Identification and classification of construction equipment operators' mental fatigue using wearable eye-tracking technology

In the construction industry, the operator's mental fatigue is one of the most important causes of construction equipment-related accidents. Mental fatigue can easily lead to poor performance of construction equipment operations and accidents in the worst case scenario. Hence, it is necessary t...

Full description

Saved in:
Bibliographic Details
Published inAutomation in construction Vol. 109; p. 103000
Main Authors Li, Jue, Li, Heng, Umer, Waleed, Wang, Hongwei, Xing, Xuejiao, Zhao, Shukai, Hou, Jun
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.01.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the construction industry, the operator's mental fatigue is one of the most important causes of construction equipment-related accidents. Mental fatigue can easily lead to poor performance of construction equipment operations and accidents in the worst case scenario. Hence, it is necessary to propose an objective method that can accurately detect multiple levels of mental fatigue of construction equipment operators. To address such issue, this paper develops a novel method to identify and classify operator's multi-level mental fatigue using wearable eye-tracking technology. For the purpose, six participants were recruited to perform a simulated excavator operation experiment to obtain relevant data. First, a Toeplitz Inverse Covariance-Based Clustering (TICC) method was used to determine the number of levels of mental fatigue using relevant subjective and objective data collected during the experiments. The results revealed the number of mental fatigue levels to be 3 using TICC-based method. Second, four eye movement feature-sets suitable for different construction scenarios were extracted and supervised learning algorithms were used to classify multi-level mental fatigue of the operator. The classification performance analysis of the supervised learning algorithms showed Support Vector Machine (SVM) was the most suitable algorithm to classify mental fatigue in the face of various construction scenarios and subject bias (accuracy between 79.5% and 85.0%). Overall, this study demonstrates the feasibility of applying wearable eye-tracking technology to identify and classify the mental fatigue of construction equipment operators. •A novel approach for detecting construction equipment operator’s mental fatigue based on eye movement data is proposed.•TICC method is adopted to identify multiple levels of mental fatigue and label relevant eye movement data.•Supervised learning algorithms are used to learn four different sets of eye movement features.•Results show that SVM and LDA yield high classification performance.•The feasibility of the proposed method for detecting multi-level mental fatigue is discussed.
AbstractList In the construction industry, the operator's mental fatigue is one of the most important causes of construction equipment-related accidents. Mental fatigue can easily lead to poor performance of construction equipment operations and accidents in the worst case scenario. Hence, it is necessary to propose an objective method that can accurately detect multiple levels of mental fatigue of construction equipment operators. To address such issue, this paper develops a novel method to identify and classify operator's multi-level mental fatigue using wearable eye-tracking technology. For the purpose, six participants were recruited to perform a simulated excavator operation experiment to obtain relevant data. First, a Toeplitz Inverse Covariance-Based Clustering (TICC) method was used to determine the number of levels of mental fatigue using relevant subjective and objective data collected during the experiments. The results revealed the number of mental fatigue levels to be 3 using TICC-based method. Second, four eye movement feature-sets suitable for different construction scenarios were extracted and supervised learning algorithms were used to classify multi-level mental fatigue of the operator. The classification performance analysis of the supervised learning algorithms showed Support Vector Machine (SVM) was the most suitable algorithm to classify mental fatigue in the face of various construction scenarios and subject bias (accuracy between 79.5% and 85.0%). Overall, this study demonstrates the feasibility of applying wearable eye-tracking technology to identify and classify the mental fatigue of construction equipment operators.
In the construction industry, the operator's mental fatigue is one of the most important causes of construction equipment-related accidents. Mental fatigue can easily lead to poor performance of construction equipment operations and accidents in the worst case scenario. Hence, it is necessary to propose an objective method that can accurately detect multiple levels of mental fatigue of construction equipment operators. To address such issue, this paper develops a novel method to identify and classify operator's multi-level mental fatigue using wearable eye-tracking technology. For the purpose, six participants were recruited to perform a simulated excavator operation experiment to obtain relevant data. First, a Toeplitz Inverse Covariance-Based Clustering (TICC) method was used to determine the number of levels of mental fatigue using relevant subjective and objective data collected during the experiments. The results revealed the number of mental fatigue levels to be 3 using TICC-based method. Second, four eye movement feature-sets suitable for different construction scenarios were extracted and supervised learning algorithms were used to classify multi-level mental fatigue of the operator. The classification performance analysis of the supervised learning algorithms showed Support Vector Machine (SVM) was the most suitable algorithm to classify mental fatigue in the face of various construction scenarios and subject bias (accuracy between 79.5% and 85.0%). Overall, this study demonstrates the feasibility of applying wearable eye-tracking technology to identify and classify the mental fatigue of construction equipment operators. •A novel approach for detecting construction equipment operator’s mental fatigue based on eye movement data is proposed.•TICC method is adopted to identify multiple levels of mental fatigue and label relevant eye movement data.•Supervised learning algorithms are used to learn four different sets of eye movement features.•Results show that SVM and LDA yield high classification performance.•The feasibility of the proposed method for detecting multi-level mental fatigue is discussed.
ArticleNumber 103000
Author Umer, Waleed
Li, Heng
Zhao, Shukai
Xing, Xuejiao
Hou, Jun
Li, Jue
Wang, Hongwei
Author_xml – sequence: 1
  givenname: Jue
  surname: Li
  fullname: Li, Jue
  email: lijue@hust.edu.cn
  organization: School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, Hubei, China
– sequence: 2
  givenname: Heng
  surname: Li
  fullname: Li, Heng
  email: heng.li@polyu.edu.hk
  organization: Department of Building and Real Estate, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
– sequence: 3
  givenname: Waleed
  surname: Umer
  fullname: Umer, Waleed
  organization: Construction Engineering and Management, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
– sequence: 4
  givenname: Hongwei
  surname: Wang
  fullname: Wang, Hongwei
  email: hwwang@hust.edu.cn
  organization: School of Management, Huazhong University of Science and Technology, Wuhan, Hubei, China
– sequence: 5
  givenname: Xuejiao
  surname: Xing
  fullname: Xing, Xuejiao
  email: xue.xu.xing@polyu.edu.hk
  organization: Department of Building and Real Estate, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
– sequence: 6
  givenname: Shukai
  surname: Zhao
  fullname: Zhao, Shukai
  email: zhaoshukai@cohl.com
  organization: Shenzhen Hailong Construction Technology Company Limited, Shenzhen, Guangdong, China
– sequence: 7
  givenname: Jun
  surname: Hou
  fullname: Hou, Jun
  email: houjun@cohl.com
  organization: Chongqing China State Hailong Liangjiang Construction Technology Company Limited, Chongqing, China
BookMark eNqFkM1KAzEUhYMoWKtv4CLgwtXUJNNkpi4EEf9AcKPrkN65U1PHpCYZpeDDmzqC4EJXyT2cc27y7ZFt5x0ScsjZhDOuTpYT0yfwbiIYn2WpZIxtkRGvK1FU9YxvkxGbCVXImsldshfjMhsqpmYj8nHboEu2tWCS9Y4a11DoTIw_km9p7o4p9PA142tvVy85Rf0Kg0k-xGO6mU1H2xxZ9Ej7aN2CvqMJZt4hxTUWKRh43qgJ4cn5zi_W-2SnNV3Eg-9zTB6vLh8uboq7--vbi_O7AsqapaICVSuOXHHVMjFXEmUFddXOmRDI5lOZx3yfNiBBGV6BZI2pedMwkIZLKMfkaOhdBf_aY0x66fvg8kotSpEJlVKJ7DodXBB8jAFbDTZ9IchPt53mTG9o66UeaOsNbT3QzuHpr_Aq2BcT1v_FzoYY5u-_WQw6gkUH2NiAkHTj7d8Fnz5yoLE
CitedBy_id crossref_primary_10_3389_fpsyg_2021_704955
crossref_primary_10_1109_ACCESS_2024_3508875
crossref_primary_10_1016_j_autcon_2025_106072
crossref_primary_10_1016_j_ergon_2021_103234
crossref_primary_10_1061__ASCE_CO_1943_7862_0002341
crossref_primary_10_1109_TITS_2021_3106774
crossref_primary_10_1021_acs_analchem_4c01190
crossref_primary_10_1155_2022_7642777
crossref_primary_10_3389_fphys_2024_1366910
crossref_primary_10_1002_smi_3510
crossref_primary_10_3390_su15129140
crossref_primary_10_1016_j_autcon_2024_105555
crossref_primary_10_1016_j_dibe_2024_100513
crossref_primary_10_1016_j_autcon_2024_105554
crossref_primary_10_1016_j_autcon_2021_103987
crossref_primary_10_3390_buildings14092793
crossref_primary_10_1016_j_inffus_2023_101803
crossref_primary_10_1002_hfm_20927
crossref_primary_10_31857_S0131164624030074
crossref_primary_10_1080_10255842_2023_2301668
crossref_primary_10_3390_technologies12030038
crossref_primary_10_2147_PRBM_S442863
crossref_primary_10_1108_SASBE_09_2024_0352
crossref_primary_10_1016_j_autcon_2024_105287
crossref_primary_10_1177_15485129231158580
crossref_primary_10_7717_peerj_12864
crossref_primary_10_1016_j_autcon_2022_104151
crossref_primary_10_1016_j_aei_2022_101729
crossref_primary_10_1108_ECAM_04_2020_0281
crossref_primary_10_1108_ECAM_02_2022_0151
crossref_primary_10_1016_j_autcon_2023_104910
crossref_primary_10_1061_JCEMD4_COENG_14670
crossref_primary_10_1016_j_ssci_2024_106529
crossref_primary_10_1016_j_aei_2023_102335
crossref_primary_10_1016_j_displa_2024_102956
crossref_primary_10_1177_14780771221100102
crossref_primary_10_3390_buildings14072114
crossref_primary_10_1080_10447318_2024_2306439
crossref_primary_10_1061__ASCE_CO_1943_7862_0002243
crossref_primary_10_3390_electronics13101798
crossref_primary_10_1007_s11042_022_13193_4
crossref_primary_10_1080_00140139_2023_2221413
crossref_primary_10_3390_math10183395
crossref_primary_10_3389_fnrgo_2022_935092
crossref_primary_10_1061__ASCE_CO_1943_7862_0002090
crossref_primary_10_1038_s41598_023_40406_z
crossref_primary_10_1186_s13640_021_00575_1
crossref_primary_10_1061_JCEMD4_COENG_14834
crossref_primary_10_1108_CI_08_2022_0214
crossref_primary_10_3390_app13042718
crossref_primary_10_1016_j_autcon_2024_105341
crossref_primary_10_1016_j_eswa_2024_125038
crossref_primary_10_1016_j_jobe_2024_111146
crossref_primary_10_1016_j_autcon_2021_103560
crossref_primary_10_1016_j_procs_2024_10_281
crossref_primary_10_1016_j_autcon_2021_103962
crossref_primary_10_1016_j_autcon_2022_104257
crossref_primary_10_1061_JCEMD4_COENG_13351
crossref_primary_10_3390_buildings12101591
crossref_primary_10_1061_JMENEA_MEENG_5913
crossref_primary_10_1108_CI_01_2023_0002
crossref_primary_10_1108_ECAM_01_2021_0005
crossref_primary_10_1016_j_jobe_2021_102824
crossref_primary_10_3389_fphys_2021_790292
crossref_primary_10_1109_ACCESS_2023_3332762
crossref_primary_10_1016_j_aei_2023_101978
crossref_primary_10_1007_s11571_024_10126_9
crossref_primary_10_3390_app122211431
crossref_primary_10_1016_j_jobe_2021_103348
crossref_primary_10_1016_j_psep_2023_07_096
crossref_primary_10_1134_S0362119724700737
crossref_primary_10_3390_s24216805
crossref_primary_10_1016_j_autcon_2022_104351
crossref_primary_10_3390_s21134289
crossref_primary_10_1016_j_autcon_2022_104597
crossref_primary_10_1108_ECAM_12_2022_1156
crossref_primary_10_3390_s23239522
crossref_primary_10_1016_j_ssci_2022_105684
crossref_primary_10_3390_buildings14071978
crossref_primary_10_1016_j_autcon_2024_105369
crossref_primary_10_1016_j_jobe_2021_103777
crossref_primary_10_1016_j_aei_2023_102134
crossref_primary_10_1016_j_ergon_2023_103472
crossref_primary_10_1016_j_oceaneng_2023_114964
crossref_primary_10_1016_j_autcon_2023_105231
crossref_primary_10_1108_SASBE_07_2022_0129
crossref_primary_10_1016_j_jsr_2024_01_013
crossref_primary_10_1016_j_procs_2023_01_105
crossref_primary_10_3389_fpubh_2022_993700
crossref_primary_10_1016_j_dibe_2023_100198
crossref_primary_10_3390_buildings12030281
crossref_primary_10_1016_j_aei_2022_101777
crossref_primary_10_1016_j_autcon_2023_105115
crossref_primary_10_1080_1463922X_2021_1965670
crossref_primary_10_2139_ssrn_3765930
crossref_primary_10_1007_s11276_024_03872_5
crossref_primary_10_1016_j_aei_2024_102784
crossref_primary_10_3390_s24113469
crossref_primary_10_1016_j_aei_2020_101056
crossref_primary_10_1016_j_autcon_2020_103506
crossref_primary_10_1016_j_procs_2020_09_041
crossref_primary_10_1061__ASCE_CP_1943_5487_0001017
crossref_primary_10_1177_21695067231192221
Cites_doi 10.1371/journal.pone.0163360
10.5271/sjweh.3146
10.1016/j.aap.2015.09.002
10.1016/j.ergon.2017.08.004
10.1177/00139160121973106
10.15302/J-FEM-2017003
10.1016/j.autcon.2017.02.001
10.1016/j.cogsys.2018.08.018
10.1016/j.ssci.2014.11.019
10.1016/j.jpsychores.2014.01.005
10.1016/j.autcon.2016.08.015
10.1371/journal.pone.0117837
10.1177/0018720813515272
10.1016/j.cogbrainres.2005.04.011
10.1016/j.eswa.2017.01.040
10.1016/j.ssci.2011.01.007
10.1016/j.apergo.2017.02.016
10.1038/s41598-018-31577-1
10.1016/j.autcon.2019.102835
10.1061/(ASCE)0733-9364(2008)134:5(320)
10.1016/j.autcon.2019.102836
10.1061/(ASCE)CO.1943-7862.0001513
10.1016/j.neubiorev.2012.10.003
10.1016/j.neucom.2017.12.062
10.1093/occmed/44.5.247
10.1088/1741-2552/aaac92
10.1093/occmed/kqu215
10.1016/j.aap.2011.11.019
10.1080/01446193.2010.545993
10.1016/j.aap.2017.09.025
10.1080/00140130701817062
10.1111/psyp.12339
10.1177/001872089403600209
10.1061/(ASCE)CO.1943-7862.0001258
10.1002/ajim.22411
10.1016/j.ergon.2004.12.003
10.1093/occmed/kqg047
10.1016/j.smrv.2013.03.003
10.1061/(ASCE)CO.1943-7862.0001589
10.1016/j.artmed.2018.06.005
10.1016/j.displa.2013.01.002
10.1016/j.brainresrev.2008.07.001
10.1016/j.aap.2018.01.005
10.1016/j.autcon.2017.03.003
10.1016/j.trf.2016.04.007
10.1371/journal.pone.0048073
10.1016/j.eswa.2010.07.115
10.1016/j.neuroimage.2009.10.092
10.1177/0018720817706811
10.1080/08839510290030390
10.1016/j.aap.2009.11.011
10.1111/j.1469-8986.1973.tb00801.x
10.1061/(ASCE)CO.1943-7862.0001516
10.1177/0018720818761711
10.1108/ECAM-04-2017-0066
10.1016/j.bspc.2013.01.007
10.1016/j.aei.2018.08.020
10.1016/j.clinph.2008.03.012
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier BV Jan 2020
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier BV Jan 2020
DBID AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.autcon.2019.103000
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1872-7891
ExternalDocumentID 10_1016_j_autcon_2019_103000
S0926580519304066
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
NEJ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSZ
T5K
WUQ
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
7SP
8FD
EFKBS
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c380t-7c6861e1616f02b65e57c87fb022e0b4557cb024dc5c6a17c50da81dd0c5a15c3
IEDL.DBID .~1
ISSN 0926-5805
IngestDate Wed Aug 13 04:37:26 EDT 2025
Tue Jul 01 03:18:11 EDT 2025
Thu Apr 24 22:57:49 EDT 2025
Fri Feb 23 02:49:23 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Construction equipment operator
Toeplitz Inverse Covariance-Based Clustering
Eye-tracking
Mental fatigue identification and classification
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c380t-7c6861e1616f02b65e57c87fb022e0b4557cb024dc5c6a17c50da81dd0c5a15c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink http://hdl.handle.net/10397/87710
PQID 2327893562
PQPubID 2045277
ParticipantIDs proquest_journals_2327893562
crossref_citationtrail_10_1016_j_autcon_2019_103000
crossref_primary_10_1016_j_autcon_2019_103000
elsevier_sciencedirect_doi_10_1016_j_autcon_2019_103000
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2020
2020-01-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Automation in construction
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Wang, Xu (bb0080) 2016; 95
Murataa, Uetakeb, Takasawab (bb0045) 2005; 35
Morales, Diaz-Piedra, Rieiro, Roca-Gonzalez, Romero, Catena, Fuentes, Di Stasi (bb0155) 2017; 109
Stern, Boyer, Schroeder (bb0275) 1994; 36
Boksem, Tops (bb0225) 2008; 59
Williamson, Lombardi, Folkard, Stutts, Courtney, Connor (bb0325) 2011; 43
Somers, Francart, Bertrand (bb0140) 2018; 15
Wagstaff, Sigstad Lie (bb0005) 2011; 37
Borghini, Astolfi, Vecchiato, Mattia, Babiloni (bb0165) 2014; 44
Hart (bb0090) 2006; vol. 50
Hinze, Teizer (bb0030) 2011; 49
Aryal, Ghahramani, Becerik-Gerber (bb0055) 2017; 82
Zhang, Sparer, Murphy, Dennerlein, Fang, Katz, Caban-Martinez (bb0075) 2015; 58
Yamada, Kobayashi (bb0085) 2018
Laurent, Valderrama, Besserve, Guillard, Lachaux, Martinerie, Florence (bb0200) 2013; 8
He, Choi, Yang, Lu, Wu, Peng (bb0270) 2017; 65
Wong (bb0010) 1994; 44
Dawson, Searle, Paterson (bb0130) 2014; 18
Chan (bb0060) 2011; 29
Shapira, Rosenfeld, Mizrah (bb0035) 2008; 134
Hopstaken, van der Linden, Bakker, Kompier, Leung (bb0220) 2016; 42
Nath, Chaspari, Behzadan (bb0310) 2018; 38
Zhou, Wang, Zeng (bb0345) 2018; 5
Guo, Chen, Zhang, Pan, Wu (bb0260) 2016; 11
Fang, Cho (bb0025) 2017; 143
Schleicher, Galley, Briest, Galley (bb0280) 2008; 51
Wickens, Hollands, Banbury, Parasuraman (bb0330) 2015
Hasanzadeh, Esmaeili, Dodd (bb0145) 2018; 144
Greenlee, DeLucia, Newton (bb0250) 2018; 60
Hopstaken, van der Linden, Bakker, Kompier (bb0265) 2015; 52
United States Department of Labor (bb0040) 2016
Zhao, Zhao, Liu, Zheng (bb0125) 2012; 45
Techera, Hallowell, Littlejohn, Rajendran (bb0070) 2018; 144
Shen, Li, Ong, Shao, Wilder-Smith (bb0105) 2008; 119
Jacobe de Naurois, Bourdin, Stratulat, Diaz, Vercher (bb0210) 2017
Chen, Zhao, Ye, Zhang, Zou (bb0315) 2017; 85
Boksem, Meijman, Lorist (bb0110) 2005; 25
Li, Li, Wang, Umer, Fu, Xing (bb0020) 2019; 105
Kassner, Patera, Bulling (bb0230) 2014
McDonald, Lee, Schwarz, Brown (bb0195) 2018; 113
Zhang, Murphy, Fang, Caban-Martinez (bb0015) 2015; 65
Wang, Chen, Zhao, Dai, Zheng, Wu (bb0115) 2017; 82
Faure, Lobjois, Benguigui (bb0245) 2016; 40
Xiao, Ma, Lv, Cai, Teng, Xu, Chen (bb0255) 2015; 10
Wanyan, Zhuang, Lin, Xiao, Song (bb0240) 2018; 64
Jeelani, Albert, Han, Azevedo (bb0150) 2019; 145
Yamada, Kobayashi (bb0185) 2017
Kaplan (bb0335) 2001; 33
Zhao, Zheng, Zhao, Tu, Liu (bb0180) 2011; 38
Chieh, Mustafa, Hussain, Hendi, Majlis (bb0120) 2005
Yin, Zhang (bb0170) 2018; 283
Faber, Maurits, Lorist (bb0215) 2012; 7
Jebelli, Khalili, Hwang, Lee (bb0205) 2018
Hoddes, Zarcone, Smythe, Phillips, Dement (bb0095) 1973; 10
Hallac, Vare, Boyd, Leskovec (bb0290) 2017; 2017
Conati (bb0135) 2002; 16
Akerstedt, Axelsson, Lekander, Orsini, Kecklund (bb0050) 2014; 76
Song, Woon, Doong, Persad, Tijerina, Pandit, Cline, Giordani (bb0235) 2017; 59
Folkard, Tucker (bb0320) 2003; 53
Zargari Marandi, Madeleine, Omland, Vuillerme, Samani (bb0285) 2018; 8
Shi, Zeng, Meng (bb0350) 2017; 4
Witten, Frank, Hall, Pal (bb0295) 2017
Chen, Li, Wu, Wang, Qian, Sudlow (bb0160) 2013; 34
Edirisinghe (bb0355) 2019; 26
Fang, Jiang, Zhang, Wang (bb0065) 2015; 73
Akhavian, Behzadan (bb0305) 2016; 71
Esterman, Tamber-Rosenau, Chiu, Yantis (bb0300) 2010; 50
Xing, Li, Li, Zhong, Luo, Skitmore (bb0340) 2019; 105
Aaronson, Teel, Cassmeyer, Neuberger, Pallikkathayil, Pierce, Press, Williams, Wingate (bb0100) 1999; 31
Chen, Wang, Hua (bb0175) 2018
McDonald, Lee, Schwarz, Brown (bb0190) 2014; 56
Zhao (10.1016/j.autcon.2019.103000_bb0125) 2012; 45
Zhou (10.1016/j.autcon.2019.103000_bb0345) 2018; 5
Hoddes (10.1016/j.autcon.2019.103000_bb0095) 1973; 10
He (10.1016/j.autcon.2019.103000_bb0270) 2017; 65
Borghini (10.1016/j.autcon.2019.103000_bb0165) 2014; 44
McDonald (10.1016/j.autcon.2019.103000_bb0195) 2018; 113
Xiao (10.1016/j.autcon.2019.103000_bb0255) 2015; 10
Esterman (10.1016/j.autcon.2019.103000_bb0300) 2010; 50
Aryal (10.1016/j.autcon.2019.103000_bb0055) 2017; 82
Chen (10.1016/j.autcon.2019.103000_bb0315) 2017; 85
Boksem (10.1016/j.autcon.2019.103000_bb0110) 2005; 25
Fang (10.1016/j.autcon.2019.103000_bb0065) 2015; 73
Wong (10.1016/j.autcon.2019.103000_bb0010) 1994; 44
Conati (10.1016/j.autcon.2019.103000_bb0135) 2002; 16
Hasanzadeh (10.1016/j.autcon.2019.103000_bb0145) 2018; 144
Li (10.1016/j.autcon.2019.103000_bb0020) 2019; 105
Jeelani (10.1016/j.autcon.2019.103000_bb0150) 2019; 145
Hart (10.1016/j.autcon.2019.103000_bb0090) 2006; vol. 50
Akhavian (10.1016/j.autcon.2019.103000_bb0305) 2016; 71
Laurent (10.1016/j.autcon.2019.103000_bb0200) 2013; 8
Jacobe de Naurois (10.1016/j.autcon.2019.103000_bb0210) 2017
Guo (10.1016/j.autcon.2019.103000_bb0260) 2016; 11
United States Department of Labor (10.1016/j.autcon.2019.103000_bb0040)
Shapira (10.1016/j.autcon.2019.103000_bb0035) 2008; 134
Wang (10.1016/j.autcon.2019.103000_bb0115) 2017; 82
Edirisinghe (10.1016/j.autcon.2019.103000_bb0355) 2019; 26
Wagstaff (10.1016/j.autcon.2019.103000_bb0005) 2011; 37
Aaronson (10.1016/j.autcon.2019.103000_bb0100) 1999; 31
Jebelli (10.1016/j.autcon.2019.103000_bb0205) 2018
Faure (10.1016/j.autcon.2019.103000_bb0245) 2016; 40
Witten (10.1016/j.autcon.2019.103000_bb0295) 2017
Somers (10.1016/j.autcon.2019.103000_bb0140) 2018; 15
Yamada (10.1016/j.autcon.2019.103000_bb0185) 2017
Wanyan (10.1016/j.autcon.2019.103000_bb0240) 2018; 64
Kassner (10.1016/j.autcon.2019.103000_bb0230) 2014
Folkard (10.1016/j.autcon.2019.103000_bb0320) 2003; 53
Zhao (10.1016/j.autcon.2019.103000_bb0180) 2011; 38
Hinze (10.1016/j.autcon.2019.103000_bb0030) 2011; 49
Wang (10.1016/j.autcon.2019.103000_bb0080) 2016; 95
Xing (10.1016/j.autcon.2019.103000_bb0340) 2019; 105
Hallac (10.1016/j.autcon.2019.103000_bb0290) 2017; 2017
Song (10.1016/j.autcon.2019.103000_bb0235) 2017; 59
Stern (10.1016/j.autcon.2019.103000_bb0275) 1994; 36
Zargari Marandi (10.1016/j.autcon.2019.103000_bb0285) 2018; 8
Shen (10.1016/j.autcon.2019.103000_bb0105) 2008; 119
Schleicher (10.1016/j.autcon.2019.103000_bb0280) 2008; 51
Techera (10.1016/j.autcon.2019.103000_bb0070) 2018; 144
Chen (10.1016/j.autcon.2019.103000_bb0160) 2013; 34
Greenlee (10.1016/j.autcon.2019.103000_bb0250) 2018; 60
Nath (10.1016/j.autcon.2019.103000_bb0310) 2018; 38
Zhang (10.1016/j.autcon.2019.103000_bb0075) 2015; 58
McDonald (10.1016/j.autcon.2019.103000_bb0190) 2014; 56
Hopstaken (10.1016/j.autcon.2019.103000_bb0265) 2015; 52
Morales (10.1016/j.autcon.2019.103000_bb0155) 2017; 109
Dawson (10.1016/j.autcon.2019.103000_bb0130) 2014; 18
Fang (10.1016/j.autcon.2019.103000_bb0025) 2017; 143
Shi (10.1016/j.autcon.2019.103000_bb0350) 2017; 4
Boksem (10.1016/j.autcon.2019.103000_bb0225) 2008; 59
Zhang (10.1016/j.autcon.2019.103000_bb0015) 2015; 65
Chen (10.1016/j.autcon.2019.103000_bb0175) 2018
Kaplan (10.1016/j.autcon.2019.103000_bb0335) 2001; 33
Chieh (10.1016/j.autcon.2019.103000_bb0120) 2005
Hopstaken (10.1016/j.autcon.2019.103000_bb0220) 2016; 42
Williamson (10.1016/j.autcon.2019.103000_bb0325) 2011; 43
Faber (10.1016/j.autcon.2019.103000_bb0215) 2012; 7
Murataa (10.1016/j.autcon.2019.103000_bb0045) 2005; 35
Akerstedt (10.1016/j.autcon.2019.103000_bb0050) 2014; 76
Yamada (10.1016/j.autcon.2019.103000_bb0085) 2018
Yin (10.1016/j.autcon.2019.103000_bb0170) 2018; 283
Wickens (10.1016/j.autcon.2019.103000_bb0330) 2015
Chan (10.1016/j.autcon.2019.103000_bb0060) 2011; 29
References_xml – volume: 45
  start-page: 83
  year: 2012
  end-page: 90
  ident: bb0125
  article-title: Electroencephalogram and electrocardiograph assessment of mental fatigue in a driving simulator
  publication-title: Accid. Anal. Prev.
– volume: 105
  year: 2019
  ident: bb0340
  article-title: A multicomponent and neurophysiological intervention for the emotional and mental states of high-altitude construction workers
  publication-title: Autom. Constr.
– volume: 82
  start-page: 154
  year: 2017
  end-page: 165
  ident: bb0055
  article-title: Monitoring fatigue in construction workers using physiological measurements
  publication-title: Autom. Constr.
– volume: 44
  start-page: 58
  year: 2014
  end-page: 75
  ident: bb0165
  article-title: Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness
  publication-title: Neurosci. Biobehav. Rev.
– volume: 8
  start-page: 400
  year: 2013
  end-page: 408
  ident: bb0200
  article-title: Multimodal information improves the rapid detection of mental fatigue
  publication-title: Biomedical Signal Processing and Control
– volume: 7
  year: 2012
  ident: bb0215
  article-title: Mental fatigue affects visual selective attention
  publication-title: PLoS One
– volume: 85
  start-page: 279
  year: 2017
  end-page: 291
  ident: bb0315
  article-title: Detecting driving stress in physiological signals based on multimodal feature analysis and kernel classifiers
  publication-title: Expert Syst. Appl.
– volume: 43
  start-page: 498
  year: 2011
  end-page: 515
  ident: bb0325
  article-title: The link between fatigue and safety
  publication-title: Accid. Anal. Prev.
– volume: 283
  start-page: 266
  year: 2018
  end-page: 281
  ident: bb0170
  article-title: Task-generic mental fatigue recognition based on neurophysiological signals and dynamical deep extreme learning machine
  publication-title: Neurocomputing
– volume: vol. 50
  start-page: 904
  year: 2006
  end-page: 908
  ident: bb0090
  article-title: NASA-task load index (NASA-TLX); 20 years later
  publication-title: Proceedings of the Human Factors and Ergonomics Society Annual Meeting
– volume: 33
  start-page: 480
  year: 2001
  end-page: 506
  ident: bb0335
  article-title: Meditation, restoration, and the management of mental fatigue
  publication-title: Environ. Behav.
– volume: 44
  start-page: 247
  year: 1994
  end-page: 252
  ident: bb0010
  article-title: Occupational injuries among construction workers in Hong Kong
  publication-title: Occup. Med.
– volume: 51
  start-page: 982
  year: 2008
  end-page: 1010
  ident: bb0280
  article-title: Blinks and saccades as indicators of fatigue in sleepiness warnings: looking tired?
  publication-title: Ergonomics
– volume: 105
  year: 2019
  ident: bb0020
  article-title: Evaluating the impact of mental fatigue on construction equipment operators’ ability to detect hazards using wearable eye-tracking technology
  publication-title: Autom. Constr.
– year: 2017
  ident: bb0210
  article-title: Detection and prediction of driver drowsiness using artificial neural network models
  publication-title: Accident Analysis Prevention
– volume: 56
  start-page: 986
  year: 2014
  end-page: 998
  ident: bb0190
  article-title: Steering in a random forest: ensemble learning for detecting drowsiness-related lane departures
  publication-title: Hum. Factors
– volume: 16
  start-page: 555
  year: 2002
  end-page: 575
  ident: bb0135
  article-title: Probabilistic assessment of user’s emotions in educational games
  publication-title: Appl. Artif. Intell.
– volume: 65
  start-page: 245
  year: 2015
  end-page: 250
  ident: bb0015
  article-title: Influence of fatigue on construction workers’ physical and cognitive function
  publication-title: Occup. Med.
– volume: 38
  start-page: 1859
  year: 2011
  end-page: 1865
  ident: bb0180
  article-title: Multivariate autoregressive models and kernel learning algorithms for classifying driving mental fatigue based on electroencephalographic
  publication-title: Expert Syst. Appl.
– year: 2017
  ident: bb0295
  article-title: Data Mining: Practical Machine Learning Tools and Techniques
– volume: 49
  start-page: 709
  year: 2011
  end-page: 718
  ident: bb0030
  article-title: Visibility-related fatalities related to construction equipment
  publication-title: Saf. Sci.
– volume: 58
  start-page: 220
  year: 2015
  end-page: 228
  ident: bb0075
  article-title: Development and validation of a fatigue assessment scale for U.S. construction workers
  publication-title: Am. J. Ind. Med.
– volume: 36
  start-page: 285
  year: 1994
  end-page: 297
  ident: bb0275
  article-title: Blink rate: a possible measure of fatigue
  publication-title: Hum. Factors
– volume: 76
  start-page: 280
  year: 2014
  end-page: 285
  ident: bb0050
  article-title: Do sleep, stress, and illness explain daily variations in fatigue? A prospective study
  publication-title: J. Psychosom. Res.
– volume: 50
  start-page: 572
  year: 2010
  end-page: 576
  ident: bb0300
  article-title: Avoiding non-independence in fMRI data analysis: leave one subject out
  publication-title: Neuroimage
– volume: 59
  start-page: 125
  year: 2008
  end-page: 139
  ident: bb0225
  article-title: Mental fatigue: costs and benefits
  publication-title: Brain Res. Rev.
– volume: 73
  start-page: 80
  year: 2015
  end-page: 91
  ident: bb0065
  article-title: An experimental method to study the effect of fatigue on construction workers’ safety performance
  publication-title: Saf. Sci.
– volume: 26
  start-page: 184
  year: 2019
  end-page: 223
  ident: bb0355
  article-title: Digital skin of the construction site: smart sensor technologies towards the future smart construction site
  publication-title: Eng. Constr. Archit. Manag.
– start-page: 1151
  year: 2014
  end-page: 1160
  ident: bb0230
  article-title: Pupil: an open source platform for pervasive eye tracking and mobile gaze-based interaction
  publication-title: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing Adjunct Publication - UbiComp '14 Adjunct
– volume: 64
  start-page: 1
  year: 2018
  end-page: 7
  ident: bb0240
  article-title: Influence of mental workload on detecting information varieties revealed by mismatch negativity during flight simulation
  publication-title: Int. J. Ind. Ergon.
– start-page: 165
  year: 2005
  end-page: 168
  ident: bb0120
  article-title: Development of vehicle driver drowsiness detection system using electrooculogram (EOG)
  publication-title: 2005 1st International Conference on Computers, Communications, & Signal Processing With Special Track on Biomedical Engineering (CCSP)
– start-page: 275
  year: 2017
  end-page: 284
  ident: bb0185
  article-title: Fatigue detection model for older adults using eye-tracking data gathered while watching video: evaluation against diverse fatiguing tasks
  publication-title: 2017 International Conference on Healthcare Informatics (ICHI), IEEE, Park City, UT, USA
– year: 2015
  ident: bb0330
  article-title: Engineering Psychology & Human Performance
– volume: 95
  start-page: 350
  year: 2016
  end-page: 357
  ident: bb0080
  article-title: Driver drowsiness detection based on non-intrusive metrics considering individual specifics
  publication-title: Accident Analysis Prevention
– volume: 5
  start-page: 78
  year: 2018
  end-page: 87
  ident: bb0345
  article-title: Smart construction site in mega construction projects: a case study on island tunneling project of Hong Kong-Zhuhai-Macao Bridge
  publication-title: Frontiers of Engineering Management
– volume: 65
  start-page: 473
  year: 2017
  end-page: 480
  ident: bb0270
  article-title: Detection of driver drowsiness using wearable devices: a feasibility study of the proximity sensor
  publication-title: Appl. Ergon.
– volume: 82
  start-page: 122
  year: 2017
  end-page: 137
  ident: bb0115
  article-title: Monitoring workers’ attention and vigilance in construction activities through a wireless and wearable electroencephalography system
  publication-title: Autom. Constr.
– volume: 4
  start-page: 41
  year: 2017
  end-page: 48
  ident: bb0350
  article-title: Intelligent data analytics is here to change engineering management
  publication-title: Frontiers of Engineering Management
– volume: 144
  year: 2018
  ident: bb0145
  article-title: Examining the relationship between construction workers’ visual attention and situation awareness under fall and tripping hazard conditions: using mobile eye tracking
  publication-title: J. Constr. Eng. Manag.
– volume: 71
  start-page: 198
  year: 2016
  end-page: 209
  ident: bb0305
  article-title: Smartphone-based construction workers’ activity recognition and classification
  publication-title: Autom. Constr.
– volume: 109
  start-page: 62
  year: 2017
  end-page: 69
  ident: bb0155
  article-title: Monitoring driver fatigue using a single-channel electroencephalographic device: a validation study by gaze-based, driving performance, and subjective data
  publication-title: Accid. Anal. Prev.
– volume: 10
  start-page: 431
  year: 1973
  end-page: 436
  ident: bb0095
  article-title: Quantification of sleepiness: a new approach
  publication-title: Psychophysiology
– volume: 119
  start-page: 1524
  year: 2008
  end-page: 1533
  ident: bb0105
  article-title: EEG-based mental fatigue measurement using multi-class support vector machines with confidence estimate
  publication-title: Clin. Neurophysiol.
– volume: 18
  start-page: 141
  year: 2014
  end-page: 152
  ident: bb0130
  article-title: Look before you (s)leep: evaluating the use of fatigue detection technologies within a fatigue risk management system for the road transport industry
  publication-title: Sleep Med. Rev.
– volume: 143
  year: 2017
  ident: bb0025
  article-title: Effectiveness analysis from a cognitive perspective for a real-time safety assistance system for mobile crane lifting operations
  publication-title: J. Constr. Eng. Manag.
– volume: 38
  start-page: 514
  year: 2018
  end-page: 526
  ident: bb0310
  article-title: Automated ergonomic risk monitoring using body-mounted sensors and machine learning
  publication-title: Adv. Eng. Inform.
– start-page: 40
  year: 2018
  end-page: 50
  ident: bb0205
  article-title: A supervised learning-based construction workers’ stress recognition using a wearable electroencephalography (EEG) device
  publication-title: Construction Research Congress 2018
– volume: 145
  year: 2019
  ident: bb0150
  article-title: Are visual search patterns predictive of hazard recognition performance? Empirical investigation using eye-tracking technology
  publication-title: J. Constr. Eng. Manag.
– volume: 31
  start-page: 45
  year: 1999
  end-page: 50
  ident: bb0100
  article-title: Defining and measuring fatigue
  publication-title: Image: Journal of Nursing Schofarship
– volume: 15
  year: 2018
  ident: bb0140
  article-title: A generic EEG artifact removal algorithm based on the multi-channel Wiener filter
  publication-title: J. Neural Eng.
– year: 2018
  ident: bb0175
  article-title: Electroencephalography based fatigue detection using a novel feature fusion and extreme learning machine
  publication-title: Cogn. Syst. Res.
– volume: 134
  start-page: 320
  year: 2008
  end-page: 332
  ident: bb0035
  article-title: Vision system for tower cranes
  publication-title: J. Constr. Eng. Manag.
– volume: 8
  year: 2018
  ident: bb0285
  article-title: Eye movement characteristics reflected fatigue development in both young and elderly individuals
  publication-title: Sci. Rep.
– year: 2018
  ident: bb0085
  article-title: Detecting mental fatigue from eye-tracking data gathered while watching video: evaluation in younger and older adults
  publication-title: Artificial Intelligence Medicine
– volume: 35
  start-page: 761
  year: 2005
  end-page: 770
  ident: bb0045
  article-title: Evaluation of mental fatigue using feature parameter extracted from event-related potential
  publication-title: Int. J. Ind. Ergon.
– volume: 29
  start-page: 341
  year: 2011
  end-page: 353
  ident: bb0060
  article-title: Fatigue: the most critical accident risk in oil and gas construction
  publication-title: Constr. Manag. Econ.
– volume: 53
  start-page: 95
  year: 2003
  end-page: 101
  ident: bb0320
  article-title: Shift work, safety and productivity
  publication-title: Occup. Med.
– volume: 113
  start-page: 25
  year: 2018
  end-page: 37
  ident: bb0195
  article-title: A contextual and temporal algorithm for driver drowsiness detection
  publication-title: Accident Analysis Prevention
– volume: 40
  start-page: 78
  year: 2016
  end-page: 90
  ident: bb0245
  article-title: The effects of driving environment complexity and dual tasking on drivers’ mental workload and eye blink behavior
  publication-title: Transport. Res. F: Traffic Psychol. Behav.
– volume: 52
  start-page: 305
  year: 2015
  end-page: 315
  ident: bb0265
  article-title: A multifaceted investigation of the link between mental fatigue and task disengagement
  publication-title: Psychophysiology
– volume: 42
  start-page: 878
  year: 2016
  end-page: 889
  ident: bb0220
  article-title: Shifts in attention during mental fatigue: evidence from subjective, behavioral, physiological, and eye-tracking data
  publication-title: Journal of Experimental Psychology: Human Perception Performance
– volume: 10
  year: 2015
  ident: bb0255
  article-title: Sustained attention is associated with error processing impairment: evidence from mental fatigue study in four-choice reaction time task
  publication-title: PLoS One
– year: 2016
  ident: bb0040
  article-title: Commonly used statistics
– volume: 25
  start-page: 107
  year: 2005
  end-page: 116
  ident: bb0110
  article-title: Effects of mental fatigue on attention: an ERP study
  publication-title: Cogn. Brain Res.
– volume: 34
  start-page: 81
  year: 2013
  end-page: 88
  ident: bb0160
  article-title: EEG-based detection and evaluation of fatigue caused by watching 3DTV
  publication-title: Displays
– volume: 37
  start-page: 173
  year: 2011
  end-page: 185
  ident: bb0005
  article-title: Shift and night work and long working hours--a systematic review of safety implications
  publication-title: Scand. J. Work Environ. Health
– volume: 144
  year: 2018
  ident: bb0070
  article-title: Measuring and predicting fatigue in construction: empirical field study
  publication-title: J. Constr. Eng. Manag.
– volume: 11
  year: 2016
  ident: bb0260
  article-title: The impairing effect of mental fatigue on visual sustained attention under monotonous multi-object visual attention task in long durations: an event-related potential based study
  publication-title: PLoS One
– volume: 2017
  start-page: 215
  year: 2017
  end-page: 223
  ident: bb0290
  article-title: Toeplitz inverse covariance-based clustering of multivariate time series data
  publication-title: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 60
  start-page: 465
  year: 2018
  end-page: 476
  ident: bb0250
  article-title: Driver vigilance in automated vehicles: hazard detection failures are a matter of time
  publication-title: Hum. Factors
– volume: 59
  start-page: 995
  year: 2017
  end-page: 1008
  ident: bb0235
  article-title: Fatigue in younger and older drivers: effectiveness of an alertness-maintaining task
  publication-title: Hum. Factors
– volume: 11
  issue: 9
  year: 2016
  ident: 10.1016/j.autcon.2019.103000_bb0260
  article-title: The impairing effect of mental fatigue on visual sustained attention under monotonous multi-object visual attention task in long durations: an event-related potential based study
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0163360
– volume: 37
  start-page: 173
  issue: 3
  year: 2011
  ident: 10.1016/j.autcon.2019.103000_bb0005
  article-title: Shift and night work and long working hours--a systematic review of safety implications
  publication-title: Scand. J. Work Environ. Health
  doi: 10.5271/sjweh.3146
– volume: 95
  start-page: 350
  issue: Pt B
  year: 2016
  ident: 10.1016/j.autcon.2019.103000_bb0080
  article-title: Driver drowsiness detection based on non-intrusive metrics considering individual specifics
  publication-title: Accident Analysis Prevention
  doi: 10.1016/j.aap.2015.09.002
– volume: 64
  start-page: 1
  year: 2018
  ident: 10.1016/j.autcon.2019.103000_bb0240
  article-title: Influence of mental workload on detecting information varieties revealed by mismatch negativity during flight simulation
  publication-title: Int. J. Ind. Ergon.
  doi: 10.1016/j.ergon.2017.08.004
– volume: 33
  start-page: 480
  issue: 4
  year: 2001
  ident: 10.1016/j.autcon.2019.103000_bb0335
  article-title: Meditation, restoration, and the management of mental fatigue
  publication-title: Environ. Behav.
  doi: 10.1177/00139160121973106
– volume: 4
  start-page: 41
  issue: 1
  year: 2017
  ident: 10.1016/j.autcon.2019.103000_bb0350
  article-title: Intelligent data analytics is here to change engineering management
  publication-title: Frontiers of Engineering Management
  doi: 10.15302/J-FEM-2017003
– volume: 82
  start-page: 122
  year: 2017
  ident: 10.1016/j.autcon.2019.103000_bb0115
  article-title: Monitoring workers’ attention and vigilance in construction activities through a wireless and wearable electroencephalography system
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2017.02.001
– year: 2018
  ident: 10.1016/j.autcon.2019.103000_bb0175
  article-title: Electroencephalography based fatigue detection using a novel feature fusion and extreme learning machine
  publication-title: Cogn. Syst. Res.
  doi: 10.1016/j.cogsys.2018.08.018
– year: 2015
  ident: 10.1016/j.autcon.2019.103000_bb0330
– volume: 73
  start-page: 80
  year: 2015
  ident: 10.1016/j.autcon.2019.103000_bb0065
  article-title: An experimental method to study the effect of fatigue on construction workers’ safety performance
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2014.11.019
– volume: 76
  start-page: 280
  issue: 4
  year: 2014
  ident: 10.1016/j.autcon.2019.103000_bb0050
  article-title: Do sleep, stress, and illness explain daily variations in fatigue? A prospective study
  publication-title: J. Psychosom. Res.
  doi: 10.1016/j.jpsychores.2014.01.005
– start-page: 1151
  year: 2014
  ident: 10.1016/j.autcon.2019.103000_bb0230
  article-title: Pupil: an open source platform for pervasive eye tracking and mobile gaze-based interaction
– volume: 71
  start-page: 198
  year: 2016
  ident: 10.1016/j.autcon.2019.103000_bb0305
  article-title: Smartphone-based construction workers’ activity recognition and classification
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2016.08.015
– volume: 10
  issue: 3
  year: 2015
  ident: 10.1016/j.autcon.2019.103000_bb0255
  article-title: Sustained attention is associated with error processing impairment: evidence from mental fatigue study in four-choice reaction time task
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0117837
– volume: 2017
  start-page: 215
  year: 2017
  ident: 10.1016/j.autcon.2019.103000_bb0290
  article-title: Toeplitz inverse covariance-based clustering of multivariate time series data
– volume: 56
  start-page: 986
  issue: 5
  year: 2014
  ident: 10.1016/j.autcon.2019.103000_bb0190
  article-title: Steering in a random forest: ensemble learning for detecting drowsiness-related lane departures
  publication-title: Hum. Factors
  doi: 10.1177/0018720813515272
– year: 2017
  ident: 10.1016/j.autcon.2019.103000_bb0295
– volume: 25
  start-page: 107
  issue: 1
  year: 2005
  ident: 10.1016/j.autcon.2019.103000_bb0110
  article-title: Effects of mental fatigue on attention: an ERP study
  publication-title: Cogn. Brain Res.
  doi: 10.1016/j.cogbrainres.2005.04.011
– volume: 85
  start-page: 279
  year: 2017
  ident: 10.1016/j.autcon.2019.103000_bb0315
  article-title: Detecting driving stress in physiological signals based on multimodal feature analysis and kernel classifiers
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.01.040
– volume: 49
  start-page: 709
  issue: 5
  year: 2011
  ident: 10.1016/j.autcon.2019.103000_bb0030
  article-title: Visibility-related fatalities related to construction equipment
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2011.01.007
– volume: 42
  start-page: 878
  issue: 6
  year: 2016
  ident: 10.1016/j.autcon.2019.103000_bb0220
  article-title: Shifts in attention during mental fatigue: evidence from subjective, behavioral, physiological, and eye-tracking data
  publication-title: Journal of Experimental Psychology: Human Perception Performance
– volume: 65
  start-page: 473
  year: 2017
  ident: 10.1016/j.autcon.2019.103000_bb0270
  article-title: Detection of driver drowsiness using wearable devices: a feasibility study of the proximity sensor
  publication-title: Appl. Ergon.
  doi: 10.1016/j.apergo.2017.02.016
– volume: 8
  issue: 1
  year: 2018
  ident: 10.1016/j.autcon.2019.103000_bb0285
  article-title: Eye movement characteristics reflected fatigue development in both young and elderly individuals
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-31577-1
– ident: 10.1016/j.autcon.2019.103000_bb0040
– start-page: 40
  year: 2018
  ident: 10.1016/j.autcon.2019.103000_bb0205
  article-title: A supervised learning-based construction workers’ stress recognition using a wearable electroencephalography (EEG) device
– volume: 105
  year: 2019
  ident: 10.1016/j.autcon.2019.103000_bb0020
  article-title: Evaluating the impact of mental fatigue on construction equipment operators’ ability to detect hazards using wearable eye-tracking technology
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2019.102835
– volume: 134
  start-page: 320
  issue: 5
  year: 2008
  ident: 10.1016/j.autcon.2019.103000_bb0035
  article-title: Vision system for tower cranes
  publication-title: J. Constr. Eng. Manag.
  doi: 10.1061/(ASCE)0733-9364(2008)134:5(320)
– volume: 105
  year: 2019
  ident: 10.1016/j.autcon.2019.103000_bb0340
  article-title: A multicomponent and neurophysiological intervention for the emotional and mental states of high-altitude construction workers
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2019.102836
– volume: 144
  issue: 8
  year: 2018
  ident: 10.1016/j.autcon.2019.103000_bb0070
  article-title: Measuring and predicting fatigue in construction: empirical field study
  publication-title: J. Constr. Eng. Manag.
  doi: 10.1061/(ASCE)CO.1943-7862.0001513
– volume: 44
  start-page: 58
  year: 2014
  ident: 10.1016/j.autcon.2019.103000_bb0165
  article-title: Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2012.10.003
– volume: 283
  start-page: 266
  year: 2018
  ident: 10.1016/j.autcon.2019.103000_bb0170
  article-title: Task-generic mental fatigue recognition based on neurophysiological signals and dynamical deep extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.12.062
– volume: 44
  start-page: 247
  issue: 5
  year: 1994
  ident: 10.1016/j.autcon.2019.103000_bb0010
  article-title: Occupational injuries among construction workers in Hong Kong
  publication-title: Occup. Med.
  doi: 10.1093/occmed/44.5.247
– volume: 15
  issue: 3
  year: 2018
  ident: 10.1016/j.autcon.2019.103000_bb0140
  article-title: A generic EEG artifact removal algorithm based on the multi-channel Wiener filter
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aaac92
– volume: 65
  start-page: 245
  issue: 3
  year: 2015
  ident: 10.1016/j.autcon.2019.103000_bb0015
  article-title: Influence of fatigue on construction workers’ physical and cognitive function
  publication-title: Occup. Med.
  doi: 10.1093/occmed/kqu215
– volume: 45
  start-page: 83
  year: 2012
  ident: 10.1016/j.autcon.2019.103000_bb0125
  article-title: Electroencephalogram and electrocardiograph assessment of mental fatigue in a driving simulator
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2011.11.019
– volume: 29
  start-page: 341
  issue: 4
  year: 2011
  ident: 10.1016/j.autcon.2019.103000_bb0060
  article-title: Fatigue: the most critical accident risk in oil and gas construction
  publication-title: Constr. Manag. Econ.
  doi: 10.1080/01446193.2010.545993
– volume: 109
  start-page: 62
  year: 2017
  ident: 10.1016/j.autcon.2019.103000_bb0155
  article-title: Monitoring driver fatigue using a single-channel electroencephalographic device: a validation study by gaze-based, driving performance, and subjective data
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2017.09.025
– volume: vol. 50
  start-page: 904
  year: 2006
  ident: 10.1016/j.autcon.2019.103000_bb0090
  article-title: NASA-task load index (NASA-TLX); 20 years later
– volume: 51
  start-page: 982
  issue: 7
  year: 2008
  ident: 10.1016/j.autcon.2019.103000_bb0280
  article-title: Blinks and saccades as indicators of fatigue in sleepiness warnings: looking tired?
  publication-title: Ergonomics
  doi: 10.1080/00140130701817062
– volume: 52
  start-page: 305
  issue: 3
  year: 2015
  ident: 10.1016/j.autcon.2019.103000_bb0265
  article-title: A multifaceted investigation of the link between mental fatigue and task disengagement
  publication-title: Psychophysiology
  doi: 10.1111/psyp.12339
– volume: 36
  start-page: 285
  issue: 2
  year: 1994
  ident: 10.1016/j.autcon.2019.103000_bb0275
  article-title: Blink rate: a possible measure of fatigue
  publication-title: Hum. Factors
  doi: 10.1177/001872089403600209
– volume: 143
  issue: 4
  year: 2017
  ident: 10.1016/j.autcon.2019.103000_bb0025
  article-title: Effectiveness analysis from a cognitive perspective for a real-time safety assistance system for mobile crane lifting operations
  publication-title: J. Constr. Eng. Manag.
  doi: 10.1061/(ASCE)CO.1943-7862.0001258
– volume: 58
  start-page: 220
  issue: 2
  year: 2015
  ident: 10.1016/j.autcon.2019.103000_bb0075
  article-title: Development and validation of a fatigue assessment scale for U.S. construction workers
  publication-title: Am. J. Ind. Med.
  doi: 10.1002/ajim.22411
– volume: 35
  start-page: 761
  issue: 8
  year: 2005
  ident: 10.1016/j.autcon.2019.103000_bb0045
  article-title: Evaluation of mental fatigue using feature parameter extracted from event-related potential
  publication-title: Int. J. Ind. Ergon.
  doi: 10.1016/j.ergon.2004.12.003
– start-page: 165
  year: 2005
  ident: 10.1016/j.autcon.2019.103000_bb0120
  article-title: Development of vehicle driver drowsiness detection system using electrooculogram (EOG)
– volume: 53
  start-page: 95
  issue: 2
  year: 2003
  ident: 10.1016/j.autcon.2019.103000_bb0320
  article-title: Shift work, safety and productivity
  publication-title: Occup. Med.
  doi: 10.1093/occmed/kqg047
– volume: 18
  start-page: 141
  issue: 2
  year: 2014
  ident: 10.1016/j.autcon.2019.103000_bb0130
  article-title: Look before you (s)leep: evaluating the use of fatigue detection technologies within a fatigue risk management system for the road transport industry
  publication-title: Sleep Med. Rev.
  doi: 10.1016/j.smrv.2013.03.003
– volume: 145
  issue: 1
  year: 2019
  ident: 10.1016/j.autcon.2019.103000_bb0150
  article-title: Are visual search patterns predictive of hazard recognition performance? Empirical investigation using eye-tracking technology
  publication-title: J. Constr. Eng. Manag.
  doi: 10.1061/(ASCE)CO.1943-7862.0001589
– year: 2018
  ident: 10.1016/j.autcon.2019.103000_bb0085
  article-title: Detecting mental fatigue from eye-tracking data gathered while watching video: evaluation in younger and older adults
  publication-title: Artificial Intelligence Medicine
  doi: 10.1016/j.artmed.2018.06.005
– volume: 34
  start-page: 81
  issue: 2
  year: 2013
  ident: 10.1016/j.autcon.2019.103000_bb0160
  article-title: EEG-based detection and evaluation of fatigue caused by watching 3DTV
  publication-title: Displays
  doi: 10.1016/j.displa.2013.01.002
– volume: 59
  start-page: 125
  issue: 1
  year: 2008
  ident: 10.1016/j.autcon.2019.103000_bb0225
  article-title: Mental fatigue: costs and benefits
  publication-title: Brain Res. Rev.
  doi: 10.1016/j.brainresrev.2008.07.001
– volume: 113
  start-page: 25
  year: 2018
  ident: 10.1016/j.autcon.2019.103000_bb0195
  article-title: A contextual and temporal algorithm for driver drowsiness detection
  publication-title: Accident Analysis Prevention
  doi: 10.1016/j.aap.2018.01.005
– volume: 82
  start-page: 154
  year: 2017
  ident: 10.1016/j.autcon.2019.103000_bb0055
  article-title: Monitoring fatigue in construction workers using physiological measurements
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2017.03.003
– volume: 40
  start-page: 78
  year: 2016
  ident: 10.1016/j.autcon.2019.103000_bb0245
  article-title: The effects of driving environment complexity and dual tasking on drivers’ mental workload and eye blink behavior
  publication-title: Transport. Res. F: Traffic Psychol. Behav.
  doi: 10.1016/j.trf.2016.04.007
– volume: 7
  issue: 10
  year: 2012
  ident: 10.1016/j.autcon.2019.103000_bb0215
  article-title: Mental fatigue affects visual selective attention
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0048073
– volume: 5
  start-page: 78
  issue: 1
  year: 2018
  ident: 10.1016/j.autcon.2019.103000_bb0345
  article-title: Smart construction site in mega construction projects: a case study on island tunneling project of Hong Kong-Zhuhai-Macao Bridge
  publication-title: Frontiers of Engineering Management
– volume: 38
  start-page: 1859
  issue: 3
  year: 2011
  ident: 10.1016/j.autcon.2019.103000_bb0180
  article-title: Multivariate autoregressive models and kernel learning algorithms for classifying driving mental fatigue based on electroencephalographic
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.07.115
– volume: 50
  start-page: 572
  issue: 2
  year: 2010
  ident: 10.1016/j.autcon.2019.103000_bb0300
  article-title: Avoiding non-independence in fMRI data analysis: leave one subject out
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.10.092
– volume: 59
  start-page: 995
  issue: 6
  year: 2017
  ident: 10.1016/j.autcon.2019.103000_bb0235
  article-title: Fatigue in younger and older drivers: effectiveness of an alertness-maintaining task
  publication-title: Hum. Factors
  doi: 10.1177/0018720817706811
– volume: 16
  start-page: 555
  issue: 7–8
  year: 2002
  ident: 10.1016/j.autcon.2019.103000_bb0135
  article-title: Probabilistic assessment of user’s emotions in educational games
  publication-title: Appl. Artif. Intell.
  doi: 10.1080/08839510290030390
– year: 2017
  ident: 10.1016/j.autcon.2019.103000_bb0210
  article-title: Detection and prediction of driver drowsiness using artificial neural network models
  publication-title: Accident Analysis Prevention
– volume: 43
  start-page: 498
  issue: 2
  year: 2011
  ident: 10.1016/j.autcon.2019.103000_bb0325
  article-title: The link between fatigue and safety
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2009.11.011
– volume: 10
  start-page: 431
  issue: 4
  year: 1973
  ident: 10.1016/j.autcon.2019.103000_bb0095
  article-title: Quantification of sleepiness: a new approach
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.1973.tb00801.x
– volume: 144
  issue: 7
  year: 2018
  ident: 10.1016/j.autcon.2019.103000_bb0145
  article-title: Examining the relationship between construction workers’ visual attention and situation awareness under fall and tripping hazard conditions: using mobile eye tracking
  publication-title: J. Constr. Eng. Manag.
  doi: 10.1061/(ASCE)CO.1943-7862.0001516
– volume: 60
  start-page: 465
  issue: 4
  year: 2018
  ident: 10.1016/j.autcon.2019.103000_bb0250
  article-title: Driver vigilance in automated vehicles: hazard detection failures are a matter of time
  publication-title: Hum. Factors
  doi: 10.1177/0018720818761711
– volume: 26
  start-page: 184
  issue: 2
  year: 2019
  ident: 10.1016/j.autcon.2019.103000_bb0355
  article-title: Digital skin of the construction site: smart sensor technologies towards the future smart construction site
  publication-title: Eng. Constr. Archit. Manag.
  doi: 10.1108/ECAM-04-2017-0066
– start-page: 275
  year: 2017
  ident: 10.1016/j.autcon.2019.103000_bb0185
  article-title: Fatigue detection model for older adults using eye-tracking data gathered while watching video: evaluation against diverse fatiguing tasks
– volume: 8
  start-page: 400
  issue: 4
  year: 2013
  ident: 10.1016/j.autcon.2019.103000_bb0200
  article-title: Multimodal information improves the rapid detection of mental fatigue
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2013.01.007
– volume: 31
  start-page: 45
  issue: 1
  year: 1999
  ident: 10.1016/j.autcon.2019.103000_bb0100
  article-title: Defining and measuring fatigue
  publication-title: Image: Journal of Nursing Schofarship
– volume: 38
  start-page: 514
  year: 2018
  ident: 10.1016/j.autcon.2019.103000_bb0310
  article-title: Automated ergonomic risk monitoring using body-mounted sensors and machine learning
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2018.08.020
– volume: 119
  start-page: 1524
  issue: 7
  year: 2008
  ident: 10.1016/j.autcon.2019.103000_bb0105
  article-title: EEG-based mental fatigue measurement using multi-class support vector machines with confidence estimate
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2008.03.012
SSID ssj0007069
Score 2.5918283
Snippet In the construction industry, the operator's mental fatigue is one of the most important causes of construction equipment-related accidents. Mental fatigue can...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 103000
SubjectTerms Accidents
Algorithms
Classification
Clustering
Computer simulation
Construction equipment
Construction equipment operator
Construction industry
Covariance
Excavators
Eye movements
Eye-tracking
Fatigue
Feasibility studies
Feature extraction
Machine learning
Mental fatigue identification and classification
Operators (personnel)
Support vector machines
Technology utilization
Toeplitz Inverse Covariance-Based Clustering
Tracking
Wearable technology
Title Identification and classification of construction equipment operators' mental fatigue using wearable eye-tracking technology
URI https://dx.doi.org/10.1016/j.autcon.2019.103000
https://www.proquest.com/docview/2327893562
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DD-pB_MT5RQ6Cp7i0zUd7FFGm4i462C2kaSIT2abrEEH8231JW6ciCN7akpSSl7z3y-v7_YLQERM2SnLwfgXnMWExLUiqGScuodp4MRGWeDbyTU90--xqwActdNZwYXxZZe37K58evHX9pFOPZmcyHHZuaRZD-AwQBGai8LLbjEk_y0_e52UekopKby8WxLdu6HOhxkvPSr_rhCCYefY59Ty338PTD0cdos_FGlqtYSM-rb5sHbXsaAMtNazi6QZa-SIsuIneKv6tqxNyWI8KbDxOnj8aO2zGc_lYbJ9mw1A7hMcTG_69T49xpfyPHXS5n1nsi-Tv8QssDk-4wvbVkvJZG59tx-Vnjn4L9S_O7866pD5ngZgkpSWRRqQisoD9hKNxLrjl0qTS5RDfLc0Zh1u4ZoXhRuhIGk4LDTi3oIbriJtkGy2MxiO7gzBPc8FcFFmtDeMJzSR1YdfkJM-ynLVR0gyvMrUIuT8L41E11WYPqjKK8kZRlVHaiHz2mlQiHH-0l43l1LfJpCBO_NFzvzG0qhfzVAHolADrACnu_vvFe2g59jv1kLzZRwtgXXsAcKbMD8N8PUSLp5fX3d4HJaz16w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB1ReqAcUAtUULbFh0qczDqJP5IjWoGW8nEpSNwsx7HRIrS77WaFKiF-O2MnYQEhIfWWRHYUeeyZ58m8Z4CfXLokK9H7VUKklKesornhgvqMGRvERHgW2Mhn53J4yX9diaslGHRcmFBW2fr-xqdHb90-6bej2Z-ORv3frEgxfEYIgjNRyg_wkePyDccY7D8s6jwUk43gXippaN7x52KRl5nXYduJUbAI9HMWiG5vx6dXnjqGn6PPsNbiRnLQfNoXWHLjdVjpaMWzdVh9piy4AfcNAde3GTlixhWxASgvHk08sZOFfixxf-ajWDxEJlMXf77P9kgj_U88drmeOxKq5K_JHa6OwLgi7p-j9V9jQ7qd1E9J-k24PDq8GAxpe9ACtVnOaqqszGXiEPxJz9JSCieUzZUvMcA7VnKBt3jNKyusNImyglUGgW7FrDCJsNlXWB5Pxm4LiMhLyX2SOGMsWoMVivm4bfJKFEXJtyHrhlfbVoU8HIZxq7tysxvdGEUHo-jGKNtAn3pNGxWOd9qrznL6xWzSGCje6dnrDK3b1TzTiDoV4jqEit_--8W7sDK8ODvVp8fnJzvwKQ3b9pjJ6cEyWtp9R2xTlz_i3H0EwOL3eQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+and+classification+of+construction+equipment+operators%27+mental+fatigue+using+wearable+eye-tracking+technology&rft.jtitle=Automation+in+construction&rft.au=Li%2C+Jue&rft.au=Li%2C+Heng&rft.au=Umer%2C+Waleed&rft.au=Wang%2C+Hongwei&rft.date=2020-01-01&rft.pub=Elsevier+B.V&rft.issn=0926-5805&rft.eissn=1872-7891&rft.volume=109&rft_id=info:doi/10.1016%2Fj.autcon.2019.103000&rft.externalDocID=S0926580519304066
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-5805&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-5805&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-5805&client=summon