Enhanced Stretchable and Sensitive Strain Sensor via Controlled Strain Distribution
Stretchable and wearable opto-electronics have attracted worldwide attention due to their broad prospects in health monitoring and epidermal applications. Resistive strain sensors, as one of the most typical and important device, have been the subject of great improvements in sensitivity and stretch...
Saved in:
Published in | Nanomaterials (Basel, Switzerland) Vol. 10; no. 2; p. 218 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
27.01.2020
MDPI AG |
Subjects | |
Online Access | Get full text |
ISSN | 2079-4991 2079-4991 |
DOI | 10.3390/nano10020218 |
Cover
Abstract | Stretchable and wearable opto-electronics have attracted worldwide attention due to their broad prospects in health monitoring and epidermal applications. Resistive strain sensors, as one of the most typical and important device, have been the subject of great improvements in sensitivity and stretchability. Nevertheless, it is hard to take both sensitivity and stretchability into consideration for practical applications. Herein, we demonstrated a simple strategy to construct a highly sensitive and stretchable graphene-based strain sensor. According to the strain distribution in the simulation result, highly sensitive planar graphene and highly stretchable crumpled graphene (CG) were rationally connected to effectively modulate the sensitivity and stretchability of the device. For the stretching mode, the device showed a gauge factor (GF) of 20.1 with 105% tensile strain. The sensitivity of the device was relatively high in this large working range, and the device could endure a maximum tensile strain of 135% with a GF of 337.8. In addition, in the bending mode, the device could work in outward and inward modes. This work introduced a novel and simple method with which to effectively monitor sensitivity and stretchability at the same time. More importantly, the method could be applied to other material categories to further improve the performance. |
---|---|
AbstractList | Stretchable and wearable opto-electronics have attracted worldwide attention due to their broad prospects in health monitoring and epidermal applications. Resistive strain sensors, as one of the most typical and important device, have been the subject of great improvements in sensitivity and stretchability. Nevertheless, it is hard to take both sensitivity and stretchability into consideration for practical applications. Herein, we demonstrated a simple strategy to construct a highly sensitive and stretchable graphene-based strain sensor. According to the strain distribution in the simulation result, highly sensitive planar graphene and highly stretchable crumpled graphene (CG) were rationally connected to effectively modulate the sensitivity and stretchability of the device. For the stretching mode, the device showed a gauge factor (GF) of 20.1 with 105% tensile strain. The sensitivity of the device was relatively high in this large working range, and the device could endure a maximum tensile strain of 135% with a GF of 337.8. In addition, in the bending mode, the device could work in outward and inward modes. This work introduced a novel and simple method with which to effectively monitor sensitivity and stretchability at the same time. More importantly, the method could be applied to other material categories to further improve the performance. Stretchable and wearable opto-electronics have attracted worldwide attention due to their broad prospects in health monitoring and epidermal applications. Resistive strain sensors, as one of the most typical and important device, have been the subject of great improvements in sensitivity and stretchability. Nevertheless, it is hard to take both sensitivity and stretchability into consideration for practical applications. Herein, we demonstrated a simple strategy to construct a highly sensitive and stretchable graphene-based strain sensor. According to the strain distribution in the simulation result, highly sensitive planar graphene and highly stretchable crumpled graphene (CG) were rationally connected to effectively modulate the sensitivity and stretchability of the device. For the stretching mode, the device showed a gauge factor (GF) of 20.1 with 105% tensile strain. The sensitivity of the device was relatively high in this large working range, and the device could endure a maximum tensile strain of 135% with a GF of 337.8. In addition, in the bending mode, the device could work in outward and inward modes. This work introduced a novel and simple method with which to effectively monitor sensitivity and stretchability at the same time. More importantly, the method could be applied to other material categories to further improve the performance.Stretchable and wearable opto-electronics have attracted worldwide attention due to their broad prospects in health monitoring and epidermal applications. Resistive strain sensors, as one of the most typical and important device, have been the subject of great improvements in sensitivity and stretchability. Nevertheless, it is hard to take both sensitivity and stretchability into consideration for practical applications. Herein, we demonstrated a simple strategy to construct a highly sensitive and stretchable graphene-based strain sensor. According to the strain distribution in the simulation result, highly sensitive planar graphene and highly stretchable crumpled graphene (CG) were rationally connected to effectively modulate the sensitivity and stretchability of the device. For the stretching mode, the device showed a gauge factor (GF) of 20.1 with 105% tensile strain. The sensitivity of the device was relatively high in this large working range, and the device could endure a maximum tensile strain of 135% with a GF of 337.8. In addition, in the bending mode, the device could work in outward and inward modes. This work introduced a novel and simple method with which to effectively monitor sensitivity and stretchability at the same time. More importantly, the method could be applied to other material categories to further improve the performance. |
Author | Lv, Longfeng Zhang, Jiushuang Li, Yuliang Zhang, Shaochun Xu, Pengjun Zhang, Zhicheng Xu, Yun Li, Chuanchuan Wang, Jun Chen, Huamin |
AuthorAffiliation | 2 Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; lflv@semi.ac.cn (L.L.); jszhang@semi.ac.cn (J.Z.); sczhang@semi.ac.cn (S.Z.); lichuan@semi.ac.cn (C.L.) 1 Fujian Provincial Key Laboratory of Functional Marine Sensing Materials, Center for Advanced Marine Materials and Smart Sensors, Minjiang University, Fuzhou 350108, China; zhicheng@mju.edu.cn (Z.Z.) 3 Faculty of Clothing and Design, Minjiang University, Fuzhou 350108, China; xupj@mju.edu.cn |
AuthorAffiliation_xml | – name: 1 Fujian Provincial Key Laboratory of Functional Marine Sensing Materials, Center for Advanced Marine Materials and Smart Sensors, Minjiang University, Fuzhou 350108, China; zhicheng@mju.edu.cn (Z.Z.) – name: 2 Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; lflv@semi.ac.cn (L.L.); jszhang@semi.ac.cn (J.Z.); sczhang@semi.ac.cn (S.Z.); lichuan@semi.ac.cn (C.L.) – name: 3 Faculty of Clothing and Design, Minjiang University, Fuzhou 350108, China; xupj@mju.edu.cn |
Author_xml | – sequence: 1 givenname: Huamin orcidid: 0000-0002-7807-534X surname: Chen fullname: Chen, Huamin – sequence: 2 givenname: Longfeng surname: Lv fullname: Lv, Longfeng – sequence: 3 givenname: Jiushuang surname: Zhang fullname: Zhang, Jiushuang – sequence: 4 givenname: Shaochun orcidid: 0000-0002-0082-163X surname: Zhang fullname: Zhang, Shaochun – sequence: 5 givenname: Pengjun orcidid: 0000-0002-7574-0244 surname: Xu fullname: Xu, Pengjun – sequence: 6 givenname: Chuanchuan surname: Li fullname: Li, Chuanchuan – sequence: 7 givenname: Zhicheng surname: Zhang fullname: Zhang, Zhicheng – sequence: 8 givenname: Yuliang surname: Li fullname: Li, Yuliang – sequence: 9 givenname: Yun surname: Xu fullname: Xu, Yun – sequence: 10 givenname: Jun surname: Wang fullname: Wang, Jun |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32012691$$D View this record in MEDLINE/PubMed |
BookMark | eNptUUtvEzEQtlARLaU3zihHDgT8Wu_6goRCaStV4lA4W7PecePKsYvtROLf421alCJ8sWe-x3hmXpOjmCIS8pbRj0Jo-ilCTIxSTjkbXpATTnu9lFqzo4P3MTkr5Y62o5kYOvGKHAtOGVeanZCb87iGaHFa3NSM1a5hDLiA2GKMxVe_wxkBHx8SKS92HharFGtOIexlM_jVl5r9uK0-xTfkpYNQ8OzxPiU_v53_WF0ur79fXK2-XC-tGGhdDkyMyg7UMeqssEwiCmedVi3VO87tNIluxjRYkCMd3cgnJZELIVsjSpySq73vlODO3Ge_gfzbJPDmIZHyrYFcvQ1oYGBqkE52smfSdmzoLQc19krJqXMomtfnvdf9dtzgZLE1COGZ6XMk-rW5TTvT015qNX_m_aNBTr-2WKrZ-GIxBIiYtsVw0bX5M96xRn13WOtvkaetNALfE2xOpWR0xvoK82jnYQfDqJm3bw6330Qf_hE9-f6X_geQobFf |
CitedBy_id | crossref_primary_10_3390_nano12122101 crossref_primary_10_1016_j_compositesb_2021_108641 crossref_primary_10_1016_j_jmapro_2023_01_008 crossref_primary_10_54097_hset_v52i_8883 crossref_primary_10_1002_admt_202100423 crossref_primary_10_1016_j_nanoen_2020_105609 crossref_primary_10_1007_s40843_022_1986_5 crossref_primary_10_1007_s42452_020_04034_w crossref_primary_10_1002_sstr_202300084 crossref_primary_10_3390_mi13010119 crossref_primary_10_3390_nano10122324 crossref_primary_10_3390_s21062201 crossref_primary_10_1109_ACCESS_2024_3432715 crossref_primary_10_3390_magnetism2030015 crossref_primary_10_3390_polym14112219 crossref_primary_10_3390_ma15051664 crossref_primary_10_3390_polym14071294 crossref_primary_10_3390_s24134202 |
Cites_doi | 10.1021/acsami.8b17459 10.1002/adma.201405807 10.1126/science.aac5082 10.3390/s18030916 10.1002/adma.201502556 10.1016/j.nanoen.2016.10.054 10.1126/science.1154367 10.1002/adma.201603436 10.1038/nmat2834 10.1126/science.1234855 10.3390/s18020418 10.1021/acsami.8b20267 10.1021/acsnano.8b07805 10.1126/science.1179963 10.1002/adma.201503500 10.1126/science.1175690 10.1038/s41467-018-07672-2 10.1002/smll.201805120 10.1021/acsami.9b12504 10.1126/science.1206157 10.1002/adma.201706738 10.1038/nmat3711 10.1038/nmat3380 10.1039/C6NR00431H 10.1016/j.sna.2017.04.028 10.1002/mame.201900227 10.1021/nl302959a 10.1039/C8TC02720J 10.1039/C6NR02172G 10.1039/c3nr05496a 10.1038/ncomms4132 10.1002/adma.201603408 10.1021/acsnano.5b01613 10.1364/AO.57.001717 10.1038/nmat3542 10.1007/s12274-019-2541-2 10.1021/acsami.5b04892 10.1126/scirobotics.aau6914 10.1038/nnano.2011.184 10.1002/adma.201303570 10.1021/acsami.5b00695 10.1002/adfm.201806220 10.1038/nature13792 10.1038/nature07113 10.1038/nnano.2011.36 10.1021/nn5070937 10.1039/c3ee40592c 10.1021/cm203216m 10.1039/C6MH00027D 10.1038/s41467-018-04906-1 10.1002/adfm.201500428 10.1038/ncomms7269 10.1002/adfm.201704285 10.1039/C5NR07546G 10.1109/JSEN.2018.2842465 10.1038/ncomms2553 10.1002/anie.201300437 10.1021/acsami.7b17709 10.1038/nature14002 10.1002/adma.201503407 |
ContentType | Journal Article |
Copyright | 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3390/nano10020218 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ: Directory of Open Access Journal (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2079-4991 |
ExternalDocumentID | oai_doaj_org_article_a81684f454714c5187c2a6b7664d5fe3 PMC7074966 32012691 10_3390_nano10020218 |
Genre | Journal Article |
GrantInformation_xml | – fundername: the Natural Science Foundation of Fujian grantid: 2019J01764 – fundername: the Natural Science Foundation of Fujian grantid: 2019J05110 – fundername: the Natural Science Foundation of Ningbo grantid: 2018A610007 – fundername: National Natural Science Foundation of China grantid: 11674185 – fundername: the National Natural Science Foundation of China grantid: 61835011 |
GroupedDBID | 53G 5VS 8FE 8FG 8FH AADQD AAFWJ AAHBH AAYXX ABJCF ADBBV ADMLS AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION D1I GROUPED_DOAJ HCIFZ HYE I-F KB. KQ8 LK8 M7P MODMG M~E OK1 PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RPM NPM 7X8 PQGLB PUEGO 5PM |
ID | FETCH-LOGICAL-c380t-813b6c80f10fc3c14ee3fcf9680f7f22cdd3510fc9aca4b0bfb2d64e233413863 |
IEDL.DBID | DOA |
ISSN | 2079-4991 |
IngestDate | Wed Aug 27 01:18:57 EDT 2025 Thu Aug 21 18:01:30 EDT 2025 Fri Sep 05 07:56:23 EDT 2025 Wed Feb 19 02:05:28 EST 2025 Thu Apr 24 22:49:59 EDT 2025 Tue Jul 01 01:16:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | stretchable sensitive strain sensor strain distribution graphene |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c380t-813b6c80f10fc3c14ee3fcf9680f7f22cdd3510fc9aca4b0bfb2d64e233413863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0082-163X 0000-0002-7574-0244 0000-0002-7807-534X |
OpenAccessLink | https://doaj.org/article/a81684f454714c5187c2a6b7664d5fe3 |
PMID | 32012691 |
PQID | 2350911251 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a81684f454714c5187c2a6b7664d5fe3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7074966 proquest_miscellaneous_2350911251 pubmed_primary_32012691 crossref_citationtrail_10_3390_nano10020218 crossref_primary_10_3390_nano10020218 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200127 |
PublicationDateYYYYMMDD | 2020-01-27 |
PublicationDate_xml | – month: 1 year: 2020 text: 20200127 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Nanomaterials (Basel, Switzerland) |
PublicationTitleAlternate | Nanomaterials (Basel) |
PublicationYear | 2020 |
Publisher | MDPI MDPI AG |
Publisher_xml | – name: MDPI – name: MDPI AG |
References | Ko (ref_9) 2008; 454 Lipomi (ref_49) 2012; 24 Kim (ref_55) 2018; 10 Rojas (ref_7) 2016; 30 Lipomi (ref_18) 2011; 6 Taroni (ref_24) 2018; 28 Roh (ref_56) 2015; 9 Wang (ref_59) 2019; 11 Boutry (ref_22) 2018; 3 Sun (ref_60) 2019; 304 Lee (ref_8) 2014; 26 Wang (ref_35) 2018; 30 Lee (ref_42) 2019; 15 Kang (ref_13) 2014; 516 Qi (ref_53) 2015; 27 Zhong (ref_32) 2013; 6 Lin (ref_31) 2013; 52 Zhou (ref_46) 2019; 11 Wang (ref_34) 2016; 28 An (ref_20) 2018; 9 Xu (ref_6) 2013; 4 Yamada (ref_15) 2011; 6 Mannsfeld (ref_23) 2010; 9 Seyedin (ref_48) 2015; 7 Kim (ref_3) 2008; 320 Pang (ref_17) 2012; 11 Kim (ref_10) 2011; 333 ref_30 Arnaldo (ref_40) 2018; 57 Shi (ref_43) 2019; 13 Zhang (ref_54) 2016; 8 Zang (ref_58) 2013; 12 Park (ref_1) 2009; 325 Sekitani (ref_36) 2009; 326 Arnaldo (ref_39) 2018; 18 Gong (ref_11) 2014; 5 Zang (ref_37) 2015; 6 Wu (ref_27) 2014; 514 Li (ref_2) 2016; 28 Zhang (ref_25) 2019; 12 Bai (ref_51) 2017; 260 Liu (ref_57) 2018; 6 Hempel (ref_50) 2012; 12 Yao (ref_52) 2014; 6 Wang (ref_38) 2013; 12 ref_44 Wu (ref_26) 2013; 340 Cheng (ref_4) 2015; 9 ref_41 Nie (ref_21) 2015; 27 Zhou (ref_47) 2019; 29 Park (ref_14) 2015; 7 Liu (ref_5) 2016; 29 Liao (ref_16) 2016; 8 Yi (ref_33) 2015; 25 Larson (ref_19) 2016; 351 Yin (ref_12) 2018; 9 Pan (ref_28) 2016; 28 Bao (ref_29) 2016; 8 Wu (ref_45) 2019; 11 |
References_xml | – volume: 11 start-page: 5316 year: 2019 ident: ref_59 article-title: Highly Stretchable, Sensitive, and Transparent Strain Sensors with a Controllable In-Plane Mesh Structure publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b17459 – volume: 27 start-page: 3145 year: 2015 ident: ref_53 article-title: Highly Stretchable Gold Nanobelts with Sinusoidal Structures for Recording Electrocorticograms publication-title: Adv. Mater. doi: 10.1002/adma.201405807 – volume: 351 start-page: 1071 year: 2016 ident: ref_19 article-title: Highly stretchable electroluminescent skin for optical signaling and tactile sensing publication-title: Science doi: 10.1126/science.aac5082 – ident: ref_41 doi: 10.3390/s18030916 – volume: 27 start-page: 6055 year: 2015 ident: ref_21 article-title: Flexible Transparent Iontronic Film for Interfacial Capacitive Pressure Sensing publication-title: Adv. Mater. doi: 10.1002/adma.201502556 – volume: 30 start-page: 691 year: 2016 ident: ref_7 article-title: Stretchable helical architecture inorganic-organic hetero thermoelectric generator publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.10.054 – volume: 320 start-page: 507 year: 2008 ident: ref_3 article-title: Stretchable and foldable silicon integrated circuits publication-title: Science doi: 10.1126/science.1154367 – volume: 29 start-page: 1603436 year: 2016 ident: ref_5 article-title: Flexible and Stretchable Energy Storage: Recent Advances and Future Perspectives publication-title: Adv. Mater. doi: 10.1002/adma.201603436 – volume: 9 start-page: 859 year: 2010 ident: ref_23 article-title: Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers publication-title: Nat. Mater. doi: 10.1038/nmat2834 – volume: 340 start-page: 952 year: 2013 ident: ref_26 article-title: Taxel-Addressable Matrix of Vertical-Nanowire Piezotronic Transistors for Active and Adaptive Tactile Imaging publication-title: Science doi: 10.1126/science.1234855 – ident: ref_30 doi: 10.3390/s18020418 – volume: 11 start-page: 9405 year: 2019 ident: ref_45 article-title: Ultrastretchable and Stable Strain Sensors Based on Antifreezing and Self-Healing Ionic Organohydrogels for Human Motion Monitoring publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b20267 – volume: 13 start-page: 649 year: 2019 ident: ref_43 article-title: Bioinspired Ultrasensitive and Stretchable MXene-Based Strain Sensor via Nacre-Mimetic Microscale “Brick-and-Mortar” Architecture publication-title: ACS Nano doi: 10.1021/acsnano.8b07805 – volume: 326 start-page: 1516 year: 2009 ident: ref_36 article-title: Organic Nonvolatile Memory Transistors for Flexible Sensor Arrays publication-title: Science doi: 10.1126/science.1179963 – volume: 28 start-page: 1535 year: 2016 ident: ref_28 article-title: Progress in Piezo-Phototronic-Effect-Enhanced Light-Emitting Diodes and Pressure Imaging publication-title: Adv. Mater. doi: 10.1002/adma.201503500 – volume: 325 start-page: 977 year: 2009 ident: ref_1 article-title: Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays publication-title: Science doi: 10.1126/science.1175690 – volume: 9 start-page: 5161 year: 2018 ident: ref_12 article-title: Bioinspired and bristled microparticles for ultrasensitive pressure and strain sensors publication-title: Nat. Commun. doi: 10.1038/s41467-018-07672-2 – volume: 15 start-page: 1805120 year: 2019 ident: ref_42 article-title: Ultrasensitive Strain Sensor Based on Separation of Overlapped Carbon Nanotubes publication-title: Small doi: 10.1002/smll.201805120 – volume: 11 start-page: 37094 year: 2019 ident: ref_46 article-title: Highly Stretchable and Sensitive Strain Sensor with Porous Segregated Conductive Network publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b12504 – volume: 333 start-page: 838 year: 2011 ident: ref_10 article-title: Epidermal electronics publication-title: Science doi: 10.1126/science.1206157 – volume: 30 start-page: 1706738 year: 2018 ident: ref_35 article-title: A Highly Stretchable Transparent Self-Powered Triboelectric Tactile Sensor with Metallized Nanofibers for Wearable Electronics publication-title: Adv. Mater. doi: 10.1002/adma.201706738 – volume: 12 start-page: 899 year: 2013 ident: ref_38 article-title: User-interactive electronic skin for instantaneous pressure visualization publication-title: Nat. Mater. doi: 10.1038/nmat3711 – volume: 11 start-page: 795 year: 2012 ident: ref_17 article-title: A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres publication-title: Nat. Mater. doi: 10.1038/nmat3380 – volume: 8 start-page: 8078 year: 2016 ident: ref_29 article-title: CdS nanorods/organic hybrid LED array and the piezo-phototronic effect of the device for pressure mapping publication-title: Nanoscale doi: 10.1039/C6NR00431H – volume: 260 start-page: 153 year: 2017 ident: ref_51 article-title: Transfer method of crumpled graphene and its application for human strain monitoring publication-title: Sens. Actuator A Phys. doi: 10.1016/j.sna.2017.04.028 – volume: 304 start-page: 1900227 year: 2019 ident: ref_60 article-title: Highly Stretchable, Transparent, and Bio-Friendly Strain Sensor Based on Self-Recovery Ionic-Covalent Hydrogels for Human Motion Monitoring publication-title: Macromol. Mater. Eng. doi: 10.1002/mame.201900227 – volume: 12 start-page: 5714 year: 2012 ident: ref_50 article-title: A novel class of strain gauges based on layered percolative films of 2D materials publication-title: Nano Lett. doi: 10.1021/nl302959a – volume: 6 start-page: 10730 year: 2018 ident: ref_57 article-title: Templated synthesis of a 1D Ag nanohybrid in the solid state and its organized network for strain-sensing applications publication-title: J. Mater. Chem. C doi: 10.1039/C8TC02720J – volume: 8 start-page: 13025 year: 2016 ident: ref_16 article-title: Flexible and printable paper-based strain sensors for wearable and large-area green electronics publication-title: Nanoscale doi: 10.1039/C6NR02172G – volume: 6 start-page: 2345 year: 2014 ident: ref_52 article-title: Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires publication-title: Nanoscale doi: 10.1039/c3nr05496a – volume: 5 start-page: 3132 year: 2014 ident: ref_11 article-title: A wearable and highly sensitive pressure sensor with ultrathin gold nanowires publication-title: Nat. Commun. doi: 10.1038/ncomms4132 – volume: 28 start-page: 9770 year: 2016 ident: ref_2 article-title: A Stretchable Multicolor Display and Touch Interface Using Photopatterning and Transfer Printing publication-title: Adv. Mater. doi: 10.1002/adma.201603408 – volume: 9 start-page: 6252 year: 2015 ident: ref_56 article-title: Stretchable, Transparent, Ultrasensitive, and Patchable Strain Sensor for Human–Machine Interfaces Comprising a Nanohybrid of Carbon Nanotubes and Conductive Elastomers publication-title: ACS Nano doi: 10.1021/acsnano.5b01613 – volume: 57 start-page: 1717 year: 2018 ident: ref_40 article-title: Polymer-optical-fiber-based sensor system for simultaneous measurement of angle and temperature publication-title: Appl. Opt. doi: 10.1364/AO.57.001717 – volume: 12 start-page: 321 year: 2013 ident: ref_58 article-title: Multifunctionality and control of the crumpling and unfolding of large-area graphene publication-title: Nat. Mater. doi: 10.1038/nmat3542 – volume: 12 start-page: 2982 year: 2019 ident: ref_25 article-title: Photo-thermoelectric effect induced electricity in stretchable graphene-polymer nanocomposites for ultrasensitive strain sensing publication-title: Nano Res. doi: 10.1007/s12274-019-2541-2 – volume: 7 start-page: 21150 year: 2015 ident: ref_48 article-title: Knitted Strain Sensor Textiles of Highly Conductive All-Polymeric Fibers publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b04892 – volume: 3 start-page: eaau6914 year: 2018 ident: ref_22 article-title: A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics publication-title: Sci. Robot. doi: 10.1126/scirobotics.aau6914 – volume: 6 start-page: 788 year: 2011 ident: ref_18 article-title: Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.184 – volume: 26 start-page: 765 year: 2014 ident: ref_8 article-title: Highly Stretchable Piezoelectric-Pyroelectric Hybrid Nanogenerator publication-title: Adv. Mater. doi: 10.1002/adma.201303570 – volume: 7 start-page: 6317 year: 2015 ident: ref_14 article-title: Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b00695 – volume: 29 start-page: 1806220 year: 2019 ident: ref_47 article-title: Highly Stretchable, Elastic, and Ionic Conductive Hydrogel for Artificial Soft Electronics publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201806220 – volume: 514 start-page: 470 year: 2014 ident: ref_27 article-title: Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics publication-title: Nature doi: 10.1038/nature13792 – volume: 454 start-page: 748 year: 2008 ident: ref_9 article-title: A hemispherical electronic eye camera based on compressible silicon optoelectronics publication-title: Nature doi: 10.1038/nature07113 – volume: 6 start-page: 296 year: 2011 ident: ref_15 article-title: A stretchable carbon nanotube strain sensor for human-motion detection publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.36 – volume: 9 start-page: 3887 year: 2015 ident: ref_4 article-title: Highly conductive and ultrastretchable electric circuits from covered yarns and silver nanowires publication-title: ACS Nano doi: 10.1021/nn5070937 – volume: 6 start-page: 1779 year: 2013 ident: ref_32 article-title: A paper-based nanogenerator as a power source and active sensor publication-title: Energy Environ. Sci. doi: 10.1039/c3ee40592c – volume: 24 start-page: 373 year: 2012 ident: ref_49 article-title: Electronic Properties of Transparent Conductive Films of PEDOT:PSS on Stretchable Substrates publication-title: Chem. Mater. doi: 10.1021/cm203216m – ident: ref_44 doi: 10.1039/C6MH00027D – volume: 9 start-page: 2458 year: 2018 ident: ref_20 article-title: Transparent and flexible fingerprint sensor array with multiplexed detection of tactile pressure and skin temperature publication-title: Nat. Commun. doi: 10.1038/s41467-018-04906-1 – volume: 25 start-page: 3688 year: 2015 ident: ref_33 article-title: Stretchable-Rubber-Based Triboelectric Nanogenerator and its application as self-powered body motion sensors publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201500428 – volume: 6 start-page: 6269 year: 2015 ident: ref_37 article-title: Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection publication-title: Nat. Commun. doi: 10.1038/ncomms7269 – volume: 28 start-page: 1704285 year: 2018 ident: ref_24 article-title: Toward Stretchable Self-Powered Sensors Based on the Thermoelectric Response of PEDOT:PSS/Polyurethane Blends publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201704285 – volume: 8 start-page: 2123 year: 2016 ident: ref_54 article-title: Large-scale assembly of highly sensitive Si-based flexible strain sensors for human motion monitoring publication-title: Nanoscale doi: 10.1039/C5NR07546G – volume: 18 start-page: 5805 year: 2018 ident: ref_39 article-title: Influence of the cladding structure in PMMA mPOFs mechanical properties for strain sensors applications publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2018.2842465 – volume: 4 start-page: 1543 year: 2013 ident: ref_6 article-title: Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems publication-title: Nat. Commun. doi: 10.1038/ncomms2553 – volume: 52 start-page: 5065 year: 2013 ident: ref_31 article-title: A self-powered triboelectric nanosensor for mercury ion detection publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201300437 – volume: 10 start-page: 5000 year: 2018 ident: ref_55 article-title: Highly Sensitive and Very Stretchable Strain Sensor Based on a Rubbery Semiconductor publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b17709 – volume: 516 start-page: 222 year: 2014 ident: ref_13 article-title: Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system publication-title: Nature doi: 10.1038/nature14002 – volume: 28 start-page: 2896 year: 2016 ident: ref_34 article-title: Self-Powered High-Resolution and Pressure-Sensitive Triboelectric Sensor Matrix for Real-Time Tactile Mapping publication-title: Adv. Mater. doi: 10.1002/adma.201503407 |
SSID | ssj0000913853 |
Score | 2.2051327 |
Snippet | Stretchable and wearable opto-electronics have attracted worldwide attention due to their broad prospects in health monitoring and epidermal applications.... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 218 |
SubjectTerms | graphene sensitive strain distribution strain sensor stretchable |
Title | Enhanced Stretchable and Sensitive Strain Sensor via Controlled Strain Distribution |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32012691 https://www.proquest.com/docview/2350911251 https://pubmed.ncbi.nlm.nih.gov/PMC7074966 https://doaj.org/article/a81684f454714c5187c2a6b7664d5fe3 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9xADLYKvcCh6gPK0nYVJDhV0U5mkpnkWOhuUQ8IUZC4RfMUK6HZii79_diT7CpbFfXSY8YTxbKd-LPG-QxwLMrGKq9srpWwOSLwKjdYgeVa88owp1Vwie3zQp7flN9vq9vBqC_qCevogTvDTTQNhigD8U4Vpa2KWlmupVFSlq4KPvF8soYNiqn0DW4KgYmo63QXWNdPoo4LohulnLaRgxJV_9_w5Z9tkoO8M3sNr3rAmH3pFH0DL3x8C7sDGsF38GMa79JBfkZnzOgG-h0q0xGvqT2dPmgk0fOYFhYP2e-5zs66JvX77jYSfiUS3X7-1R7czKbXZ-d5Pywht6Jmy7wuhJG2ZqFgwQpblN6LYEMjcUkFzq1zoiJZo60uDTPBcCdLzwXlsVqKfdiOi-gPILNGucYGrFMVWt0pQyzxjapsYI76_UbweWW-1vZM4qTnfYsVBRm7HRp7BCfr3T87Bo1n9p2SJ9Z7iPc6LWA0tH00tP-KhhEcrfzY4ntChx86-sXjr5YLgkYE50bwvvPr-lECURCXDUrUhsc3dNmUxPld4uJWCMGwYjz8H8p_gB1O1Twrcq4-wvby4dF_QsizNGPYqmffxvDydHpxeTVOsf4E_j4CKg |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Stretchable+and+Sensitive+Strain+Sensor+via+Controlled+Strain+Distribution&rft.jtitle=Nanomaterials+%28Basel%2C+Switzerland%29&rft.au=Huamin+Chen&rft.au=Longfeng+Lv&rft.au=Jiushuang+Zhang&rft.au=Shaochun+Zhang&rft.date=2020-01-27&rft.pub=MDPI+AG&rft.eissn=2079-4991&rft.volume=10&rft.issue=2&rft.spage=218&rft_id=info:doi/10.3390%2Fnano10020218&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a81684f454714c5187c2a6b7664d5fe3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-4991&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-4991&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-4991&client=summon |