTS) model is used to represent the temperature and strain rate-dependent viscoplastic response of the material. This classical flow stress model employs an internal state variable to quantify the effect of dislocation structure evolution (work hardening and recovery). In light of growing evidence suggesting that the softening effect of dynamic recrystallization may play a significant role, alongside thermal softening, in the process of shear band formation and growth, a simple dynamic recrystallization model is proposed and cast within the context of the MTS model with the aid of the aforementioned internal state variable. An initiation criterion for shear localization in rate and temperature-sensitive materials is introduced and used in the present context of high-rate loading, where material rate-dependence is pronounced and substantial temperature increases are achieved due to the dissipative nature of viscoplastic processes. In addition, explicit time integration is adopted to facilitate treatment of the dynamic problems under consideration, where strain rates in excess of 104 s-1 are typically attained. Two series of experiments are conducted on AISI 316L stainless steel, employing the commonly used top-hat sample geometry and the Split-Hopkinson Pressure Bar dynamic test system. Axi-symmetric finite element simulation results are compared to cross-sectional micrographs of recovered samples and experimental load-displacement results, in order to examine the performance of the proposed framework and demonstrate its effectiveness in treating the initiation and growth of adiabatic shear banding in dynamically loaded metallic materials. These comparisons demonstrate that thermal softening alone is insufficient to induce shear localization behaviors observed in some materials, such as stainless steel, and support the hypothesis that dynamic recrystallization and/or other softening mechanisms play an essential role in this process.
This paper describes a theoretical and computational framework for the treatment of adiabatic shear band formation in rate-sensitive polycrystalline metallic materials. From a computational perspective, accurate representation of strain localization behavior has been a long-standing challenge. In addition, the underlying physical mechanisms leading to the localization of plastic deformation are still not fully understood. The proposed framework is built around an enhanced-strain finite element formulation, designed to alleviate numerical pathologies known to arise in localization problems, by allowing a localization band of given finite width (weak discontinuity) to be embedded within individual elements. The mechanical threshold strength (MTS) model is used to represent the temperature and strain rate-dependent viscoplastic response of the material. This classical flow stress model employs an internal state variable to quantify the effect of dislocation structure evolution (work hardening and recovery). In light of growing evidence suggesting that the softening effect of dynamic recrystallization may play a significant role, alongside thermal softening, in the process of shear band formation and growth, a simple dynamic recrystallization model is proposed and cast within the context of the MTS model with the aid of the aforementioned internal state variable. An initiation criterion for shear localization in rate and temperature-sensitive materials is introduced and used in the present context of high-rate loading, where material rate-dependence is pronounced and substantial temperature increases are achieved due to the dissipative nature of viscoplastic processes. In addition, explicit time integration is adopted to facilitate treatment of the dynamic problems under consideration, where strain rates in excess of 104 s−1 are typically attained. Two series of experiments are conducted on AISI 316L stainless steel, employing the commonly used top-hat sample geometry and the Split-Hopkinson Pressure Bar dynamic test system. Axi-symmetric finite element simulation results are compared to cross-sectional micrographs of recovered samples and experimental load–displacement results, in order to examine the performance of the proposed framework and demonstrate its effectiveness in treating the initiation and growth of adiabatic shear banding in dynamically loaded metallic materials. These comparisons demonstrate that thermal softening alone is insufficient to induce shear localization behaviors observed in some materials, such as stainless steel, and support the hypothesis that dynamic recrystallization and/or other softening mechanisms play an essential role in this process. •We present a computational treatment of shear banding in elasto–viscoplastic metals.•The proposed framework uses enhanced-strain finite element methods for regularization.•The MTS model is used to represent the material's temperature and rate sensitivity.•Results show that thermal softening may be insufficient to induce shear localization.•In stainless steel, dynamic recrystallization provides the required extra softening.
Author Mourad, H.M.
Cerreta, E.K.
Livescu, V.
Bronkhorst, C.A.
Plohr, J.N.
Author_xml – sequence: 1
  givenname: H.M.
  surname: Mourad
  fullname: Mourad, H.M.
  email: hmourad@lanl.gov
  organization: Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
– sequence: 2
  givenname: C.A.
  surname: Bronkhorst
  fullname: Bronkhorst, C.A.
  organization: Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
– sequence: 3
  givenname: V.
  surname: Livescu
  fullname: Livescu, V.
  organization: Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
– sequence: 4
  givenname: J.N.
  surname: Plohr
  fullname: Plohr, J.N.
  organization: Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
– sequence: 5
  givenname: E.K.
  surname: Cerreta
  fullname: Cerreta, E.K.
  organization: Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
BookMark eNqFkE1uFDEQhS2USEwSbsDCUtbdsad_nQUSisiPFMQG1la1XR25cduD7Uk0HIFTcBZOFneaFYuwskt671W974QcOe-QkPeclZzx9mIqzbSzEMttnkomSsbEG7LhfSeKLW_qI7JhXS2KtubiLTmJcWKMNX3FN-TXZ6_RGvdAwWkazby3kIx3dAww45MP3-noA9UHB7NRNKYAxlHrFVjzc1XmGfPy5ItHE5VfDklZOmMCa5cPJAwGbKRxP0yoEk3-z28L4QGpxpw-v-TEM3I8ZhW--_uekm_Xn75e3Rb3X27urj7eF6rqWSoEKIFj1cAohk43umkqzXg3DF3VbHFoQfVQNyhqaAVrMVfmGnsYoWX1KLZddUrO19xd8D_2GJOc_D64vFJyUXVtX_VtnVX1qlLBxxhwlLtgZggHyZlcqMtJrtTlQl0yITP1bLv8x6ZMeum3kLP_M39YzZjrPxoMMiqDTqE2IXOT2pvXA54BWAeoBg
CitedBy_id crossref_primary_10_1016_j_eml_2018_10_002
crossref_primary_10_1016_j_ijsolstr_2022_111837
crossref_primary_10_1016_j_msea_2021_142062
crossref_primary_10_1016_j_engfracmech_2021_107554
crossref_primary_10_1016_j_jmps_2020_103905
crossref_primary_10_1108_EC_08_2021_0482
crossref_primary_10_1016_j_jmps_2022_104910
crossref_primary_10_1016_j_ijplas_2018_07_011
crossref_primary_10_1016_j_jcp_2020_109746
crossref_primary_10_1016_j_ijplas_2023_103782
crossref_primary_10_1016_j_mechmat_2018_04_004
crossref_primary_10_1016_j_msea_2019_01_016
crossref_primary_10_1016_j_cma_2019_05_011
crossref_primary_10_1016_j_ijplas_2019_03_005
crossref_primary_10_1007_s00466_017_1470_8
crossref_primary_10_1016_j_ijplas_2023_103787
crossref_primary_10_1016_j_ijplas_2023_103616
crossref_primary_10_1016_j_ijplas_2024_103915
crossref_primary_10_1016_j_mechmat_2017_03_021
crossref_primary_10_1016_j_ijplas_2018_02_002
crossref_primary_10_1080_14786435_2018_1524586
crossref_primary_10_1016_j_jmps_2019_103723
crossref_primary_10_1007_s12540_020_00827_1
crossref_primary_10_1016_j_ijplas_2021_103150
crossref_primary_10_1016_j_ijsolstr_2021_111195
crossref_primary_10_1016_j_mechmat_2017_10_003
crossref_primary_10_1016_j_ijplas_2018_04_012
crossref_primary_10_1016_j_ijimpeng_2019_103322
crossref_primary_10_1016_j_mtcomm_2022_103156
crossref_primary_10_1016_j_ijplas_2018_01_005
crossref_primary_10_1016_j_jmst_2019_05_075
crossref_primary_10_1016_j_mechmat_2022_104288
crossref_primary_10_1016_j_ijplas_2020_102684
crossref_primary_10_1016_j_ijplas_2020_102862
crossref_primary_10_1016_j_finel_2018_11_001
Cites_doi 10.1115/1.4006171
10.1016/0022-5096(62)90024-8
10.1016/j.scriptamat.2011.09.014
10.1016/j.ijplas.2011.10.002
10.1016/j.ijplas.2012.06.005
10.1103/PhysRevLett.101.165501
10.1002/nme.1620151210
10.1016/S0045-7825(00)00253-X
10.1016/j.cma.2008.01.019
10.1016/j.msea.2008.10.029
10.1016/j.jmps.2008.04.010
10.1007/BF02586218
10.1007/s00466-014-1002-8
10.1002/nme.1620150914
10.1016/j.jmps.2009.10.006
10.1016/j.ijplas.2004.11.003
10.1002/nme.4314
10.1016/j.cma.2015.02.010
10.1002/nme.1199
10.1016/S0020-7683(01)00188-3
10.1016/j.actamat.2007.07.015
10.1016/j.msea.2014.05.053
10.1016/S0045-7825(99)00156-5
10.1016/0001-6160(88)90030-2
10.1007/s00466-012-0765-z
10.1007/BF02669407
10.1016/S0045-7825(01)00245-6
10.1007/s10704-009-9413-9
10.1016/j.jmps.2007.03.019
10.1016/S0045-7825(99)00154-1
10.1007/s00466-013-0941-9
10.1016/j.cma.2014.11.013
10.1016/j.msea.2014.05.082
10.1016/j.ijplas.2005.04.010
10.1016/0749-6419(85)90003-8
10.1115/1.4023775
10.1016/j.matdes.2010.11.048
10.1063/1.4941928
10.1016/j.ijplas.2009.03.005
10.1016/j.cma.2006.06.005
10.1016/j.cma.2008.02.021
10.1016/0022-5096(87)90045-7
10.1016/0045-7949(88)90230-1
10.1016/0045-7825(87)90004-1
10.1016/j.mechmat.2012.09.008
10.1007/s10853-013-7412-8
10.1007/BF02644427
10.1115/1.4006822
10.1115/1.3171737
10.1016/j.jmps.2006.12.006
10.1016/S0921-5093(00)01412-X
10.1016/j.ijimpeng.2015.04.004
10.1007/s00466-013-0940-x
10.1016/0045-7825(86)90107-6
10.1007/s11661-005-0239-4
10.1016/S1359-6462(96)00331-4
10.1016/j.cma.2005.09.020
10.1016/S1359-6454(96)00193-0
10.1002/nme.2042
10.1016/j.ijplas.2005.10.002
10.1016/j.ijplas.2011.05.010
10.1103/PhysRevLett.96.075502
10.1016/j.msea.2007.09.005
10.1016/0045-7825(88)90180-6
10.1002/nme.1652
10.1002/nag.1610140203
10.1016/0956-7151(90)90195-M
10.1063/1.1524706
10.1063/1.4941823
10.1016/j.msea.2007.04.048
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright Elsevier BV Jan 2017
Copyright_xml – notice: 2016 Elsevier Ltd
– notice: Copyright Elsevier BV Jan 2017
DBID AAYXX
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
DOI 10.1016/j.ijplas.2016.09.009
DatabaseName CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-2154
EndPage 26
ExternalDocumentID 10_1016_j_ijplas_2016_09_009
S0749641916301668
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
TN5
UNMZH
VH1
WUQ
XFK
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SR
7TB
8BQ
8FD
EFKBS
FR3
JG9
KR7
ID FETCH-LOGICAL-c380t-9ac9ef35af9b7d5d553d017bb7352eb6ac8a45e94a6906e4191de8afa604f9273
IEDL.DBID .~1
ISSN 0749-6419
IngestDate Fri Jul 25 01:21:43 EDT 2025
Thu Apr 24 22:59:31 EDT 2025
Tue Jul 01 01:37:09 EDT 2025
Fri Feb 23 02:27:38 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords B. Finite strain
C. Finite elements
Adiabatic shear bands
B. Elastic-viscoplastic material
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c380t-9ac9ef35af9b7d5d553d017bb7352eb6ac8a45e94a6906e4191de8afa604f9273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.osti.gov/biblio/1329600
PQID 1937683864
PQPubID 2045460
PageCount 26
ParticipantIDs proquest_journals_1937683864
crossref_primary_10_1016_j_ijplas_2016_09_009
crossref_citationtrail_10_1016_j_ijplas_2016_09_009
elsevier_sciencedirect_doi_10_1016_j_ijplas_2016_09_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2017
2017-01-00
20170101
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: January 2017
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of plasticity
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Hughes, Winget (bib40) 1980; 15
Dodd, Bai (bib27) 2014
Wu, Li, Xu (bib76) 2015; 285
Bronkhorst, Gray, Addessio, Livescu, Bourne, MacDonald, Withers (bib20) 2016; 119
Arriaga, McAuliffe, Waisman (bib11) 2015; 289
Armero, Linder (bib9) 2008; 197
Meyers, Chen, Marquis, Kim (bib55) 1995; 26
Oliver, Huespe, Sanchez (bib59) 2006; 195
Wang, Liu, Wang, Li (bib73) 2014; 610
Abed, Makarem, Voyiadjis (bib3) 2013; 135
Anand, Aslan, Chester (bib6) 2012; 30
Mourad, Garikipati (bib57) 2006; 196
Osovski, Rittel, Landau, Venkert (bib61) 2012; 66
ABAQUS (bib1) 2014
Abed, Makarem (bib2) 2012; 134
Armero, Kim (bib8) 2012; 91
Yang, Mota, Ortiz (bib81) 2005; 62
Preston, Tonks, Wallace (bib65) 2003; 93
Huespe, Needleman, Oliver, Sanchez (bib38) 2012; 28
Dodd, Bai (bib26) 2012
Talonen, Hanninen (bib71) 2007; 55
McAuliffe, Waisman (bib50) 2014; 53
Ortiz, Leroy, Needleman (bib60) 1987; 61
Xue, Bingert, Henrie, Gray (bib78) 2008; 473
Li, Liu, Qian, Guduru, Rosakis (bib44) 2001; 191
Simo, Hughes (bib69) 1998
Leroy, Ortiz (bib43) 1990; 14
Rittel, Landau, Venkert (bib66) 2008; 101
Plohr, Plohr (bib63) 2016; 6
Li, Liu, Rosakis, Belytschko, Hao (bib45) 2002; 39
Hines, Vecchio (bib36) 1997; 45
Wright (bib74) 2002
Rittel, Wang, Merzer (bib67) 2006; 96
Hughes (bib39) 1980; 15
Borja (bib17) 2008; 197
Follansbee (bib29) 2012; 134
Okayasu, Fukui, Ohfuji, Shiraishi (bib58) 2013; 48
Cerreta, Bingert, Gray, Trujillo, Lopez, Bronkhorst, Hansen (bib22) 2013; 40
Osovski, Rittel, Venkert (bib62) 2013; 56
Meyers, Manwaring (bib53) 1986
Borja, Regueiro (bib18) 2001; 190
Arriaga, McAuliffe, Waisman (bib12) 2016; 87
Wang, Liu, Wang, Zhao, Sun (bib72) 2014; 611
Belytschko, Fish, Engelmann (bib14) 1988; 70
Porter, Easterling (bib64) 1992
Kocks, Argon, Ashby (bib42) 1975
Ling, Belytschko (bib48) 2009; 57
Follansbee, Huang, Gray (bib31) 1990; 38
Huespe, Needleman, Oliver, Sanchez (bib37) 2009; 25
Xue, Gray (bib79) 2006; 37
Follansbee (bib30) 2014
Xu, Zhong, Chen, Shen, Liu, Bai, Meyers (bib77) 2001; 299
Abu Al-Rub, Voyiadjis (bib5) 2006; 22
Linder, Armero (bib47) 2007; 72
Hill (bib35) 1962; 10
Das, Sivaprasad, Ghosh, Chakraborti, Tarafder (bib24) 2008; 486
Xue, Gray, Henrie, Maloy, Chen (bib80) 2005; 36
Jirásek (bib41) 2000; 188
Garikipati, Hughes (bib33) 2000; 188
Lin, Chen (bib46) 2011; 32
Bronkhorst, Hansen, Cerreta, Bingert (bib21) 2007; 55
McVeigh, Liu (bib51) 2010; 58
Fish, Belytschko (bib28) 1988; 30
Song, Areias, Belytschko (bib70) 2006; 67
Meyers (bib54) 1994
Armero, Linder (bib10) 2009; 160
Mourad, Bronkhorst, Addessio, Cady, Brown, Chen, Gray (bib56) 2014; 53
Hecker, Stout, Staudhammer, Smith (bib34) 1982; 13
Wright, Batra (bib75) 1985; 1
Anand, Kim, Shawki (bib7) 1987; 35
Berger-Vergiat, McAuliffe, Waisman (bib16) 2014; 54
Bronkhorst, Cerreta, Xue, Maudlin, Mason, Gray (bib19) 2006; 22
Cerreta, Frank, Gray, Trujillo, Korzekwa, Dougherty (bib23) 2009; 501
Belytschko, Liu, Moran, Elkhodary (bib15) 2013
Simo, Hughes (bib68) 1986; 53
Medyanik, Liu, Li (bib52) 2007; 55
Belytschko, Bachrach (bib13) 1986; 54
McAuliffe, Waisman (bib49) 2013; 51
Davies (bib25) 1997; 36
Abed, Voyiadjis (bib4) 2005; 21
Follansbee, Kocks (bib32) 1988; 36
Hines (10.1016/j.ijplas.2016.09.009_bib36) 1997; 45
Huespe (10.1016/j.ijplas.2016.09.009_bib38) 2012; 28
Osovski (10.1016/j.ijplas.2016.09.009_bib61) 2012; 66
Abed (10.1016/j.ijplas.2016.09.009_bib3) 2013; 135
Fish (10.1016/j.ijplas.2016.09.009_bib28) 1988; 30
Wu (10.1016/j.ijplas.2016.09.009_bib76) 2015; 285
Borja (10.1016/j.ijplas.2016.09.009_bib17) 2008; 197
Plohr (10.1016/j.ijplas.2016.09.009_bib63) 2016; 6
Davies (10.1016/j.ijplas.2016.09.009_bib25) 1997; 36
Abed (10.1016/j.ijplas.2016.09.009_bib2) 2012; 134
Cerreta (10.1016/j.ijplas.2016.09.009_bib22) 2013; 40
Follansbee (10.1016/j.ijplas.2016.09.009_bib29) 2012; 134
Dodd (10.1016/j.ijplas.2016.09.009_bib26) 2012
Jirásek (10.1016/j.ijplas.2016.09.009_bib41) 2000; 188
Song (10.1016/j.ijplas.2016.09.009_bib70) 2006; 67
Leroy (10.1016/j.ijplas.2016.09.009_bib43) 1990; 14
Wang (10.1016/j.ijplas.2016.09.009_bib73) 2014; 610
Anand (10.1016/j.ijplas.2016.09.009_bib7) 1987; 35
Kocks (10.1016/j.ijplas.2016.09.009_bib42) 1975
Arriaga (10.1016/j.ijplas.2016.09.009_bib11) 2015; 289
Garikipati (10.1016/j.ijplas.2016.09.009_bib33) 2000; 188
Bronkhorst (10.1016/j.ijplas.2016.09.009_bib19) 2006; 22
Xue (10.1016/j.ijplas.2016.09.009_bib80) 2005; 36
Follansbee (10.1016/j.ijplas.2016.09.009_bib32) 1988; 36
Ling (10.1016/j.ijplas.2016.09.009_bib48) 2009; 57
Arriaga (10.1016/j.ijplas.2016.09.009_bib12) 2016; 87
Li (10.1016/j.ijplas.2016.09.009_bib44) 2001; 191
Medyanik (10.1016/j.ijplas.2016.09.009_bib52) 2007; 55
Belytschko (10.1016/j.ijplas.2016.09.009_bib13) 1986; 54
Abed (10.1016/j.ijplas.2016.09.009_bib4) 2005; 21
Belytschko (10.1016/j.ijplas.2016.09.009_bib14) 1988; 70
McAuliffe (10.1016/j.ijplas.2016.09.009_bib49) 2013; 51
Meyers (10.1016/j.ijplas.2016.09.009_bib54) 1994
Oliver (10.1016/j.ijplas.2016.09.009_bib59) 2006; 195
Porter (10.1016/j.ijplas.2016.09.009_bib64) 1992
McVeigh (10.1016/j.ijplas.2016.09.009_bib51) 2010; 58
Talonen (10.1016/j.ijplas.2016.09.009_bib71) 2007; 55
Wright (10.1016/j.ijplas.2016.09.009_bib74) 2002
Armero (10.1016/j.ijplas.2016.09.009_bib8) 2012; 91
Belytschko (10.1016/j.ijplas.2016.09.009_bib15) 2013
Follansbee (10.1016/j.ijplas.2016.09.009_bib30) 2014
Hill (10.1016/j.ijplas.2016.09.009_bib35) 1962; 10
Preston (10.1016/j.ijplas.2016.09.009_bib65) 2003; 93
Cerreta (10.1016/j.ijplas.2016.09.009_bib23) 2009; 501
Hughes (10.1016/j.ijplas.2016.09.009_bib39) 1980; 15
Armero (10.1016/j.ijplas.2016.09.009_bib10) 2009; 160
Hecker (10.1016/j.ijplas.2016.09.009_bib34) 1982; 13
Xu (10.1016/j.ijplas.2016.09.009_bib77) 2001; 299
Bronkhorst (10.1016/j.ijplas.2016.09.009_bib21) 2007; 55
Dodd (10.1016/j.ijplas.2016.09.009_bib27) 2014
Borja (10.1016/j.ijplas.2016.09.009_bib18) 2001; 190
Das (10.1016/j.ijplas.2016.09.009_bib24) 2008; 486
Armero (10.1016/j.ijplas.2016.09.009_bib9) 2008; 197
Li (10.1016/j.ijplas.2016.09.009_bib45) 2002; 39
McAuliffe (10.1016/j.ijplas.2016.09.009_bib50) 2014; 53
Bronkhorst (10.1016/j.ijplas.2016.09.009_bib20) 2016; 119
Mourad (10.1016/j.ijplas.2016.09.009_bib57) 2006; 196
Ortiz (10.1016/j.ijplas.2016.09.009_bib60) 1987; 61
Osovski (10.1016/j.ijplas.2016.09.009_bib62) 2013; 56
Linder (10.1016/j.ijplas.2016.09.009_bib47) 2007; 72
Xue (10.1016/j.ijplas.2016.09.009_bib78) 2008; 473
Yang (10.1016/j.ijplas.2016.09.009_bib81) 2005; 62
Huespe (10.1016/j.ijplas.2016.09.009_bib37) 2009; 25
Mourad (10.1016/j.ijplas.2016.09.009_bib56) 2014; 53
ABAQUS (10.1016/j.ijplas.2016.09.009_bib1) 2014
Lin (10.1016/j.ijplas.2016.09.009_bib46) 2011; 32
Wang (10.1016/j.ijplas.2016.09.009_bib72) 2014; 611
Meyers (10.1016/j.ijplas.2016.09.009_bib53) 1986
Hughes (10.1016/j.ijplas.2016.09.009_bib40) 1980; 15
Okayasu (10.1016/j.ijplas.2016.09.009_bib58) 2013; 48
Follansbee (10.1016/j.ijplas.2016.09.009_bib31) 1990; 38
Rittel (10.1016/j.ijplas.2016.09.009_bib66) 2008; 101
Simo (10.1016/j.ijplas.2016.09.009_bib69) 1998
Abu Al-Rub (10.1016/j.ijplas.2016.09.009_bib5) 2006; 22
Meyers (10.1016/j.ijplas.2016.09.009_bib55) 1995; 26
Simo (10.1016/j.ijplas.2016.09.009_bib68) 1986; 53
Wright (10.1016/j.ijplas.2016.09.009_bib75) 1985; 1
Berger-Vergiat (10.1016/j.ijplas.2016.09.009_bib16) 2014; 54
Rittel (10.1016/j.ijplas.2016.09.009_bib67) 2006; 96
Anand (10.1016/j.ijplas.2016.09.009_bib6) 2012; 30
Xue (10.1016/j.ijplas.2016.09.009_bib79) 2006; 37
References_xml – volume: 54
  start-page: 279
  year: 1986
  end-page: 301
  ident: bib13
  article-title: Efficient implementation of quadrilaterals with high coarse-mesh accuracy
  publication-title: Comput. Methods Appl. Mech. Eng.
– year: 2014
  ident: bib30
  article-title: Fundamentals of Strength: Principles, Experiment, and Applications of an Internal State Variable Constitutive Formulation
– volume: 473
  start-page: 279
  year: 2008
  end-page: 289
  ident: bib78
  article-title: EBSD characterization of dynamic shear band regions in pre-shocked and as-received 304 strainless steels
  publication-title: Mater. Sci. Eng. A
– volume: 55
  start-page: 2351
  year: 2007
  end-page: 2383
  ident: bib21
  article-title: Modeling the microstructural evolution of metallic polycrystalline materials under localization conditions
  publication-title: J. Mech. Phys. Solids
– volume: 53
  start-page: 941
  year: 2014
  end-page: 955
  ident: bib56
  article-title: Incrementally objective implicit integration of hypoelastic–viscoplastic constitutive equations based on the mechanical threshold strength model
  publication-title: Comput. Mech.
– volume: 66
  start-page: 9
  year: 2012
  end-page: 12
  ident: bib61
  article-title: Microstructural effects on adiabatic shear band formation
  publication-title: Scr. Mater.
– volume: 35
  start-page: 407
  year: 1987
  end-page: 429
  ident: bib7
  article-title: Onset of shear localization in viscoplastic solids
  publication-title: J. Mech. Phys. Solids
– volume: 67
  start-page: 868
  year: 2006
  end-page: 893
  ident: bib70
  article-title: A method for dynamic crack and shear band propagation with phantom nodes
  publication-title: Int. J. Numer. Methods Eng.
– year: 2013
  ident: bib15
  article-title: Nonlinear Finite Elements for Continua and Structures
– volume: 191
  start-page: 73
  year: 2001
  end-page: 92
  ident: bib44
  article-title: Dynamic shear band propagation and micro-structure of adiabatic shear band
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 58
  start-page: 187
  year: 2010
  end-page: 205
  ident: bib51
  article-title: Multiresolution continuum modeling of micro-void assisted dynamic adiabatic shear band propagation
  publication-title: J. Mech. Phys. Solids
– volume: 611
  start-page: 100
  year: 2014
  end-page: 107
  ident: bib72
  article-title: Microstructural evolution in adiabatic shear band in the ultrafine-grained austenitic stainless steel processed by multi-axial compression
  publication-title: Mater. Sci. Eng. A
– volume: 40
  start-page: 23
  year: 2013
  end-page: 38
  ident: bib22
  article-title: Microstructural examination of quasi-static and dynamic shear in high-purity iron
  publication-title: Int. J. Plast.
– year: 2012
  ident: bib26
  article-title: Adiabatic Shear Localization: Frontiers and Advances
– volume: 54
  start-page: 503
  year: 2014
  end-page: 521
  ident: bib16
  article-title: Isogeometric analysis of shear bands
  publication-title: Comput. Mech.
– volume: 53
  start-page: 925
  year: 2014
  end-page: 940
  ident: bib50
  article-title: A Pian–Sumihara type element for modeling shear bands at finite deformation
  publication-title: Comput. Mech.
– volume: 195
  start-page: 4732
  year: 2006
  end-page: 4752
  ident: bib59
  article-title: A comparative study on finite elements for capturing strong discontinuities: E-FEM vs X-FEM
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 119
  start-page: 085103
  year: 2016
  ident: bib20
  article-title: Response and representation of ductile damage under varying shock loading conditions in tantalum
  publication-title: J. Appl. Phys.
– volume: 1
  start-page: 205
  year: 1985
  end-page: 212
  ident: bib75
  article-title: The initiation and growth of adiabatic shear bands
  publication-title: Int. J. Plast.
– volume: 160
  start-page: 119
  year: 2009
  end-page: 141
  ident: bib10
  article-title: Numerical simulation of dynamic fracture using finite elements with embedded discontinuities
  publication-title: Int. J. Fract.
– volume: 93
  start-page: 211
  year: 2003
  end-page: 220
  ident: bib65
  article-title: Model of plastic deformation for extreme loading conditions
  publication-title: J. Appl. Phys.
– volume: 53
  start-page: 51
  year: 1986
  end-page: 54
  ident: bib68
  article-title: On the variational foundations of assumed strain methods
  publication-title: J. Appl. Mech.
– volume: 30
  start-page: 116
  year: 2012
  end-page: 143
  ident: bib6
  article-title: A large-deformation gradient theory for elastic–plastic materials: strain softening and regularization of shear bands
  publication-title: Int. J. Plast.
– volume: 101
  year: 2008
  ident: bib66
  article-title: Dynamic recrystallization as a potential cause for adiabatic shear failure
  publication-title: Phys. Rev. Lett.
– volume: 197
  start-page: 3138
  year: 2008
  end-page: 3170
  ident: bib9
  article-title: New finite elements with embedded strong discontinuities in the finite deformation range
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 56
  start-page: 11
  year: 2013
  end-page: 22
  ident: bib62
  article-title: The respective influence of microstructural and thermal softening on adiabatic shear localization
  publication-title: Mech. Mater.
– year: 2014
  ident: bib1
  article-title: Abaqus 6.14 Theory Guide
– start-page: 657
  year: 1986
  end-page: 674
  ident: bib53
  article-title: Critical adiabatic shear strength of low alloyed steel under compressive loading
  publication-title: Metallurgical Applications of Shock-wave and High-strain Rate Phenomena
– volume: 87
  start-page: 156
  year: 2016
  end-page: 168
  ident: bib12
  article-title: Instability analysis of shear bands using the instantaneous growth-rate method
  publication-title: Int. J. Impact Eng.
– volume: 36
  start-page: 1471
  year: 2005
  end-page: 1486
  ident: bib80
  article-title: Influence of shock prestraining on the formation of shear localization in 304 stainless steel
  publication-title: Metall. Mater. Trans. A
– volume: 72
  start-page: 1391
  year: 2007
  end-page: 1433
  ident: bib47
  article-title: Finite elements with embedded strong discontinuities for the modeling of failure in solids
  publication-title: Int. J. Numer. Methods Eng.
– volume: 51
  start-page: 807
  year: 2013
  end-page: 823
  ident: bib49
  article-title: Mesh insensitive formulation for initiation and growth of shear bands using mixed finite elements
  publication-title: Comput. Mech.
– volume: 57
  start-page: 788
  year: 2009
  end-page: 802
  ident: bib48
  article-title: Thermal softening induced plastic instability in rate-dependent materials
  publication-title: J. Mech. Phys. Solids
– volume: 36
  start-page: 81
  year: 1988
  end-page: 93
  ident: bib32
  article-title: A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable
  publication-title: Acta Metall.
– volume: 30
  start-page: 247
  year: 1988
  end-page: 256
  ident: bib28
  article-title: Elements with embedded localization zones for large deformation problems
  publication-title: Comp. Struct.
– start-page: 448
  year: 1994
  end-page: 487
  ident: bib54
  article-title: Dynamic Behavior of Materials
– volume: 62
  start-page: 1013
  year: 2005
  end-page: 1037
  ident: bib81
  article-title: A class of variational strain-localization finite elements. Int
  publication-title: J. Numer. Methods Eng.
– volume: 45
  start-page: 635
  year: 1997
  end-page: 649
  ident: bib36
  article-title: Recrystallization kinetics within adiabatic shear bands
  publication-title: Acta Mater.
– volume: 486
  start-page: 283
  year: 2008
  end-page: 286
  ident: bib24
  article-title: Morphologies and characteristics of deformation induced martensite during tensile deformation of 304 LN stainless steel
  publication-title: Mater. Sci. Eng. A
– volume: 26
  start-page: 2493
  year: 1995
  end-page: 2501
  ident: bib55
  article-title: High-strain, high-strain-rate behavior of tantalum
  publication-title: Metall. Mater. Trans. A
– volume: 48
  start-page: 6157
  year: 2013
  end-page: 6166
  ident: bib58
  article-title: Strain-induced martensite formation in austenitic stainless steel
  publication-title: J. Mater. Sci.
– volume: 61
  start-page: 189
  year: 1987
  end-page: 214
  ident: bib60
  article-title: A finite element method for localized failure analysis
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 22
  start-page: 1304
  year: 2006
  end-page: 1335
  ident: bib19
  article-title: An experimental and numerical study of the localization behavior of tantalum and stainless steel
  publication-title: Int. J. Plast.
– volume: 38
  start-page: 1241
  year: 1990
  end-page: 1254
  ident: bib31
  article-title: Low-temperature and high-strain-rate deformation of nickel and nickel-carbon alloys and analysis of the constitutive behavior according to an internal state variable model
  publication-title: Acta Metall. Mater
– year: 2002
  ident: bib74
  article-title: The Physics and Mathematics of Adiabatic Shear Bands
– volume: 70
  start-page: 59
  year: 1988
  end-page: 89
  ident: bib14
  article-title: A finite element with embedded localization zones
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 188
  start-page: 307
  year: 2000
  end-page: 330
  ident: bib41
  article-title: Comparative study on finite elements with embedded discontinuities
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 39
  start-page: 1213
  year: 2002
  end-page: 1240
  ident: bib45
  article-title: Mesh-free Galerkin simulations of dynamic shear band propagation and failure mode transition
  publication-title: Int. J. Solids Struct.
– volume: 21
  start-page: 1618
  year: 2005
  end-page: 1639
  ident: bib4
  article-title: Plastic deformation modeling of AL-6XN strainless steel at low and high strain rates and temperatures using a combination of bcc and fcc mechanisms of metals
  publication-title: Int. J. Plast.
– year: 2014
  ident: bib27
  article-title: Introduction to Adiabatic Shear Localization: Revised Edition
– volume: 610
  start-page: 301
  year: 2014
  end-page: 308
  ident: bib73
  article-title: An EBSD investigation on deformation-induced shear bands in a low nickel austenitic stainless steel under controlled shock-loading conditions
  publication-title: Mater. Sci. Eng. A
– volume: 36
  start-page: 35
  year: 1997
  end-page: 40
  ident: bib25
  article-title: Growth of nuclei in a cellular automaton simulation of recrystallisation
  publication-title: Scr. Mater.
– volume: 501
  start-page: 207
  year: 2009
  end-page: 219
  ident: bib23
  article-title: The influence of microstructure on the mechanical response of copper in shear
  publication-title: Mater. Sci. Eng. A
– year: 1998
  ident: bib69
  article-title: Computational Inelasticity
– volume: 55
  start-page: 6108
  year: 2007
  end-page: 6118
  ident: bib71
  article-title: Formation of shear bands and strain-induced martensitie during plastic deformation of metastable austenitic stainless steels
  publication-title: Acta Mater.
– volume: 96
  year: 2006
  ident: bib67
  article-title: Adiabatic shear failure and dynamic stored energy of cold work
  publication-title: Phys. Rev. Lett.
– volume: 15
  start-page: 1862
  year: 1980
  end-page: 1867
  ident: bib40
  article-title: Finite rotation effects in numerical integration of rate constitutive equations arising in large-deformation analysis
  publication-title: Int. J. Numer. Methods Eng.
– volume: 37
  start-page: 2447
  year: 2006
  end-page: 2458
  ident: bib79
  article-title: Development of adiabatic shear bands in annealed 316l stainless steel: part II. TEM studies of the evolution of microstructure during deformation localization
  publication-title: Metall. Mater. Trans. A
– year: 1975
  ident: bib42
  article-title: Thermodynamics and Kinetics of Slip
– volume: 289
  start-page: 179
  year: 2015
  end-page: 208
  ident: bib11
  article-title: Onset of shear band localization by a local generalized eigenvalue analysis
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 6
  start-page: 025008
  year: 2016
  ident: bib63
  article-title: Numerical simulation of systems of shear bands in ductile metal with inclusions
  publication-title: AIP Adv.
– volume: 285
  start-page: 346
  year: 2015
  end-page: 378
  ident: bib76
  article-title: Extended embedded finite elements with continuous displacement jumps for the modeling of localized failure in solids
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 190
  start-page: 2555
  year: 2001
  end-page: 2580
  ident: bib18
  article-title: Strain localization in frictional materials exhibiting displacement jumps
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 197
  start-page: 2789
  year: 2008
  end-page: 2803
  ident: bib17
  article-title: Assumed enhanced strain and the extended finite element methods: a unification of concepts
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 135
  year: 2013
  ident: bib3
  article-title: Dynamic localizations in HSLA-65 and DH-36 structural steel at elevated temperatures
  publication-title: J. Eng. Mater. Technol.
– volume: 15
  start-page: 1413
  year: 1980
  end-page: 1418
  ident: bib39
  article-title: Generalization of selective integration procedures to anisotropic and nonlinear media
  publication-title: Int. J. Numer. Methods Eng.
– volume: 134
  year: 2012
  ident: bib29
  article-title: An internal state variable constitutive model for deformation of austenitic stainless steels
  publication-title: J. Eng. Mater. Technol.
– volume: 25
  start-page: 2349
  year: 2009
  end-page: 2365
  ident: bib37
  article-title: A finite thickness band method for ductile fracture analysis
  publication-title: Int. J. Plast.
– year: 1992
  ident: bib64
  article-title: Phase Transformations in Metals and Alloys
– volume: 22
  start-page: 654
  year: 2006
  end-page: 684
  ident: bib5
  article-title: A physically based gradient plasticity theory
  publication-title: Int. J. Plast.
– volume: 188
  start-page: 39
  year: 2000
  end-page: 60
  ident: bib33
  article-title: A variational multiscale approach to strain localization–formulation for multidimensional problems
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 10
  start-page: 1
  year: 1962
  end-page: 16
  ident: bib35
  article-title: Acceleration waves in solids
  publication-title: J. Mech. Phys. Solids
– volume: 14
  start-page: 93
  year: 1990
  end-page: 124
  ident: bib43
  article-title: Finite element analysis of transient strain localization phenomena in frictional solids
  publication-title: Int. J. Numer. Anal. Methods Geomech.
– volume: 32
  start-page: 1733
  year: 2011
  end-page: 1759
  ident: bib46
  article-title: A critical review of experimental results and constitutive descriptions for metals and alloys in hot working
  publication-title: Mater. Des.
– volume: 299
  start-page: 287
  year: 2001
  end-page: 295
  ident: bib77
  article-title: Shear localization and recrystallization in dynamic deformation of 8090 Al–Li alloy
  publication-title: Mater. Sci. Eng. A
– volume: 28
  start-page: 53
  year: 2012
  end-page: 69
  ident: bib38
  article-title: A finite strain, finite band method for modeling ductile fracture
  publication-title: Int. J. Plast.
– volume: 134
  year: 2012
  ident: bib2
  article-title: Comparisons of constitutive models for steel over a wide range of temperatures and strain rates
  publication-title: J. Eng. Mater. Technol.
– volume: 55
  start-page: 1439
  year: 2007
  end-page: 1461
  ident: bib52
  article-title: On criteria for dynamic adiabatic shear band propagation
  publication-title: J. Mech. Phys. Solids
– volume: 196
  start-page: 595
  year: 2006
  end-page: 607
  ident: bib57
  article-title: Advances in the numerical treatment of grain-boundary migration: coupling with mass transport and mechanics
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 13
  start-page: 619
  year: 1982
  end-page: 626
  ident: bib34
  article-title: Effects of strain state and strain rate on deformation-induced transformation in 304 stainless steel: part I. magnetic measurements and mechanical behavior
  publication-title: Metall. Trans. A
– volume: 91
  start-page: 1291
  year: 2012
  end-page: 1330
  ident: bib8
  article-title: Three-dimensional finite elements with embedded strong discontinuities to model material failure in the infinitesimal range
  publication-title: Int. J. Numer. Methods Eng.
– volume: 134
  year: 2012
  ident: 10.1016/j.ijplas.2016.09.009_bib2
  article-title: Comparisons of constitutive models for steel over a wide range of temperatures and strain rates
  publication-title: J. Eng. Mater. Technol.
  doi: 10.1115/1.4006171
– volume: 10
  start-page: 1
  year: 1962
  ident: 10.1016/j.ijplas.2016.09.009_bib35
  article-title: Acceleration waves in solids
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/0022-5096(62)90024-8
– volume: 66
  start-page: 9
  year: 2012
  ident: 10.1016/j.ijplas.2016.09.009_bib61
  article-title: Microstructural effects on adiabatic shear band formation
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2011.09.014
– year: 2014
  ident: 10.1016/j.ijplas.2016.09.009_bib1
– volume: 30
  start-page: 116
  year: 2012
  ident: 10.1016/j.ijplas.2016.09.009_bib6
  article-title: A large-deformation gradient theory for elastic–plastic materials: strain softening and regularization of shear bands
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2011.10.002
– year: 1992
  ident: 10.1016/j.ijplas.2016.09.009_bib64
– volume: 40
  start-page: 23
  year: 2013
  ident: 10.1016/j.ijplas.2016.09.009_bib22
  article-title: Microstructural examination of quasi-static and dynamic shear in high-purity iron
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2012.06.005
– volume: 101
  year: 2008
  ident: 10.1016/j.ijplas.2016.09.009_bib66
  article-title: Dynamic recrystallization as a potential cause for adiabatic shear failure
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.165501
– volume: 15
  start-page: 1862
  year: 1980
  ident: 10.1016/j.ijplas.2016.09.009_bib40
  article-title: Finite rotation effects in numerical integration of rate constitutive equations arising in large-deformation analysis
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1620151210
– volume: 190
  start-page: 2555
  year: 2001
  ident: 10.1016/j.ijplas.2016.09.009_bib18
  article-title: Strain localization in frictional materials exhibiting displacement jumps
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(00)00253-X
– volume: 197
  start-page: 2789
  year: 2008
  ident: 10.1016/j.ijplas.2016.09.009_bib17
  article-title: Assumed enhanced strain and the extended finite element methods: a unification of concepts
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2008.01.019
– volume: 501
  start-page: 207
  year: 2009
  ident: 10.1016/j.ijplas.2016.09.009_bib23
  article-title: The influence of microstructure on the mechanical response of copper in shear
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2008.10.029
– volume: 57
  start-page: 788
  year: 2009
  ident: 10.1016/j.ijplas.2016.09.009_bib48
  article-title: Thermal softening induced plastic instability in rate-dependent materials
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2008.04.010
– volume: 37
  start-page: 2447
  year: 2006
  ident: 10.1016/j.ijplas.2016.09.009_bib79
  article-title: Development of adiabatic shear bands in annealed 316l stainless steel: part II. TEM studies of the evolution of microstructure during deformation localization
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/BF02586218
– volume: 54
  start-page: 503
  year: 2014
  ident: 10.1016/j.ijplas.2016.09.009_bib16
  article-title: Isogeometric analysis of shear bands
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-014-1002-8
– volume: 15
  start-page: 1413
  year: 1980
  ident: 10.1016/j.ijplas.2016.09.009_bib39
  article-title: Generalization of selective integration procedures to anisotropic and nonlinear media
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1620150914
– volume: 58
  start-page: 187
  year: 2010
  ident: 10.1016/j.ijplas.2016.09.009_bib51
  article-title: Multiresolution continuum modeling of micro-void assisted dynamic adiabatic shear band propagation
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2009.10.006
– volume: 21
  start-page: 1618
  year: 2005
  ident: 10.1016/j.ijplas.2016.09.009_bib4
  article-title: Plastic deformation modeling of AL-6XN strainless steel at low and high strain rates and temperatures using a combination of bcc and fcc mechanisms of metals
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2004.11.003
– year: 2013
  ident: 10.1016/j.ijplas.2016.09.009_bib15
– year: 2002
  ident: 10.1016/j.ijplas.2016.09.009_bib74
– volume: 91
  start-page: 1291
  year: 2012
  ident: 10.1016/j.ijplas.2016.09.009_bib8
  article-title: Three-dimensional finite elements with embedded strong discontinuities to model material failure in the infinitesimal range
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.4314
– volume: 289
  start-page: 179
  year: 2015
  ident: 10.1016/j.ijplas.2016.09.009_bib11
  article-title: Onset of shear band localization by a local generalized eigenvalue analysis
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2015.02.010
– volume: 62
  start-page: 1013
  year: 2005
  ident: 10.1016/j.ijplas.2016.09.009_bib81
  article-title: A class of variational strain-localization finite elements. Int
  publication-title: J. Numer. Methods Eng.
  doi: 10.1002/nme.1199
– volume: 39
  start-page: 1213
  year: 2002
  ident: 10.1016/j.ijplas.2016.09.009_bib45
  article-title: Mesh-free Galerkin simulations of dynamic shear band propagation and failure mode transition
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/S0020-7683(01)00188-3
– volume: 55
  start-page: 6108
  year: 2007
  ident: 10.1016/j.ijplas.2016.09.009_bib71
  article-title: Formation of shear bands and strain-induced martensitie during plastic deformation of metastable austenitic stainless steels
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2007.07.015
– volume: 610
  start-page: 301
  year: 2014
  ident: 10.1016/j.ijplas.2016.09.009_bib73
  article-title: An EBSD investigation on deformation-induced shear bands in a low nickel austenitic stainless steel under controlled shock-loading conditions
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2014.05.053
– year: 2014
  ident: 10.1016/j.ijplas.2016.09.009_bib30
– year: 1998
  ident: 10.1016/j.ijplas.2016.09.009_bib69
– volume: 188
  start-page: 39
  year: 2000
  ident: 10.1016/j.ijplas.2016.09.009_bib33
  article-title: A variational multiscale approach to strain localization–formulation for multidimensional problems
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(99)00156-5
– volume: 36
  start-page: 81
  year: 1988
  ident: 10.1016/j.ijplas.2016.09.009_bib32
  article-title: A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(88)90030-2
– volume: 51
  start-page: 807
  year: 2013
  ident: 10.1016/j.ijplas.2016.09.009_bib49
  article-title: Mesh insensitive formulation for initiation and growth of shear bands using mixed finite elements
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-012-0765-z
– volume: 26
  start-page: 2493
  year: 1995
  ident: 10.1016/j.ijplas.2016.09.009_bib55
  article-title: High-strain, high-strain-rate behavior of tantalum
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/BF02669407
– volume: 191
  start-page: 73
  year: 2001
  ident: 10.1016/j.ijplas.2016.09.009_bib44
  article-title: Dynamic shear band propagation and micro-structure of adiabatic shear band
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(01)00245-6
– volume: 160
  start-page: 119
  year: 2009
  ident: 10.1016/j.ijplas.2016.09.009_bib10
  article-title: Numerical simulation of dynamic fracture using finite elements with embedded discontinuities
  publication-title: Int. J. Fract.
  doi: 10.1007/s10704-009-9413-9
– volume: 55
  start-page: 2351
  year: 2007
  ident: 10.1016/j.ijplas.2016.09.009_bib21
  article-title: Modeling the microstructural evolution of metallic polycrystalline materials under localization conditions
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2007.03.019
– volume: 188
  start-page: 307
  year: 2000
  ident: 10.1016/j.ijplas.2016.09.009_bib41
  article-title: Comparative study on finite elements with embedded discontinuities
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(99)00154-1
– volume: 53
  start-page: 941
  year: 2014
  ident: 10.1016/j.ijplas.2016.09.009_bib56
  article-title: Incrementally objective implicit integration of hypoelastic–viscoplastic constitutive equations based on the mechanical threshold strength model
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-013-0941-9
– volume: 285
  start-page: 346
  year: 2015
  ident: 10.1016/j.ijplas.2016.09.009_bib76
  article-title: Extended embedded finite elements with continuous displacement jumps for the modeling of localized failure in solids
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2014.11.013
– volume: 611
  start-page: 100
  year: 2014
  ident: 10.1016/j.ijplas.2016.09.009_bib72
  article-title: Microstructural evolution in adiabatic shear band in the ultrafine-grained austenitic stainless steel processed by multi-axial compression
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2014.05.082
– volume: 22
  start-page: 654
  year: 2006
  ident: 10.1016/j.ijplas.2016.09.009_bib5
  article-title: A physically based gradient plasticity theory
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2005.04.010
– volume: 1
  start-page: 205
  year: 1985
  ident: 10.1016/j.ijplas.2016.09.009_bib75
  article-title: The initiation and growth of adiabatic shear bands
  publication-title: Int. J. Plast.
  doi: 10.1016/0749-6419(85)90003-8
– volume: 135
  year: 2013
  ident: 10.1016/j.ijplas.2016.09.009_bib3
  article-title: Dynamic localizations in HSLA-65 and DH-36 structural steel at elevated temperatures
  publication-title: J. Eng. Mater. Technol.
  doi: 10.1115/1.4023775
– volume: 32
  start-page: 1733
  year: 2011
  ident: 10.1016/j.ijplas.2016.09.009_bib46
  article-title: A critical review of experimental results and constitutive descriptions for metals and alloys in hot working
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2010.11.048
– volume: 6
  start-page: 025008
  year: 2016
  ident: 10.1016/j.ijplas.2016.09.009_bib63
  article-title: Numerical simulation of systems of shear bands in ductile metal with inclusions
  publication-title: AIP Adv.
  doi: 10.1063/1.4941928
– volume: 25
  start-page: 2349
  year: 2009
  ident: 10.1016/j.ijplas.2016.09.009_bib37
  article-title: A finite thickness band method for ductile fracture analysis
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2009.03.005
– volume: 196
  start-page: 595
  year: 2006
  ident: 10.1016/j.ijplas.2016.09.009_bib57
  article-title: Advances in the numerical treatment of grain-boundary migration: coupling with mass transport and mechanics
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2006.06.005
– volume: 197
  start-page: 3138
  year: 2008
  ident: 10.1016/j.ijplas.2016.09.009_bib9
  article-title: New finite elements with embedded strong discontinuities in the finite deformation range
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2008.02.021
– volume: 35
  start-page: 407
  year: 1987
  ident: 10.1016/j.ijplas.2016.09.009_bib7
  article-title: Onset of shear localization in viscoplastic solids
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/0022-5096(87)90045-7
– volume: 30
  start-page: 247
  year: 1988
  ident: 10.1016/j.ijplas.2016.09.009_bib28
  article-title: Elements with embedded localization zones for large deformation problems
  publication-title: Comp. Struct.
  doi: 10.1016/0045-7949(88)90230-1
– volume: 61
  start-page: 189
  year: 1987
  ident: 10.1016/j.ijplas.2016.09.009_bib60
  article-title: A finite element method for localized failure analysis
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(87)90004-1
– volume: 56
  start-page: 11
  year: 2013
  ident: 10.1016/j.ijplas.2016.09.009_bib62
  article-title: The respective influence of microstructural and thermal softening on adiabatic shear localization
  publication-title: Mech. Mater.
  doi: 10.1016/j.mechmat.2012.09.008
– year: 1975
  ident: 10.1016/j.ijplas.2016.09.009_bib42
– volume: 48
  start-page: 6157
  year: 2013
  ident: 10.1016/j.ijplas.2016.09.009_bib58
  article-title: Strain-induced martensite formation in austenitic stainless steel
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-013-7412-8
– start-page: 657
  year: 1986
  ident: 10.1016/j.ijplas.2016.09.009_bib53
  article-title: Critical adiabatic shear strength of low alloyed steel under compressive loading
– volume: 13
  start-page: 619
  year: 1982
  ident: 10.1016/j.ijplas.2016.09.009_bib34
  article-title: Effects of strain state and strain rate on deformation-induced transformation in 304 stainless steel: part I. magnetic measurements and mechanical behavior
  publication-title: Metall. Trans. A
  doi: 10.1007/BF02644427
– volume: 134
  year: 2012
  ident: 10.1016/j.ijplas.2016.09.009_bib29
  article-title: An internal state variable constitutive model for deformation of austenitic stainless steels
  publication-title: J. Eng. Mater. Technol.
  doi: 10.1115/1.4006822
– volume: 53
  start-page: 51
  year: 1986
  ident: 10.1016/j.ijplas.2016.09.009_bib68
  article-title: On the variational foundations of assumed strain methods
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.3171737
– volume: 55
  start-page: 1439
  year: 2007
  ident: 10.1016/j.ijplas.2016.09.009_bib52
  article-title: On criteria for dynamic adiabatic shear band propagation
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2006.12.006
– volume: 299
  start-page: 287
  year: 2001
  ident: 10.1016/j.ijplas.2016.09.009_bib77
  article-title: Shear localization and recrystallization in dynamic deformation of 8090 Al–Li alloy
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/S0921-5093(00)01412-X
– volume: 87
  start-page: 156
  year: 2016
  ident: 10.1016/j.ijplas.2016.09.009_bib12
  article-title: Instability analysis of shear bands using the instantaneous growth-rate method
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2015.04.004
– volume: 53
  start-page: 925
  year: 2014
  ident: 10.1016/j.ijplas.2016.09.009_bib50
  article-title: A Pian–Sumihara type element for modeling shear bands at finite deformation
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-013-0940-x
– volume: 54
  start-page: 279
  year: 1986
  ident: 10.1016/j.ijplas.2016.09.009_bib13
  article-title: Efficient implementation of quadrilaterals with high coarse-mesh accuracy
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(86)90107-6
– volume: 36
  start-page: 1471
  year: 2005
  ident: 10.1016/j.ijplas.2016.09.009_bib80
  article-title: Influence of shock prestraining on the formation of shear localization in 304 stainless steel
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-005-0239-4
– volume: 36
  start-page: 35
  year: 1997
  ident: 10.1016/j.ijplas.2016.09.009_bib25
  article-title: Growth of nuclei in a cellular automaton simulation of recrystallisation
  publication-title: Scr. Mater.
  doi: 10.1016/S1359-6462(96)00331-4
– volume: 195
  start-page: 4732
  year: 2006
  ident: 10.1016/j.ijplas.2016.09.009_bib59
  article-title: A comparative study on finite elements for capturing strong discontinuities: E-FEM vs X-FEM
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2005.09.020
– year: 2014
  ident: 10.1016/j.ijplas.2016.09.009_bib27
– volume: 45
  start-page: 635
  year: 1997
  ident: 10.1016/j.ijplas.2016.09.009_bib36
  article-title: Recrystallization kinetics within adiabatic shear bands
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(96)00193-0
– volume: 72
  start-page: 1391
  year: 2007
  ident: 10.1016/j.ijplas.2016.09.009_bib47
  article-title: Finite elements with embedded strong discontinuities for the modeling of failure in solids
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.2042
– volume: 22
  start-page: 1304
  year: 2006
  ident: 10.1016/j.ijplas.2016.09.009_bib19
  article-title: An experimental and numerical study of the localization behavior of tantalum and stainless steel
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2005.10.002
– year: 2012
  ident: 10.1016/j.ijplas.2016.09.009_bib26
– volume: 28
  start-page: 53
  year: 2012
  ident: 10.1016/j.ijplas.2016.09.009_bib38
  article-title: A finite strain, finite band method for modeling ductile fracture
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2011.05.010
– volume: 96
  year: 2006
  ident: 10.1016/j.ijplas.2016.09.009_bib67
  article-title: Adiabatic shear failure and dynamic stored energy of cold work
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.075502
– volume: 486
  start-page: 283
  year: 2008
  ident: 10.1016/j.ijplas.2016.09.009_bib24
  article-title: Morphologies and characteristics of deformation induced martensite during tensile deformation of 304 LN stainless steel
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2007.09.005
– volume: 70
  start-page: 59
  year: 1988
  ident: 10.1016/j.ijplas.2016.09.009_bib14
  article-title: A finite element with embedded localization zones
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(88)90180-6
– volume: 67
  start-page: 868
  year: 2006
  ident: 10.1016/j.ijplas.2016.09.009_bib70
  article-title: A method for dynamic crack and shear band propagation with phantom nodes
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1652
– volume: 14
  start-page: 93
  year: 1990
  ident: 10.1016/j.ijplas.2016.09.009_bib43
  article-title: Finite element analysis of transient strain localization phenomena in frictional solids
  publication-title: Int. J. Numer. Anal. Methods Geomech.
  doi: 10.1002/nag.1610140203
– start-page: 448
  year: 1994
  ident: 10.1016/j.ijplas.2016.09.009_bib54
– volume: 38
  start-page: 1241
  year: 1990
  ident: 10.1016/j.ijplas.2016.09.009_bib31
  article-title: Low-temperature and high-strain-rate deformation of nickel and nickel-carbon alloys and analysis of the constitutive behavior according to an internal state variable model
  publication-title: Acta Metall. Mater
  doi: 10.1016/0956-7151(90)90195-M
– volume: 93
  start-page: 211
  year: 2003
  ident: 10.1016/j.ijplas.2016.09.009_bib65
  article-title: Model of plastic deformation for extreme loading conditions
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1524706
– volume: 119
  start-page: 085103
  year: 2016
  ident: 10.1016/j.ijplas.2016.09.009_bib20
  article-title: Response and representation of ductile damage under varying shock loading conditions in tantalum
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4941823
– volume: 473
  start-page: 279
  year: 2008
  ident: 10.1016/j.ijplas.2016.09.009_bib78
  article-title: EBSD characterization of dynamic shear band regions in pre-shocked and as-received 304 strainless steels
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2007.04.048
SSID ssj0005831
Score 2.3968832
Snippet This paper describes a theoretical and computational framework for the treatment of adiabatic shear band formation in rate-sensitive polycrystalline metallic...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Adiabatic flow
Adiabatic shear bands
B. Elastic-viscoplastic material
B. Finite strain
Banding
C. Finite elements
Computation
Computational mathematics
Computer simulation
Deformation
Deformation mechanisms
Dissipation
Dynamic recrystallization
Edge dislocations
Finite element analysis
Finite element method
Mathematical analysis
Mathematical models
Photomicrographs
Plastic deformation
Recrystallization
Shear
Shear localization
Shear strength
Softening
Split Hopkinson pressure bars
Stainless steel
Stainless steels
State variable
Strain localization
Strain rate
Studies
Time integration
Work hardening
Yield strength
Title Modeling and simulation framework for dynamic strain localization in elasto-viscoplastic metallic materials subject to large deformations
URI https://dx.doi.org/10.1016/j.ijplas.2016.09.009
https://www.proquest.com/docview/1937683864
Volume 88
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSsQwEA6LXvTgz6r4s0oOXuOubZptjiIuq4IXXfAWkk0ClXV3sdWjD-BT-Cw-mTNpKqsIgre0pCXtTGa-lm--IeQ4S7zJUXI2dXnGuEks054nTCbeS-2CgAyyLW7EcMSv7rP7FjlvamGQVhljfx3TQ7SOZ7rxbXbnRdG9heQnBYfvDQFOKgQW_HLeRy8_eV2geeR1T0KYzHB2Uz4XOF7FwxwwKhK8RFA7RVri7-npR6AO2WewQdYibKRn9co2SctN22Q9QkgaN2jZJqsL-oJb5A07nWG9OdVTS8viMfbqor6hZFHArNTWXelpGfpF0JDeYnkmhWMHi69m7KXAChYcw9RHB6B9ggNd1T5My2eD_3RoNft4nyC_nFr3VRpZbpPR4OLufMhi8wU2TvNexaQeS-fTTHtp-jazWZZa2L3G9AGyOSP0ONc8c5JrlDp2aAfrcu216HEvARTtkKXpbOp2CXUiQVk2l1iUwkE1HQ0Rlp8aB9juNPd7JG3euRpHZXJ84IlqKGgPqraUQkupnlRgqT3Cvq6a18ocf8zvN-ZU3zxMQfL448pOY30Vd3ipAPjCl1qaC77_7xsfkJUEUUL4o9MhS9XTszsEjFOZo-DER2T57PJ6ePMJUDoALw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTtwwEB3R5dD2AC1tVQptfejV2iWxvfYRIdBS6F4KEjfLXttS0LK7agIfwVfwLXxZZxKH0goJqbcksqPEY888W2_eAHyTRfKaJGfLqCUXvgjcJVFwU6RkXGwFZIhtMVWTc_H9Ql6swUGfC0O0yuz7O5_eeuv8ZJhHc7iqquFPDH5GCdxvKJykSukXsE7qVHIA6_vHJ5PpH6aH7soSYntOHfoMupbmVV2uEKYSx0u1gqfETHw6Qv3jq9sAdPQGNjJyZPvdx72FtbjYgs2MIlleo_UWvH4kMfgObqnYGaWcM7cIrK6ucrkulnpWFkPYykJXmJ7VbckI1ka4nKHJ8D7ixzdLflNREgtdY9OriLh9Theu6aYxq689HeuwZnl_NyeKOQvxITuyfg_nR4dnBxOe6y_wWalHDTduZmIqpUvGj4MMUpYBF7D3Y0Rt0Ss3007IaIQjteNIpghRu-TUSCSDuOgDDBbLRfwILKqClNliEUgNhwR1HDpZsecjwrs9nbah7MfczrI4Of3w3PYstEvbWcqSpezIWLTUNvCHXqtOnOOZ9uPenPavSWYxfjzTc7e3vs2LvLaIfXGzVmolPv33i7_Cy8nZj1N7ejw92YFXBYGG9oBnFwbNr-v4GSFP47_kKf0bBzYC4A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+and+simulation+framework+for+dynamic+strain+localization+in+elasto-viscoplastic+metallic+materials+subject+to%C2%A0large+deformations&rft.jtitle=International+journal+of+plasticity&rft.au=Mourad%2C+H.M.&rft.au=Bronkhorst%2C+C.A.&rft.au=Livescu%2C+V.&rft.au=Plohr%2C+J.N.&rft.date=2017-01-01&rft.issn=0749-6419&rft.volume=88&rft.spage=1&rft.epage=26&rft_id=info:doi/10.1016%2Fj.ijplas.2016.09.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijplas_2016_09_009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6419&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6419&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6419&client=summon