"Nano-garden cultivation" for electrocatalysis: controlled synthesis of Nature-inspired hierarchical nanostructures
Three-dimensional intricate nanostructures hold great promise for real-life applications. Many of these hierarchical structures resemble shapes from Nature, demonstrating much improved physico-chemical properties. Yet, their rational design and controlled synthesis remain challenging. By simply mani...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 8; no. 16; pp. 7626 - 7632 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
28.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Three-dimensional intricate nanostructures hold great promise for real-life applications. Many of these hierarchical structures resemble shapes from Nature, demonstrating much improved physico-chemical properties. Yet, their rational design and controlled synthesis remain challenging. By simply manipulating (electro)chemical gradients using a combined hydrothermal and electrodeposition strategy, we herein show the controlled growth of Co(OH)
2
nanostructures, mimicking the process of garden cultivation. The resulting "nano-garden" can selectively contain different patterns, all of which can be fully phosphidated into CoP without losing the structural integrity. Remarkably, these CoP nanostructures show distinct catalytic performance in oxygen evolution and hydrogen evolution reactions. Under pH-universal conditions, the CoP "soil + flower-with-stem" structure shows a much more "effective" surface area for gas-evolving reactions with lower activation and concentration overpotentials. This provides superior bifunctional catalytic activity for both reactions, outperforming noble metal counterparts.
The rational coupling of hydrothermal and electrodeposition approaches enables controlled synthesis of various CoP Nature-inspired nanostructures with distinct electrocatalytic performance. |
---|---|
AbstractList | Three-dimensional intricate nanostructures hold great promise for real-life applications. Many of these hierarchical structures resemble shapes from Nature, demonstrating much improved physico-chemical properties. Yet, their rational design and controlled synthesis remain challenging. By simply manipulating (electro)chemical gradients using a combined hydrothermal and electrodeposition strategy, we herein show the controlled growth of Co(OH)
2
nanostructures, mimicking the process of garden cultivation. The resulting “nano-garden” can selectively contain different patterns, all of which can be fully phosphidated into CoP without losing the structural integrity. Remarkably, these CoP nanostructures show distinct catalytic performance in oxygen evolution and hydrogen evolution reactions. Under pH-universal conditions, the CoP “soil + flower-with-stem” structure shows a much more “effective” surface area for gas-evolving reactions with lower activation and concentration overpotentials. This provides superior bifunctional catalytic activity for both reactions, outperforming noble metal counterparts. Three-dimensional intricate nanostructures hold great promise for real-life applications. Many of these hierarchical structures resemble shapes from Nature, demonstrating much improved physico-chemical properties. Yet, their rational design and controlled synthesis remain challenging. By simply manipulating (electro)chemical gradients using a combined hydrothermal and electrodeposition strategy, we herein show the controlled growth of Co(OH) 2 nanostructures, mimicking the process of garden cultivation. The resulting "nano-garden" can selectively contain different patterns, all of which can be fully phosphidated into CoP without losing the structural integrity. Remarkably, these CoP nanostructures show distinct catalytic performance in oxygen evolution and hydrogen evolution reactions. Under pH-universal conditions, the CoP "soil + flower-with-stem" structure shows a much more "effective" surface area for gas-evolving reactions with lower activation and concentration overpotentials. This provides superior bifunctional catalytic activity for both reactions, outperforming noble metal counterparts. The rational coupling of hydrothermal and electrodeposition approaches enables controlled synthesis of various CoP Nature-inspired nanostructures with distinct electrocatalytic performance. Three-dimensional intricate nanostructures hold great promise for real-life applications. Many of these hierarchical structures resemble shapes from Nature, demonstrating much improved physico-chemical properties. Yet, their rational design and controlled synthesis remain challenging. By simply manipulating (electro)chemical gradients using a combined hydrothermal and electrodeposition strategy, we herein show the controlled growth of Co(OH)2 nanostructures, mimicking the process of garden cultivation. The resulting “nano-garden” can selectively contain different patterns, all of which can be fully phosphidated into CoP without losing the structural integrity. Remarkably, these CoP nanostructures show distinct catalytic performance in oxygen evolution and hydrogen evolution reactions. Under pH-universal conditions, the CoP “soil + flower-with-stem” structure shows a much more “effective” surface area for gas-evolving reactions with lower activation and concentration overpotentials. This provides superior bifunctional catalytic activity for both reactions, outperforming noble metal counterparts. |
Author | Zhao, Yang Cao, Xiaojuan Zhao, Kai Biemolt, Jasper Yan, Ning Yan, Xiaoyu Laan, Petrus C. M |
AuthorAffiliation | Wuhan University University of Amsterdam School of Physics and Technology Van't Hoff Institute for Molecular Sciences (HIMS) |
AuthorAffiliation_xml | – name: University of Amsterdam – name: School of Physics and Technology – name: Van't Hoff Institute for Molecular Sciences (HIMS) – name: Wuhan University |
Author_xml | – sequence: 1 givenname: Xiaoyu surname: Yan fullname: Yan, Xiaoyu – sequence: 2 givenname: Yang surname: Zhao fullname: Zhao, Yang – sequence: 3 givenname: Jasper surname: Biemolt fullname: Biemolt, Jasper – sequence: 4 givenname: Kai surname: Zhao fullname: Zhao, Kai – sequence: 5 givenname: Petrus C. M surname: Laan fullname: Laan, Petrus C. M – sequence: 6 givenname: Xiaojuan surname: Cao fullname: Cao, Xiaojuan – sequence: 7 givenname: Ning surname: Yan fullname: Yan, Ning |
BookMark | eNp9kM1LAzEQxYNUsNZevAtrvQmrs5tuk_VW6yeUeqnnZfKxdsua1CQr9L83taI35zLDez_mwTsmPWONJuQ0g6sMaHmtICAAZyAOSD-HAlI2Lie935vzIzL0fg1xOMCkLPvEjxZobPqGTmmTyK4NzSeGxppRUluX6FbL4KzEgO3WN_4mkdZEoW21SvzWhJWOamLrZIGhczptjN80LpqrRjt0ctVIbBMTM3xwndwx_oQc1th6PfzZA_L6cL-cPaXzl8fn2XSeSsohpFxSZJpKoXIFdSkypgE5aMyLjAuRUyUKyPIxiJKhQM0iAZJhxhnLOSg6IBf7vxtnPzrtQ7W2nTMxssppWeS85JRH6nJPSWe9d7quNq55R7etMqh2vVZ3sJx-93ob4bM97Lz85f56j_75f361UTX9Apx7hEg |
CitedBy_id | crossref_primary_10_1038_s41467_021_24284_5 crossref_primary_10_1016_j_jelechem_2022_116806 crossref_primary_10_1016_j_apcatb_2021_120335 crossref_primary_10_1021_acscatal_2c05590 crossref_primary_10_1039_D2MH00075J crossref_primary_10_1016_j_cclet_2023_108156 crossref_primary_10_1039_D0GC01699C crossref_primary_10_1016_j_nanoso_2021_100831 crossref_primary_10_1002_advs_202206180 crossref_primary_10_1039_D3TA02881J |
Cites_doi | 10.1021/nl304715p 10.1002/cctc.201300756 10.1002/adfm.201704594 10.1126/science.1234621 10.1007/BF00254154 10.1016/j.cattod.2018.04.037 10.1002/anie.201809921 10.1021/acsami.6b11927 10.1002/aenm.201801357 10.1038/367438a0 10.1002/cctc.201802017 10.1016/j.nanoen.2019.01.014 10.1126/science.1177031 10.1039/C7GC00147A 10.1002/cssc.201702287 10.1002/ange.201805244 10.1021/acsami.8b09361 10.1039/C7CS00369B 10.1021/jacs.8b10795 10.1002/admi.201900502 10.1016/j.jpowsour.2018.03.047 10.1021/acs.nanolett.6b04433 10.1126/science.1070821 10.1039/C8SC04589E 10.1002/advs.201800949 10.1039/C7CC07802A 10.1039/C6TA03392J 10.1002/anie.200805145 10.1016/j.apcatb.2019.03.007 10.1002/adma.201701736 10.1039/c3ee40600h 10.1039/c3cs60341e 10.1039/C6NJ03887E 10.1007/s00339-017-1529-6 10.1002/adfm.201901760 10.1038/367435a0 10.1039/C9TA08447A 10.1016/j.mee.2005.07.008 10.1016/j.jpowsour.2015.01.099 10.1038/s41467-018-07882-8 10.1002/adfm.201808979 10.1016/j.carbon.2019.09.034 10.1021/cm501273s 10.1039/C7CC02400B 10.1021/acscatal.7b00587 10.1021/ja503372r 10.1038/nature05570 10.1039/C9NR00531E 10.1038/38464 10.1021/ac00148a020 10.1039/C9TA00530G 10.1002/adma.200900868 10.1088/0268-1242/20/4/003 10.1016/j.apcatb.2018.10.071 10.1002/smll.201801068 10.1002/admi.201700377 10.1016/j.ijhydene.2017.04.116 10.1002/smll.201805554 10.1016/j.apcatb.2019.118017 10.1021/acs.langmuir.7b04008 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI |
DOI | 10.1039/d0ta00870b |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 7632 |
ExternalDocumentID | 10_1039_D0TA00870B d0ta00870b |
GroupedDBID | 0-7 0R 705 AAEMU AAGNR AAIWI AANOJ ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFRAH AFVBQ AGSTE ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV BLAPV BSQNT C6K CKLOX EBS ECGLT EE0 EF- GNO HZ H~N J3I JG O-G O9- R7C RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH UCJ -JG 0R~ AAJAE AAWGC AAXHV AAYXX ABASK ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AGEGJ AGRSR AHGCF ANUXI APEMP CITATION GGIMP H13 HZ~ RAOCF 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI |
ID | FETCH-LOGICAL-c380t-8c3a7e3cbd2d0f9b17e0a80ea2518bb23db501240b97abae7b170c7a1877280d3 |
ISSN | 2050-7488 |
IngestDate | Thu Oct 10 18:03:25 EDT 2024 Fri Aug 23 01:29:19 EDT 2024 Wed Nov 11 00:26:57 EST 2020 Sat Jan 08 03:56:34 EST 2022 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c380t-8c3a7e3cbd2d0f9b17e0a80ea2518bb23db501240b97abae7b170c7a1877280d3 |
Notes | Electronic supplementary information (ESI) available. See DOI 10.1039/d0ta00870b |
ORCID | 0000-0001-7970-0066 0000-0001-6677-7507 0000-0001-8566-4989 |
OpenAccessLink | https://pubs.rsc.org/en/content/articlepdf/2020/ta/d0ta00870b |
PQID | 2395289838 |
PQPubID | 2047523 |
PageCount | 7 |
ParticipantIDs | rsc_primary_d0ta00870b proquest_journals_2395289838 crossref_primary_10_1039_D0TA00870B |
PublicationCentury | 2000 |
PublicationDate | 2020-04-28 |
PublicationDateYYYYMMDD | 2020-04-28 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Pu (D0TA00870B-(cit40)/*[position()=1]) 2014; 26 Sun (D0TA00870B-(cit8)/*[position()=1]) 2005; 82 Zhang (D0TA00870B-(cit48)/*[position()=1]) 2019; 7 Su (D0TA00870B-(cit58)/*[position()=1]) 2019; 10 Wang (D0TA00870B-(cit26)/*[position()=1]) 2019; 243 Ding (D0TA00870B-(cit9)/*[position()=1]) 2020; 30 Bhorde (D0TA00870B-(cit34)/*[position()=1]) 2018; 124 Qian (D0TA00870B-(cit52)/*[position()=1]) 2016; 8 Du (D0TA00870B-(cit24)/*[position()=1]) 2018; 14 Bradley (D0TA00870B-(cit41)/*[position()=1]) 1997; 389 Chang (D0TA00870B-(cit19)/*[position()=1]) 2019; 11 LaGrow (D0TA00870B-(cit39)/*[position()=1]) 2019; 11 Cao (D0TA00870B-(cit47)/*[position()=1]) 2018; 5 Zhang (D0TA00870B-(cit29)/*[position()=1]) 2018; 10 Nuraje (D0TA00870B-(cit17)/*[position()=1]) 2009; 48 Chen (D0TA00870B-(cit32)/*[position()=1]) 2016; 17 Wu (D0TA00870B-(cit13)/*[position()=1]) 2018; 34 Bao (D0TA00870B-(cit1)/*[position()=1]) 2007; 446 Yi (D0TA00870B-(cit2)/*[position()=1]) 2005; 20 Zeradjanin (D0TA00870B-(cit60)/*[position()=1]) 2018; 11 Gao (D0TA00870B-(cit4)/*[position()=1]) 2017; 46 Pandey (D0TA00870B-(cit35)/*[position()=1]) 2017; 19 Liu (D0TA00870B-(cit51)/*[position()=1]) 2017; 42 Klinkova (D0TA00870B-(cit16)/*[position()=1]) 2014; 43 Tian (D0TA00870B-(cit55)/*[position()=1]) 2014; 136 Gansel (D0TA00870B-(cit3)/*[position()=1]) 2009; 325 Noorduin (D0TA00870B-(cit33)/*[position()=1]) 2013; 340 Shi (D0TA00870B-(cit22)/*[position()=1]) 2018; 387 Li (D0TA00870B-(cit23)/*[position()=1]) 2018; 8 Yu (D0TA00870B-(cit18)/*[position()=1]) 2018; 130 Kathalikkattil (D0TA00870B-(cit46)/*[position()=1]) 2014; 6 Wang (D0TA00870B-(cit45)/*[position()=1]) 1994; 367 Mirkova (D0TA00870B-(cit42)/*[position()=1]) 1994; 24 Manfrinato (D0TA00870B-(cit7)/*[position()=1]) 2013; 13 Fan (D0TA00870B-(cit11)/*[position()=1]) 2019; 15 Whitesides (D0TA00870B-(cit5)/*[position()=1]) 2002; 295 Biemolt (D0TA00870B-(cit15)/*[position()=1]) 2019; 155 Bai (D0TA00870B-(cit43)/*[position()=1]) 2016; 4 Conrad (D0TA00870B-(cit10)/*[position()=1]) 2018; 57 Hwang (D0TA00870B-(cit14)/*[position()=1]) 2019; 29 Lin (D0TA00870B-(cit27)/*[position()=1]) 2017; 29 Flick (D0TA00870B-(cit57)/*[position()=1]) 2015; 280 Yan (D0TA00870B-(cit36)/*[position()=1]) 2019; 7 Qu (D0TA00870B-(cit30)/*[position()=1]) 2019; 327 Yan (D0TA00870B-(cit54)/*[position()=1]) 2017; 41 Li (D0TA00870B-(cit20)/*[position()=1]) 2019; 249 Kim (D0TA00870B-(cit6)/*[position()=1]) 2009; 21 Fleury (D0TA00870B-(cit44)/*[position()=1]) 1994; 367 Tran (D0TA00870B-(cit53)/*[position()=1]) 2013; 6 Zhang (D0TA00870B-(cit21)/*[position()=1]) 2019; 141 Chen (D0TA00870B-(cit25)/*[position()=1]) 2019; 259 Huang (D0TA00870B-(cit59)/*[position()=1]) 2017; 53 Tang (D0TA00870B-(cit38)/*[position()=1]) 2018; 28 Du (D0TA00870B-(cit50)/*[position()=1]) 2017; 53 Rong (D0TA00870B-(cit31)/*[position()=1]) 2019; 6 Bae (D0TA00870B-(cit12)/*[position()=1]) 2019; 10 Penner (D0TA00870B-(cit37)/*[position()=1]) 1987; 59 Yang (D0TA00870B-(cit56)/*[position()=1]) 2017; 7 Lu (D0TA00870B-(cit28)/*[position()=1]) 2019; 58 Zhu (D0TA00870B-(cit49)/*[position()=1]) 2017; 4 |
References_xml | – volume: 13 start-page: 1555 year: 2013 ident: D0TA00870B-(cit7)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl304715p contributor: fullname: Manfrinato – volume: 6 start-page: 284 year: 2014 ident: D0TA00870B-(cit46)/*[position()=1] publication-title: ChemCatChem doi: 10.1002/cctc.201300756 contributor: fullname: Kathalikkattil – volume: 28 start-page: 1704594 year: 2018 ident: D0TA00870B-(cit38)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201704594 contributor: fullname: Tang – volume: 340 start-page: 832 year: 2013 ident: D0TA00870B-(cit33)/*[position()=1] publication-title: Science doi: 10.1126/science.1234621 contributor: fullname: Noorduin – volume: 24 start-page: 420 year: 1994 ident: D0TA00870B-(cit42)/*[position()=1] publication-title: J. Appl. Electrochem. doi: 10.1007/BF00254154 contributor: fullname: Mirkova – volume: 327 start-page: 288 year: 2019 ident: D0TA00870B-(cit30)/*[position()=1] publication-title: Catal. Today doi: 10.1016/j.cattod.2018.04.037 contributor: fullname: Qu – volume: 57 start-page: 13592 year: 2018 ident: D0TA00870B-(cit10)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201809921 contributor: fullname: Conrad – volume: 8 start-page: 32875 year: 2016 ident: D0TA00870B-(cit52)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b11927 contributor: fullname: Qian – volume: 8 start-page: 1801357 year: 2018 ident: D0TA00870B-(cit23)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801357 contributor: fullname: Li – volume: 367 start-page: 438 year: 1994 ident: D0TA00870B-(cit45)/*[position()=1] publication-title: Nature doi: 10.1038/367438a0 contributor: fullname: Wang – volume: 11 start-page: 1884 year: 2019 ident: D0TA00870B-(cit19)/*[position()=1] publication-title: ChemCatChem doi: 10.1002/cctc.201802017 contributor: fullname: Chang – volume: 58 start-page: 138 year: 2019 ident: D0TA00870B-(cit28)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.01.014 contributor: fullname: Lu – volume: 325 start-page: 1513 year: 2009 ident: D0TA00870B-(cit3)/*[position()=1] publication-title: Science doi: 10.1126/science.1177031 contributor: fullname: Gansel – volume: 19 start-page: 2793 year: 2017 ident: D0TA00870B-(cit35)/*[position()=1] publication-title: Green Chem. doi: 10.1039/C7GC00147A contributor: fullname: Pandey – volume: 11 start-page: 1278 year: 2018 ident: D0TA00870B-(cit60)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201702287 contributor: fullname: Zeradjanin – volume: 130 start-page: 11417 year: 2018 ident: D0TA00870B-(cit18)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.201805244 contributor: fullname: Yu – volume: 10 start-page: 31330 year: 2018 ident: D0TA00870B-(cit29)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b09361 contributor: fullname: Zhang – volume: 46 start-page: 5400 year: 2017 ident: D0TA00870B-(cit4)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00369B contributor: fullname: Gao – volume: 141 start-page: 4282 year: 2019 ident: D0TA00870B-(cit21)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b10795 contributor: fullname: Zhang – volume: 6 start-page: 1900502 year: 2019 ident: D0TA00870B-(cit31)/*[position()=1] publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201900502 contributor: fullname: Rong – volume: 387 start-page: 64 year: 2018 ident: D0TA00870B-(cit22)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.03.047 contributor: fullname: Shi – volume: 17 start-page: 437 year: 2016 ident: D0TA00870B-(cit32)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04433 contributor: fullname: Chen – volume: 295 start-page: 2418 year: 2002 ident: D0TA00870B-(cit5)/*[position()=1] publication-title: Science doi: 10.1126/science.1070821 contributor: fullname: Whitesides – volume: 10 start-page: 2019 year: 2019 ident: D0TA00870B-(cit58)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C8SC04589E contributor: fullname: Su – volume: 5 start-page: 1800949 year: 2018 ident: D0TA00870B-(cit47)/*[position()=1] publication-title: Adv. Sci. doi: 10.1002/advs.201800949 contributor: fullname: Cao – volume: 53 start-page: 12012 year: 2017 ident: D0TA00870B-(cit50)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C7CC07802A contributor: fullname: Du – volume: 4 start-page: 9072 year: 2016 ident: D0TA00870B-(cit43)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA03392J contributor: fullname: Bai – volume: 48 start-page: 2546 year: 2009 ident: D0TA00870B-(cit17)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200805145 contributor: fullname: Nuraje – volume: 249 start-page: 147 year: 2019 ident: D0TA00870B-(cit20)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2019.03.007 contributor: fullname: Li – volume: 29 start-page: 1701736 year: 2017 ident: D0TA00870B-(cit27)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201701736 contributor: fullname: Lin – volume: 6 start-page: 2452 year: 2013 ident: D0TA00870B-(cit53)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c3ee40600h contributor: fullname: Tran – volume: 43 start-page: 3976 year: 2014 ident: D0TA00870B-(cit16)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs60341e contributor: fullname: Klinkova – volume: 41 start-page: 2436 year: 2017 ident: D0TA00870B-(cit54)/*[position()=1] publication-title: New J. Chem. doi: 10.1039/C6NJ03887E contributor: fullname: Yan – volume: 124 start-page: 133 year: 2018 ident: D0TA00870B-(cit34)/*[position()=1] publication-title: Appl. Phys. A doi: 10.1007/s00339-017-1529-6 contributor: fullname: Bhorde – volume: 30 start-page: 1901760 year: 2020 ident: D0TA00870B-(cit9)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201901760 contributor: fullname: Ding – volume: 367 start-page: 435 year: 1994 ident: D0TA00870B-(cit44)/*[position()=1] publication-title: Nature doi: 10.1038/367435a0 contributor: fullname: Fleury – volume: 7 start-page: 23098 year: 2019 ident: D0TA00870B-(cit36)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C9TA08447A contributor: fullname: Yan – volume: 82 start-page: 175 year: 2005 ident: D0TA00870B-(cit8)/*[position()=1] publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2005.07.008 contributor: fullname: Sun – volume: 280 start-page: 97 year: 2015 ident: D0TA00870B-(cit57)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.01.099 contributor: fullname: Flick – volume: 10 start-page: 1 year: 2019 ident: D0TA00870B-(cit12)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-07882-8 contributor: fullname: Bae – volume: 29 start-page: 1808979 year: 2019 ident: D0TA00870B-(cit14)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201808979 contributor: fullname: Hwang – volume: 155 start-page: 643 year: 2019 ident: D0TA00870B-(cit15)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2019.09.034 contributor: fullname: Biemolt – volume: 26 start-page: 4326 year: 2014 ident: D0TA00870B-(cit40)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm501273s contributor: fullname: Pu – volume: 53 start-page: 6195 year: 2017 ident: D0TA00870B-(cit59)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C7CC02400B contributor: fullname: Huang – volume: 7 start-page: 3824 year: 2017 ident: D0TA00870B-(cit56)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.7b00587 contributor: fullname: Yang – volume: 136 start-page: 7587 year: 2014 ident: D0TA00870B-(cit55)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja503372r contributor: fullname: Tian – volume: 446 start-page: 172 year: 2007 ident: D0TA00870B-(cit1)/*[position()=1] publication-title: Nature doi: 10.1038/nature05570 contributor: fullname: Bao – volume: 11 start-page: 6620 year: 2019 ident: D0TA00870B-(cit39)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C9NR00531E contributor: fullname: LaGrow – volume: 389 start-page: 268 year: 1997 ident: D0TA00870B-(cit41)/*[position()=1] publication-title: Nature doi: 10.1038/38464 contributor: fullname: Bradley – volume: 59 start-page: 2625 year: 1987 ident: D0TA00870B-(cit37)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac00148a020 contributor: fullname: Penner – volume: 7 start-page: 5769 year: 2019 ident: D0TA00870B-(cit48)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C9TA00530G contributor: fullname: Zhang – volume: 21 start-page: 4130 year: 2009 ident: D0TA00870B-(cit6)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200900868 contributor: fullname: Kim – volume: 20 start-page: S22 year: 2005 ident: D0TA00870B-(cit2)/*[position()=1] publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/20/4/003 contributor: fullname: Yi – volume: 243 start-page: 463 year: 2019 ident: D0TA00870B-(cit26)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2018.10.071 contributor: fullname: Wang – volume: 14 start-page: 1801068 year: 2018 ident: D0TA00870B-(cit24)/*[position()=1] publication-title: Small doi: 10.1002/smll.201801068 contributor: fullname: Du – volume: 4 start-page: 1700377 year: 2017 ident: D0TA00870B-(cit49)/*[position()=1] publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201700377 contributor: fullname: Zhu – volume: 42 start-page: 14124 year: 2017 ident: D0TA00870B-(cit51)/*[position()=1] publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.04.116 contributor: fullname: Liu – volume: 15 start-page: 1805554 year: 2019 ident: D0TA00870B-(cit11)/*[position()=1] publication-title: Small doi: 10.1002/smll.201805554 contributor: fullname: Fan – volume: 259 start-page: 118017 year: 2019 ident: D0TA00870B-(cit25)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2019.118017 contributor: fullname: Chen – volume: 34 start-page: 4651 year: 2018 ident: D0TA00870B-(cit13)/*[position()=1] publication-title: Langmuir doi: 10.1021/acs.langmuir.7b04008 contributor: fullname: Wu |
SSID | ssj0000800699 |
Score | 2.3949215 |
Snippet | Three-dimensional intricate nanostructures hold great promise for real-life applications. Many of these hierarchical structures resemble shapes from Nature,... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Publisher |
StartPage | 7626 |
SubjectTerms | Catalytic activity Chemical evolution Chemical properties Cultivation Gardens & gardening Hydrogen evolution reactions Mimicry Nanostructure Noble metals Physicochemical properties Soil conditions Soil structure Structural hierarchy Structural integrity |
Title | "Nano-garden cultivation" for electrocatalysis: controlled synthesis of Nature-inspired hierarchical nanostructures |
URI | https://www.proquest.com/docview/2395289838 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELaW5dIeqv6hLoXKUntDoV57kzjcVkBF_zgt0vYU2Y6DVoIEdRdV9MSDlMfqC_AkjO04MdutRHuJVv5Jsp7JeGY88w1C7-JUCjVMSKREDAaKMJ-UTiTYPGB_ZBI20NIkOH89To5ORp-m8bTX-x1ELV0u5K76uTKv5H-oCm1AV5Ml-w-UbW8KDfAb6AtXoDBcH0RjH6mwDzKyjk6FyUiwBWibkmW-_8ABe7uKN9ZhY3BIjDOgiVQ_A7VzflWBMtjgkxxbvM9oVpmDeOg0FbPtmYMhaQVPc7izMGb-F_UWNGG3BDvK15Tb3Rm79CDfY9_KJR9a_71P5jLxuq2r_5tz0U5nor66DPzc1scLnaedn1-f12fubEUYAPTlwZ_FLHRyUBNx6pPGrSykJCYG9tQ16bDNFcT1wpyHPBtKZhD6SbDLg1ilK3cQwgwA6wGZjA1aH-nOkdrYgKXtsw1qtMf5LMu7uWtonRr8wT5aHx9OPn5pnX9GTU9sbdP2j3noXJa9725wX1nqLKC17748jVWDJk_Rk4bAeOyY8Rnq6eo5ehygWr5AP26vfwUMiQOGvL2-wUB0vMyKe7hjRNwyIq5LvMSIOGREfJ8RX6KTD4eT_aOoqe8RKcbJIuKKiVQzJQtakBIEQ6qJ4EQL0Lm5lJQVMgb9aURklgopdAojiErFkKemqFrBNlC_qiv9CuGhYJkuwRbRDNStQsoilpQPlRxZi7scoLd-IfMLB-OS_0mvAdrya5w3n_k8pyyLKc844wO0Aevezi_IQth5coA2V3fkF0W5-aBHv0aPOr7fQn1YO70N6u5CvmmY5w5DYbEb |
link.rule.ids | 315,783,787,27937,27938 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E2%80%9CNano-garden+cultivation%E2%80%9D+for+electrocatalysis%3A+controlled+synthesis+of+Nature-inspired+hierarchical+nanostructures&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Yan%2C+Xiaoyu&rft.au=Zhao%2C+Yang&rft.au=Biemolt%2C+Jasper&rft.au=Zhao%2C+Kai&rft.date=2020-04-28&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=8&rft.issue=16&rft.spage=7626&rft.epage=7632&rft_id=info:doi/10.1039%2FD0TA00870B&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D0TA00870B |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |