Kernel estimation in semiparametric mixed effect longitudinal modeling

HIV damages the immune system by targeting the CD4 cells. Hence CD4 count data modeling is important in the analysis of HIV infection. This paper considers a semiparametric mixed effects model for the analysis of CD4 longitudinal data. The model is a natural extension to the linear mixed and semipar...

Full description

Saved in:
Bibliographic Details
Published inStatistical papers (Berlin, Germany) Vol. 62; no. 3; pp. 1095 - 1116
Main Authors Taavoni, M., Arashi, M.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract HIV damages the immune system by targeting the CD4 cells. Hence CD4 count data modeling is important in the analysis of HIV infection. This paper considers a semiparametric mixed effects model for the analysis of CD4 longitudinal data. The model is a natural extension to the linear mixed and semiparametric models that uses parametric linear model to present the covariate effects and an arbitrary nonparametric smooth function to model the time effect and account for the within subject correlation using random effects. We approximate the nonparametric function by the profile kernel method, and make use of the weighted least squares to estimate the regression coefficients. Under some regularity conditions, the asymptotic normality of the resulting estimator is established and the performance is compared with the backfitting method. Although, two estimators share the same asymptotic variance matrix for independent data, it is shown that, backfitting often produces larger bias and variance than the profile-kernel method, asymptotically. Consequently, the use of backfitting method is no longer advised in semiparametric mixed effect longitudinal model. For practical implementation and also improve efficiency, the estimation of the covariance function is accomplished using an iterative algorithm. Performance of the proposed methods are compared through a simulation study and the analysis of CD4 data.
AbstractList HIV damages the immune system by targeting the CD4 cells. Hence CD4 count data modeling is important in the analysis of HIV infection. This paper considers a semiparametric mixed effects model for the analysis of CD4 longitudinal data. The model is a natural extension to the linear mixed and semiparametric models that uses parametric linear model to present the covariate effects and an arbitrary nonparametric smooth function to model the time effect and account for the within subject correlation using random effects. We approximate the nonparametric function by the profile kernel method, and make use of the weighted least squares to estimate the regression coefficients. Under some regularity conditions, the asymptotic normality of the resulting estimator is established and the performance is compared with the backfitting method. Although, two estimators share the same asymptotic variance matrix for independent data, it is shown that, backfitting often produces larger bias and variance than the profile-kernel method, asymptotically. Consequently, the use of backfitting method is no longer advised in semiparametric mixed effect longitudinal model. For practical implementation and also improve efficiency, the estimation of the covariance function is accomplished using an iterative algorithm. Performance of the proposed methods are compared through a simulation study and the analysis of CD4 data.
Author Arashi, M.
Taavoni, M.
Author_xml – sequence: 1
  givenname: M.
  surname: Taavoni
  fullname: Taavoni, M.
  organization: Department of Statistic, Faculty of Mathematical Sciences, Shahrood University of Technology
– sequence: 2
  givenname: M.
  orcidid: 0000-0002-5881-9241
  surname: Arashi
  fullname: Arashi, M.
  email: m_arashi_stat@yahoo.com
  organization: Department of Statistic, Faculty of Mathematical Sciences, Shahrood University of Technology
BookMark eNp9kEtLAzEUhYNUsFb_gKsB16N5TF5LKVbFghtdh8zMnZIyk6lJCvrvTTuC4KKLe-_mnHMP3yWa-dEDQjcE3xGM5X3EmAlaYqLzEMpLdYbmRBBWaqnVDM2xZrTkmIoLdBnjFmOilMJztHqF4KEvICY32ORGXzhfRBjczgY7QAquKQb3BW0BXQdNKvrRb1zat87bvhjGFnrnN1fovLN9hOvfu0Afq8f35XO5fnt6WT6sy4YpnEqtKqYYE5q10vK2VpbLBtfSgpB51ZYTzWWlQHe1rK1gpNKykh2V1HLAii3Q7ZS7C-PnPpc223EfcpNoKKda4IrT0yrKpRZSc5FVdFI1YYwxQGd2ITMI34Zgc6BqJqomUzVHquYQrf6ZGpeO3FKwrj9tZZM15j9-A-Gv1QnXD2LsjNw
CitedBy_id crossref_primary_10_3390_math12172787
crossref_primary_10_1080_00949655_2020_1836642
crossref_primary_10_3390_sym14102194
crossref_primary_10_17776_csj_671812
crossref_primary_10_1080_02331888_2024_2378301
crossref_primary_10_1111_sjos_12639
crossref_primary_10_1002_cpe_6780
Cites_doi 10.1080/01621459.1997.10474001
10.1007/s00362-017-0893-9
10.1016/j.jmva.2016.01.005
10.1080/01621459.1994.10476774
10.2307/2532783
10.1016/j.jmva.2007.01.006
10.1198/016214504000001060
10.1016/j.csda.2009.11.021
10.1198/016214502388618861
10.1198/016214507000000095
10.1093/biomet/91.2.251
10.1198/016214504000000629
10.1093/biomet/90.1.43
10.1080/00949655.2014.989852
10.1093/biomet/89.3.579
10.1111/j.1541-0420.2008.01050.x
10.1016/0167-7152(86)90067-2
10.1198/016214501753208708
10.1002/sim.6144
10.1177/0962280215620229
10.1111/j.0006-341X.2004.00165.x
10.1111/j.2517-6161.1988.tb01738.x
10.1111/j.1467-9469.2010.00696.x
10.1007/s10463-007-0146-0
10.1016/j.jmva.2015.01.002
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2019
Statistical Papers is a copyright of Springer, (2019). All Rights Reserved.
Springer-Verlag GmbH Germany, part of Springer Nature 2019.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019
– notice: Statistical Papers is a copyright of Springer, (2019). All Rights Reserved.
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AO
8C1
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
JQ2
K60
K6~
L.-
L6V
L7M
L~C
L~D
M0C
M2P
M7S
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
PRINS
DOI 10.1007/s00362-019-01125-8
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering collection
ProQuest Central Basic
ProQuest Central China
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health & Medical Research Collection
ProQuest Central (New)
Engineering Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
ProQuest Central China
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Statistics
EISSN 1613-9798
EndPage 1116
ExternalDocumentID 10_1007_s00362_019_01125_8
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
88I
8AO
8C1
8FE
8FG
8FL
8TC
8UJ
8V8
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBA
EBLON
EBO
EBR
EBS
EBU
EIOEI
EJD
EMK
EOH
EPL
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6~
KDC
KOV
L6V
LAS
LLZTM
M0C
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R89
R9I
RHV
RIG
ROL
RPX
RSV
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TSG
TSK
TSV
TUC
U2A
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z87
Z88
Z8M
Z8O
Z8R
Z8T
Z8U
Z8W
Z91
Z92
ZMTXR
ZWQNP
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
PRINS
ID FETCH-LOGICAL-c380t-9843833693d7a5db8a57c0b7ae677aeba5195748e9fb7ba63149747f272a5e083
IEDL.DBID BENPR
ISSN 0932-5026
IngestDate Sat Aug 23 12:46:05 EDT 2025
Fri Jul 25 19:34:35 EDT 2025
Tue Jul 01 03:01:34 EDT 2025
Thu Apr 24 22:55:10 EDT 2025
Fri Feb 21 02:48:18 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Backfitting
CD4 data
Asymptotic distribution
Longitudinal data
Kernel
Semiparametric mixed effects model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c380t-9843833693d7a5db8a57c0b7ae677aeba5195748e9fb7ba63149747f272a5e083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5881-9241
PQID 2257967956
PQPubID 31177
PageCount 22
ParticipantIDs proquest_journals_2529604528
proquest_journals_2257967956
crossref_primary_10_1007_s00362_019_01125_8
crossref_citationtrail_10_1007_s00362_019_01125_8
springer_journals_10_1007_s00362_019_01125_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Statistical papers (Berlin, Germany)
PublicationTitleAbbrev Stat Papers
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References LinXCarrollRJSemiparametric regression for clustered data using generalised estimating equationsJ Am Stat Assoc20019610455610.1198/016214501753208708
LiangHGeneralized partially linear mixed-effects models incorporating mismeasured covariatesAnn Inst Stat Math2009612746248102710.1007/s10463-007-0146-0
LiZZhuLOn variance components in semiparametric mixed models for longitudinal dataScand J Stat201037442457272450710.1111/j.1467-9469.2010.00696.x
WangWLLinTIBayesian analysis of multivariate t linear mixed models with missing responses at randomJ Stat Comput Simul20158535943612339568610.1080/00949655.2014.989852
QinGYZhuZYRobust estimation in generalized semiparametric mixed models for longitudinal dataJ Mult Anal20079816581683237011210.1016/j.jmva.2007.01.006
ZegerSLDigglePJSemi-parametric models for longitudinal data with application to CD4 cell numbers in HIV seroconvertersBiometrics1994506899910.2307/2532783
OpsomerJDRuppertDA root-n consistent backfitting estimator for semiparametric additive modelingJ Comput Graph Stat1999871532
WangNCarrollRLinXHEfficient semiparametric marginal estimation for longitudinal/clustered dataJ Am Stat Assoc2005100147157215682510.1198/016214504000000629
WangNMarginal nonparametric kernel regression accounting for within-subject correlationBiometrika2003904352196654910.1093/biomet/90.1.43
WangWLLinTIMultivariate t nonlinear mixed-effects models for multi-outcome longitudinal data with missing valuesStat Med20143330293046326052010.1002/sim.6144
WuCFJOn the convergence properties of the EM algorithmAnal Stat198311951036848670517.62035
AkdenizFRoozbehMGeneralized difference-based weighted mixed almost unbiased ridge estimator in partially linear models2017BaselStatistical Papers10.1007/s00362-017-0893-906848001
RoozbehMShrinkage ridge estimators in semiparametric regression modelsJ Mult Anal20151365674332147910.1016/j.jmva.2015.01.002
HeXMZhuZYFungWKEstimation in a semiparametric model for longitudinal data with unspecified dependence structureBiometrika200289579590192916410.1093/biomet/89.3.579
SeveriniTAStaniswalisJGQuasi-likelihood estimation in semi-parametric modelsJ Am Stat Assoc1994895011210.1080/01621459.1994.10476774
FanJQLiRZNew estimation and model selection procedures for semiparametric modeling in longitudinal data analysisJ Am Stat Assoc200499710723209090510.1198/016214504000001060
FitzmauriceGMLairdNMWareJHApplied longitudinal analysis2004HobokenWiley1057.62052
HuZWangNCarrollRProfile-kernel versus backfitting in the partially linear models for longitudinal/clustered dataBiometrika200491251262208129910.1093/biomet/91.2.251
CarrollRJFanJGijbelsIWandMPGeneralised linear single-index modelsJ Am Stat Assoc1997924778910.1080/01621459.1997.10474001
RoozbehMRobust ridge estimator in restricted semiparametric regression modelsJ Mult Anal2016147127144348417310.1016/j.jmva.2016.01.005
YuYRuppertDPenalised spline estimation for partially linear single index modelsJ Am Stat Assoc20029710425410.1198/016214502388618861
FanJQHuangTLiRZAnalysis of longitudinal data with semiparametric estimation of covariance functionJ Am Stat Assoc200710263264110.1198/016214507000000095
WangWLFanTHECM-based maximum likelihood inference for multivariate linear mixed models with autoregressive errorsComput Stat Data Anal20105413281341260083510.1016/j.csda.2009.11.021
WangWLLinTILachosVHExtending multivariate-t linear mixed models for multiple longitudinal data with censored responses and heavy tailsMeth Med Res Stat2015274864374565410.1177/0962280215620229
ZhangDGeneralized linear mixed models with varying coefficients for longitudinal dataBiometrics200460815204361310.1111/j.0006-341X.2004.00165.x
QinGYZhuZYRobustified maximum likelihood estimation in generalized partial linear mixed model for longitudinal dataBiometrics2009655259266584510.1111/j.1541-0420.2008.01050.x
RiceJAConvergence rates for partially splined modelsStat Prob Lett19864204884871810.1016/0167-7152(86)90067-2
SpeckmanPERegression analysis for partially linear modelsJ R Stat Soc B1988504134369709770671.62045
H Liang (1125_CR9) 2009; 61
X Lin (1125_CR10) 2001; 96
WL Wang (1125_CR20) 2010; 54
D Zhang (1125_CR28) 2004; 60
Z Hu (1125_CR7) 2004; 91
GM Fitzmaurice (1125_CR5) 2004
GY Qin (1125_CR12) 2007; 98
JA Rice (1125_CR14) 1986; 4
WL Wang (1125_CR24) 2015; 27
JQ Fan (1125_CR4) 2007; 102
RJ Carroll (1125_CR2) 1997; 92
F Akdeniz (1125_CR1) 2017
M Roozbeh (1125_CR15) 2015; 136
Z Li (1125_CR8) 2010; 37
SL Zeger (1125_CR27) 1994; 50
M Roozbeh (1125_CR16) 2016; 147
WL Wang (1125_CR22) 2015; 85
PE Speckman (1125_CR18) 1988; 50
GY Qin (1125_CR13) 2009; 65
JQ Fan (1125_CR3) 2004; 99
CFJ Wu (1125_CR25) 1983; 11
N Wang (1125_CR23) 2005; 100
Y Yu (1125_CR26) 2002; 97
JD Opsomer (1125_CR11) 1999; 8
WL Wang (1125_CR21) 2014; 33
TA Severini (1125_CR17) 1994; 89
N Wang (1125_CR19) 2003; 90
XM He (1125_CR6) 2002; 89
References_xml – reference: QinGYZhuZYRobust estimation in generalized semiparametric mixed models for longitudinal dataJ Mult Anal20079816581683237011210.1016/j.jmva.2007.01.006
– reference: RiceJAConvergence rates for partially splined modelsStat Prob Lett19864204884871810.1016/0167-7152(86)90067-2
– reference: YuYRuppertDPenalised spline estimation for partially linear single index modelsJ Am Stat Assoc20029710425410.1198/016214502388618861
– reference: SeveriniTAStaniswalisJGQuasi-likelihood estimation in semi-parametric modelsJ Am Stat Assoc1994895011210.1080/01621459.1994.10476774
– reference: LinXCarrollRJSemiparametric regression for clustered data using generalised estimating equationsJ Am Stat Assoc20019610455610.1198/016214501753208708
– reference: OpsomerJDRuppertDA root-n consistent backfitting estimator for semiparametric additive modelingJ Comput Graph Stat1999871532
– reference: SpeckmanPERegression analysis for partially linear modelsJ R Stat Soc B1988504134369709770671.62045
– reference: WangWLLinTIBayesian analysis of multivariate t linear mixed models with missing responses at randomJ Stat Comput Simul20158535943612339568610.1080/00949655.2014.989852
– reference: FanJQLiRZNew estimation and model selection procedures for semiparametric modeling in longitudinal data analysisJ Am Stat Assoc200499710723209090510.1198/016214504000001060
– reference: CarrollRJFanJGijbelsIWandMPGeneralised linear single-index modelsJ Am Stat Assoc1997924778910.1080/01621459.1997.10474001
– reference: LiangHGeneralized partially linear mixed-effects models incorporating mismeasured covariatesAnn Inst Stat Math2009612746248102710.1007/s10463-007-0146-0
– reference: FitzmauriceGMLairdNMWareJHApplied longitudinal analysis2004HobokenWiley1057.62052
– reference: AkdenizFRoozbehMGeneralized difference-based weighted mixed almost unbiased ridge estimator in partially linear models2017BaselStatistical Papers10.1007/s00362-017-0893-906848001
– reference: RoozbehMRobust ridge estimator in restricted semiparametric regression modelsJ Mult Anal2016147127144348417310.1016/j.jmva.2016.01.005
– reference: WangWLLinTIMultivariate t nonlinear mixed-effects models for multi-outcome longitudinal data with missing valuesStat Med20143330293046326052010.1002/sim.6144
– reference: HeXMZhuZYFungWKEstimation in a semiparametric model for longitudinal data with unspecified dependence structureBiometrika200289579590192916410.1093/biomet/89.3.579
– reference: QinGYZhuZYRobustified maximum likelihood estimation in generalized partial linear mixed model for longitudinal dataBiometrics2009655259266584510.1111/j.1541-0420.2008.01050.x
– reference: WangNCarrollRLinXHEfficient semiparametric marginal estimation for longitudinal/clustered dataJ Am Stat Assoc2005100147157215682510.1198/016214504000000629
– reference: WuCFJOn the convergence properties of the EM algorithmAnal Stat198311951036848670517.62035
– reference: RoozbehMShrinkage ridge estimators in semiparametric regression modelsJ Mult Anal20151365674332147910.1016/j.jmva.2015.01.002
– reference: FanJQHuangTLiRZAnalysis of longitudinal data with semiparametric estimation of covariance functionJ Am Stat Assoc200710263264110.1198/016214507000000095
– reference: HuZWangNCarrollRProfile-kernel versus backfitting in the partially linear models for longitudinal/clustered dataBiometrika200491251262208129910.1093/biomet/91.2.251
– reference: ZhangDGeneralized linear mixed models with varying coefficients for longitudinal dataBiometrics200460815204361310.1111/j.0006-341X.2004.00165.x
– reference: LiZZhuLOn variance components in semiparametric mixed models for longitudinal dataScand J Stat201037442457272450710.1111/j.1467-9469.2010.00696.x
– reference: ZegerSLDigglePJSemi-parametric models for longitudinal data with application to CD4 cell numbers in HIV seroconvertersBiometrics1994506899910.2307/2532783
– reference: WangNMarginal nonparametric kernel regression accounting for within-subject correlationBiometrika2003904352196654910.1093/biomet/90.1.43
– reference: WangWLFanTHECM-based maximum likelihood inference for multivariate linear mixed models with autoregressive errorsComput Stat Data Anal20105413281341260083510.1016/j.csda.2009.11.021
– reference: WangWLLinTILachosVHExtending multivariate-t linear mixed models for multiple longitudinal data with censored responses and heavy tailsMeth Med Res Stat2015274864374565410.1177/0962280215620229
– volume: 92
  start-page: 477
  year: 1997
  ident: 1125_CR2
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1997.10474001
– volume-title: Generalized difference-based weighted mixed almost unbiased ridge estimator in partially linear models
  year: 2017
  ident: 1125_CR1
  doi: 10.1007/s00362-017-0893-9
– volume-title: Applied longitudinal analysis
  year: 2004
  ident: 1125_CR5
– volume: 147
  start-page: 127
  year: 2016
  ident: 1125_CR16
  publication-title: J Mult Anal
  doi: 10.1016/j.jmva.2016.01.005
– volume: 89
  start-page: 501
  year: 1994
  ident: 1125_CR17
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1994.10476774
– volume: 50
  start-page: 689
  year: 1994
  ident: 1125_CR27
  publication-title: Biometrics
  doi: 10.2307/2532783
– volume: 98
  start-page: 1658
  year: 2007
  ident: 1125_CR12
  publication-title: J Mult Anal
  doi: 10.1016/j.jmva.2007.01.006
– volume: 99
  start-page: 710
  year: 2004
  ident: 1125_CR3
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214504000001060
– volume: 54
  start-page: 1328
  year: 2010
  ident: 1125_CR20
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2009.11.021
– volume: 97
  start-page: 1042
  year: 2002
  ident: 1125_CR26
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214502388618861
– volume: 102
  start-page: 632
  year: 2007
  ident: 1125_CR4
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214507000000095
– volume: 91
  start-page: 251
  year: 2004
  ident: 1125_CR7
  publication-title: Biometrika
  doi: 10.1093/biomet/91.2.251
– volume: 100
  start-page: 147
  year: 2005
  ident: 1125_CR23
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214504000000629
– volume: 90
  start-page: 43
  year: 2003
  ident: 1125_CR19
  publication-title: Biometrika
  doi: 10.1093/biomet/90.1.43
– volume: 85
  start-page: 3594
  year: 2015
  ident: 1125_CR22
  publication-title: J Stat Comput Simul
  doi: 10.1080/00949655.2014.989852
– volume: 89
  start-page: 579
  year: 2002
  ident: 1125_CR6
  publication-title: Biometrika
  doi: 10.1093/biomet/89.3.579
– volume: 65
  start-page: 52
  year: 2009
  ident: 1125_CR13
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2008.01050.x
– volume: 4
  start-page: 204
  year: 1986
  ident: 1125_CR14
  publication-title: Stat Prob Lett
  doi: 10.1016/0167-7152(86)90067-2
– volume: 8
  start-page: 715
  year: 1999
  ident: 1125_CR11
  publication-title: J Comput Graph Stat
– volume: 96
  start-page: 1045
  year: 2001
  ident: 1125_CR10
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214501753208708
– volume: 33
  start-page: 3029
  year: 2014
  ident: 1125_CR21
  publication-title: Stat Med
  doi: 10.1002/sim.6144
– volume: 27
  start-page: 48
  year: 2015
  ident: 1125_CR24
  publication-title: Meth Med Res Stat
  doi: 10.1177/0962280215620229
– volume: 60
  start-page: 8
  year: 2004
  ident: 1125_CR28
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2004.00165.x
– volume: 11
  start-page: 95
  year: 1983
  ident: 1125_CR25
  publication-title: Anal Stat
– volume: 50
  start-page: 413
  year: 1988
  ident: 1125_CR18
  publication-title: J R Stat Soc B
  doi: 10.1111/j.2517-6161.1988.tb01738.x
– volume: 37
  start-page: 442
  year: 2010
  ident: 1125_CR8
  publication-title: Scand J Stat
  doi: 10.1111/j.1467-9469.2010.00696.x
– volume: 61
  start-page: 27
  year: 2009
  ident: 1125_CR9
  publication-title: Ann Inst Stat Math
  doi: 10.1007/s10463-007-0146-0
– volume: 136
  start-page: 56
  year: 2015
  ident: 1125_CR15
  publication-title: J Mult Anal
  doi: 10.1016/j.jmva.2015.01.002
SSID ssj0018880
Score 2.2550418
Snippet HIV damages the immune system by targeting the CD4 cells. Hence CD4 count data modeling is important in the analysis of HIV infection. This paper considers a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1095
SubjectTerms Asymptotic methods
Asymptotic properties
Computer simulation
Covariance
Economic models
Economic Theory/Quantitative Economics/Mathematical Methods
Economics
Finance
HIV
Human immunodeficiency virus
Immune system
Insurance
Iterative algorithms
Iterative methods
Kernels
Management
Mathematics and Statistics
Modelling
Normality
Operations Research/Decision Theory
Probability Theory and Stochastic Processes
Regression analysis
Regression coefficients
Regular Article
Statistics
Statistics for Business
Variance
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60HuxFtCpWq-TgTRf2lU32WMRSFDxZ6G1JslkotFvpA_z5zmQfRamCl70k2V0mj5kvM_MNwD0uAx3nuNMM7abYxL6nfBN4Oi6CQmgbhcqxfb4l40n8MuXTOils3US7Ny5Jd1K3yW6OOgWhL8X3oFr25CEcccLuuIon4bD1HSCmczcraJl4HCFGnSqz_x3f1dHOxvzhFnXaZnQKJ7WZyIbVvJ7BgS17cNxkEa970CUrsSJZPofRq12Vds6IMaNKRWSzkq3tYkbM3gsqmmXYYvZpc1bFb7D5kuoUbXOqicVcNRz8jQuYjJ7fn8ZeXSDBM5H0N14qiWg0StIoF4rnWioujK-FsonAh1ZEHSNiadNCC62SCOEQwociFKHiFo2vS-iUy9JeAQtsoAS5-IzyY4MorJBcKpxeTgo8sH0IGjllpmYPpyIW86zlPXayzVC2mZNtJvvw0I75qLgz_uw9aMSf1ftoneFpI9JEIIjb30xeYyKFx9GPzYztmn__2PX_ut9AN6RYFnf7MoDOZrW1t2iMbPSdW3tf4OrSyw
  priority: 102
  providerName: Springer Nature
Title Kernel estimation in semiparametric mixed effect longitudinal modeling
URI https://link.springer.com/article/10.1007/s00362-019-01125-8
https://www.proquest.com/docview/2257967956
https://www.proquest.com/docview/2529604528
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA62vfQiPrFaSw7edHHfSU9SSx9YKCIW6mlJslkotNvaB_jzncmmLYr2ksNmQ2AmycxkJt9HyB0sAxmmsNMU7qZQha4jXOU5Msy8jEkd-MKgfQ7j_ih8GUdje-G2smWV2zPRHNTpXOEd-SOsO9aMGbjzT4tPB1mjMLtqKTRKpAJHMIfgq_LcGb6-7fIIEN-ZWxbwUpwIwg37bMY8njNQLBBKY70QmHmH_zRNe3_zV4rUWJ7uCTm2LiNtFTo-JUc6PyNV9BILkOVz0h3oZa6nFBEziqeIdJLTlZ5NENl7hqRZis4mXzqlRf0Gnc6Rp2iTIicWNWw4MPUFGXU77-2-YwkSHBVwd-00OQKNBnEzSJmIUslFxJQrmdAxg0YKhI5hIdfNTDIp4gDCIQgfMp_5ItLgfF2Scj7P9RWhnvYEwxSfEm6oIArLeMQFqDdCA-7pGvG2skmURQ9HEotpssM9NvJMQJ6JkWfCa-R-N2ZRYGcc_Lu-FXli99Eq2Wv9727MGiMoPIx-2Gpp3_3_ZNeHJ7shVR9rV8xtS52U18uNvgXnYy0bpMTbHrbdXoNUWr2PQadhVx18Hfmtb4AV1-g
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZ4HOCCeIrxzAFOUNF30gNCCBiDASeQuJUkTaVJWwdsCPhT_EbstN0EAm5ceknTSI6dfo7tzwA7qAYqzNDSNFlTqEPXka72HBXmXs6VCXxp2T5v4tZdeHkf3U_AR10LQ2mV9ZloD-qsr-mO_AD1jicxRzh_9PjkUNcoiq7WLTRKtWib91d02QaHF6e4v7u-3zy7PWk5VVcBRwfCHTqJIHbOIE6CjMsoU0JGXLuKSxNzfChJfCs8FCbJFVcyDtCHQMyd-9yXkUHEgt-dhOkwCBKyKNE8H0Ut0Ju0dzqIiZwInZuqSMeW6lniF3TcKTsJQYUjvv4Ix-j2W0DW_uea8zBXAVR2XGrUAkyYYhFmCZOWlM5L0Gyb58J0GfFzlIWPrFOwgel1iEe8Ry26NOt13kzGymwR1u1TV6SXjDpwMdt7B5dehrt_EdwKTBX9wqwC84wnOQUUtXRDjT5fLiIhUZkiggueaYBXyybVFVc5tczopiOWZSvPFOWZWnmmogF7ozmPJVPHn29v1CJPK6sdpGMd-3mYYtREQY-z9-tdGg__vtja34ttw0zr9voqvbq4aa_DrE9ZM_aeZwOmhs8vZhNhz1BtWV1j8PDfyv0JoYYOLw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSwMxEB5qBfEiPrE-c9CTLu4724OIVIu1Ih4s9LYm2SwU2m1tK-pf89c5k91tUdSbl73sZgOTL8k3ycw3AEcIA-knONMUzSZf-bYlbOVY0k-dlEvtucKofd6HNx3_tht0K_BR5sJQWGW5JpqFOhkqOiM_Q9zxesiRzp-lRVjEw1XzYvRsUQUpumkty2nkEGnr91d03ybnrSsc62PXbV4_Nm6sosKApbzInlr1iJQ6vbDuJVwEiYxEwJUtudAhx4cUpL3C_UjXU8mlCD30J5B_py53RaCRveB_F2CRe7jPUpZ6YxZe4qBnac53kB9ZATo6RcKOSdszIjDoxFOkEhIMK_q6Kc6Z7rfLWbPnNVdhpSCr7DJH1xpUdLYOy8RPc3nnDWi29TjTfUZaHXkSJOtlbKIHPdIUH1C5LsUGvTedsDxyhPWHVCHpJaFqXMzU4cGuN6HzL4bbgmo2zPQ2MEc7gtPlohK2r9D_S6MgEgisgKiDo2vglLaJVaFbTuUz-vFMcdnYM0Z7xsaecVSDk1mbUa7a8efXe6XJ42IGT-I53n5-TffVJEePrU_LUZq__r2znb87O4QlhHV817pv78KySwE05shnD6rT8YveRwY0lQcGagye_hvbn_8UEjA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kernel+estimation+in+semiparametric+mixed+effect+longitudinal+modeling&rft.jtitle=Statistical+papers+%28Berlin%2C+Germany%29&rft.au=Taavoni%2C+M&rft.au=Arashi%2C+M&rft.date=2021-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0932-5026&rft.eissn=1613-9798&rft.spage=1&rft.epage=22&rft_id=info:doi/10.1007%2Fs00362-019-01125-8&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0932-5026&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0932-5026&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0932-5026&client=summon