Kernel estimation in semiparametric mixed effect longitudinal modeling
HIV damages the immune system by targeting the CD4 cells. Hence CD4 count data modeling is important in the analysis of HIV infection. This paper considers a semiparametric mixed effects model for the analysis of CD4 longitudinal data. The model is a natural extension to the linear mixed and semipar...
Saved in:
Published in | Statistical papers (Berlin, Germany) Vol. 62; no. 3; pp. 1095 - 1116 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | HIV damages the immune system by targeting the CD4 cells. Hence CD4 count data modeling is important in the analysis of HIV infection. This paper considers a semiparametric mixed effects model for the analysis of CD4 longitudinal data. The model is a natural extension to the linear mixed and semiparametric models that uses parametric linear model to present the covariate effects and an arbitrary nonparametric smooth function to model the time effect and account for the within subject correlation using random effects. We approximate the nonparametric function by the profile kernel method, and make use of the weighted least squares to estimate the regression coefficients. Under some regularity conditions, the asymptotic normality of the resulting estimator is established and the performance is compared with the backfitting method. Although, two estimators share the same asymptotic variance matrix for independent data, it is shown that, backfitting often produces larger bias and variance than the profile-kernel method, asymptotically. Consequently, the use of backfitting method is no longer advised in semiparametric mixed effect longitudinal model. For practical implementation and also improve efficiency, the estimation of the covariance function is accomplished using an iterative algorithm. Performance of the proposed methods are compared through a simulation study and the analysis of CD4 data. |
---|---|
AbstractList | HIV damages the immune system by targeting the CD4 cells. Hence CD4 count data modeling is important in the analysis of HIV infection. This paper considers a semiparametric mixed effects model for the analysis of CD4 longitudinal data. The model is a natural extension to the linear mixed and semiparametric models that uses parametric linear model to present the covariate effects and an arbitrary nonparametric smooth function to model the time effect and account for the within subject correlation using random effects. We approximate the nonparametric function by the profile kernel method, and make use of the weighted least squares to estimate the regression coefficients. Under some regularity conditions, the asymptotic normality of the resulting estimator is established and the performance is compared with the backfitting method. Although, two estimators share the same asymptotic variance matrix for independent data, it is shown that, backfitting often produces larger bias and variance than the profile-kernel method, asymptotically. Consequently, the use of backfitting method is no longer advised in semiparametric mixed effect longitudinal model. For practical implementation and also improve efficiency, the estimation of the covariance function is accomplished using an iterative algorithm. Performance of the proposed methods are compared through a simulation study and the analysis of CD4 data. |
Author | Arashi, M. Taavoni, M. |
Author_xml | – sequence: 1 givenname: M. surname: Taavoni fullname: Taavoni, M. organization: Department of Statistic, Faculty of Mathematical Sciences, Shahrood University of Technology – sequence: 2 givenname: M. orcidid: 0000-0002-5881-9241 surname: Arashi fullname: Arashi, M. email: m_arashi_stat@yahoo.com organization: Department of Statistic, Faculty of Mathematical Sciences, Shahrood University of Technology |
BookMark | eNp9kEtLAzEUhYNUsFb_gKsB16N5TF5LKVbFghtdh8zMnZIyk6lJCvrvTTuC4KKLe-_mnHMP3yWa-dEDQjcE3xGM5X3EmAlaYqLzEMpLdYbmRBBWaqnVDM2xZrTkmIoLdBnjFmOilMJztHqF4KEvICY32ORGXzhfRBjczgY7QAquKQb3BW0BXQdNKvrRb1zat87bvhjGFnrnN1fovLN9hOvfu0Afq8f35XO5fnt6WT6sy4YpnEqtKqYYE5q10vK2VpbLBtfSgpB51ZYTzWWlQHe1rK1gpNKykh2V1HLAii3Q7ZS7C-PnPpc223EfcpNoKKda4IrT0yrKpRZSc5FVdFI1YYwxQGd2ITMI34Zgc6BqJqomUzVHquYQrf6ZGpeO3FKwrj9tZZM15j9-A-Gv1QnXD2LsjNw |
CitedBy_id | crossref_primary_10_3390_math12172787 crossref_primary_10_1080_00949655_2020_1836642 crossref_primary_10_3390_sym14102194 crossref_primary_10_17776_csj_671812 crossref_primary_10_1080_02331888_2024_2378301 crossref_primary_10_1111_sjos_12639 crossref_primary_10_1002_cpe_6780 |
Cites_doi | 10.1080/01621459.1997.10474001 10.1007/s00362-017-0893-9 10.1016/j.jmva.2016.01.005 10.1080/01621459.1994.10476774 10.2307/2532783 10.1016/j.jmva.2007.01.006 10.1198/016214504000001060 10.1016/j.csda.2009.11.021 10.1198/016214502388618861 10.1198/016214507000000095 10.1093/biomet/91.2.251 10.1198/016214504000000629 10.1093/biomet/90.1.43 10.1080/00949655.2014.989852 10.1093/biomet/89.3.579 10.1111/j.1541-0420.2008.01050.x 10.1016/0167-7152(86)90067-2 10.1198/016214501753208708 10.1002/sim.6144 10.1177/0962280215620229 10.1111/j.0006-341X.2004.00165.x 10.1111/j.2517-6161.1988.tb01738.x 10.1111/j.1467-9469.2010.00696.x 10.1007/s10463-007-0146-0 10.1016/j.jmva.2015.01.002 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2019 Statistical Papers is a copyright of Springer, (2019). All Rights Reserved. Springer-Verlag GmbH Germany, part of Springer Nature 2019. |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019 – notice: Statistical Papers is a copyright of Springer, (2019). All Rights Reserved. – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AO 8C1 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ JQ2 K60 K6~ L.- L6V L7M L~C L~D M0C M2P M7S PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PTHSS Q9U PRINS |
DOI | 10.1007/s00362-019-01125-8 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Science Database Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering collection ProQuest Central Basic ProQuest Central China |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ABI/INFORM Complete ProQuest One Applied & Life Sciences Health Research Premium Collection Health & Medical Research Collection ProQuest Central (New) Engineering Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) ProQuest Central China |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Statistics |
EISSN | 1613-9798 |
EndPage | 1116 |
ExternalDocumentID | 10_1007_s00362_019_01125_8 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 88I 8AO 8C1 8FE 8FG 8FL 8TC 8UJ 8V8 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBA EBLON EBO EBR EBS EBU EIOEI EJD EMK EOH EPL ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6~ KDC KOV L6V LAS LLZTM M0C M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R89 R9I RHV RIG ROL RPX RSV S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TSG TSK TSV TUC U2A UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z87 Z88 Z8M Z8O Z8R Z8T Z8U Z8W Z91 Z92 ZMTXR ZWQNP ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U PRINS |
ID | FETCH-LOGICAL-c380t-9843833693d7a5db8a57c0b7ae677aeba5195748e9fb7ba63149747f272a5e083 |
IEDL.DBID | BENPR |
ISSN | 0932-5026 |
IngestDate | Sat Aug 23 12:46:05 EDT 2025 Fri Jul 25 19:34:35 EDT 2025 Tue Jul 01 03:01:34 EDT 2025 Thu Apr 24 22:55:10 EDT 2025 Fri Feb 21 02:48:18 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Backfitting CD4 data Asymptotic distribution Longitudinal data Kernel Semiparametric mixed effects model |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c380t-9843833693d7a5db8a57c0b7ae677aeba5195748e9fb7ba63149747f272a5e083 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5881-9241 |
PQID | 2257967956 |
PQPubID | 31177 |
PageCount | 22 |
ParticipantIDs | proquest_journals_2529604528 proquest_journals_2257967956 crossref_primary_10_1007_s00362_019_01125_8 crossref_citationtrail_10_1007_s00362_019_01125_8 springer_journals_10_1007_s00362_019_01125_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Statistical papers (Berlin, Germany) |
PublicationTitleAbbrev | Stat Papers |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | LinXCarrollRJSemiparametric regression for clustered data using generalised estimating equationsJ Am Stat Assoc20019610455610.1198/016214501753208708 LiangHGeneralized partially linear mixed-effects models incorporating mismeasured covariatesAnn Inst Stat Math2009612746248102710.1007/s10463-007-0146-0 LiZZhuLOn variance components in semiparametric mixed models for longitudinal dataScand J Stat201037442457272450710.1111/j.1467-9469.2010.00696.x WangWLLinTIBayesian analysis of multivariate t linear mixed models with missing responses at randomJ Stat Comput Simul20158535943612339568610.1080/00949655.2014.989852 QinGYZhuZYRobust estimation in generalized semiparametric mixed models for longitudinal dataJ Mult Anal20079816581683237011210.1016/j.jmva.2007.01.006 ZegerSLDigglePJSemi-parametric models for longitudinal data with application to CD4 cell numbers in HIV seroconvertersBiometrics1994506899910.2307/2532783 OpsomerJDRuppertDA root-n consistent backfitting estimator for semiparametric additive modelingJ Comput Graph Stat1999871532 WangNCarrollRLinXHEfficient semiparametric marginal estimation for longitudinal/clustered dataJ Am Stat Assoc2005100147157215682510.1198/016214504000000629 WangNMarginal nonparametric kernel regression accounting for within-subject correlationBiometrika2003904352196654910.1093/biomet/90.1.43 WangWLLinTIMultivariate t nonlinear mixed-effects models for multi-outcome longitudinal data with missing valuesStat Med20143330293046326052010.1002/sim.6144 WuCFJOn the convergence properties of the EM algorithmAnal Stat198311951036848670517.62035 AkdenizFRoozbehMGeneralized difference-based weighted mixed almost unbiased ridge estimator in partially linear models2017BaselStatistical Papers10.1007/s00362-017-0893-906848001 RoozbehMShrinkage ridge estimators in semiparametric regression modelsJ Mult Anal20151365674332147910.1016/j.jmva.2015.01.002 HeXMZhuZYFungWKEstimation in a semiparametric model for longitudinal data with unspecified dependence structureBiometrika200289579590192916410.1093/biomet/89.3.579 SeveriniTAStaniswalisJGQuasi-likelihood estimation in semi-parametric modelsJ Am Stat Assoc1994895011210.1080/01621459.1994.10476774 FanJQLiRZNew estimation and model selection procedures for semiparametric modeling in longitudinal data analysisJ Am Stat Assoc200499710723209090510.1198/016214504000001060 FitzmauriceGMLairdNMWareJHApplied longitudinal analysis2004HobokenWiley1057.62052 HuZWangNCarrollRProfile-kernel versus backfitting in the partially linear models for longitudinal/clustered dataBiometrika200491251262208129910.1093/biomet/91.2.251 CarrollRJFanJGijbelsIWandMPGeneralised linear single-index modelsJ Am Stat Assoc1997924778910.1080/01621459.1997.10474001 RoozbehMRobust ridge estimator in restricted semiparametric regression modelsJ Mult Anal2016147127144348417310.1016/j.jmva.2016.01.005 YuYRuppertDPenalised spline estimation for partially linear single index modelsJ Am Stat Assoc20029710425410.1198/016214502388618861 FanJQHuangTLiRZAnalysis of longitudinal data with semiparametric estimation of covariance functionJ Am Stat Assoc200710263264110.1198/016214507000000095 WangWLFanTHECM-based maximum likelihood inference for multivariate linear mixed models with autoregressive errorsComput Stat Data Anal20105413281341260083510.1016/j.csda.2009.11.021 WangWLLinTILachosVHExtending multivariate-t linear mixed models for multiple longitudinal data with censored responses and heavy tailsMeth Med Res Stat2015274864374565410.1177/0962280215620229 ZhangDGeneralized linear mixed models with varying coefficients for longitudinal dataBiometrics200460815204361310.1111/j.0006-341X.2004.00165.x QinGYZhuZYRobustified maximum likelihood estimation in generalized partial linear mixed model for longitudinal dataBiometrics2009655259266584510.1111/j.1541-0420.2008.01050.x RiceJAConvergence rates for partially splined modelsStat Prob Lett19864204884871810.1016/0167-7152(86)90067-2 SpeckmanPERegression analysis for partially linear modelsJ R Stat Soc B1988504134369709770671.62045 H Liang (1125_CR9) 2009; 61 X Lin (1125_CR10) 2001; 96 WL Wang (1125_CR20) 2010; 54 D Zhang (1125_CR28) 2004; 60 Z Hu (1125_CR7) 2004; 91 GM Fitzmaurice (1125_CR5) 2004 GY Qin (1125_CR12) 2007; 98 JA Rice (1125_CR14) 1986; 4 WL Wang (1125_CR24) 2015; 27 JQ Fan (1125_CR4) 2007; 102 RJ Carroll (1125_CR2) 1997; 92 F Akdeniz (1125_CR1) 2017 M Roozbeh (1125_CR15) 2015; 136 Z Li (1125_CR8) 2010; 37 SL Zeger (1125_CR27) 1994; 50 M Roozbeh (1125_CR16) 2016; 147 WL Wang (1125_CR22) 2015; 85 PE Speckman (1125_CR18) 1988; 50 GY Qin (1125_CR13) 2009; 65 JQ Fan (1125_CR3) 2004; 99 CFJ Wu (1125_CR25) 1983; 11 N Wang (1125_CR23) 2005; 100 Y Yu (1125_CR26) 2002; 97 JD Opsomer (1125_CR11) 1999; 8 WL Wang (1125_CR21) 2014; 33 TA Severini (1125_CR17) 1994; 89 N Wang (1125_CR19) 2003; 90 XM He (1125_CR6) 2002; 89 |
References_xml | – reference: QinGYZhuZYRobust estimation in generalized semiparametric mixed models for longitudinal dataJ Mult Anal20079816581683237011210.1016/j.jmva.2007.01.006 – reference: RiceJAConvergence rates for partially splined modelsStat Prob Lett19864204884871810.1016/0167-7152(86)90067-2 – reference: YuYRuppertDPenalised spline estimation for partially linear single index modelsJ Am Stat Assoc20029710425410.1198/016214502388618861 – reference: SeveriniTAStaniswalisJGQuasi-likelihood estimation in semi-parametric modelsJ Am Stat Assoc1994895011210.1080/01621459.1994.10476774 – reference: LinXCarrollRJSemiparametric regression for clustered data using generalised estimating equationsJ Am Stat Assoc20019610455610.1198/016214501753208708 – reference: OpsomerJDRuppertDA root-n consistent backfitting estimator for semiparametric additive modelingJ Comput Graph Stat1999871532 – reference: SpeckmanPERegression analysis for partially linear modelsJ R Stat Soc B1988504134369709770671.62045 – reference: WangWLLinTIBayesian analysis of multivariate t linear mixed models with missing responses at randomJ Stat Comput Simul20158535943612339568610.1080/00949655.2014.989852 – reference: FanJQLiRZNew estimation and model selection procedures for semiparametric modeling in longitudinal data analysisJ Am Stat Assoc200499710723209090510.1198/016214504000001060 – reference: CarrollRJFanJGijbelsIWandMPGeneralised linear single-index modelsJ Am Stat Assoc1997924778910.1080/01621459.1997.10474001 – reference: LiangHGeneralized partially linear mixed-effects models incorporating mismeasured covariatesAnn Inst Stat Math2009612746248102710.1007/s10463-007-0146-0 – reference: FitzmauriceGMLairdNMWareJHApplied longitudinal analysis2004HobokenWiley1057.62052 – reference: AkdenizFRoozbehMGeneralized difference-based weighted mixed almost unbiased ridge estimator in partially linear models2017BaselStatistical Papers10.1007/s00362-017-0893-906848001 – reference: RoozbehMRobust ridge estimator in restricted semiparametric regression modelsJ Mult Anal2016147127144348417310.1016/j.jmva.2016.01.005 – reference: WangWLLinTIMultivariate t nonlinear mixed-effects models for multi-outcome longitudinal data with missing valuesStat Med20143330293046326052010.1002/sim.6144 – reference: HeXMZhuZYFungWKEstimation in a semiparametric model for longitudinal data with unspecified dependence structureBiometrika200289579590192916410.1093/biomet/89.3.579 – reference: QinGYZhuZYRobustified maximum likelihood estimation in generalized partial linear mixed model for longitudinal dataBiometrics2009655259266584510.1111/j.1541-0420.2008.01050.x – reference: WangNCarrollRLinXHEfficient semiparametric marginal estimation for longitudinal/clustered dataJ Am Stat Assoc2005100147157215682510.1198/016214504000000629 – reference: WuCFJOn the convergence properties of the EM algorithmAnal Stat198311951036848670517.62035 – reference: RoozbehMShrinkage ridge estimators in semiparametric regression modelsJ Mult Anal20151365674332147910.1016/j.jmva.2015.01.002 – reference: FanJQHuangTLiRZAnalysis of longitudinal data with semiparametric estimation of covariance functionJ Am Stat Assoc200710263264110.1198/016214507000000095 – reference: HuZWangNCarrollRProfile-kernel versus backfitting in the partially linear models for longitudinal/clustered dataBiometrika200491251262208129910.1093/biomet/91.2.251 – reference: ZhangDGeneralized linear mixed models with varying coefficients for longitudinal dataBiometrics200460815204361310.1111/j.0006-341X.2004.00165.x – reference: LiZZhuLOn variance components in semiparametric mixed models for longitudinal dataScand J Stat201037442457272450710.1111/j.1467-9469.2010.00696.x – reference: ZegerSLDigglePJSemi-parametric models for longitudinal data with application to CD4 cell numbers in HIV seroconvertersBiometrics1994506899910.2307/2532783 – reference: WangNMarginal nonparametric kernel regression accounting for within-subject correlationBiometrika2003904352196654910.1093/biomet/90.1.43 – reference: WangWLFanTHECM-based maximum likelihood inference for multivariate linear mixed models with autoregressive errorsComput Stat Data Anal20105413281341260083510.1016/j.csda.2009.11.021 – reference: WangWLLinTILachosVHExtending multivariate-t linear mixed models for multiple longitudinal data with censored responses and heavy tailsMeth Med Res Stat2015274864374565410.1177/0962280215620229 – volume: 92 start-page: 477 year: 1997 ident: 1125_CR2 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1997.10474001 – volume-title: Generalized difference-based weighted mixed almost unbiased ridge estimator in partially linear models year: 2017 ident: 1125_CR1 doi: 10.1007/s00362-017-0893-9 – volume-title: Applied longitudinal analysis year: 2004 ident: 1125_CR5 – volume: 147 start-page: 127 year: 2016 ident: 1125_CR16 publication-title: J Mult Anal doi: 10.1016/j.jmva.2016.01.005 – volume: 89 start-page: 501 year: 1994 ident: 1125_CR17 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1994.10476774 – volume: 50 start-page: 689 year: 1994 ident: 1125_CR27 publication-title: Biometrics doi: 10.2307/2532783 – volume: 98 start-page: 1658 year: 2007 ident: 1125_CR12 publication-title: J Mult Anal doi: 10.1016/j.jmva.2007.01.006 – volume: 99 start-page: 710 year: 2004 ident: 1125_CR3 publication-title: J Am Stat Assoc doi: 10.1198/016214504000001060 – volume: 54 start-page: 1328 year: 2010 ident: 1125_CR20 publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2009.11.021 – volume: 97 start-page: 1042 year: 2002 ident: 1125_CR26 publication-title: J Am Stat Assoc doi: 10.1198/016214502388618861 – volume: 102 start-page: 632 year: 2007 ident: 1125_CR4 publication-title: J Am Stat Assoc doi: 10.1198/016214507000000095 – volume: 91 start-page: 251 year: 2004 ident: 1125_CR7 publication-title: Biometrika doi: 10.1093/biomet/91.2.251 – volume: 100 start-page: 147 year: 2005 ident: 1125_CR23 publication-title: J Am Stat Assoc doi: 10.1198/016214504000000629 – volume: 90 start-page: 43 year: 2003 ident: 1125_CR19 publication-title: Biometrika doi: 10.1093/biomet/90.1.43 – volume: 85 start-page: 3594 year: 2015 ident: 1125_CR22 publication-title: J Stat Comput Simul doi: 10.1080/00949655.2014.989852 – volume: 89 start-page: 579 year: 2002 ident: 1125_CR6 publication-title: Biometrika doi: 10.1093/biomet/89.3.579 – volume: 65 start-page: 52 year: 2009 ident: 1125_CR13 publication-title: Biometrics doi: 10.1111/j.1541-0420.2008.01050.x – volume: 4 start-page: 204 year: 1986 ident: 1125_CR14 publication-title: Stat Prob Lett doi: 10.1016/0167-7152(86)90067-2 – volume: 8 start-page: 715 year: 1999 ident: 1125_CR11 publication-title: J Comput Graph Stat – volume: 96 start-page: 1045 year: 2001 ident: 1125_CR10 publication-title: J Am Stat Assoc doi: 10.1198/016214501753208708 – volume: 33 start-page: 3029 year: 2014 ident: 1125_CR21 publication-title: Stat Med doi: 10.1002/sim.6144 – volume: 27 start-page: 48 year: 2015 ident: 1125_CR24 publication-title: Meth Med Res Stat doi: 10.1177/0962280215620229 – volume: 60 start-page: 8 year: 2004 ident: 1125_CR28 publication-title: Biometrics doi: 10.1111/j.0006-341X.2004.00165.x – volume: 11 start-page: 95 year: 1983 ident: 1125_CR25 publication-title: Anal Stat – volume: 50 start-page: 413 year: 1988 ident: 1125_CR18 publication-title: J R Stat Soc B doi: 10.1111/j.2517-6161.1988.tb01738.x – volume: 37 start-page: 442 year: 2010 ident: 1125_CR8 publication-title: Scand J Stat doi: 10.1111/j.1467-9469.2010.00696.x – volume: 61 start-page: 27 year: 2009 ident: 1125_CR9 publication-title: Ann Inst Stat Math doi: 10.1007/s10463-007-0146-0 – volume: 136 start-page: 56 year: 2015 ident: 1125_CR15 publication-title: J Mult Anal doi: 10.1016/j.jmva.2015.01.002 |
SSID | ssj0018880 |
Score | 2.2550418 |
Snippet | HIV damages the immune system by targeting the CD4 cells. Hence CD4 count data modeling is important in the analysis of HIV infection. This paper considers a... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1095 |
SubjectTerms | Asymptotic methods Asymptotic properties Computer simulation Covariance Economic models Economic Theory/Quantitative Economics/Mathematical Methods Economics Finance HIV Human immunodeficiency virus Immune system Insurance Iterative algorithms Iterative methods Kernels Management Mathematics and Statistics Modelling Normality Operations Research/Decision Theory Probability Theory and Stochastic Processes Regression analysis Regression coefficients Regular Article Statistics Statistics for Business Variance |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60HuxFtCpWq-TgTRf2lU32WMRSFDxZ6G1JslkotFvpA_z5zmQfRamCl70k2V0mj5kvM_MNwD0uAx3nuNMM7abYxL6nfBN4Oi6CQmgbhcqxfb4l40n8MuXTOils3US7Ny5Jd1K3yW6OOgWhL8X3oFr25CEcccLuuIon4bD1HSCmczcraJl4HCFGnSqz_x3f1dHOxvzhFnXaZnQKJ7WZyIbVvJ7BgS17cNxkEa970CUrsSJZPofRq12Vds6IMaNKRWSzkq3tYkbM3gsqmmXYYvZpc1bFb7D5kuoUbXOqicVcNRz8jQuYjJ7fn8ZeXSDBM5H0N14qiWg0StIoF4rnWioujK-FsonAh1ZEHSNiadNCC62SCOEQwociFKHiFo2vS-iUy9JeAQtsoAS5-IzyY4MorJBcKpxeTgo8sH0IGjllpmYPpyIW86zlPXayzVC2mZNtJvvw0I75qLgz_uw9aMSf1ftoneFpI9JEIIjb30xeYyKFx9GPzYztmn__2PX_ut9AN6RYFnf7MoDOZrW1t2iMbPSdW3tf4OrSyw priority: 102 providerName: Springer Nature |
Title | Kernel estimation in semiparametric mixed effect longitudinal modeling |
URI | https://link.springer.com/article/10.1007/s00362-019-01125-8 https://www.proquest.com/docview/2257967956 https://www.proquest.com/docview/2529604528 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA62vfQiPrFaSw7edHHfSU9SSx9YKCIW6mlJslkotNvaB_jzncmmLYr2ksNmQ2AmycxkJt9HyB0sAxmmsNMU7qZQha4jXOU5Msy8jEkd-MKgfQ7j_ih8GUdje-G2smWV2zPRHNTpXOEd-SOsO9aMGbjzT4tPB1mjMLtqKTRKpAJHMIfgq_LcGb6-7fIIEN-ZWxbwUpwIwg37bMY8njNQLBBKY70QmHmH_zRNe3_zV4rUWJ7uCTm2LiNtFTo-JUc6PyNV9BILkOVz0h3oZa6nFBEziqeIdJLTlZ5NENl7hqRZis4mXzqlRf0Gnc6Rp2iTIicWNWw4MPUFGXU77-2-YwkSHBVwd-00OQKNBnEzSJmIUslFxJQrmdAxg0YKhI5hIdfNTDIp4gDCIQgfMp_5ItLgfF2Scj7P9RWhnvYEwxSfEm6oIArLeMQFqDdCA-7pGvG2skmURQ9HEotpssM9NvJMQJ6JkWfCa-R-N2ZRYGcc_Lu-FXli99Eq2Wv9727MGiMoPIx-2Gpp3_3_ZNeHJ7shVR9rV8xtS52U18uNvgXnYy0bpMTbHrbdXoNUWr2PQadhVx18Hfmtb4AV1-g |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZ4HOCCeIrxzAFOUNF30gNCCBiDASeQuJUkTaVJWwdsCPhT_EbstN0EAm5ceknTSI6dfo7tzwA7qAYqzNDSNFlTqEPXka72HBXmXs6VCXxp2T5v4tZdeHkf3U_AR10LQ2mV9ZloD-qsr-mO_AD1jicxRzh_9PjkUNcoiq7WLTRKtWib91d02QaHF6e4v7u-3zy7PWk5VVcBRwfCHTqJIHbOIE6CjMsoU0JGXLuKSxNzfChJfCs8FCbJFVcyDtCHQMyd-9yXkUHEgt-dhOkwCBKyKNE8H0Ut0Ju0dzqIiZwInZuqSMeW6lniF3TcKTsJQYUjvv4Ix-j2W0DW_uea8zBXAVR2XGrUAkyYYhFmCZOWlM5L0Gyb58J0GfFzlIWPrFOwgel1iEe8Ry26NOt13kzGymwR1u1TV6SXjDpwMdt7B5dehrt_EdwKTBX9wqwC84wnOQUUtXRDjT5fLiIhUZkiggueaYBXyybVFVc5tczopiOWZSvPFOWZWnmmogF7ozmPJVPHn29v1CJPK6sdpGMd-3mYYtREQY-z9-tdGg__vtja34ttw0zr9voqvbq4aa_DrE9ZM_aeZwOmhs8vZhNhz1BtWV1j8PDfyv0JoYYOLw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSwMxEB5qBfEiPrE-c9CTLu4724OIVIu1Ih4s9LYm2SwU2m1tK-pf89c5k91tUdSbl73sZgOTL8k3ycw3AEcIA-knONMUzSZf-bYlbOVY0k-dlEvtucKofd6HNx3_tht0K_BR5sJQWGW5JpqFOhkqOiM_Q9zxesiRzp-lRVjEw1XzYvRsUQUpumkty2nkEGnr91d03ybnrSsc62PXbV4_Nm6sosKApbzInlr1iJQ6vbDuJVwEiYxEwJUtudAhx4cUpL3C_UjXU8mlCD30J5B_py53RaCRveB_F2CRe7jPUpZ6YxZe4qBnac53kB9ZATo6RcKOSdszIjDoxFOkEhIMK_q6Kc6Z7rfLWbPnNVdhpSCr7DJH1xpUdLYOy8RPc3nnDWi29TjTfUZaHXkSJOtlbKIHPdIUH1C5LsUGvTedsDxyhPWHVCHpJaFqXMzU4cGuN6HzL4bbgmo2zPQ2MEc7gtPlohK2r9D_S6MgEgisgKiDo2vglLaJVaFbTuUz-vFMcdnYM0Z7xsaecVSDk1mbUa7a8efXe6XJ42IGT-I53n5-TffVJEePrU_LUZq__r2znb87O4QlhHV817pv78KySwE05shnD6rT8YveRwY0lQcGagye_hvbn_8UEjA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kernel+estimation+in+semiparametric+mixed+effect+longitudinal+modeling&rft.jtitle=Statistical+papers+%28Berlin%2C+Germany%29&rft.au=Taavoni%2C+M&rft.au=Arashi%2C+M&rft.date=2021-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0932-5026&rft.eissn=1613-9798&rft.spage=1&rft.epage=22&rft_id=info:doi/10.1007%2Fs00362-019-01125-8&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0932-5026&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0932-5026&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0932-5026&client=summon |