An analysis of fluid–structure interaction coupling mechanisms in liquid-filled viscoelastic pipes subject to fast transients
An extension of a recently developed quasi-2D flow model for fluid transients in viscoelastic pipes to handle fluid–structure interaction mechanisms is presented. In a context in which the fluid flow is devised as a structured pseudo-mixture and the pipe’s viscoelasticity is rooted in an internal va...
Saved in:
Published in | Journal of fluids and structures Vol. 121; p. 103924 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.08.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An extension of a recently developed quasi-2D flow model for fluid transients in viscoelastic pipes to handle fluid–structure interaction mechanisms is presented. In a context in which the fluid flow is devised as a structured pseudo-mixture and the pipe’s viscoelasticity is rooted in an internal variable theory, the axial movement of the pipe wall is allowed to occur, giving rise to friction, Poisson, and junction coupling mechanisms. The resulting governing equations of the model form a quasi-linear hyperbolic system of partial differential equations, which approximated solution is achieved by means of the method of characteristics. The proposed approach is validated against pressure traces acquired from a reservoir–pipe–valve experimental setup found in the literature. In the course of the validating process, different pipe anchoring conditions are employed to study the system responses. Focus is given to pipe–fluid interface interactions, energy dissipation, and transfer of energy between both media.
•This work presents a thermodynamically consistent FSI model for fluid transients in viscoelastic pipes.•The model’s responses agree well with experimental measurements.•The computation of energy dissipation in the fluid and pipe exposes energy transfer mechanisms in the system.•The coupling mechanisms are responsible for energy exchange and dissipation distribution in the fluid and pipe.•Energy dissipation due to axial anelastic deformation is behind the soft effects of FSI mechanisms. |
---|---|
AbstractList | An extension of a recently developed quasi-2D flow model for fluid transients in viscoelastic pipes to handle fluid–structure interaction mechanisms is presented. In a context in which the fluid flow is devised as a structured pseudo-mixture and the pipe’s viscoelasticity is rooted in an internal variable theory, the axial movement of the pipe wall is allowed to occur, giving rise to friction, Poisson, and junction coupling mechanisms. The resulting governing equations of the model form a quasi-linear hyperbolic system of partial differential equations, which approximated solution is achieved by means of the method of characteristics. The proposed approach is validated against pressure traces acquired from a reservoir–pipe–valve experimental setup found in the literature. In the course of the validating process, different pipe anchoring conditions are employed to study the system responses. Focus is given to pipe–fluid interface interactions, energy dissipation, and transfer of energy between both media.
•This work presents a thermodynamically consistent FSI model for fluid transients in viscoelastic pipes.•The model’s responses agree well with experimental measurements.•The computation of energy dissipation in the fluid and pipe exposes energy transfer mechanisms in the system.•The coupling mechanisms are responsible for energy exchange and dissipation distribution in the fluid and pipe.•Energy dissipation due to axial anelastic deformation is behind the soft effects of FSI mechanisms. |
ArticleNumber | 103924 |
Author | Tijsseling, Arris Sieno Andrade, Douglas Monteiro Bastos de Freitas Rachid, Felipe |
Author_xml | – sequence: 1 givenname: Douglas Monteiro orcidid: 0000-0003-4843-7845 surname: Andrade fullname: Andrade, Douglas Monteiro email: dmajnj@gmail.com organization: Graduate Program in Mechanical Engineering (PGMEC), Department of Mechanical Engineering (TEM), Universidade Federal Fluminense, Rua Passo da Pátria, 156, 24210-240, Niterói, RJ, Brazil – sequence: 2 givenname: Felipe orcidid: 0000-0003-2190-8141 surname: Bastos de Freitas Rachid fullname: Bastos de Freitas Rachid, Felipe email: frachid@id.uff.br organization: Graduate Program in Mechanical Engineering (PGMEC), Department of Mechanical Engineering (TEM), Universidade Federal Fluminense, Rua Passo da Pátria, 156, 24210-240, Niterói, RJ, Brazil – sequence: 3 givenname: Arris Sieno surname: Tijsseling fullname: Tijsseling, Arris Sieno email: a.s.tijsseling@tue.nl organization: Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands |
BookMark | eNqNkMFOGzEURb2gEgT4B0tdT2qPk8xYXUURtEiRuoG15fE8wxs5nuDnQWLV_gN_yJfgkG7aVVZPelf3SPfM2FkcIzD2VYq5FHL1bZgPPkzYU06TyzSvRa1KonS9OGMXom11pZvF6pzNiAYhhF4oecF-ryO30YZXQuKj55-I9z9vR8qUgGPMkKzLOEbuxmkfMD7yHbgnG5F2VHIe8Lm0Ko8hQM9fkNwIwVJGx_e4B-I0dQO4zPPIffnznGwkhJjpin3xNhBc_72X7OH25n7zs9r--nG3WW8rp1qRq7ZRoHoplrq3SyclLCzYru9BKw3dSmrtlfcShJKulo1deQFNW3dNU3d13YC6ZN-PXJdGogTe7BPubHo1UpiDPzOYf_yZgz9z9Ffa6__aDrM9KClLMJzIuDkyoMx8QUiGXFHgoMdU3Jh-xJM4H_aFofo |
CitedBy_id | crossref_primary_10_1016_j_apm_2024_02_028 crossref_primary_10_1088_1742_6596_2899_1_012002 crossref_primary_10_1063_5_0226743 crossref_primary_10_1103_PhysRevFluids_10_033102 crossref_primary_10_3390_w17030360 crossref_primary_10_3390_jeta2030006 crossref_primary_10_1016_j_engfailanal_2025_109368 crossref_primary_10_1080_00221686_2024_2390433 crossref_primary_10_1177_10775463241256995 crossref_primary_10_1007_s40997_023_00734_x |
Cites_doi | 10.1016/j.jfluidstructs.2014.03.001 10.3390/app8101844 10.1016/j.ijpvp.2017.03.001 10.1016/j.compstruc.2007.01.008 10.1016/j.jfluidstructs.2013.12.013 10.1061/(ASCE)HY.1943-7900.0001700 10.5545/sv-jme.2019.6324 10.1016/j.ijpvp.2020.104234 10.1016/j.jfluidstructs.2010.08.002 10.1115/1.3605049 10.1016/0020-7462(95)00016-H 10.1016/j.jfluidstructs.2011.11.004 10.1016/j.jfluidstructs.2014.10.016 10.1016/j.jfluidstructs.2021.103260 10.1080/1573062X.2021.2008984 10.1115/1.1828050 10.1016/j.jsv.2017.01.047 10.1115/1.1404122 10.1016/0020-7403(79)90065-1 10.1016/j.jfluidstructs.2019.102848 10.1061/(ASCE)0733-9429(2007)133:11(1219) 10.1007/s11012-021-01458-5 10.1007/s00707-017-2085-z 10.1080/00221686.2016.1275045 10.1061/(ASCE)0733-9496(2000)126:4(236) 10.1016/j.jsv.2020.115527 10.1080/00221681003726247 10.2166/aqua.2020.048 10.1016/j.crme.2011.02.003 10.1051/lhb/1998003 10.1016/j.ymssp.2020.107500 10.1016/j.jfluidstructs.2011.11.001 10.1115/1.2909513 10.1080/00221680509500111 10.1061/(ASCE)HY.1943-7900.0001304 10.1016/j.apm.2022.10.024 10.1061/(ASCE)HY.1943-7900.0001693 10.1007/BF00418055 10.1016/j.jfluidstructs.2018.05.004 10.1080/00221686.2006.9521717 10.1061/(ASCE)HY.1943-7900.0000930 10.1061/(ASCE)HY.1943-7900.0000891 10.1007/s10409-019-00925-3 10.1007/s00348-012-1287-3 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jfluidstructs.2023.103924 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_jfluidstructs_2023_103924 S0889974623000920 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO ABEFU ABFNM ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ADBBV ADEZE ADFGL ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CAG COF CS3 D-I DM4 DU5 EBS EFBJH EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LG5 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SPD SSH SST SSZ T5K TN5 VH1 WUQ XPP ZMT ~A~ ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c380t-873e3d1059da5c11e4aeabdde939eb6199f3ff1e031c217a6f0e782b772b227e3 |
IEDL.DBID | .~1 |
ISSN | 0889-9746 |
IngestDate | Tue Jul 01 03:18:04 EDT 2025 Thu Apr 24 22:58:38 EDT 2025 Sun Apr 06 06:53:38 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fluid–structure interaction Unsteady flow Energy dissipation Fluid transient Viscoelastic pipe |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c380t-873e3d1059da5c11e4aeabdde939eb6199f3ff1e031c217a6f0e782b772b227e3 |
ORCID | 0000-0003-2190-8141 0000-0003-4843-7845 |
OpenAccessLink | https://pure.tue.nl/ws/files/303438665/1-s2.0-S0889974623000920-main.pdf |
ParticipantIDs | crossref_primary_10_1016_j_jfluidstructs_2023_103924 crossref_citationtrail_10_1016_j_jfluidstructs_2023_103924 elsevier_sciencedirect_doi_10_1016_j_jfluidstructs_2023_103924 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2023 2023-08-00 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: August 2023 |
PublicationDecade | 2020 |
PublicationTitle | Journal of fluids and structures |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Duan, Pan, Wang, Chen, Zheng, Zhang (b19) 2020; 69 Wu, Tijsseling, Sun, Yin (b58) 2020; 188 Andrade, Freitas Rachid, Tijsseling (b6) 2023; 114 Ferras, Manso, Covas, Schleiss (b21) 2017; 394 Keramat, Fathi-Moghadam, Zanganeh, Rahmanshahi, Tijsseling, Jabbari (b35) 2020; 93 Ahmadi, Keramat (b2) 2010; 26 Urbanowicz, Duan, A. Bergant (b53) 2020; 66 Duan, Ghidaoui, Lee, Tung (b17) 2010; 48 Ghidaoui, Zhao, McInnis, Axworthy (b25) 2005; 58 Meniconi, Brunone, Ferrante, Massari (b44) 2014; 45 Tijsseling (b50) 2007; 85 Andrade, Freitas Rachid (b4) 2022; 57 Pan, Duan, Meniconi, Urbanowicz, Che, Brunone (b45) 2020; 146 Riedelmeier, Becker, Schlücker (b48) 2014; 48 Pezzinga, Brunone, Cannizaro, Ferrante, Meniconi, Berni (b47) 2014; 140 Vlase, Marin, Scutaru, Scărlătescu, Csatlos (b56) 2020; 10 Barez, Goldsmith, Sackman (b9) 1979; 21 Güney (b30) 1983 Vardy, Brown (b54) 2007; 133 Costa Mattos, Martins-Costa, Saldanha da Gama (b14) 1995; 30 Ferras, Manso, Covas, Schleiss (b20) 2017; 55 Rieutord, Blanchard (b49) 1972; 274 Vardy, Brown, He, Ariyaratne, Gorji (b55) 2015; 141 Lemaitre, Chaboche (b41) 1990 Maugin, Muschik (b42) 1994; 19 Ahmed, Meehan (b3) 2012 Bahrar, Rieutord, Morel (b8) 1998; 84 Duan, Meniconi, Lee, Brunone, Ghidaoui (b18) 2017; 143 Keramat, Tijsseling, Hou, Ahmadi (b37) 2012; 28 Kubrak, Kodura (b38) 2018; 146 Triki (b52) 2018; 229 Zanganeh, Ahmadi, Keramat (b59) 2015; 54 Budny, Wiggert, Hatfield (b12) 1991; 113 Ghilardi, P., Paoletti, A., 1986. Additional Viscoelastic Pipes as Pressure Surges Suppressors. In: BHRA Pressure Surges-Proceeding of the 5th International Conference. pp. 113–121. Ferreira, Covas (b23) 2023; 15 Meniconi, Brunone, Ferrante, Massari (b43) 2012; 53 Zanganeh, Jabbari, Tijsseling, Keramat (b60) 2020; 146 Ferras, Manso, Schleiss, Covas (b22) 2018; 8 Gomes da Rocha, Rachid (b28) 2012; 28 Gonzaga Filho, Freitas Rachid (b29) 2023; 45 Brunone, Karney, Mercarelli, Ferrante (b11) 2000; 126 Bertaglia, Ioriatti, Valiani, Dumbser, Caleffi (b10) 2018; 81 Lavooij, Tijsseling (b40) 1990; 47 Achouyab, Bahrar (b1) 2011; 339 Freitas Rachid, F.B., Stuckenbruck, S., 1989. Transients in liquid and structure in viscoelastic pipes. In: Proceedings of the BHRA 6th International Conference on Pressure Surges. Cambridge, October, pp. 69–84. Ghodhbani, Haj Taïeb (b27) 2017; 151 Javadi, Ahmadi, Keramat (b34) 2021; 19 Andrade, Freitas Rachid, Tijsseling (b5) 2022; 104 Andrade, Freitas Rachid, Tijsseling (b7) 2023; 152 Hosseini, Ahmadi, Zanganeh (b33) 2020; 487 Zhao, Ghidaoui (b61) 2006; 44 Kubrak, Kodura, Malesińska, Urbanowicz (b39) 2021; 23 Wiggert, Tijsseling (b57) 2001; 54 Covas, Stoianov, Mano, Ramos, Graham, Maksimovic (b16) 2005; 43 Keramat, Karney, Ghidaoui, Wang (b36) 2021; 153 Pan, Keramat, Capponi, Meniconi, Brunone, Duan (b46) 2021; 148 Covas (b15) 2003 Gurtin, Eliot, Anand (b32) 2009 Guo, Zhou, Guan (b31) 2020; 36 Tijsseling, Vardy (b51) 1996 Cao, Mohared, Nistor (b13) 2021; 103 Zielke (b62) 1968; 90 Ghodhbani (10.1016/j.jfluidstructs.2023.103924_b27) 2017; 151 Bertaglia (10.1016/j.jfluidstructs.2023.103924_b10) 2018; 81 Lavooij (10.1016/j.jfluidstructs.2023.103924_b40) 1990; 47 Meniconi (10.1016/j.jfluidstructs.2023.103924_b43) 2012; 53 Andrade (10.1016/j.jfluidstructs.2023.103924_b5) 2022; 104 Barez (10.1016/j.jfluidstructs.2023.103924_b9) 1979; 21 Rieutord (10.1016/j.jfluidstructs.2023.103924_b49) 1972; 274 Tijsseling (10.1016/j.jfluidstructs.2023.103924_b51) 1996 Ferras (10.1016/j.jfluidstructs.2023.103924_b22) 2018; 8 Maugin (10.1016/j.jfluidstructs.2023.103924_b42) 1994; 19 Pan (10.1016/j.jfluidstructs.2023.103924_b45) 2020; 146 Gomes da Rocha (10.1016/j.jfluidstructs.2023.103924_b28) 2012; 28 Keramat (10.1016/j.jfluidstructs.2023.103924_b35) 2020; 93 Cao (10.1016/j.jfluidstructs.2023.103924_b13) 2021; 103 Ferras (10.1016/j.jfluidstructs.2023.103924_b21) 2017; 394 Keramat (10.1016/j.jfluidstructs.2023.103924_b37) 2012; 28 Vardy (10.1016/j.jfluidstructs.2023.103924_b54) 2007; 133 10.1016/j.jfluidstructs.2023.103924_b26 10.1016/j.jfluidstructs.2023.103924_b24 Guo (10.1016/j.jfluidstructs.2023.103924_b31) 2020; 36 Costa Mattos (10.1016/j.jfluidstructs.2023.103924_b14) 1995; 30 Duan (10.1016/j.jfluidstructs.2023.103924_b17) 2010; 48 Hosseini (10.1016/j.jfluidstructs.2023.103924_b33) 2020; 487 Zanganeh (10.1016/j.jfluidstructs.2023.103924_b60) 2020; 146 Kubrak (10.1016/j.jfluidstructs.2023.103924_b39) 2021; 23 Ahmadi (10.1016/j.jfluidstructs.2023.103924_b2) 2010; 26 Kubrak (10.1016/j.jfluidstructs.2023.103924_b38) 2018; 146 Lemaitre (10.1016/j.jfluidstructs.2023.103924_b41) 1990 Covas (10.1016/j.jfluidstructs.2023.103924_b15) 2003 Zhao (10.1016/j.jfluidstructs.2023.103924_b61) 2006; 44 Zielke (10.1016/j.jfluidstructs.2023.103924_b62) 1968; 90 Urbanowicz (10.1016/j.jfluidstructs.2023.103924_b53) 2020; 66 Javadi (10.1016/j.jfluidstructs.2023.103924_b34) 2021; 19 Budny (10.1016/j.jfluidstructs.2023.103924_b12) 1991; 113 Riedelmeier (10.1016/j.jfluidstructs.2023.103924_b48) 2014; 48 Duan (10.1016/j.jfluidstructs.2023.103924_b19) 2020; 69 Achouyab (10.1016/j.jfluidstructs.2023.103924_b1) 2011; 339 Gurtin (10.1016/j.jfluidstructs.2023.103924_b32) 2009 Vardy (10.1016/j.jfluidstructs.2023.103924_b55) 2015; 141 Andrade (10.1016/j.jfluidstructs.2023.103924_b7) 2023; 152 Meniconi (10.1016/j.jfluidstructs.2023.103924_b44) 2014; 45 Vlase (10.1016/j.jfluidstructs.2023.103924_b56) 2020; 10 Ferras (10.1016/j.jfluidstructs.2023.103924_b20) 2017; 55 Wiggert (10.1016/j.jfluidstructs.2023.103924_b57) 2001; 54 Andrade (10.1016/j.jfluidstructs.2023.103924_b4) 2022; 57 Duan (10.1016/j.jfluidstructs.2023.103924_b18) 2017; 143 Covas (10.1016/j.jfluidstructs.2023.103924_b16) 2005; 43 Ahmed (10.1016/j.jfluidstructs.2023.103924_b3) 2012 Zanganeh (10.1016/j.jfluidstructs.2023.103924_b59) 2015; 54 Andrade (10.1016/j.jfluidstructs.2023.103924_b6) 2023; 114 Keramat (10.1016/j.jfluidstructs.2023.103924_b36) 2021; 153 Gonzaga Filho (10.1016/j.jfluidstructs.2023.103924_b29) 2023; 45 Brunone (10.1016/j.jfluidstructs.2023.103924_b11) 2000; 126 Ferreira (10.1016/j.jfluidstructs.2023.103924_b23) 2023; 15 Bahrar (10.1016/j.jfluidstructs.2023.103924_b8) 1998; 84 Ghidaoui (10.1016/j.jfluidstructs.2023.103924_b25) 2005; 58 Güney (10.1016/j.jfluidstructs.2023.103924_b30) 1983 Pezzinga (10.1016/j.jfluidstructs.2023.103924_b47) 2014; 140 Wu (10.1016/j.jfluidstructs.2023.103924_b58) 2020; 188 Triki (10.1016/j.jfluidstructs.2023.103924_b52) 2018; 229 Tijsseling (10.1016/j.jfluidstructs.2023.103924_b50) 2007; 85 Pan (10.1016/j.jfluidstructs.2023.103924_b46) 2021; 148 |
References_xml | – volume: 113 start-page: 424 year: 1991 end-page: 429 ident: b12 article-title: The influence of structural damping on the internal pressure during a transient pipe flow publication-title: ASME J. Fluids Eng. – volume: 140 start-page: 1 year: 2014 end-page: 9 ident: b47 article-title: Two-dimensional features of viscoelastic models of pipe transients publication-title: J. Hydraul. Eng. – volume: 69 start-page: 858 year: 2020 end-page: 893 ident: b19 article-title: State-of-the-art review on the transient flow modeling and utilization for urban water supply system (UWSS) management publication-title: J. Water Supply Res. Trans. – volume: 90 start-page: 109 year: 1968 end-page: 115 ident: b62 article-title: Frequency-dependent friction in transient pipe flow publication-title: J. Basic Eng. – volume: 148 start-page: 1 year: 2021 end-page: 11 ident: b46 article-title: Transient energy analysis in water-filled viscoelastic pipes publication-title: J. Hydraul. Eng. – volume: 15 year: 2023 ident: b23 article-title: New optimized equal-area mesh used in axisymmetric models for laminar transient flows publication-title: Water – volume: 43 start-page: 56 year: 2005 end-page: 70 ident: b16 article-title: The dynamic effect of the pipe-wall viscoelasticity in hydraulic transients. Part II- model developments, calibration and verification publication-title: J. Hydral. Res. – volume: 30 start-page: 419 year: 1995 end-page: 431 ident: b14 article-title: On the modeling of momentum and energy transfer in incompressible mixtures publication-title: Int. J. Non-Linear Mech. – volume: 146 year: 2020 ident: b45 article-title: Multistage frequency-domain transient-based method for the analysis of viscoelastic parameters of plastic pipes publication-title: J. Hydraulic Eng. – volume: 394 start-page: 348 year: 2017 end-page: 365 ident: b21 article-title: Fluid–structure interaction in straight pipelines with different anchoring conditions publication-title: J. Sound Vib. – year: 2012 ident: b3 article-title: Advanced Reservoir Management an Engineering – volume: 55 start-page: 491 year: 2017 end-page: 505 ident: b20 article-title: Fluid–structure interaction in pipe coils during hydraulic transients publication-title: J. Hydraul. Res. – volume: 28 start-page: 392 year: 2012 end-page: 415 ident: b28 article-title: Numerical solution of fluid–structure interaction in piping systems by Glimm’s method publication-title: J. Fluid Struct. – volume: 19 start-page: 336 year: 2021 end-page: 347 ident: b34 article-title: Modeling of nonlinear viscoelastic creep of polyethylene pipeline during water hammer publication-title: Urban Water J. – volume: 84 start-page: 26 year: 1998 end-page: 32 ident: b8 article-title: Influence of the viscoelasticity of the wall on the classic phenomena of water hammer publication-title: Houille Blanche – reference: Ghilardi, P., Paoletti, A., 1986. Additional Viscoelastic Pipes as Pressure Surges Suppressors. In: BHRA Pressure Surges-Proceeding of the 5th International Conference. pp. 113–121. – volume: 54 start-page: 215 year: 2015 end-page: 234 ident: b59 article-title: Fluid–structure interaction with viscoelastic supports during water hammer in a pipeline publication-title: J. Fluids Struct. – year: 2003 ident: b15 article-title: Inverse Transient Analysis for Leak Detection and Calibration of Water Pipe Systems - Modelling Special Dynamic Effects – volume: 19 start-page: 217 year: 1994 end-page: 289 ident: b42 article-title: Thermodynamics with internal variables: Part I publication-title: J. Non-Equil. Thermody – volume: 146 year: 2020 ident: b60 article-title: Fluid-structure interaction in transient-based extended-defect detection of pipe walls publication-title: J. Hydraul. Eng. – volume: 339 start-page: 262 year: 2011 end-page: 269 ident: b1 article-title: Numerical modeling of phenomena of waterhammer using a model of fluid–structure interaction publication-title: Comptes Rendus – Mecanique – volume: 54 start-page: 455 year: 2001 end-page: 481 ident: b57 article-title: Fluid transients and fluid–structure interaction in flexible liquid-filled piping publication-title: ASME Appl. Mech. Rev. – volume: 103 year: 2021 ident: b13 article-title: Partitioned water hammer modeling using the block Gauss–Seidel algorithm publication-title: J. Fluids Struct. – volume: 229 start-page: 2019 year: 2018 end-page: 2039 ident: b52 article-title: Dual-technique-based-inline design strategy for water hammer control in pressurized pipes publication-title: Acta Mech. – volume: 26 start-page: 1123 year: 2010 end-page: 1141 ident: b2 article-title: Investigation of fluid–structure interaction with various types of junction coupling publication-title: J. Fluid Struct. – volume: 36 start-page: 513 year: 2020 end-page: 523 ident: b31 article-title: Fluid–structure interaction in Z-shaped pipe with different supports publication-title: Acta Mech. Senica – volume: 66 start-page: 77 year: 2020 end-page: 90 ident: b53 article-title: Transient liquid flow in plastic pipes publication-title: Strojniški Vestnik – J. Mech. Eng. – volume: 58 start-page: 49 year: 2005 end-page: 76 ident: b25 article-title: A review of water hammer theory and practice publication-title: Appl. Mech. Rev. – volume: 85 start-page: 844 year: 2007 end-page: 851 ident: b50 article-title: Water-hammer with fluid–structure interaction in thick-walled pipes publication-title: Comput. Struct. – volume: 104 year: 2022 ident: b5 article-title: A new model for fluid transients in piping systems taking into account the fluid–structure interaction publication-title: J. Fluid Struct. – year: 1990 ident: b41 article-title: Mechanics of Solid Materials – volume: 45 year: 2023 ident: b29 article-title: Comparative analysis of unsteady friction models for pipe flows in light of the second law of thermodynamics publication-title: J. Braz. Soc. Mech. Sci. – volume: 143 start-page: 1 year: 2017 end-page: 11 ident: b18 article-title: Local and integral energy-based evaluation for the unsteady friction relevance in transient pipe flows publication-title: J .Hydraul. Eng. – volume: 53 start-page: 265 year: 2012 end-page: 275 ident: b43 article-title: Transient hydrodynamics of in-line valves in viscoelastic pressurised pipes. Long period analysis publication-title: Exp. Fluids – volume: 23 year: 2021 ident: b39 article-title: Water hammer control using additional branched hdpe pipe publication-title: Energies – volume: 48 start-page: 156 year: 2014 end-page: 168 ident: b48 article-title: Measurements of junction coupling during water hammer in piping systems publication-title: J. Fluids Struct. – volume: 151 start-page: 54 year: 2017 end-page: 62 ident: b27 article-title: A four-equation friction model for waterhammer calculation in quasi-rigid pipelines publication-title: Int. Press. Vessel. Pip. – volume: 28 start-page: 434 year: 2012 end-page: 455 ident: b37 article-title: Fluid–structure interaction with pipe-wall viscoelasticity during water hammer publication-title: J. Fluid Struct. – volume: 47 start-page: 273 year: 1990 end-page: 285 ident: b40 article-title: Waterhammer with fluid–structure interaction publication-title: Appl. Sci. Res. – volume: 487 year: 2020 ident: b33 article-title: Fluid–structure interaction during water hammer in a pipeline with different performance mechanisms of viscoelastic supports publication-title: J. Sound Vib. – volume: 8 start-page: 1844 year: 2018 ident: b22 article-title: One-dimensional fluid–structure interaction models in pressurized fluid-filled pipes: A review publication-title: Appl. Sci. – start-page: 945 year: 1996 end-page: 954 ident: b51 article-title: On the suppression of coupled liquid/pipe vibrations publication-title: Proc. 18th IAHR Symp. on Hydraulic Machinery and Cavitation – volume: 81 start-page: 230 year: 2018 end-page: 254 ident: b10 article-title: Numerical methods for hydraulic transients in visco-elastic pipes publication-title: J. Fluids Struct. – start-page: 189 year: 1983 end-page: 204 ident: b30 article-title: Waterhammer in viscoelastic pipes where cross-section parameters are time-dependent publication-title: Proc. 4th Int. Conf. Press. Surges – volume: 152 year: 2023 ident: b7 article-title: A thermodynamically consistent model for hydraulic transients in metallic pipes undergoing elasto-viscoplastic deformations publication-title: Int. J. Nonlinear Mech. – volume: 188 year: 2020 ident: b58 article-title: In-plane wave propagation analysis of fluid-filled L-shape pipe with multiple supports by using impedance synthesis method publication-title: Int. J. Press. Vessel Piping – volume: 10 start-page: 1 year: 2020 end-page: 22 ident: b56 article-title: Study on the mechanical responses of plastic pipes made of high density polyethylene (HDPE) in water supply network publication-title: Appl. Sci. (Switzerland) – volume: 146 year: 2018 ident: b38 article-title: Water hammer phenomenon in pipeline with inserted flexible tube publication-title: J. Hydraul. Eng. – volume: 48 start-page: 354 year: 2010 end-page: 362 ident: b17 article-title: Unsteady friction and visco-elasticity in pipe fluid transients publication-title: J. Hydraul. Res. – volume: 274 start-page: 1963 year: 1972 end-page: 1966 ident: b49 article-title: Influence d’un comportement viscoélastique de la conduite dans le phénomène du coup de bélier (Influence of viscoelastic pipe behavior in the phenomenon of water hammer) publication-title: Rep. Acad. Sci. – volume: 133 start-page: 1219 year: 2007 end-page: 1228 ident: b54 article-title: Approximation of turbulent wall shear stresses in highly transient pipe flows publication-title: J. Hydraul. Eng. – volume: 93 year: 2020 ident: b35 article-title: Experimental investigation of transients-induced fluid–structure interaction in a pipeline with multiple-axial supports publication-title: J. Fluids Struct. – volume: 153 year: 2021 ident: b36 article-title: Transient-based leak detection in the frequency domain considering fluid–structure interaction and viscoelasticity publication-title: Mech. Syst. Signal Process – volume: 126 start-page: 236 year: 2000 end-page: 244 ident: b11 article-title: Velocity profiles and unsteady pipe friction in transient flow publication-title: J. Water Resour. Plan. Mgmt. ASCE – volume: 114 start-page: 846 year: 2023 end-page: 869 ident: b6 article-title: Fluid transients in viscoelastic pipes via an internal variable constitutive theory publication-title: Appl. Math. Model – volume: 44 start-page: 682 year: 2006 end-page: 692 ident: b61 article-title: Investigation of turbulence behavior in pipe transient using a publication-title: J. Hydraul. Res. – year: 2009 ident: b32 article-title: The Mechanics and Thermodynamics of Continua – volume: 57 start-page: 43 year: 2022 end-page: 72 ident: b4 article-title: A versatile friction model model for Newtonian liquids flowing under unsteady regimes in pipes publication-title: Meccanica – volume: 141 year: 2015 ident: b55 article-title: Applicability of frozen-viscosity models of unsteady wall shear stress publication-title: J. Hydraul. Eng. – volume: 21 start-page: 213 year: 1979 end-page: 236 ident: b9 article-title: Longitudinal waves in liquid-filled tubes – I. Theory publication-title: Int. J. Mech. Sci. – reference: Freitas Rachid, F.B., Stuckenbruck, S., 1989. Transients in liquid and structure in viscoelastic pipes. In: Proceedings of the BHRA 6th International Conference on Pressure Surges. Cambridge, October, pp. 69–84. – volume: 45 start-page: 235 year: 2014 end-page: 249 ident: b44 article-title: Energy dissipation and pressure decay during transients in viscoelastic pipes with an in-line valve publication-title: J. Fluids Struct. – volume: 48 start-page: 156 year: 2014 ident: 10.1016/j.jfluidstructs.2023.103924_b48 article-title: Measurements of junction coupling during water hammer in piping systems publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2014.03.001 – volume: 8 start-page: 1844 year: 2018 ident: 10.1016/j.jfluidstructs.2023.103924_b22 article-title: One-dimensional fluid–structure interaction models in pressurized fluid-filled pipes: A review publication-title: Appl. Sci. doi: 10.3390/app8101844 – volume: 151 start-page: 54 year: 2017 ident: 10.1016/j.jfluidstructs.2023.103924_b27 article-title: A four-equation friction model for waterhammer calculation in quasi-rigid pipelines publication-title: Int. Press. Vessel. Pip. doi: 10.1016/j.ijpvp.2017.03.001 – volume: 85 start-page: 844 year: 2007 ident: 10.1016/j.jfluidstructs.2023.103924_b50 article-title: Water-hammer with fluid–structure interaction in thick-walled pipes publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2007.01.008 – volume: 45 start-page: 235 year: 2014 ident: 10.1016/j.jfluidstructs.2023.103924_b44 article-title: Energy dissipation and pressure decay during transients in viscoelastic pipes with an in-line valve publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2013.12.013 – volume: 146 year: 2020 ident: 10.1016/j.jfluidstructs.2023.103924_b45 article-title: Multistage frequency-domain transient-based method for the analysis of viscoelastic parameters of plastic pipes publication-title: J. Hydraulic Eng. doi: 10.1061/(ASCE)HY.1943-7900.0001700 – volume: 66 start-page: 77 year: 2020 ident: 10.1016/j.jfluidstructs.2023.103924_b53 article-title: Transient liquid flow in plastic pipes publication-title: Strojniški Vestnik – J. Mech. Eng. doi: 10.5545/sv-jme.2019.6324 – volume: 188 year: 2020 ident: 10.1016/j.jfluidstructs.2023.103924_b58 article-title: In-plane wave propagation analysis of fluid-filled L-shape pipe with multiple supports by using impedance synthesis method publication-title: Int. J. Press. Vessel Piping doi: 10.1016/j.ijpvp.2020.104234 – volume: 26 start-page: 1123 year: 2010 ident: 10.1016/j.jfluidstructs.2023.103924_b2 article-title: Investigation of fluid–structure interaction with various types of junction coupling publication-title: J. Fluid Struct. doi: 10.1016/j.jfluidstructs.2010.08.002 – volume: 90 start-page: 109 year: 1968 ident: 10.1016/j.jfluidstructs.2023.103924_b62 article-title: Frequency-dependent friction in transient pipe flow publication-title: J. Basic Eng. doi: 10.1115/1.3605049 – volume: 146 year: 2018 ident: 10.1016/j.jfluidstructs.2023.103924_b38 article-title: Water hammer phenomenon in pipeline with inserted flexible tube publication-title: J. Hydraul. Eng. – volume: 10 start-page: 1 year: 2020 ident: 10.1016/j.jfluidstructs.2023.103924_b56 article-title: Study on the mechanical responses of plastic pipes made of high density polyethylene (HDPE) in water supply network publication-title: Appl. Sci. (Switzerland) – volume: 30 start-page: 419 year: 1995 ident: 10.1016/j.jfluidstructs.2023.103924_b14 article-title: On the modeling of momentum and energy transfer in incompressible mixtures publication-title: Int. J. Non-Linear Mech. doi: 10.1016/0020-7462(95)00016-H – volume: 28 start-page: 392 year: 2012 ident: 10.1016/j.jfluidstructs.2023.103924_b28 article-title: Numerical solution of fluid–structure interaction in piping systems by Glimm’s method publication-title: J. Fluid Struct. doi: 10.1016/j.jfluidstructs.2011.11.004 – volume: 45 issue: 107 year: 2023 ident: 10.1016/j.jfluidstructs.2023.103924_b29 article-title: Comparative analysis of unsteady friction models for pipe flows in light of the second law of thermodynamics publication-title: J. Braz. Soc. Mech. Sci. – volume: 54 start-page: 215 year: 2015 ident: 10.1016/j.jfluidstructs.2023.103924_b59 article-title: Fluid–structure interaction with viscoelastic supports during water hammer in a pipeline publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2014.10.016 – volume: 103 year: 2021 ident: 10.1016/j.jfluidstructs.2023.103924_b13 article-title: Partitioned water hammer modeling using the block Gauss–Seidel algorithm publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2021.103260 – volume: 19 start-page: 336 year: 2021 ident: 10.1016/j.jfluidstructs.2023.103924_b34 article-title: Modeling of nonlinear viscoelastic creep of polyethylene pipeline during water hammer publication-title: Urban Water J. doi: 10.1080/1573062X.2021.2008984 – volume: 58 start-page: 49 year: 2005 ident: 10.1016/j.jfluidstructs.2023.103924_b25 article-title: A review of water hammer theory and practice publication-title: Appl. Mech. Rev. doi: 10.1115/1.1828050 – volume: 394 start-page: 348 year: 2017 ident: 10.1016/j.jfluidstructs.2023.103924_b21 article-title: Fluid–structure interaction in straight pipelines with different anchoring conditions publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2017.01.047 – year: 1990 ident: 10.1016/j.jfluidstructs.2023.103924_b41 – volume: 54 start-page: 455 year: 2001 ident: 10.1016/j.jfluidstructs.2023.103924_b57 article-title: Fluid transients and fluid–structure interaction in flexible liquid-filled piping publication-title: ASME Appl. Mech. Rev. doi: 10.1115/1.1404122 – volume: 21 start-page: 213 year: 1979 ident: 10.1016/j.jfluidstructs.2023.103924_b9 article-title: Longitudinal waves in liquid-filled tubes – I. Theory publication-title: Int. J. Mech. Sci. doi: 10.1016/0020-7403(79)90065-1 – volume: 23 issue: 8008 year: 2021 ident: 10.1016/j.jfluidstructs.2023.103924_b39 article-title: Water hammer control using additional branched hdpe pipe publication-title: Energies – year: 2012 ident: 10.1016/j.jfluidstructs.2023.103924_b3 – ident: 10.1016/j.jfluidstructs.2023.103924_b26 – volume: 93 year: 2020 ident: 10.1016/j.jfluidstructs.2023.103924_b35 article-title: Experimental investigation of transients-induced fluid–structure interaction in a pipeline with multiple-axial supports publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2019.102848 – volume: 133 start-page: 1219 year: 2007 ident: 10.1016/j.jfluidstructs.2023.103924_b54 article-title: Approximation of turbulent wall shear stresses in highly transient pipe flows publication-title: J. Hydraul. Eng. doi: 10.1061/(ASCE)0733-9429(2007)133:11(1219) – year: 2003 ident: 10.1016/j.jfluidstructs.2023.103924_b15 – volume: 57 start-page: 43 year: 2022 ident: 10.1016/j.jfluidstructs.2023.103924_b4 article-title: A versatile friction model model for Newtonian liquids flowing under unsteady regimes in pipes publication-title: Meccanica doi: 10.1007/s11012-021-01458-5 – volume: 229 start-page: 2019 year: 2018 ident: 10.1016/j.jfluidstructs.2023.103924_b52 article-title: Dual-technique-based-inline design strategy for water hammer control in pressurized pipes publication-title: Acta Mech. doi: 10.1007/s00707-017-2085-z – volume: 19 start-page: 217 year: 1994 ident: 10.1016/j.jfluidstructs.2023.103924_b42 article-title: Thermodynamics with internal variables: Part I publication-title: J. Non-Equil. Thermody – volume: 55 start-page: 491 year: 2017 ident: 10.1016/j.jfluidstructs.2023.103924_b20 article-title: Fluid–structure interaction in pipe coils during hydraulic transients publication-title: J. Hydraul. Res. doi: 10.1080/00221686.2016.1275045 – volume: 126 start-page: 236 year: 2000 ident: 10.1016/j.jfluidstructs.2023.103924_b11 article-title: Velocity profiles and unsteady pipe friction in transient flow publication-title: J. Water Resour. Plan. Mgmt. ASCE doi: 10.1061/(ASCE)0733-9496(2000)126:4(236) – volume: 487 year: 2020 ident: 10.1016/j.jfluidstructs.2023.103924_b33 article-title: Fluid–structure interaction during water hammer in a pipeline with different performance mechanisms of viscoelastic supports publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2020.115527 – volume: 148 start-page: 1 year: 2021 ident: 10.1016/j.jfluidstructs.2023.103924_b46 article-title: Transient energy analysis in water-filled viscoelastic pipes publication-title: J. Hydraul. Eng. – volume: 48 start-page: 354 year: 2010 ident: 10.1016/j.jfluidstructs.2023.103924_b17 article-title: Unsteady friction and visco-elasticity in pipe fluid transients publication-title: J. Hydraul. Res. doi: 10.1080/00221681003726247 – volume: 69 start-page: 858 year: 2020 ident: 10.1016/j.jfluidstructs.2023.103924_b19 article-title: State-of-the-art review on the transient flow modeling and utilization for urban water supply system (UWSS) management publication-title: J. Water Supply Res. Trans. doi: 10.2166/aqua.2020.048 – volume: 339 start-page: 262 year: 2011 ident: 10.1016/j.jfluidstructs.2023.103924_b1 article-title: Numerical modeling of phenomena of waterhammer using a model of fluid–structure interaction publication-title: Comptes Rendus – Mecanique doi: 10.1016/j.crme.2011.02.003 – volume: 84 start-page: 26 year: 1998 ident: 10.1016/j.jfluidstructs.2023.103924_b8 article-title: Influence of the viscoelasticity of the wall on the classic phenomena of water hammer publication-title: Houille Blanche doi: 10.1051/lhb/1998003 – volume: 153 year: 2021 ident: 10.1016/j.jfluidstructs.2023.103924_b36 article-title: Transient-based leak detection in the frequency domain considering fluid–structure interaction and viscoelasticity publication-title: Mech. Syst. Signal Process doi: 10.1016/j.ymssp.2020.107500 – volume: 28 start-page: 434 year: 2012 ident: 10.1016/j.jfluidstructs.2023.103924_b37 article-title: Fluid–structure interaction with pipe-wall viscoelasticity during water hammer publication-title: J. Fluid Struct. doi: 10.1016/j.jfluidstructs.2011.11.001 – volume: 104 year: 2022 ident: 10.1016/j.jfluidstructs.2023.103924_b5 article-title: A new model for fluid transients in piping systems taking into account the fluid–structure interaction publication-title: J. Fluid Struct. – volume: 113 start-page: 424 year: 1991 ident: 10.1016/j.jfluidstructs.2023.103924_b12 article-title: The influence of structural damping on the internal pressure during a transient pipe flow publication-title: ASME J. Fluids Eng. doi: 10.1115/1.2909513 – volume: 43 start-page: 56 year: 2005 ident: 10.1016/j.jfluidstructs.2023.103924_b16 article-title: The dynamic effect of the pipe-wall viscoelasticity in hydraulic transients. Part II- model developments, calibration and verification publication-title: J. Hydral. Res. doi: 10.1080/00221680509500111 – year: 2009 ident: 10.1016/j.jfluidstructs.2023.103924_b32 – start-page: 945 year: 1996 ident: 10.1016/j.jfluidstructs.2023.103924_b51 article-title: On the suppression of coupled liquid/pipe vibrations – volume: 143 start-page: 1 year: 2017 ident: 10.1016/j.jfluidstructs.2023.103924_b18 article-title: Local and integral energy-based evaluation for the unsteady friction relevance in transient pipe flows publication-title: J .Hydraul. Eng. doi: 10.1061/(ASCE)HY.1943-7900.0001304 – volume: 114 start-page: 846 year: 2023 ident: 10.1016/j.jfluidstructs.2023.103924_b6 article-title: Fluid transients in viscoelastic pipes via an internal variable constitutive theory publication-title: Appl. Math. Model doi: 10.1016/j.apm.2022.10.024 – volume: 274 start-page: 1963 year: 1972 ident: 10.1016/j.jfluidstructs.2023.103924_b49 article-title: Influence d’un comportement viscoélastique de la conduite dans le phénomène du coup de bélier (Influence of viscoelastic pipe behavior in the phenomenon of water hammer) publication-title: Rep. Acad. Sci. – start-page: 189 year: 1983 ident: 10.1016/j.jfluidstructs.2023.103924_b30 article-title: Waterhammer in viscoelastic pipes where cross-section parameters are time-dependent – volume: 146 year: 2020 ident: 10.1016/j.jfluidstructs.2023.103924_b60 article-title: Fluid-structure interaction in transient-based extended-defect detection of pipe walls publication-title: J. Hydraul. Eng. doi: 10.1061/(ASCE)HY.1943-7900.0001693 – volume: 15 issue: 1402 year: 2023 ident: 10.1016/j.jfluidstructs.2023.103924_b23 article-title: New optimized equal-area mesh used in axisymmetric models for laminar transient flows publication-title: Water – volume: 47 start-page: 273 year: 1990 ident: 10.1016/j.jfluidstructs.2023.103924_b40 article-title: Waterhammer with fluid–structure interaction publication-title: Appl. Sci. Res. doi: 10.1007/BF00418055 – volume: 81 start-page: 230 year: 2018 ident: 10.1016/j.jfluidstructs.2023.103924_b10 article-title: Numerical methods for hydraulic transients in visco-elastic pipes publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2018.05.004 – volume: 44 start-page: 682 year: 2006 ident: 10.1016/j.jfluidstructs.2023.103924_b61 article-title: Investigation of turbulence behavior in pipe transient using a k−ϵ model publication-title: J. Hydraul. Res. doi: 10.1080/00221686.2006.9521717 – volume: 152 year: 2023 ident: 10.1016/j.jfluidstructs.2023.103924_b7 article-title: A thermodynamically consistent model for hydraulic transients in metallic pipes undergoing elasto-viscoplastic deformations publication-title: Int. J. Nonlinear Mech. – ident: 10.1016/j.jfluidstructs.2023.103924_b24 – volume: 141 year: 2015 ident: 10.1016/j.jfluidstructs.2023.103924_b55 article-title: Applicability of frozen-viscosity models of unsteady wall shear stress publication-title: J. Hydraul. Eng. doi: 10.1061/(ASCE)HY.1943-7900.0000930 – volume: 140 start-page: 1 year: 2014 ident: 10.1016/j.jfluidstructs.2023.103924_b47 article-title: Two-dimensional features of viscoelastic models of pipe transients publication-title: J. Hydraul. Eng. doi: 10.1061/(ASCE)HY.1943-7900.0000891 – volume: 36 start-page: 513 year: 2020 ident: 10.1016/j.jfluidstructs.2023.103924_b31 article-title: Fluid–structure interaction in Z-shaped pipe with different supports publication-title: Acta Mech. Senica doi: 10.1007/s10409-019-00925-3 – volume: 53 start-page: 265 year: 2012 ident: 10.1016/j.jfluidstructs.2023.103924_b43 article-title: Transient hydrodynamics of in-line valves in viscoelastic pressurised pipes. Long period analysis publication-title: Exp. Fluids doi: 10.1007/s00348-012-1287-3 |
SSID | ssj0009431 |
Score | 2.4269638 |
Snippet | An extension of a recently developed quasi-2D flow model for fluid transients in viscoelastic pipes to handle fluid–structure interaction mechanisms is... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 103924 |
SubjectTerms | Energy dissipation Fluid transient Fluid–structure interaction Unsteady flow Viscoelastic pipe |
Title | An analysis of fluid–structure interaction coupling mechanisms in liquid-filled viscoelastic pipes subject to fast transients |
URI | https://dx.doi.org/10.1016/j.jfluidstructs.2023.103924 |
Volume | 121 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kguhBfOKbBb3GptlN0vUgFFGqYi8qeAvZzaxEalNN61H9D_5Df4kz3dRa8CB4zGYfYWcy880y3yxjB2GsQggh9qLQWE-qLPBSAb6XqRiyVAuIFLGRrzpR-1Ze3IV3M-xkzIWhtMrK9jubPrLWVUu92s16P8_r15Sgg2gY_TcBhYDidilj0vLD10mah5LuTkLK5qHec2x_kuP1YLvDPHOVWql2dyCIhK4C-buX-uF5zpbYYgUZect91TKbgd4KW_hRSHCVvbV6PK3Ki_DC8tGCn-8fbs3hM3AqC_HsSAzcFEPi4d7zRyDeb14-lvied_MnHOVZYgdm_CUvTQGIrXFV3s_7UPJyqOnUhg8KbrGdD8jPEZ-yXGO3Z6c3J22vulrBM6LpD9AGChAZYassDU2jATKFVKOpU0KBxqBKWWFtA_CXNxi0pJH1AbGERiyugyAGsc5qvaIHG4zrKEY9aGo_tBZjS9OEqAHoGKWRmW5af5MdjbcyMVXdcbr-opuME8wekik5JCSHxMlhk8nvwX1XfuNvw47HMkumtClBR_GXCbb-O8E2m6cnlyq4w2rYA3YRvgz03kg_99hs6_yy3fkCaU_4tg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xkEp7qAqlKvSBJegxbDZ2knWlVkItaHleChK3EDvjKmjZLGS3VS9t_0N_Sv9Rf0ln1lkeEgckxDWO7WhmPPM5-mYGYC1OdYwxpkESWxcoXURBLjEMCp1ikRuJieZs5P2DpHukdo7j4yn4O8mFYVpl4_u9Tx976-ZJq5Fma1CWrS9M0CE0TPGbgUIUNszKXfzxne5t9Yftz6Tkd1G0tXn4qRs0rQUCKzvhkHyARFkwtijy2LbbqHLMDR11LTUaulRoJ51rI5m8JdCeJy5EiqWGsKiJohQlrTsNs4rcBbdNWP95xSvRyjdBZPoQf94jWL0ilZ263qgsfGlYLhYeSc5615G6PSxeC3Vbz-Bpg1HFhhfDPExhfwGeXKtc-Bx-bfRF3tQzEZUT4w3__f7j9xxdoOA6FBc-a0LYasSJv1_FGXKicVmf1TQueuU5zQocpyMW4ltZ2woJzNOuYlAOsBb1yPBvIjGshKPnYsiBlRM460U4ehCBv4CZftXHlyBMkpLhdUwYO0eXWdvBpI0UiZVVhem4cAneT0SZ2abQOffb6GUTRttpdkMPGesh83pYAnU5eeDrfdxt2seJzrIb5ptRZLrLAsv3XWAF5rqH-3vZ3vbB7it4zCOep_gaZuhtfEPYaWjejm1VwMlDH47_Gv405Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+analysis+of+fluid%E2%80%93structure+interaction+coupling+mechanisms+in+liquid-filled+viscoelastic+pipes+subject+to+fast+transients&rft.jtitle=Journal+of+fluids+and+structures&rft.au=Andrade%2C+Douglas+Monteiro&rft.au=Bastos+de+Freitas+Rachid%2C+Felipe&rft.au=Tijsseling%2C+Arris+Sieno&rft.date=2023-08-01&rft.issn=0889-9746&rft.volume=121&rft.spage=103924&rft_id=info:doi/10.1016%2Fj.jfluidstructs.2023.103924&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jfluidstructs_2023_103924 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0889-9746&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0889-9746&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0889-9746&client=summon |