Enhanced Stretchable and Sensitive Strain Sensor via Controlled Strain Distribution

Stretchable and wearable opto-electronics have attracted worldwide attention due to their broad prospects in health monitoring and epidermal applications. Resistive strain sensors, as one of the most typical and important device, have been the subject of great improvements in sensitivity and stretch...

Full description

Saved in:
Bibliographic Details
Published inNanomaterials (Basel, Switzerland) Vol. 10; no. 2; p. 218
Main Authors Chen, Huamin, Lv, Longfeng, Zhang, Jiushuang, Zhang, Shaochun, Xu, Pengjun, Li, Chuanchuan, Zhang, Zhicheng, Li, Yuliang, Xu, Yun, Wang, Jun
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 27.01.2020
MDPI AG
Subjects
Online AccessGet full text
ISSN2079-4991
2079-4991
DOI10.3390/nano10020218

Cover

Abstract Stretchable and wearable opto-electronics have attracted worldwide attention due to their broad prospects in health monitoring and epidermal applications. Resistive strain sensors, as one of the most typical and important device, have been the subject of great improvements in sensitivity and stretchability. Nevertheless, it is hard to take both sensitivity and stretchability into consideration for practical applications. Herein, we demonstrated a simple strategy to construct a highly sensitive and stretchable graphene-based strain sensor. According to the strain distribution in the simulation result, highly sensitive planar graphene and highly stretchable crumpled graphene (CG) were rationally connected to effectively modulate the sensitivity and stretchability of the device. For the stretching mode, the device showed a gauge factor (GF) of 20.1 with 105% tensile strain. The sensitivity of the device was relatively high in this large working range, and the device could endure a maximum tensile strain of 135% with a GF of 337.8. In addition, in the bending mode, the device could work in outward and inward modes. This work introduced a novel and simple method with which to effectively monitor sensitivity and stretchability at the same time. More importantly, the method could be applied to other material categories to further improve the performance.
AbstractList Stretchable and wearable opto-electronics have attracted worldwide attention due to their broad prospects in health monitoring and epidermal applications. Resistive strain sensors, as one of the most typical and important device, have been the subject of great improvements in sensitivity and stretchability. Nevertheless, it is hard to take both sensitivity and stretchability into consideration for practical applications. Herein, we demonstrated a simple strategy to construct a highly sensitive and stretchable graphene-based strain sensor. According to the strain distribution in the simulation result, highly sensitive planar graphene and highly stretchable crumpled graphene (CG) were rationally connected to effectively modulate the sensitivity and stretchability of the device. For the stretching mode, the device showed a gauge factor (GF) of 20.1 with 105% tensile strain. The sensitivity of the device was relatively high in this large working range, and the device could endure a maximum tensile strain of 135% with a GF of 337.8. In addition, in the bending mode, the device could work in outward and inward modes. This work introduced a novel and simple method with which to effectively monitor sensitivity and stretchability at the same time. More importantly, the method could be applied to other material categories to further improve the performance.
Stretchable and wearable opto-electronics have attracted worldwide attention due to their broad prospects in health monitoring and epidermal applications. Resistive strain sensors, as one of the most typical and important device, have been the subject of great improvements in sensitivity and stretchability. Nevertheless, it is hard to take both sensitivity and stretchability into consideration for practical applications. Herein, we demonstrated a simple strategy to construct a highly sensitive and stretchable graphene-based strain sensor. According to the strain distribution in the simulation result, highly sensitive planar graphene and highly stretchable crumpled graphene (CG) were rationally connected to effectively modulate the sensitivity and stretchability of the device. For the stretching mode, the device showed a gauge factor (GF) of 20.1 with 105% tensile strain. The sensitivity of the device was relatively high in this large working range, and the device could endure a maximum tensile strain of 135% with a GF of 337.8. In addition, in the bending mode, the device could work in outward and inward modes. This work introduced a novel and simple method with which to effectively monitor sensitivity and stretchability at the same time. More importantly, the method could be applied to other material categories to further improve the performance.Stretchable and wearable opto-electronics have attracted worldwide attention due to their broad prospects in health monitoring and epidermal applications. Resistive strain sensors, as one of the most typical and important device, have been the subject of great improvements in sensitivity and stretchability. Nevertheless, it is hard to take both sensitivity and stretchability into consideration for practical applications. Herein, we demonstrated a simple strategy to construct a highly sensitive and stretchable graphene-based strain sensor. According to the strain distribution in the simulation result, highly sensitive planar graphene and highly stretchable crumpled graphene (CG) were rationally connected to effectively modulate the sensitivity and stretchability of the device. For the stretching mode, the device showed a gauge factor (GF) of 20.1 with 105% tensile strain. The sensitivity of the device was relatively high in this large working range, and the device could endure a maximum tensile strain of 135% with a GF of 337.8. In addition, in the bending mode, the device could work in outward and inward modes. This work introduced a novel and simple method with which to effectively monitor sensitivity and stretchability at the same time. More importantly, the method could be applied to other material categories to further improve the performance.
Author Lv, Longfeng
Zhang, Jiushuang
Li, Yuliang
Zhang, Shaochun
Xu, Pengjun
Zhang, Zhicheng
Xu, Yun
Li, Chuanchuan
Wang, Jun
Chen, Huamin
AuthorAffiliation 2 Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; lflv@semi.ac.cn (L.L.); jszhang@semi.ac.cn (J.Z.); sczhang@semi.ac.cn (S.Z.); lichuan@semi.ac.cn (C.L.)
1 Fujian Provincial Key Laboratory of Functional Marine Sensing Materials, Center for Advanced Marine Materials and Smart Sensors, Minjiang University, Fuzhou 350108, China; zhicheng@mju.edu.cn (Z.Z.)
3 Faculty of Clothing and Design, Minjiang University, Fuzhou 350108, China; xupj@mju.edu.cn
AuthorAffiliation_xml – name: 1 Fujian Provincial Key Laboratory of Functional Marine Sensing Materials, Center for Advanced Marine Materials and Smart Sensors, Minjiang University, Fuzhou 350108, China; zhicheng@mju.edu.cn (Z.Z.)
– name: 2 Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; lflv@semi.ac.cn (L.L.); jszhang@semi.ac.cn (J.Z.); sczhang@semi.ac.cn (S.Z.); lichuan@semi.ac.cn (C.L.)
– name: 3 Faculty of Clothing and Design, Minjiang University, Fuzhou 350108, China; xupj@mju.edu.cn
Author_xml – sequence: 1
  givenname: Huamin
  orcidid: 0000-0002-7807-534X
  surname: Chen
  fullname: Chen, Huamin
– sequence: 2
  givenname: Longfeng
  surname: Lv
  fullname: Lv, Longfeng
– sequence: 3
  givenname: Jiushuang
  surname: Zhang
  fullname: Zhang, Jiushuang
– sequence: 4
  givenname: Shaochun
  orcidid: 0000-0002-0082-163X
  surname: Zhang
  fullname: Zhang, Shaochun
– sequence: 5
  givenname: Pengjun
  orcidid: 0000-0002-7574-0244
  surname: Xu
  fullname: Xu, Pengjun
– sequence: 6
  givenname: Chuanchuan
  surname: Li
  fullname: Li, Chuanchuan
– sequence: 7
  givenname: Zhicheng
  surname: Zhang
  fullname: Zhang, Zhicheng
– sequence: 8
  givenname: Yuliang
  surname: Li
  fullname: Li, Yuliang
– sequence: 9
  givenname: Yun
  surname: Xu
  fullname: Xu, Yun
– sequence: 10
  givenname: Jun
  surname: Wang
  fullname: Wang, Jun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32012691$$D View this record in MEDLINE/PubMed
BookMark eNptUUtvEzEQtlARLaU3zihHDgT8Wu_6goRCaStV4lA4W7PecePKsYvtROLf421alCJ8sWe-x3hmXpOjmCIS8pbRj0Jo-ilCTIxSTjkbXpATTnu9lFqzo4P3MTkr5Y62o5kYOvGKHAtOGVeanZCb87iGaHFa3NSM1a5hDLiA2GKMxVe_wxkBHx8SKS92HharFGtOIexlM_jVl5r9uK0-xTfkpYNQ8OzxPiU_v53_WF0ur79fXK2-XC-tGGhdDkyMyg7UMeqssEwiCmedVi3VO87tNIluxjRYkCMd3cgnJZELIVsjSpySq73vlODO3Ge_gfzbJPDmIZHyrYFcvQ1oYGBqkE52smfSdmzoLQc19krJqXMomtfnvdf9dtzgZLE1COGZ6XMk-rW5TTvT015qNX_m_aNBTr-2WKrZ-GIxBIiYtsVw0bX5M96xRn13WOtvkaetNALfE2xOpWR0xvoK82jnYQfDqJm3bw6330Qf_hE9-f6X_geQobFf
CitedBy_id crossref_primary_10_3390_nano12122101
crossref_primary_10_1016_j_compositesb_2021_108641
crossref_primary_10_1016_j_jmapro_2023_01_008
crossref_primary_10_54097_hset_v52i_8883
crossref_primary_10_1002_admt_202100423
crossref_primary_10_1016_j_nanoen_2020_105609
crossref_primary_10_1007_s40843_022_1986_5
crossref_primary_10_1007_s42452_020_04034_w
crossref_primary_10_1002_sstr_202300084
crossref_primary_10_3390_mi13010119
crossref_primary_10_3390_nano10122324
crossref_primary_10_3390_s21062201
crossref_primary_10_1109_ACCESS_2024_3432715
crossref_primary_10_3390_magnetism2030015
crossref_primary_10_3390_polym14112219
crossref_primary_10_3390_ma15051664
crossref_primary_10_3390_polym14071294
crossref_primary_10_3390_s24134202
Cites_doi 10.1021/acsami.8b17459
10.1002/adma.201405807
10.1126/science.aac5082
10.3390/s18030916
10.1002/adma.201502556
10.1016/j.nanoen.2016.10.054
10.1126/science.1154367
10.1002/adma.201603436
10.1038/nmat2834
10.1126/science.1234855
10.3390/s18020418
10.1021/acsami.8b20267
10.1021/acsnano.8b07805
10.1126/science.1179963
10.1002/adma.201503500
10.1126/science.1175690
10.1038/s41467-018-07672-2
10.1002/smll.201805120
10.1021/acsami.9b12504
10.1126/science.1206157
10.1002/adma.201706738
10.1038/nmat3711
10.1038/nmat3380
10.1039/C6NR00431H
10.1016/j.sna.2017.04.028
10.1002/mame.201900227
10.1021/nl302959a
10.1039/C8TC02720J
10.1039/C6NR02172G
10.1039/c3nr05496a
10.1038/ncomms4132
10.1002/adma.201603408
10.1021/acsnano.5b01613
10.1364/AO.57.001717
10.1038/nmat3542
10.1007/s12274-019-2541-2
10.1021/acsami.5b04892
10.1126/scirobotics.aau6914
10.1038/nnano.2011.184
10.1002/adma.201303570
10.1021/acsami.5b00695
10.1002/adfm.201806220
10.1038/nature13792
10.1038/nature07113
10.1038/nnano.2011.36
10.1021/nn5070937
10.1039/c3ee40592c
10.1021/cm203216m
10.1039/C6MH00027D
10.1038/s41467-018-04906-1
10.1002/adfm.201500428
10.1038/ncomms7269
10.1002/adfm.201704285
10.1039/C5NR07546G
10.1109/JSEN.2018.2842465
10.1038/ncomms2553
10.1002/anie.201300437
10.1021/acsami.7b17709
10.1038/nature14002
10.1002/adma.201503407
ContentType Journal Article
Copyright 2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3390/nano10020218
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef

PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ: Directory of Open Access Journal (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-4991
ExternalDocumentID oai_doaj_org_article_a81684f454714c5187c2a6b7664d5fe3
PMC7074966
32012691
10_3390_nano10020218
Genre Journal Article
GrantInformation_xml – fundername: the Natural Science Foundation of Fujian
  grantid: 2019J01764
– fundername: the Natural Science Foundation of Fujian
  grantid: 2019J05110
– fundername: the Natural Science Foundation of Ningbo
  grantid: 2018A610007
– fundername: National Natural Science Foundation of China
  grantid: 11674185
– fundername: the National Natural Science Foundation of China
  grantid: 61835011
GroupedDBID 53G
5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
D1I
GROUPED_DOAJ
HCIFZ
HYE
I-F
KB.
KQ8
LK8
M7P
MODMG
M~E
OK1
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
NPM
7X8
PQGLB
PUEGO
5PM
ID FETCH-LOGICAL-c380t-813b6c80f10fc3c14ee3fcf9680f7f22cdd3510fc9aca4b0bfb2d64e233413863
IEDL.DBID DOA
ISSN 2079-4991
IngestDate Wed Aug 27 01:18:57 EDT 2025
Thu Aug 21 18:01:30 EDT 2025
Fri Sep 05 07:56:23 EDT 2025
Wed Feb 19 02:05:28 EST 2025
Thu Apr 24 22:49:59 EDT 2025
Tue Jul 01 01:16:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords stretchable
sensitive
strain sensor
strain distribution
graphene
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c380t-813b6c80f10fc3c14ee3fcf9680f7f22cdd3510fc9aca4b0bfb2d64e233413863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0082-163X
0000-0002-7574-0244
0000-0002-7807-534X
OpenAccessLink https://doaj.org/article/a81684f454714c5187c2a6b7664d5fe3
PMID 32012691
PQID 2350911251
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_a81684f454714c5187c2a6b7664d5fe3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7074966
proquest_miscellaneous_2350911251
pubmed_primary_32012691
crossref_citationtrail_10_3390_nano10020218
crossref_primary_10_3390_nano10020218
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200127
PublicationDateYYYYMMDD 2020-01-27
PublicationDate_xml – month: 1
  year: 2020
  text: 20200127
  day: 27
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Nanomaterials (Basel, Switzerland)
PublicationTitleAlternate Nanomaterials (Basel)
PublicationYear 2020
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Ko (ref_9) 2008; 454
Lipomi (ref_49) 2012; 24
Kim (ref_55) 2018; 10
Rojas (ref_7) 2016; 30
Lipomi (ref_18) 2011; 6
Taroni (ref_24) 2018; 28
Roh (ref_56) 2015; 9
Wang (ref_59) 2019; 11
Boutry (ref_22) 2018; 3
Sun (ref_60) 2019; 304
Lee (ref_8) 2014; 26
Wang (ref_35) 2018; 30
Lee (ref_42) 2019; 15
Kang (ref_13) 2014; 516
Qi (ref_53) 2015; 27
Zhong (ref_32) 2013; 6
Lin (ref_31) 2013; 52
Zhou (ref_46) 2019; 11
Wang (ref_34) 2016; 28
An (ref_20) 2018; 9
Xu (ref_6) 2013; 4
Yamada (ref_15) 2011; 6
Mannsfeld (ref_23) 2010; 9
Seyedin (ref_48) 2015; 7
Kim (ref_3) 2008; 320
Pang (ref_17) 2012; 11
Kim (ref_10) 2011; 333
ref_30
Arnaldo (ref_40) 2018; 57
Shi (ref_43) 2019; 13
Zhang (ref_54) 2016; 8
Zang (ref_58) 2013; 12
Park (ref_1) 2009; 325
Sekitani (ref_36) 2009; 326
Arnaldo (ref_39) 2018; 18
Gong (ref_11) 2014; 5
Zang (ref_37) 2015; 6
Wu (ref_27) 2014; 514
Li (ref_2) 2016; 28
Zhang (ref_25) 2019; 12
Bai (ref_51) 2017; 260
Liu (ref_57) 2018; 6
Hempel (ref_50) 2012; 12
Yao (ref_52) 2014; 6
Wang (ref_38) 2013; 12
ref_44
Wu (ref_26) 2013; 340
Cheng (ref_4) 2015; 9
ref_41
Nie (ref_21) 2015; 27
Zhou (ref_47) 2019; 29
Park (ref_14) 2015; 7
Liu (ref_5) 2016; 29
Liao (ref_16) 2016; 8
Yi (ref_33) 2015; 25
Larson (ref_19) 2016; 351
Yin (ref_12) 2018; 9
Pan (ref_28) 2016; 28
Bao (ref_29) 2016; 8
Wu (ref_45) 2019; 11
References_xml – volume: 11
  start-page: 5316
  year: 2019
  ident: ref_59
  article-title: Highly Stretchable, Sensitive, and Transparent Strain Sensors with a Controllable In-Plane Mesh Structure
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b17459
– volume: 27
  start-page: 3145
  year: 2015
  ident: ref_53
  article-title: Highly Stretchable Gold Nanobelts with Sinusoidal Structures for Recording Electrocorticograms
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201405807
– volume: 351
  start-page: 1071
  year: 2016
  ident: ref_19
  article-title: Highly stretchable electroluminescent skin for optical signaling and tactile sensing
  publication-title: Science
  doi: 10.1126/science.aac5082
– ident: ref_41
  doi: 10.3390/s18030916
– volume: 27
  start-page: 6055
  year: 2015
  ident: ref_21
  article-title: Flexible Transparent Iontronic Film for Interfacial Capacitive Pressure Sensing
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502556
– volume: 30
  start-page: 691
  year: 2016
  ident: ref_7
  article-title: Stretchable helical architecture inorganic-organic hetero thermoelectric generator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.10.054
– volume: 320
  start-page: 507
  year: 2008
  ident: ref_3
  article-title: Stretchable and foldable silicon integrated circuits
  publication-title: Science
  doi: 10.1126/science.1154367
– volume: 29
  start-page: 1603436
  year: 2016
  ident: ref_5
  article-title: Flexible and Stretchable Energy Storage: Recent Advances and Future Perspectives
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603436
– volume: 9
  start-page: 859
  year: 2010
  ident: ref_23
  article-title: Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2834
– volume: 340
  start-page: 952
  year: 2013
  ident: ref_26
  article-title: Taxel-Addressable Matrix of Vertical-Nanowire Piezotronic Transistors for Active and Adaptive Tactile Imaging
  publication-title: Science
  doi: 10.1126/science.1234855
– ident: ref_30
  doi: 10.3390/s18020418
– volume: 11
  start-page: 9405
  year: 2019
  ident: ref_45
  article-title: Ultrastretchable and Stable Strain Sensors Based on Antifreezing and Self-Healing Ionic Organohydrogels for Human Motion Monitoring
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b20267
– volume: 13
  start-page: 649
  year: 2019
  ident: ref_43
  article-title: Bioinspired Ultrasensitive and Stretchable MXene-Based Strain Sensor via Nacre-Mimetic Microscale “Brick-and-Mortar” Architecture
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b07805
– volume: 326
  start-page: 1516
  year: 2009
  ident: ref_36
  article-title: Organic Nonvolatile Memory Transistors for Flexible Sensor Arrays
  publication-title: Science
  doi: 10.1126/science.1179963
– volume: 28
  start-page: 1535
  year: 2016
  ident: ref_28
  article-title: Progress in Piezo-Phototronic-Effect-Enhanced Light-Emitting Diodes and Pressure Imaging
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503500
– volume: 325
  start-page: 977
  year: 2009
  ident: ref_1
  article-title: Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays
  publication-title: Science
  doi: 10.1126/science.1175690
– volume: 9
  start-page: 5161
  year: 2018
  ident: ref_12
  article-title: Bioinspired and bristled microparticles for ultrasensitive pressure and strain sensors
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07672-2
– volume: 15
  start-page: 1805120
  year: 2019
  ident: ref_42
  article-title: Ultrasensitive Strain Sensor Based on Separation of Overlapped Carbon Nanotubes
  publication-title: Small
  doi: 10.1002/smll.201805120
– volume: 11
  start-page: 37094
  year: 2019
  ident: ref_46
  article-title: Highly Stretchable and Sensitive Strain Sensor with Porous Segregated Conductive Network
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b12504
– volume: 333
  start-page: 838
  year: 2011
  ident: ref_10
  article-title: Epidermal electronics
  publication-title: Science
  doi: 10.1126/science.1206157
– volume: 30
  start-page: 1706738
  year: 2018
  ident: ref_35
  article-title: A Highly Stretchable Transparent Self-Powered Triboelectric Tactile Sensor with Metallized Nanofibers for Wearable Electronics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706738
– volume: 12
  start-page: 899
  year: 2013
  ident: ref_38
  article-title: User-interactive electronic skin for instantaneous pressure visualization
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3711
– volume: 11
  start-page: 795
  year: 2012
  ident: ref_17
  article-title: A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3380
– volume: 8
  start-page: 8078
  year: 2016
  ident: ref_29
  article-title: CdS nanorods/organic hybrid LED array and the piezo-phototronic effect of the device for pressure mapping
  publication-title: Nanoscale
  doi: 10.1039/C6NR00431H
– volume: 260
  start-page: 153
  year: 2017
  ident: ref_51
  article-title: Transfer method of crumpled graphene and its application for human strain monitoring
  publication-title: Sens. Actuator A Phys.
  doi: 10.1016/j.sna.2017.04.028
– volume: 304
  start-page: 1900227
  year: 2019
  ident: ref_60
  article-title: Highly Stretchable, Transparent, and Bio-Friendly Strain Sensor Based on Self-Recovery Ionic-Covalent Hydrogels for Human Motion Monitoring
  publication-title: Macromol. Mater. Eng.
  doi: 10.1002/mame.201900227
– volume: 12
  start-page: 5714
  year: 2012
  ident: ref_50
  article-title: A novel class of strain gauges based on layered percolative films of 2D materials
  publication-title: Nano Lett.
  doi: 10.1021/nl302959a
– volume: 6
  start-page: 10730
  year: 2018
  ident: ref_57
  article-title: Templated synthesis of a 1D Ag nanohybrid in the solid state and its organized network for strain-sensing applications
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC02720J
– volume: 8
  start-page: 13025
  year: 2016
  ident: ref_16
  article-title: Flexible and printable paper-based strain sensors for wearable and large-area green electronics
  publication-title: Nanoscale
  doi: 10.1039/C6NR02172G
– volume: 6
  start-page: 2345
  year: 2014
  ident: ref_52
  article-title: Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires
  publication-title: Nanoscale
  doi: 10.1039/c3nr05496a
– volume: 5
  start-page: 3132
  year: 2014
  ident: ref_11
  article-title: A wearable and highly sensitive pressure sensor with ultrathin gold nanowires
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4132
– volume: 28
  start-page: 9770
  year: 2016
  ident: ref_2
  article-title: A Stretchable Multicolor Display and Touch Interface Using Photopatterning and Transfer Printing
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603408
– volume: 9
  start-page: 6252
  year: 2015
  ident: ref_56
  article-title: Stretchable, Transparent, Ultrasensitive, and Patchable Strain Sensor for Human–Machine Interfaces Comprising a Nanohybrid of Carbon Nanotubes and Conductive Elastomers
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b01613
– volume: 57
  start-page: 1717
  year: 2018
  ident: ref_40
  article-title: Polymer-optical-fiber-based sensor system for simultaneous measurement of angle and temperature
  publication-title: Appl. Opt.
  doi: 10.1364/AO.57.001717
– volume: 12
  start-page: 321
  year: 2013
  ident: ref_58
  article-title: Multifunctionality and control of the crumpling and unfolding of large-area graphene
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3542
– volume: 12
  start-page: 2982
  year: 2019
  ident: ref_25
  article-title: Photo-thermoelectric effect induced electricity in stretchable graphene-polymer nanocomposites for ultrasensitive strain sensing
  publication-title: Nano Res.
  doi: 10.1007/s12274-019-2541-2
– volume: 7
  start-page: 21150
  year: 2015
  ident: ref_48
  article-title: Knitted Strain Sensor Textiles of Highly Conductive All-Polymeric Fibers
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b04892
– volume: 3
  start-page: eaau6914
  year: 2018
  ident: ref_22
  article-title: A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics
  publication-title: Sci. Robot.
  doi: 10.1126/scirobotics.aau6914
– volume: 6
  start-page: 788
  year: 2011
  ident: ref_18
  article-title: Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.184
– volume: 26
  start-page: 765
  year: 2014
  ident: ref_8
  article-title: Highly Stretchable Piezoelectric-Pyroelectric Hybrid Nanogenerator
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201303570
– volume: 7
  start-page: 6317
  year: 2015
  ident: ref_14
  article-title: Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b00695
– volume: 29
  start-page: 1806220
  year: 2019
  ident: ref_47
  article-title: Highly Stretchable, Elastic, and Ionic Conductive Hydrogel for Artificial Soft Electronics
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201806220
– volume: 514
  start-page: 470
  year: 2014
  ident: ref_27
  article-title: Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics
  publication-title: Nature
  doi: 10.1038/nature13792
– volume: 454
  start-page: 748
  year: 2008
  ident: ref_9
  article-title: A hemispherical electronic eye camera based on compressible silicon optoelectronics
  publication-title: Nature
  doi: 10.1038/nature07113
– volume: 6
  start-page: 296
  year: 2011
  ident: ref_15
  article-title: A stretchable carbon nanotube strain sensor for human-motion detection
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.36
– volume: 9
  start-page: 3887
  year: 2015
  ident: ref_4
  article-title: Highly conductive and ultrastretchable electric circuits from covered yarns and silver nanowires
  publication-title: ACS Nano
  doi: 10.1021/nn5070937
– volume: 6
  start-page: 1779
  year: 2013
  ident: ref_32
  article-title: A paper-based nanogenerator as a power source and active sensor
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee40592c
– volume: 24
  start-page: 373
  year: 2012
  ident: ref_49
  article-title: Electronic Properties of Transparent Conductive Films of PEDOT:PSS on Stretchable Substrates
  publication-title: Chem. Mater.
  doi: 10.1021/cm203216m
– ident: ref_44
  doi: 10.1039/C6MH00027D
– volume: 9
  start-page: 2458
  year: 2018
  ident: ref_20
  article-title: Transparent and flexible fingerprint sensor array with multiplexed detection of tactile pressure and skin temperature
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04906-1
– volume: 25
  start-page: 3688
  year: 2015
  ident: ref_33
  article-title: Stretchable-Rubber-Based Triboelectric Nanogenerator and its application as self-powered body motion sensors
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201500428
– volume: 6
  start-page: 6269
  year: 2015
  ident: ref_37
  article-title: Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7269
– volume: 28
  start-page: 1704285
  year: 2018
  ident: ref_24
  article-title: Toward Stretchable Self-Powered Sensors Based on the Thermoelectric Response of PEDOT:PSS/Polyurethane Blends
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201704285
– volume: 8
  start-page: 2123
  year: 2016
  ident: ref_54
  article-title: Large-scale assembly of highly sensitive Si-based flexible strain sensors for human motion monitoring
  publication-title: Nanoscale
  doi: 10.1039/C5NR07546G
– volume: 18
  start-page: 5805
  year: 2018
  ident: ref_39
  article-title: Influence of the cladding structure in PMMA mPOFs mechanical properties for strain sensors applications
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2018.2842465
– volume: 4
  start-page: 1543
  year: 2013
  ident: ref_6
  article-title: Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2553
– volume: 52
  start-page: 5065
  year: 2013
  ident: ref_31
  article-title: A self-powered triboelectric nanosensor for mercury ion detection
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201300437
– volume: 10
  start-page: 5000
  year: 2018
  ident: ref_55
  article-title: Highly Sensitive and Very Stretchable Strain Sensor Based on a Rubbery Semiconductor
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b17709
– volume: 516
  start-page: 222
  year: 2014
  ident: ref_13
  article-title: Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system
  publication-title: Nature
  doi: 10.1038/nature14002
– volume: 28
  start-page: 2896
  year: 2016
  ident: ref_34
  article-title: Self-Powered High-Resolution and Pressure-Sensitive Triboelectric Sensor Matrix for Real-Time Tactile Mapping
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503407
SSID ssj0000913853
Score 2.2051327
Snippet Stretchable and wearable opto-electronics have attracted worldwide attention due to their broad prospects in health monitoring and epidermal applications....
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 218
SubjectTerms graphene
sensitive
strain distribution
strain sensor
stretchable
Title Enhanced Stretchable and Sensitive Strain Sensor via Controlled Strain Distribution
URI https://www.ncbi.nlm.nih.gov/pubmed/32012691
https://www.proquest.com/docview/2350911251
https://pubmed.ncbi.nlm.nih.gov/PMC7074966
https://doaj.org/article/a81684f454714c5187c2a6b7664d5fe3
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9xADLYKvcCh6gPK0nYVJDhV0U5mkpnkWOhuUQ8IUZC4RfMUK6HZii79_diT7CpbFfXSY8YTxbKd-LPG-QxwLMrGKq9srpWwOSLwKjdYgeVa88owp1Vwie3zQp7flN9vq9vBqC_qCevogTvDTTQNhigD8U4Vpa2KWlmupVFSlq4KPvF8soYNiqn0DW4KgYmo63QXWNdPoo4LohulnLaRgxJV_9_w5Z9tkoO8M3sNr3rAmH3pFH0DL3x8C7sDGsF38GMa79JBfkZnzOgG-h0q0xGvqT2dPmgk0fOYFhYP2e-5zs66JvX77jYSfiUS3X7-1R7czKbXZ-d5Pywht6Jmy7wuhJG2ZqFgwQpblN6LYEMjcUkFzq1zoiJZo60uDTPBcCdLzwXlsVqKfdiOi-gPILNGucYGrFMVWt0pQyzxjapsYI76_UbweWW-1vZM4qTnfYsVBRm7HRp7BCfr3T87Bo1n9p2SJ9Z7iPc6LWA0tH00tP-KhhEcrfzY4ntChx86-sXjr5YLgkYE50bwvvPr-lECURCXDUrUhsc3dNmUxPld4uJWCMGwYjz8H8p_gB1O1Twrcq4-wvby4dF_QsizNGPYqmffxvDydHpxeTVOsf4E_j4CKg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Stretchable+and+Sensitive+Strain+Sensor+via+Controlled+Strain+Distribution&rft.jtitle=Nanomaterials+%28Basel%2C+Switzerland%29&rft.au=Huamin+Chen&rft.au=Longfeng+Lv&rft.au=Jiushuang+Zhang&rft.au=Shaochun+Zhang&rft.date=2020-01-27&rft.pub=MDPI+AG&rft.eissn=2079-4991&rft.volume=10&rft.issue=2&rft.spage=218&rft_id=info:doi/10.3390%2Fnano10020218&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a81684f454714c5187c2a6b7664d5fe3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-4991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-4991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-4991&client=summon