An analysis of fluid–structure interaction coupling mechanisms in liquid-filled viscoelastic pipes subject to fast transients

An extension of a recently developed quasi-2D flow model for fluid transients in viscoelastic pipes to handle fluid–structure interaction mechanisms is presented. In a context in which the fluid flow is devised as a structured pseudo-mixture and the pipe’s viscoelasticity is rooted in an internal va...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluids and structures Vol. 121; p. 103924
Main Authors Andrade, Douglas Monteiro, Bastos de Freitas Rachid, Felipe, Tijsseling, Arris Sieno
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An extension of a recently developed quasi-2D flow model for fluid transients in viscoelastic pipes to handle fluid–structure interaction mechanisms is presented. In a context in which the fluid flow is devised as a structured pseudo-mixture and the pipe’s viscoelasticity is rooted in an internal variable theory, the axial movement of the pipe wall is allowed to occur, giving rise to friction, Poisson, and junction coupling mechanisms. The resulting governing equations of the model form a quasi-linear hyperbolic system of partial differential equations, which approximated solution is achieved by means of the method of characteristics. The proposed approach is validated against pressure traces acquired from a reservoir–pipe–valve experimental setup found in the literature. In the course of the validating process, different pipe anchoring conditions are employed to study the system responses. Focus is given to pipe–fluid interface interactions, energy dissipation, and transfer of energy between both media. •This work presents a thermodynamically consistent FSI model for fluid transients in viscoelastic pipes.•The model’s responses agree well with experimental measurements.•The computation of energy dissipation in the fluid and pipe exposes energy transfer mechanisms in the system.•The coupling mechanisms are responsible for energy exchange and dissipation distribution in the fluid and pipe.•Energy dissipation due to axial anelastic deformation is behind the soft effects of FSI mechanisms.
AbstractList An extension of a recently developed quasi-2D flow model for fluid transients in viscoelastic pipes to handle fluid–structure interaction mechanisms is presented. In a context in which the fluid flow is devised as a structured pseudo-mixture and the pipe’s viscoelasticity is rooted in an internal variable theory, the axial movement of the pipe wall is allowed to occur, giving rise to friction, Poisson, and junction coupling mechanisms. The resulting governing equations of the model form a quasi-linear hyperbolic system of partial differential equations, which approximated solution is achieved by means of the method of characteristics. The proposed approach is validated against pressure traces acquired from a reservoir–pipe–valve experimental setup found in the literature. In the course of the validating process, different pipe anchoring conditions are employed to study the system responses. Focus is given to pipe–fluid interface interactions, energy dissipation, and transfer of energy between both media. •This work presents a thermodynamically consistent FSI model for fluid transients in viscoelastic pipes.•The model’s responses agree well with experimental measurements.•The computation of energy dissipation in the fluid and pipe exposes energy transfer mechanisms in the system.•The coupling mechanisms are responsible for energy exchange and dissipation distribution in the fluid and pipe.•Energy dissipation due to axial anelastic deformation is behind the soft effects of FSI mechanisms.
ArticleNumber 103924
Author Tijsseling, Arris Sieno
Andrade, Douglas Monteiro
Bastos de Freitas Rachid, Felipe
Author_xml – sequence: 1
  givenname: Douglas Monteiro
  orcidid: 0000-0003-4843-7845
  surname: Andrade
  fullname: Andrade, Douglas Monteiro
  email: dmajnj@gmail.com
  organization: Graduate Program in Mechanical Engineering (PGMEC), Department of Mechanical Engineering (TEM), Universidade Federal Fluminense, Rua Passo da Pátria, 156, 24210-240, Niterói, RJ, Brazil
– sequence: 2
  givenname: Felipe
  orcidid: 0000-0003-2190-8141
  surname: Bastos de Freitas Rachid
  fullname: Bastos de Freitas Rachid, Felipe
  email: frachid@id.uff.br
  organization: Graduate Program in Mechanical Engineering (PGMEC), Department of Mechanical Engineering (TEM), Universidade Federal Fluminense, Rua Passo da Pátria, 156, 24210-240, Niterói, RJ, Brazil
– sequence: 3
  givenname: Arris Sieno
  surname: Tijsseling
  fullname: Tijsseling, Arris Sieno
  email: a.s.tijsseling@tue.nl
  organization: Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands
BookMark eNqNkMFOGzEURb2gEgT4B0tdT2qPk8xYXUURtEiRuoG15fE8wxs5nuDnQWLV_gN_yJfgkG7aVVZPelf3SPfM2FkcIzD2VYq5FHL1bZgPPkzYU06TyzSvRa1KonS9OGMXom11pZvF6pzNiAYhhF4oecF-ryO30YZXQuKj55-I9z9vR8qUgGPMkKzLOEbuxmkfMD7yHbgnG5F2VHIe8Lm0Ko8hQM9fkNwIwVJGx_e4B-I0dQO4zPPIffnznGwkhJjpin3xNhBc_72X7OH25n7zs9r--nG3WW8rp1qRq7ZRoHoplrq3SyclLCzYru9BKw3dSmrtlfcShJKulo1deQFNW3dNU3d13YC6ZN-PXJdGogTe7BPubHo1UpiDPzOYf_yZgz9z9Ffa6__aDrM9KClLMJzIuDkyoMx8QUiGXFHgoMdU3Jh-xJM4H_aFofo
CitedBy_id crossref_primary_10_1016_j_apm_2024_02_028
crossref_primary_10_1088_1742_6596_2899_1_012002
crossref_primary_10_1063_5_0226743
crossref_primary_10_1103_PhysRevFluids_10_033102
crossref_primary_10_3390_w17030360
crossref_primary_10_3390_jeta2030006
crossref_primary_10_1016_j_engfailanal_2025_109368
crossref_primary_10_1080_00221686_2024_2390433
crossref_primary_10_1177_10775463241256995
crossref_primary_10_1007_s40997_023_00734_x
Cites_doi 10.1016/j.jfluidstructs.2014.03.001
10.3390/app8101844
10.1016/j.ijpvp.2017.03.001
10.1016/j.compstruc.2007.01.008
10.1016/j.jfluidstructs.2013.12.013
10.1061/(ASCE)HY.1943-7900.0001700
10.5545/sv-jme.2019.6324
10.1016/j.ijpvp.2020.104234
10.1016/j.jfluidstructs.2010.08.002
10.1115/1.3605049
10.1016/0020-7462(95)00016-H
10.1016/j.jfluidstructs.2011.11.004
10.1016/j.jfluidstructs.2014.10.016
10.1016/j.jfluidstructs.2021.103260
10.1080/1573062X.2021.2008984
10.1115/1.1828050
10.1016/j.jsv.2017.01.047
10.1115/1.1404122
10.1016/0020-7403(79)90065-1
10.1016/j.jfluidstructs.2019.102848
10.1061/(ASCE)0733-9429(2007)133:11(1219)
10.1007/s11012-021-01458-5
10.1007/s00707-017-2085-z
10.1080/00221686.2016.1275045
10.1061/(ASCE)0733-9496(2000)126:4(236)
10.1016/j.jsv.2020.115527
10.1080/00221681003726247
10.2166/aqua.2020.048
10.1016/j.crme.2011.02.003
10.1051/lhb/1998003
10.1016/j.ymssp.2020.107500
10.1016/j.jfluidstructs.2011.11.001
10.1115/1.2909513
10.1080/00221680509500111
10.1061/(ASCE)HY.1943-7900.0001304
10.1016/j.apm.2022.10.024
10.1061/(ASCE)HY.1943-7900.0001693
10.1007/BF00418055
10.1016/j.jfluidstructs.2018.05.004
10.1080/00221686.2006.9521717
10.1061/(ASCE)HY.1943-7900.0000930
10.1061/(ASCE)HY.1943-7900.0000891
10.1007/s10409-019-00925-3
10.1007/s00348-012-1287-3
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.jfluidstructs.2023.103924
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_jfluidstructs_2023_103924
S0889974623000920
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADFGL
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SSH
SST
SSZ
T5K
TN5
VH1
WUQ
XPP
ZMT
~A~
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c380t-873e3d1059da5c11e4aeabdde939eb6199f3ff1e031c217a6f0e782b772b227e3
IEDL.DBID .~1
ISSN 0889-9746
IngestDate Tue Jul 01 03:18:04 EDT 2025
Thu Apr 24 22:58:38 EDT 2025
Sun Apr 06 06:53:38 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Fluid–structure interaction
Unsteady flow
Energy dissipation
Fluid transient
Viscoelastic pipe
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c380t-873e3d1059da5c11e4aeabdde939eb6199f3ff1e031c217a6f0e782b772b227e3
ORCID 0000-0003-2190-8141
0000-0003-4843-7845
OpenAccessLink https://pure.tue.nl/ws/files/303438665/1-s2.0-S0889974623000920-main.pdf
ParticipantIDs crossref_primary_10_1016_j_jfluidstructs_2023_103924
crossref_citationtrail_10_1016_j_jfluidstructs_2023_103924
elsevier_sciencedirect_doi_10_1016_j_jfluidstructs_2023_103924
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2023
2023-08-00
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationTitle Journal of fluids and structures
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Duan, Pan, Wang, Chen, Zheng, Zhang (b19) 2020; 69
Wu, Tijsseling, Sun, Yin (b58) 2020; 188
Andrade, Freitas Rachid, Tijsseling (b6) 2023; 114
Ferras, Manso, Covas, Schleiss (b21) 2017; 394
Keramat, Fathi-Moghadam, Zanganeh, Rahmanshahi, Tijsseling, Jabbari (b35) 2020; 93
Ahmadi, Keramat (b2) 2010; 26
Urbanowicz, Duan, A. Bergant (b53) 2020; 66
Duan, Ghidaoui, Lee, Tung (b17) 2010; 48
Ghidaoui, Zhao, McInnis, Axworthy (b25) 2005; 58
Meniconi, Brunone, Ferrante, Massari (b44) 2014; 45
Tijsseling (b50) 2007; 85
Andrade, Freitas Rachid (b4) 2022; 57
Pan, Duan, Meniconi, Urbanowicz, Che, Brunone (b45) 2020; 146
Riedelmeier, Becker, Schlücker (b48) 2014; 48
Pezzinga, Brunone, Cannizaro, Ferrante, Meniconi, Berni (b47) 2014; 140
Vlase, Marin, Scutaru, Scărlătescu, Csatlos (b56) 2020; 10
Barez, Goldsmith, Sackman (b9) 1979; 21
Güney (b30) 1983
Vardy, Brown (b54) 2007; 133
Costa Mattos, Martins-Costa, Saldanha da Gama (b14) 1995; 30
Ferras, Manso, Covas, Schleiss (b20) 2017; 55
Rieutord, Blanchard (b49) 1972; 274
Vardy, Brown, He, Ariyaratne, Gorji (b55) 2015; 141
Lemaitre, Chaboche (b41) 1990
Maugin, Muschik (b42) 1994; 19
Ahmed, Meehan (b3) 2012
Bahrar, Rieutord, Morel (b8) 1998; 84
Duan, Meniconi, Lee, Brunone, Ghidaoui (b18) 2017; 143
Keramat, Tijsseling, Hou, Ahmadi (b37) 2012; 28
Kubrak, Kodura (b38) 2018; 146
Triki (b52) 2018; 229
Zanganeh, Ahmadi, Keramat (b59) 2015; 54
Budny, Wiggert, Hatfield (b12) 1991; 113
Ghilardi, P., Paoletti, A., 1986. Additional Viscoelastic Pipes as Pressure Surges Suppressors. In: BHRA Pressure Surges-Proceeding of the 5th International Conference. pp. 113–121.
Ferreira, Covas (b23) 2023; 15
Meniconi, Brunone, Ferrante, Massari (b43) 2012; 53
Zanganeh, Jabbari, Tijsseling, Keramat (b60) 2020; 146
Ferras, Manso, Schleiss, Covas (b22) 2018; 8
Gomes da Rocha, Rachid (b28) 2012; 28
Gonzaga Filho, Freitas Rachid (b29) 2023; 45
Brunone, Karney, Mercarelli, Ferrante (b11) 2000; 126
Bertaglia, Ioriatti, Valiani, Dumbser, Caleffi (b10) 2018; 81
Lavooij, Tijsseling (b40) 1990; 47
Achouyab, Bahrar (b1) 2011; 339
Freitas Rachid, F.B., Stuckenbruck, S., 1989. Transients in liquid and structure in viscoelastic pipes. In: Proceedings of the BHRA 6th International Conference on Pressure Surges. Cambridge, October, pp. 69–84.
Ghodhbani, Haj Taïeb (b27) 2017; 151
Javadi, Ahmadi, Keramat (b34) 2021; 19
Andrade, Freitas Rachid, Tijsseling (b5) 2022; 104
Andrade, Freitas Rachid, Tijsseling (b7) 2023; 152
Hosseini, Ahmadi, Zanganeh (b33) 2020; 487
Zhao, Ghidaoui (b61) 2006; 44
Kubrak, Kodura, Malesińska, Urbanowicz (b39) 2021; 23
Wiggert, Tijsseling (b57) 2001; 54
Covas, Stoianov, Mano, Ramos, Graham, Maksimovic (b16) 2005; 43
Keramat, Karney, Ghidaoui, Wang (b36) 2021; 153
Pan, Keramat, Capponi, Meniconi, Brunone, Duan (b46) 2021; 148
Covas (b15) 2003
Gurtin, Eliot, Anand (b32) 2009
Guo, Zhou, Guan (b31) 2020; 36
Tijsseling, Vardy (b51) 1996
Cao, Mohared, Nistor (b13) 2021; 103
Zielke (b62) 1968; 90
Ghodhbani (10.1016/j.jfluidstructs.2023.103924_b27) 2017; 151
Bertaglia (10.1016/j.jfluidstructs.2023.103924_b10) 2018; 81
Lavooij (10.1016/j.jfluidstructs.2023.103924_b40) 1990; 47
Meniconi (10.1016/j.jfluidstructs.2023.103924_b43) 2012; 53
Andrade (10.1016/j.jfluidstructs.2023.103924_b5) 2022; 104
Barez (10.1016/j.jfluidstructs.2023.103924_b9) 1979; 21
Rieutord (10.1016/j.jfluidstructs.2023.103924_b49) 1972; 274
Tijsseling (10.1016/j.jfluidstructs.2023.103924_b51) 1996
Ferras (10.1016/j.jfluidstructs.2023.103924_b22) 2018; 8
Maugin (10.1016/j.jfluidstructs.2023.103924_b42) 1994; 19
Pan (10.1016/j.jfluidstructs.2023.103924_b45) 2020; 146
Gomes da Rocha (10.1016/j.jfluidstructs.2023.103924_b28) 2012; 28
Keramat (10.1016/j.jfluidstructs.2023.103924_b35) 2020; 93
Cao (10.1016/j.jfluidstructs.2023.103924_b13) 2021; 103
Ferras (10.1016/j.jfluidstructs.2023.103924_b21) 2017; 394
Keramat (10.1016/j.jfluidstructs.2023.103924_b37) 2012; 28
Vardy (10.1016/j.jfluidstructs.2023.103924_b54) 2007; 133
10.1016/j.jfluidstructs.2023.103924_b26
10.1016/j.jfluidstructs.2023.103924_b24
Guo (10.1016/j.jfluidstructs.2023.103924_b31) 2020; 36
Costa Mattos (10.1016/j.jfluidstructs.2023.103924_b14) 1995; 30
Duan (10.1016/j.jfluidstructs.2023.103924_b17) 2010; 48
Hosseini (10.1016/j.jfluidstructs.2023.103924_b33) 2020; 487
Zanganeh (10.1016/j.jfluidstructs.2023.103924_b60) 2020; 146
Kubrak (10.1016/j.jfluidstructs.2023.103924_b39) 2021; 23
Ahmadi (10.1016/j.jfluidstructs.2023.103924_b2) 2010; 26
Kubrak (10.1016/j.jfluidstructs.2023.103924_b38) 2018; 146
Lemaitre (10.1016/j.jfluidstructs.2023.103924_b41) 1990
Covas (10.1016/j.jfluidstructs.2023.103924_b15) 2003
Zhao (10.1016/j.jfluidstructs.2023.103924_b61) 2006; 44
Zielke (10.1016/j.jfluidstructs.2023.103924_b62) 1968; 90
Urbanowicz (10.1016/j.jfluidstructs.2023.103924_b53) 2020; 66
Javadi (10.1016/j.jfluidstructs.2023.103924_b34) 2021; 19
Budny (10.1016/j.jfluidstructs.2023.103924_b12) 1991; 113
Riedelmeier (10.1016/j.jfluidstructs.2023.103924_b48) 2014; 48
Duan (10.1016/j.jfluidstructs.2023.103924_b19) 2020; 69
Achouyab (10.1016/j.jfluidstructs.2023.103924_b1) 2011; 339
Gurtin (10.1016/j.jfluidstructs.2023.103924_b32) 2009
Vardy (10.1016/j.jfluidstructs.2023.103924_b55) 2015; 141
Andrade (10.1016/j.jfluidstructs.2023.103924_b7) 2023; 152
Meniconi (10.1016/j.jfluidstructs.2023.103924_b44) 2014; 45
Vlase (10.1016/j.jfluidstructs.2023.103924_b56) 2020; 10
Ferras (10.1016/j.jfluidstructs.2023.103924_b20) 2017; 55
Wiggert (10.1016/j.jfluidstructs.2023.103924_b57) 2001; 54
Andrade (10.1016/j.jfluidstructs.2023.103924_b4) 2022; 57
Duan (10.1016/j.jfluidstructs.2023.103924_b18) 2017; 143
Covas (10.1016/j.jfluidstructs.2023.103924_b16) 2005; 43
Ahmed (10.1016/j.jfluidstructs.2023.103924_b3) 2012
Zanganeh (10.1016/j.jfluidstructs.2023.103924_b59) 2015; 54
Andrade (10.1016/j.jfluidstructs.2023.103924_b6) 2023; 114
Keramat (10.1016/j.jfluidstructs.2023.103924_b36) 2021; 153
Gonzaga Filho (10.1016/j.jfluidstructs.2023.103924_b29) 2023; 45
Brunone (10.1016/j.jfluidstructs.2023.103924_b11) 2000; 126
Ferreira (10.1016/j.jfluidstructs.2023.103924_b23) 2023; 15
Bahrar (10.1016/j.jfluidstructs.2023.103924_b8) 1998; 84
Ghidaoui (10.1016/j.jfluidstructs.2023.103924_b25) 2005; 58
Güney (10.1016/j.jfluidstructs.2023.103924_b30) 1983
Pezzinga (10.1016/j.jfluidstructs.2023.103924_b47) 2014; 140
Wu (10.1016/j.jfluidstructs.2023.103924_b58) 2020; 188
Triki (10.1016/j.jfluidstructs.2023.103924_b52) 2018; 229
Tijsseling (10.1016/j.jfluidstructs.2023.103924_b50) 2007; 85
Pan (10.1016/j.jfluidstructs.2023.103924_b46) 2021; 148
References_xml – volume: 113
  start-page: 424
  year: 1991
  end-page: 429
  ident: b12
  article-title: The influence of structural damping on the internal pressure during a transient pipe flow
  publication-title: ASME J. Fluids Eng.
– volume: 140
  start-page: 1
  year: 2014
  end-page: 9
  ident: b47
  article-title: Two-dimensional features of viscoelastic models of pipe transients
  publication-title: J. Hydraul. Eng.
– volume: 69
  start-page: 858
  year: 2020
  end-page: 893
  ident: b19
  article-title: State-of-the-art review on the transient flow modeling and utilization for urban water supply system (UWSS) management
  publication-title: J. Water Supply Res. Trans.
– volume: 90
  start-page: 109
  year: 1968
  end-page: 115
  ident: b62
  article-title: Frequency-dependent friction in transient pipe flow
  publication-title: J. Basic Eng.
– volume: 148
  start-page: 1
  year: 2021
  end-page: 11
  ident: b46
  article-title: Transient energy analysis in water-filled viscoelastic pipes
  publication-title: J. Hydraul. Eng.
– volume: 15
  year: 2023
  ident: b23
  article-title: New optimized equal-area mesh used in axisymmetric models for laminar transient flows
  publication-title: Water
– volume: 43
  start-page: 56
  year: 2005
  end-page: 70
  ident: b16
  article-title: The dynamic effect of the pipe-wall viscoelasticity in hydraulic transients. Part II- model developments, calibration and verification
  publication-title: J. Hydral. Res.
– volume: 30
  start-page: 419
  year: 1995
  end-page: 431
  ident: b14
  article-title: On the modeling of momentum and energy transfer in incompressible mixtures
  publication-title: Int. J. Non-Linear Mech.
– volume: 146
  year: 2020
  ident: b45
  article-title: Multistage frequency-domain transient-based method for the analysis of viscoelastic parameters of plastic pipes
  publication-title: J. Hydraulic Eng.
– volume: 394
  start-page: 348
  year: 2017
  end-page: 365
  ident: b21
  article-title: Fluid–structure interaction in straight pipelines with different anchoring conditions
  publication-title: J. Sound Vib.
– year: 2012
  ident: b3
  article-title: Advanced Reservoir Management an Engineering
– volume: 55
  start-page: 491
  year: 2017
  end-page: 505
  ident: b20
  article-title: Fluid–structure interaction in pipe coils during hydraulic transients
  publication-title: J. Hydraul. Res.
– volume: 28
  start-page: 392
  year: 2012
  end-page: 415
  ident: b28
  article-title: Numerical solution of fluid–structure interaction in piping systems by Glimm’s method
  publication-title: J. Fluid Struct.
– volume: 19
  start-page: 336
  year: 2021
  end-page: 347
  ident: b34
  article-title: Modeling of nonlinear viscoelastic creep of polyethylene pipeline during water hammer
  publication-title: Urban Water J.
– volume: 84
  start-page: 26
  year: 1998
  end-page: 32
  ident: b8
  article-title: Influence of the viscoelasticity of the wall on the classic phenomena of water hammer
  publication-title: Houille Blanche
– reference: Ghilardi, P., Paoletti, A., 1986. Additional Viscoelastic Pipes as Pressure Surges Suppressors. In: BHRA Pressure Surges-Proceeding of the 5th International Conference. pp. 113–121.
– volume: 54
  start-page: 215
  year: 2015
  end-page: 234
  ident: b59
  article-title: Fluid–structure interaction with viscoelastic supports during water hammer in a pipeline
  publication-title: J. Fluids Struct.
– year: 2003
  ident: b15
  article-title: Inverse Transient Analysis for Leak Detection and Calibration of Water Pipe Systems - Modelling Special Dynamic Effects
– volume: 19
  start-page: 217
  year: 1994
  end-page: 289
  ident: b42
  article-title: Thermodynamics with internal variables: Part I
  publication-title: J. Non-Equil. Thermody
– volume: 146
  year: 2020
  ident: b60
  article-title: Fluid-structure interaction in transient-based extended-defect detection of pipe walls
  publication-title: J. Hydraul. Eng.
– volume: 339
  start-page: 262
  year: 2011
  end-page: 269
  ident: b1
  article-title: Numerical modeling of phenomena of waterhammer using a model of fluid–structure interaction
  publication-title: Comptes Rendus – Mecanique
– volume: 54
  start-page: 455
  year: 2001
  end-page: 481
  ident: b57
  article-title: Fluid transients and fluid–structure interaction in flexible liquid-filled piping
  publication-title: ASME Appl. Mech. Rev.
– volume: 103
  year: 2021
  ident: b13
  article-title: Partitioned water hammer modeling using the block Gauss–Seidel algorithm
  publication-title: J. Fluids Struct.
– volume: 229
  start-page: 2019
  year: 2018
  end-page: 2039
  ident: b52
  article-title: Dual-technique-based-inline design strategy for water hammer control in pressurized pipes
  publication-title: Acta Mech.
– volume: 26
  start-page: 1123
  year: 2010
  end-page: 1141
  ident: b2
  article-title: Investigation of fluid–structure interaction with various types of junction coupling
  publication-title: J. Fluid Struct.
– volume: 36
  start-page: 513
  year: 2020
  end-page: 523
  ident: b31
  article-title: Fluid–structure interaction in Z-shaped pipe with different supports
  publication-title: Acta Mech. Senica
– volume: 66
  start-page: 77
  year: 2020
  end-page: 90
  ident: b53
  article-title: Transient liquid flow in plastic pipes
  publication-title: Strojniški Vestnik – J. Mech. Eng.
– volume: 58
  start-page: 49
  year: 2005
  end-page: 76
  ident: b25
  article-title: A review of water hammer theory and practice
  publication-title: Appl. Mech. Rev.
– volume: 85
  start-page: 844
  year: 2007
  end-page: 851
  ident: b50
  article-title: Water-hammer with fluid–structure interaction in thick-walled pipes
  publication-title: Comput. Struct.
– volume: 104
  year: 2022
  ident: b5
  article-title: A new model for fluid transients in piping systems taking into account the fluid–structure interaction
  publication-title: J. Fluid Struct.
– year: 1990
  ident: b41
  article-title: Mechanics of Solid Materials
– volume: 45
  year: 2023
  ident: b29
  article-title: Comparative analysis of unsteady friction models for pipe flows in light of the second law of thermodynamics
  publication-title: J. Braz. Soc. Mech. Sci.
– volume: 143
  start-page: 1
  year: 2017
  end-page: 11
  ident: b18
  article-title: Local and integral energy-based evaluation for the unsteady friction relevance in transient pipe flows
  publication-title: J .Hydraul. Eng.
– volume: 53
  start-page: 265
  year: 2012
  end-page: 275
  ident: b43
  article-title: Transient hydrodynamics of in-line valves in viscoelastic pressurised pipes. Long period analysis
  publication-title: Exp. Fluids
– volume: 23
  year: 2021
  ident: b39
  article-title: Water hammer control using additional branched hdpe pipe
  publication-title: Energies
– volume: 48
  start-page: 156
  year: 2014
  end-page: 168
  ident: b48
  article-title: Measurements of junction coupling during water hammer in piping systems
  publication-title: J. Fluids Struct.
– volume: 151
  start-page: 54
  year: 2017
  end-page: 62
  ident: b27
  article-title: A four-equation friction model for waterhammer calculation in quasi-rigid pipelines
  publication-title: Int. Press. Vessel. Pip.
– volume: 28
  start-page: 434
  year: 2012
  end-page: 455
  ident: b37
  article-title: Fluid–structure interaction with pipe-wall viscoelasticity during water hammer
  publication-title: J. Fluid Struct.
– volume: 47
  start-page: 273
  year: 1990
  end-page: 285
  ident: b40
  article-title: Waterhammer with fluid–structure interaction
  publication-title: Appl. Sci. Res.
– volume: 487
  year: 2020
  ident: b33
  article-title: Fluid–structure interaction during water hammer in a pipeline with different performance mechanisms of viscoelastic supports
  publication-title: J. Sound Vib.
– volume: 8
  start-page: 1844
  year: 2018
  ident: b22
  article-title: One-dimensional fluid–structure interaction models in pressurized fluid-filled pipes: A review
  publication-title: Appl. Sci.
– start-page: 945
  year: 1996
  end-page: 954
  ident: b51
  article-title: On the suppression of coupled liquid/pipe vibrations
  publication-title: Proc. 18th IAHR Symp. on Hydraulic Machinery and Cavitation
– volume: 81
  start-page: 230
  year: 2018
  end-page: 254
  ident: b10
  article-title: Numerical methods for hydraulic transients in visco-elastic pipes
  publication-title: J. Fluids Struct.
– start-page: 189
  year: 1983
  end-page: 204
  ident: b30
  article-title: Waterhammer in viscoelastic pipes where cross-section parameters are time-dependent
  publication-title: Proc. 4th Int. Conf. Press. Surges
– volume: 152
  year: 2023
  ident: b7
  article-title: A thermodynamically consistent model for hydraulic transients in metallic pipes undergoing elasto-viscoplastic deformations
  publication-title: Int. J. Nonlinear Mech.
– volume: 188
  year: 2020
  ident: b58
  article-title: In-plane wave propagation analysis of fluid-filled L-shape pipe with multiple supports by using impedance synthesis method
  publication-title: Int. J. Press. Vessel Piping
– volume: 10
  start-page: 1
  year: 2020
  end-page: 22
  ident: b56
  article-title: Study on the mechanical responses of plastic pipes made of high density polyethylene (HDPE) in water supply network
  publication-title: Appl. Sci. (Switzerland)
– volume: 146
  year: 2018
  ident: b38
  article-title: Water hammer phenomenon in pipeline with inserted flexible tube
  publication-title: J. Hydraul. Eng.
– volume: 48
  start-page: 354
  year: 2010
  end-page: 362
  ident: b17
  article-title: Unsteady friction and visco-elasticity in pipe fluid transients
  publication-title: J. Hydraul. Res.
– volume: 274
  start-page: 1963
  year: 1972
  end-page: 1966
  ident: b49
  article-title: Influence d’un comportement viscoélastique de la conduite dans le phénomène du coup de bélier (Influence of viscoelastic pipe behavior in the phenomenon of water hammer)
  publication-title: Rep. Acad. Sci.
– volume: 133
  start-page: 1219
  year: 2007
  end-page: 1228
  ident: b54
  article-title: Approximation of turbulent wall shear stresses in highly transient pipe flows
  publication-title: J. Hydraul. Eng.
– volume: 93
  year: 2020
  ident: b35
  article-title: Experimental investigation of transients-induced fluid–structure interaction in a pipeline with multiple-axial supports
  publication-title: J. Fluids Struct.
– volume: 153
  year: 2021
  ident: b36
  article-title: Transient-based leak detection in the frequency domain considering fluid–structure interaction and viscoelasticity
  publication-title: Mech. Syst. Signal Process
– volume: 126
  start-page: 236
  year: 2000
  end-page: 244
  ident: b11
  article-title: Velocity profiles and unsteady pipe friction in transient flow
  publication-title: J. Water Resour. Plan. Mgmt. ASCE
– volume: 114
  start-page: 846
  year: 2023
  end-page: 869
  ident: b6
  article-title: Fluid transients in viscoelastic pipes via an internal variable constitutive theory
  publication-title: Appl. Math. Model
– volume: 44
  start-page: 682
  year: 2006
  end-page: 692
  ident: b61
  article-title: Investigation of turbulence behavior in pipe transient using a
  publication-title: J. Hydraul. Res.
– year: 2009
  ident: b32
  article-title: The Mechanics and Thermodynamics of Continua
– volume: 57
  start-page: 43
  year: 2022
  end-page: 72
  ident: b4
  article-title: A versatile friction model model for Newtonian liquids flowing under unsteady regimes in pipes
  publication-title: Meccanica
– volume: 141
  year: 2015
  ident: b55
  article-title: Applicability of frozen-viscosity models of unsteady wall shear stress
  publication-title: J. Hydraul. Eng.
– volume: 21
  start-page: 213
  year: 1979
  end-page: 236
  ident: b9
  article-title: Longitudinal waves in liquid-filled tubes – I. Theory
  publication-title: Int. J. Mech. Sci.
– reference: Freitas Rachid, F.B., Stuckenbruck, S., 1989. Transients in liquid and structure in viscoelastic pipes. In: Proceedings of the BHRA 6th International Conference on Pressure Surges. Cambridge, October, pp. 69–84.
– volume: 45
  start-page: 235
  year: 2014
  end-page: 249
  ident: b44
  article-title: Energy dissipation and pressure decay during transients in viscoelastic pipes with an in-line valve
  publication-title: J. Fluids Struct.
– volume: 48
  start-page: 156
  year: 2014
  ident: 10.1016/j.jfluidstructs.2023.103924_b48
  article-title: Measurements of junction coupling during water hammer in piping systems
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2014.03.001
– volume: 8
  start-page: 1844
  year: 2018
  ident: 10.1016/j.jfluidstructs.2023.103924_b22
  article-title: One-dimensional fluid–structure interaction models in pressurized fluid-filled pipes: A review
  publication-title: Appl. Sci.
  doi: 10.3390/app8101844
– volume: 151
  start-page: 54
  year: 2017
  ident: 10.1016/j.jfluidstructs.2023.103924_b27
  article-title: A four-equation friction model for waterhammer calculation in quasi-rigid pipelines
  publication-title: Int. Press. Vessel. Pip.
  doi: 10.1016/j.ijpvp.2017.03.001
– volume: 85
  start-page: 844
  year: 2007
  ident: 10.1016/j.jfluidstructs.2023.103924_b50
  article-title: Water-hammer with fluid–structure interaction in thick-walled pipes
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2007.01.008
– volume: 45
  start-page: 235
  year: 2014
  ident: 10.1016/j.jfluidstructs.2023.103924_b44
  article-title: Energy dissipation and pressure decay during transients in viscoelastic pipes with an in-line valve
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2013.12.013
– volume: 146
  year: 2020
  ident: 10.1016/j.jfluidstructs.2023.103924_b45
  article-title: Multistage frequency-domain transient-based method for the analysis of viscoelastic parameters of plastic pipes
  publication-title: J. Hydraulic Eng.
  doi: 10.1061/(ASCE)HY.1943-7900.0001700
– volume: 66
  start-page: 77
  year: 2020
  ident: 10.1016/j.jfluidstructs.2023.103924_b53
  article-title: Transient liquid flow in plastic pipes
  publication-title: Strojniški Vestnik – J. Mech. Eng.
  doi: 10.5545/sv-jme.2019.6324
– volume: 188
  year: 2020
  ident: 10.1016/j.jfluidstructs.2023.103924_b58
  article-title: In-plane wave propagation analysis of fluid-filled L-shape pipe with multiple supports by using impedance synthesis method
  publication-title: Int. J. Press. Vessel Piping
  doi: 10.1016/j.ijpvp.2020.104234
– volume: 26
  start-page: 1123
  year: 2010
  ident: 10.1016/j.jfluidstructs.2023.103924_b2
  article-title: Investigation of fluid–structure interaction with various types of junction coupling
  publication-title: J. Fluid Struct.
  doi: 10.1016/j.jfluidstructs.2010.08.002
– volume: 90
  start-page: 109
  year: 1968
  ident: 10.1016/j.jfluidstructs.2023.103924_b62
  article-title: Frequency-dependent friction in transient pipe flow
  publication-title: J. Basic Eng.
  doi: 10.1115/1.3605049
– volume: 146
  year: 2018
  ident: 10.1016/j.jfluidstructs.2023.103924_b38
  article-title: Water hammer phenomenon in pipeline with inserted flexible tube
  publication-title: J. Hydraul. Eng.
– volume: 10
  start-page: 1
  year: 2020
  ident: 10.1016/j.jfluidstructs.2023.103924_b56
  article-title: Study on the mechanical responses of plastic pipes made of high density polyethylene (HDPE) in water supply network
  publication-title: Appl. Sci. (Switzerland)
– volume: 30
  start-page: 419
  year: 1995
  ident: 10.1016/j.jfluidstructs.2023.103924_b14
  article-title: On the modeling of momentum and energy transfer in incompressible mixtures
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/0020-7462(95)00016-H
– volume: 28
  start-page: 392
  year: 2012
  ident: 10.1016/j.jfluidstructs.2023.103924_b28
  article-title: Numerical solution of fluid–structure interaction in piping systems by Glimm’s method
  publication-title: J. Fluid Struct.
  doi: 10.1016/j.jfluidstructs.2011.11.004
– volume: 45
  issue: 107
  year: 2023
  ident: 10.1016/j.jfluidstructs.2023.103924_b29
  article-title: Comparative analysis of unsteady friction models for pipe flows in light of the second law of thermodynamics
  publication-title: J. Braz. Soc. Mech. Sci.
– volume: 54
  start-page: 215
  year: 2015
  ident: 10.1016/j.jfluidstructs.2023.103924_b59
  article-title: Fluid–structure interaction with viscoelastic supports during water hammer in a pipeline
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2014.10.016
– volume: 103
  year: 2021
  ident: 10.1016/j.jfluidstructs.2023.103924_b13
  article-title: Partitioned water hammer modeling using the block Gauss–Seidel algorithm
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2021.103260
– volume: 19
  start-page: 336
  year: 2021
  ident: 10.1016/j.jfluidstructs.2023.103924_b34
  article-title: Modeling of nonlinear viscoelastic creep of polyethylene pipeline during water hammer
  publication-title: Urban Water J.
  doi: 10.1080/1573062X.2021.2008984
– volume: 58
  start-page: 49
  year: 2005
  ident: 10.1016/j.jfluidstructs.2023.103924_b25
  article-title: A review of water hammer theory and practice
  publication-title: Appl. Mech. Rev.
  doi: 10.1115/1.1828050
– volume: 394
  start-page: 348
  year: 2017
  ident: 10.1016/j.jfluidstructs.2023.103924_b21
  article-title: Fluid–structure interaction in straight pipelines with different anchoring conditions
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2017.01.047
– year: 1990
  ident: 10.1016/j.jfluidstructs.2023.103924_b41
– volume: 54
  start-page: 455
  year: 2001
  ident: 10.1016/j.jfluidstructs.2023.103924_b57
  article-title: Fluid transients and fluid–structure interaction in flexible liquid-filled piping
  publication-title: ASME Appl. Mech. Rev.
  doi: 10.1115/1.1404122
– volume: 21
  start-page: 213
  year: 1979
  ident: 10.1016/j.jfluidstructs.2023.103924_b9
  article-title: Longitudinal waves in liquid-filled tubes – I. Theory
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/0020-7403(79)90065-1
– volume: 23
  issue: 8008
  year: 2021
  ident: 10.1016/j.jfluidstructs.2023.103924_b39
  article-title: Water hammer control using additional branched hdpe pipe
  publication-title: Energies
– year: 2012
  ident: 10.1016/j.jfluidstructs.2023.103924_b3
– ident: 10.1016/j.jfluidstructs.2023.103924_b26
– volume: 93
  year: 2020
  ident: 10.1016/j.jfluidstructs.2023.103924_b35
  article-title: Experimental investigation of transients-induced fluid–structure interaction in a pipeline with multiple-axial supports
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2019.102848
– volume: 133
  start-page: 1219
  year: 2007
  ident: 10.1016/j.jfluidstructs.2023.103924_b54
  article-title: Approximation of turbulent wall shear stresses in highly transient pipe flows
  publication-title: J. Hydraul. Eng.
  doi: 10.1061/(ASCE)0733-9429(2007)133:11(1219)
– year: 2003
  ident: 10.1016/j.jfluidstructs.2023.103924_b15
– volume: 57
  start-page: 43
  year: 2022
  ident: 10.1016/j.jfluidstructs.2023.103924_b4
  article-title: A versatile friction model model for Newtonian liquids flowing under unsteady regimes in pipes
  publication-title: Meccanica
  doi: 10.1007/s11012-021-01458-5
– volume: 229
  start-page: 2019
  year: 2018
  ident: 10.1016/j.jfluidstructs.2023.103924_b52
  article-title: Dual-technique-based-inline design strategy for water hammer control in pressurized pipes
  publication-title: Acta Mech.
  doi: 10.1007/s00707-017-2085-z
– volume: 19
  start-page: 217
  year: 1994
  ident: 10.1016/j.jfluidstructs.2023.103924_b42
  article-title: Thermodynamics with internal variables: Part I
  publication-title: J. Non-Equil. Thermody
– volume: 55
  start-page: 491
  year: 2017
  ident: 10.1016/j.jfluidstructs.2023.103924_b20
  article-title: Fluid–structure interaction in pipe coils during hydraulic transients
  publication-title: J. Hydraul. Res.
  doi: 10.1080/00221686.2016.1275045
– volume: 126
  start-page: 236
  year: 2000
  ident: 10.1016/j.jfluidstructs.2023.103924_b11
  article-title: Velocity profiles and unsteady pipe friction in transient flow
  publication-title: J. Water Resour. Plan. Mgmt. ASCE
  doi: 10.1061/(ASCE)0733-9496(2000)126:4(236)
– volume: 487
  year: 2020
  ident: 10.1016/j.jfluidstructs.2023.103924_b33
  article-title: Fluid–structure interaction during water hammer in a pipeline with different performance mechanisms of viscoelastic supports
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2020.115527
– volume: 148
  start-page: 1
  year: 2021
  ident: 10.1016/j.jfluidstructs.2023.103924_b46
  article-title: Transient energy analysis in water-filled viscoelastic pipes
  publication-title: J. Hydraul. Eng.
– volume: 48
  start-page: 354
  year: 2010
  ident: 10.1016/j.jfluidstructs.2023.103924_b17
  article-title: Unsteady friction and visco-elasticity in pipe fluid transients
  publication-title: J. Hydraul. Res.
  doi: 10.1080/00221681003726247
– volume: 69
  start-page: 858
  year: 2020
  ident: 10.1016/j.jfluidstructs.2023.103924_b19
  article-title: State-of-the-art review on the transient flow modeling and utilization for urban water supply system (UWSS) management
  publication-title: J. Water Supply Res. Trans.
  doi: 10.2166/aqua.2020.048
– volume: 339
  start-page: 262
  year: 2011
  ident: 10.1016/j.jfluidstructs.2023.103924_b1
  article-title: Numerical modeling of phenomena of waterhammer using a model of fluid–structure interaction
  publication-title: Comptes Rendus – Mecanique
  doi: 10.1016/j.crme.2011.02.003
– volume: 84
  start-page: 26
  year: 1998
  ident: 10.1016/j.jfluidstructs.2023.103924_b8
  article-title: Influence of the viscoelasticity of the wall on the classic phenomena of water hammer
  publication-title: Houille Blanche
  doi: 10.1051/lhb/1998003
– volume: 153
  year: 2021
  ident: 10.1016/j.jfluidstructs.2023.103924_b36
  article-title: Transient-based leak detection in the frequency domain considering fluid–structure interaction and viscoelasticity
  publication-title: Mech. Syst. Signal Process
  doi: 10.1016/j.ymssp.2020.107500
– volume: 28
  start-page: 434
  year: 2012
  ident: 10.1016/j.jfluidstructs.2023.103924_b37
  article-title: Fluid–structure interaction with pipe-wall viscoelasticity during water hammer
  publication-title: J. Fluid Struct.
  doi: 10.1016/j.jfluidstructs.2011.11.001
– volume: 104
  year: 2022
  ident: 10.1016/j.jfluidstructs.2023.103924_b5
  article-title: A new model for fluid transients in piping systems taking into account the fluid–structure interaction
  publication-title: J. Fluid Struct.
– volume: 113
  start-page: 424
  year: 1991
  ident: 10.1016/j.jfluidstructs.2023.103924_b12
  article-title: The influence of structural damping on the internal pressure during a transient pipe flow
  publication-title: ASME J. Fluids Eng.
  doi: 10.1115/1.2909513
– volume: 43
  start-page: 56
  year: 2005
  ident: 10.1016/j.jfluidstructs.2023.103924_b16
  article-title: The dynamic effect of the pipe-wall viscoelasticity in hydraulic transients. Part II- model developments, calibration and verification
  publication-title: J. Hydral. Res.
  doi: 10.1080/00221680509500111
– year: 2009
  ident: 10.1016/j.jfluidstructs.2023.103924_b32
– start-page: 945
  year: 1996
  ident: 10.1016/j.jfluidstructs.2023.103924_b51
  article-title: On the suppression of coupled liquid/pipe vibrations
– volume: 143
  start-page: 1
  year: 2017
  ident: 10.1016/j.jfluidstructs.2023.103924_b18
  article-title: Local and integral energy-based evaluation for the unsteady friction relevance in transient pipe flows
  publication-title: J .Hydraul. Eng.
  doi: 10.1061/(ASCE)HY.1943-7900.0001304
– volume: 114
  start-page: 846
  year: 2023
  ident: 10.1016/j.jfluidstructs.2023.103924_b6
  article-title: Fluid transients in viscoelastic pipes via an internal variable constitutive theory
  publication-title: Appl. Math. Model
  doi: 10.1016/j.apm.2022.10.024
– volume: 274
  start-page: 1963
  year: 1972
  ident: 10.1016/j.jfluidstructs.2023.103924_b49
  article-title: Influence d’un comportement viscoélastique de la conduite dans le phénomène du coup de bélier (Influence of viscoelastic pipe behavior in the phenomenon of water hammer)
  publication-title: Rep. Acad. Sci.
– start-page: 189
  year: 1983
  ident: 10.1016/j.jfluidstructs.2023.103924_b30
  article-title: Waterhammer in viscoelastic pipes where cross-section parameters are time-dependent
– volume: 146
  year: 2020
  ident: 10.1016/j.jfluidstructs.2023.103924_b60
  article-title: Fluid-structure interaction in transient-based extended-defect detection of pipe walls
  publication-title: J. Hydraul. Eng.
  doi: 10.1061/(ASCE)HY.1943-7900.0001693
– volume: 15
  issue: 1402
  year: 2023
  ident: 10.1016/j.jfluidstructs.2023.103924_b23
  article-title: New optimized equal-area mesh used in axisymmetric models for laminar transient flows
  publication-title: Water
– volume: 47
  start-page: 273
  year: 1990
  ident: 10.1016/j.jfluidstructs.2023.103924_b40
  article-title: Waterhammer with fluid–structure interaction
  publication-title: Appl. Sci. Res.
  doi: 10.1007/BF00418055
– volume: 81
  start-page: 230
  year: 2018
  ident: 10.1016/j.jfluidstructs.2023.103924_b10
  article-title: Numerical methods for hydraulic transients in visco-elastic pipes
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2018.05.004
– volume: 44
  start-page: 682
  year: 2006
  ident: 10.1016/j.jfluidstructs.2023.103924_b61
  article-title: Investigation of turbulence behavior in pipe transient using a k−ϵ model
  publication-title: J. Hydraul. Res.
  doi: 10.1080/00221686.2006.9521717
– volume: 152
  year: 2023
  ident: 10.1016/j.jfluidstructs.2023.103924_b7
  article-title: A thermodynamically consistent model for hydraulic transients in metallic pipes undergoing elasto-viscoplastic deformations
  publication-title: Int. J. Nonlinear Mech.
– ident: 10.1016/j.jfluidstructs.2023.103924_b24
– volume: 141
  year: 2015
  ident: 10.1016/j.jfluidstructs.2023.103924_b55
  article-title: Applicability of frozen-viscosity models of unsteady wall shear stress
  publication-title: J. Hydraul. Eng.
  doi: 10.1061/(ASCE)HY.1943-7900.0000930
– volume: 140
  start-page: 1
  year: 2014
  ident: 10.1016/j.jfluidstructs.2023.103924_b47
  article-title: Two-dimensional features of viscoelastic models of pipe transients
  publication-title: J. Hydraul. Eng.
  doi: 10.1061/(ASCE)HY.1943-7900.0000891
– volume: 36
  start-page: 513
  year: 2020
  ident: 10.1016/j.jfluidstructs.2023.103924_b31
  article-title: Fluid–structure interaction in Z-shaped pipe with different supports
  publication-title: Acta Mech. Senica
  doi: 10.1007/s10409-019-00925-3
– volume: 53
  start-page: 265
  year: 2012
  ident: 10.1016/j.jfluidstructs.2023.103924_b43
  article-title: Transient hydrodynamics of in-line valves in viscoelastic pressurised pipes. Long period analysis
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-012-1287-3
SSID ssj0009431
Score 2.4269638
Snippet An extension of a recently developed quasi-2D flow model for fluid transients in viscoelastic pipes to handle fluid–structure interaction mechanisms is...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103924
SubjectTerms Energy dissipation
Fluid transient
Fluid–structure interaction
Unsteady flow
Viscoelastic pipe
Title An analysis of fluid–structure interaction coupling mechanisms in liquid-filled viscoelastic pipes subject to fast transients
URI https://dx.doi.org/10.1016/j.jfluidstructs.2023.103924
Volume 121
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kguhBfOKbBb3GptlN0vUgFFGqYi8qeAvZzaxEalNN61H9D_5Df4kz3dRa8CB4zGYfYWcy880y3yxjB2GsQggh9qLQWE-qLPBSAb6XqRiyVAuIFLGRrzpR-1Ze3IV3M-xkzIWhtMrK9jubPrLWVUu92s16P8_r15Sgg2gY_TcBhYDidilj0vLD10mah5LuTkLK5qHec2x_kuP1YLvDPHOVWql2dyCIhK4C-buX-uF5zpbYYgUZect91TKbgd4KW_hRSHCVvbV6PK3Ki_DC8tGCn-8fbs3hM3AqC_HsSAzcFEPi4d7zRyDeb14-lvied_MnHOVZYgdm_CUvTQGIrXFV3s_7UPJyqOnUhg8KbrGdD8jPEZ-yXGO3Z6c3J22vulrBM6LpD9AGChAZYassDU2jATKFVKOpU0KBxqBKWWFtA_CXNxi0pJH1AbGERiyugyAGsc5qvaIHG4zrKEY9aGo_tBZjS9OEqAHoGKWRmW5af5MdjbcyMVXdcbr-opuME8wekik5JCSHxMlhk8nvwX1XfuNvw47HMkumtClBR_GXCbb-O8E2m6cnlyq4w2rYA3YRvgz03kg_99hs6_yy3fkCaU_4tg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xkEp7qAqlKvSBJegxbDZ2knWlVkItaHleChK3EDvjKmjZLGS3VS9t_0N_Sv9Rf0ln1lkeEgckxDWO7WhmPPM5-mYGYC1OdYwxpkESWxcoXURBLjEMCp1ikRuJieZs5P2DpHukdo7j4yn4O8mFYVpl4_u9Tx976-ZJq5Fma1CWrS9M0CE0TPGbgUIUNszKXfzxne5t9Yftz6Tkd1G0tXn4qRs0rQUCKzvhkHyARFkwtijy2LbbqHLMDR11LTUaulRoJ51rI5m8JdCeJy5EiqWGsKiJohQlrTsNs4rcBbdNWP95xSvRyjdBZPoQf94jWL0ilZ263qgsfGlYLhYeSc5615G6PSxeC3Vbz-Bpg1HFhhfDPExhfwGeXKtc-Bx-bfRF3tQzEZUT4w3__f7j9xxdoOA6FBc-a0LYasSJv1_FGXKicVmf1TQueuU5zQocpyMW4ltZ2woJzNOuYlAOsBb1yPBvIjGshKPnYsiBlRM460U4ehCBv4CZftXHlyBMkpLhdUwYO0eXWdvBpI0UiZVVhem4cAneT0SZ2abQOffb6GUTRttpdkMPGesh83pYAnU5eeDrfdxt2seJzrIb5ptRZLrLAsv3XWAF5rqH-3vZ3vbB7it4zCOep_gaZuhtfEPYaWjejm1VwMlDH47_Gv405Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+analysis+of+fluid%E2%80%93structure+interaction+coupling+mechanisms+in+liquid-filled+viscoelastic+pipes+subject+to+fast+transients&rft.jtitle=Journal+of+fluids+and+structures&rft.au=Andrade%2C+Douglas+Monteiro&rft.au=Bastos+de+Freitas+Rachid%2C+Felipe&rft.au=Tijsseling%2C+Arris+Sieno&rft.date=2023-08-01&rft.issn=0889-9746&rft.volume=121&rft.spage=103924&rft_id=info:doi/10.1016%2Fj.jfluidstructs.2023.103924&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jfluidstructs_2023_103924
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0889-9746&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0889-9746&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0889-9746&client=summon