Identification and classification of construction equipment operators' mental fatigue using wearable eye-tracking technology
In the construction industry, the operator's mental fatigue is one of the most important causes of construction equipment-related accidents. Mental fatigue can easily lead to poor performance of construction equipment operations and accidents in the worst case scenario. Hence, it is necessary t...
Saved in:
Published in | Automation in construction Vol. 109; p. 103000 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.01.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the construction industry, the operator's mental fatigue is one of the most important causes of construction equipment-related accidents. Mental fatigue can easily lead to poor performance of construction equipment operations and accidents in the worst case scenario. Hence, it is necessary to propose an objective method that can accurately detect multiple levels of mental fatigue of construction equipment operators. To address such issue, this paper develops a novel method to identify and classify operator's multi-level mental fatigue using wearable eye-tracking technology. For the purpose, six participants were recruited to perform a simulated excavator operation experiment to obtain relevant data. First, a Toeplitz Inverse Covariance-Based Clustering (TICC) method was used to determine the number of levels of mental fatigue using relevant subjective and objective data collected during the experiments. The results revealed the number of mental fatigue levels to be 3 using TICC-based method. Second, four eye movement feature-sets suitable for different construction scenarios were extracted and supervised learning algorithms were used to classify multi-level mental fatigue of the operator. The classification performance analysis of the supervised learning algorithms showed Support Vector Machine (SVM) was the most suitable algorithm to classify mental fatigue in the face of various construction scenarios and subject bias (accuracy between 79.5% and 85.0%). Overall, this study demonstrates the feasibility of applying wearable eye-tracking technology to identify and classify the mental fatigue of construction equipment operators.
•A novel approach for detecting construction equipment operator’s mental fatigue based on eye movement data is proposed.•TICC method is adopted to identify multiple levels of mental fatigue and label relevant eye movement data.•Supervised learning algorithms are used to learn four different sets of eye movement features.•Results show that SVM and LDA yield high classification performance.•The feasibility of the proposed method for detecting multi-level mental fatigue is discussed. |
---|---|
AbstractList | In the construction industry, the operator's mental fatigue is one of the most important causes of construction equipment-related accidents. Mental fatigue can easily lead to poor performance of construction equipment operations and accidents in the worst case scenario. Hence, it is necessary to propose an objective method that can accurately detect multiple levels of mental fatigue of construction equipment operators. To address such issue, this paper develops a novel method to identify and classify operator's multi-level mental fatigue using wearable eye-tracking technology. For the purpose, six participants were recruited to perform a simulated excavator operation experiment to obtain relevant data. First, a Toeplitz Inverse Covariance-Based Clustering (TICC) method was used to determine the number of levels of mental fatigue using relevant subjective and objective data collected during the experiments. The results revealed the number of mental fatigue levels to be 3 using TICC-based method. Second, four eye movement feature-sets suitable for different construction scenarios were extracted and supervised learning algorithms were used to classify multi-level mental fatigue of the operator. The classification performance analysis of the supervised learning algorithms showed Support Vector Machine (SVM) was the most suitable algorithm to classify mental fatigue in the face of various construction scenarios and subject bias (accuracy between 79.5% and 85.0%). Overall, this study demonstrates the feasibility of applying wearable eye-tracking technology to identify and classify the mental fatigue of construction equipment operators. In the construction industry, the operator's mental fatigue is one of the most important causes of construction equipment-related accidents. Mental fatigue can easily lead to poor performance of construction equipment operations and accidents in the worst case scenario. Hence, it is necessary to propose an objective method that can accurately detect multiple levels of mental fatigue of construction equipment operators. To address such issue, this paper develops a novel method to identify and classify operator's multi-level mental fatigue using wearable eye-tracking technology. For the purpose, six participants were recruited to perform a simulated excavator operation experiment to obtain relevant data. First, a Toeplitz Inverse Covariance-Based Clustering (TICC) method was used to determine the number of levels of mental fatigue using relevant subjective and objective data collected during the experiments. The results revealed the number of mental fatigue levels to be 3 using TICC-based method. Second, four eye movement feature-sets suitable for different construction scenarios were extracted and supervised learning algorithms were used to classify multi-level mental fatigue of the operator. The classification performance analysis of the supervised learning algorithms showed Support Vector Machine (SVM) was the most suitable algorithm to classify mental fatigue in the face of various construction scenarios and subject bias (accuracy between 79.5% and 85.0%). Overall, this study demonstrates the feasibility of applying wearable eye-tracking technology to identify and classify the mental fatigue of construction equipment operators. •A novel approach for detecting construction equipment operator’s mental fatigue based on eye movement data is proposed.•TICC method is adopted to identify multiple levels of mental fatigue and label relevant eye movement data.•Supervised learning algorithms are used to learn four different sets of eye movement features.•Results show that SVM and LDA yield high classification performance.•The feasibility of the proposed method for detecting multi-level mental fatigue is discussed. |
ArticleNumber | 103000 |
Author | Umer, Waleed Li, Heng Zhao, Shukai Xing, Xuejiao Hou, Jun Li, Jue Wang, Hongwei |
Author_xml | – sequence: 1 givenname: Jue surname: Li fullname: Li, Jue email: lijue@hust.edu.cn organization: School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, Hubei, China – sequence: 2 givenname: Heng surname: Li fullname: Li, Heng email: heng.li@polyu.edu.hk organization: Department of Building and Real Estate, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China – sequence: 3 givenname: Waleed surname: Umer fullname: Umer, Waleed organization: Construction Engineering and Management, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia – sequence: 4 givenname: Hongwei surname: Wang fullname: Wang, Hongwei email: hwwang@hust.edu.cn organization: School of Management, Huazhong University of Science and Technology, Wuhan, Hubei, China – sequence: 5 givenname: Xuejiao surname: Xing fullname: Xing, Xuejiao email: xue.xu.xing@polyu.edu.hk organization: Department of Building and Real Estate, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China – sequence: 6 givenname: Shukai surname: Zhao fullname: Zhao, Shukai email: zhaoshukai@cohl.com organization: Shenzhen Hailong Construction Technology Company Limited, Shenzhen, Guangdong, China – sequence: 7 givenname: Jun surname: Hou fullname: Hou, Jun email: houjun@cohl.com organization: Chongqing China State Hailong Liangjiang Construction Technology Company Limited, Chongqing, China |
BookMark | eNqFkM1KAzEUhYMoWKtv4CLgwtXUJNNkpi4EEf9AcKPrkN65U1PHpCYZpeDDmzqC4EJXyT2cc27y7ZFt5x0ScsjZhDOuTpYT0yfwbiIYn2WpZIxtkRGvK1FU9YxvkxGbCVXImsldshfjMhsqpmYj8nHboEu2tWCS9Y4a11DoTIw_km9p7o4p9PA142tvVy85Rf0Kg0k-xGO6mU1H2xxZ9Ej7aN2CvqMJZt4hxTUWKRh43qgJ4cn5zi_W-2SnNV3Eg-9zTB6vLh8uboq7--vbi_O7AsqapaICVSuOXHHVMjFXEmUFddXOmRDI5lOZx3yfNiBBGV6BZI2pedMwkIZLKMfkaOhdBf_aY0x66fvg8kotSpEJlVKJ7DodXBB8jAFbDTZ9IchPt53mTG9o66UeaOsNbT3QzuHpr_Aq2BcT1v_FzoYY5u-_WQw6gkUH2NiAkHTj7d8Fnz5yoLE |
CitedBy_id | crossref_primary_10_3389_fpsyg_2021_704955 crossref_primary_10_1109_ACCESS_2024_3508875 crossref_primary_10_1016_j_autcon_2025_106072 crossref_primary_10_1016_j_ergon_2021_103234 crossref_primary_10_1061__ASCE_CO_1943_7862_0002341 crossref_primary_10_1109_TITS_2021_3106774 crossref_primary_10_1021_acs_analchem_4c01190 crossref_primary_10_1155_2022_7642777 crossref_primary_10_3389_fphys_2024_1366910 crossref_primary_10_1002_smi_3510 crossref_primary_10_3390_su15129140 crossref_primary_10_1016_j_autcon_2024_105555 crossref_primary_10_1016_j_dibe_2024_100513 crossref_primary_10_1016_j_autcon_2024_105554 crossref_primary_10_1016_j_autcon_2021_103987 crossref_primary_10_3390_buildings14092793 crossref_primary_10_1016_j_inffus_2023_101803 crossref_primary_10_1002_hfm_20927 crossref_primary_10_31857_S0131164624030074 crossref_primary_10_1080_10255842_2023_2301668 crossref_primary_10_3390_technologies12030038 crossref_primary_10_2147_PRBM_S442863 crossref_primary_10_1108_SASBE_09_2024_0352 crossref_primary_10_1016_j_autcon_2024_105287 crossref_primary_10_1177_15485129231158580 crossref_primary_10_7717_peerj_12864 crossref_primary_10_1016_j_autcon_2022_104151 crossref_primary_10_1016_j_aei_2022_101729 crossref_primary_10_1108_ECAM_04_2020_0281 crossref_primary_10_1108_ECAM_02_2022_0151 crossref_primary_10_1016_j_autcon_2023_104910 crossref_primary_10_1061_JCEMD4_COENG_14670 crossref_primary_10_1016_j_ssci_2024_106529 crossref_primary_10_1016_j_aei_2023_102335 crossref_primary_10_1016_j_displa_2024_102956 crossref_primary_10_1177_14780771221100102 crossref_primary_10_3390_buildings14072114 crossref_primary_10_1080_10447318_2024_2306439 crossref_primary_10_1061__ASCE_CO_1943_7862_0002243 crossref_primary_10_3390_electronics13101798 crossref_primary_10_1007_s11042_022_13193_4 crossref_primary_10_1080_00140139_2023_2221413 crossref_primary_10_3390_math10183395 crossref_primary_10_3389_fnrgo_2022_935092 crossref_primary_10_1061__ASCE_CO_1943_7862_0002090 crossref_primary_10_1038_s41598_023_40406_z crossref_primary_10_1186_s13640_021_00575_1 crossref_primary_10_1061_JCEMD4_COENG_14834 crossref_primary_10_1108_CI_08_2022_0214 crossref_primary_10_3390_app13042718 crossref_primary_10_1016_j_autcon_2024_105341 crossref_primary_10_1016_j_eswa_2024_125038 crossref_primary_10_1016_j_jobe_2024_111146 crossref_primary_10_1016_j_autcon_2021_103560 crossref_primary_10_1016_j_procs_2024_10_281 crossref_primary_10_1016_j_autcon_2021_103962 crossref_primary_10_1016_j_autcon_2022_104257 crossref_primary_10_1061_JCEMD4_COENG_13351 crossref_primary_10_3390_buildings12101591 crossref_primary_10_1061_JMENEA_MEENG_5913 crossref_primary_10_1108_CI_01_2023_0002 crossref_primary_10_1108_ECAM_01_2021_0005 crossref_primary_10_1016_j_jobe_2021_102824 crossref_primary_10_3389_fphys_2021_790292 crossref_primary_10_1109_ACCESS_2023_3332762 crossref_primary_10_1016_j_aei_2023_101978 crossref_primary_10_1007_s11571_024_10126_9 crossref_primary_10_3390_app122211431 crossref_primary_10_1016_j_jobe_2021_103348 crossref_primary_10_1016_j_psep_2023_07_096 crossref_primary_10_1134_S0362119724700737 crossref_primary_10_3390_s24216805 crossref_primary_10_1016_j_autcon_2022_104351 crossref_primary_10_3390_s21134289 crossref_primary_10_1016_j_autcon_2022_104597 crossref_primary_10_1108_ECAM_12_2022_1156 crossref_primary_10_3390_s23239522 crossref_primary_10_1016_j_ssci_2022_105684 crossref_primary_10_3390_buildings14071978 crossref_primary_10_1016_j_autcon_2024_105369 crossref_primary_10_1016_j_jobe_2021_103777 crossref_primary_10_1016_j_aei_2023_102134 crossref_primary_10_1016_j_ergon_2023_103472 crossref_primary_10_1016_j_oceaneng_2023_114964 crossref_primary_10_1016_j_autcon_2023_105231 crossref_primary_10_1108_SASBE_07_2022_0129 crossref_primary_10_1016_j_jsr_2024_01_013 crossref_primary_10_1016_j_procs_2023_01_105 crossref_primary_10_3389_fpubh_2022_993700 crossref_primary_10_1016_j_dibe_2023_100198 crossref_primary_10_3390_buildings12030281 crossref_primary_10_1016_j_aei_2022_101777 crossref_primary_10_1016_j_autcon_2023_105115 crossref_primary_10_1080_1463922X_2021_1965670 crossref_primary_10_2139_ssrn_3765930 crossref_primary_10_1007_s11276_024_03872_5 crossref_primary_10_1016_j_aei_2024_102784 crossref_primary_10_3390_s24113469 crossref_primary_10_1016_j_aei_2020_101056 crossref_primary_10_1016_j_autcon_2020_103506 crossref_primary_10_1016_j_procs_2020_09_041 crossref_primary_10_1061__ASCE_CP_1943_5487_0001017 crossref_primary_10_1177_21695067231192221 |
Cites_doi | 10.1371/journal.pone.0163360 10.5271/sjweh.3146 10.1016/j.aap.2015.09.002 10.1016/j.ergon.2017.08.004 10.1177/00139160121973106 10.15302/J-FEM-2017003 10.1016/j.autcon.2017.02.001 10.1016/j.cogsys.2018.08.018 10.1016/j.ssci.2014.11.019 10.1016/j.jpsychores.2014.01.005 10.1016/j.autcon.2016.08.015 10.1371/journal.pone.0117837 10.1177/0018720813515272 10.1016/j.cogbrainres.2005.04.011 10.1016/j.eswa.2017.01.040 10.1016/j.ssci.2011.01.007 10.1016/j.apergo.2017.02.016 10.1038/s41598-018-31577-1 10.1016/j.autcon.2019.102835 10.1061/(ASCE)0733-9364(2008)134:5(320) 10.1016/j.autcon.2019.102836 10.1061/(ASCE)CO.1943-7862.0001513 10.1016/j.neubiorev.2012.10.003 10.1016/j.neucom.2017.12.062 10.1093/occmed/44.5.247 10.1088/1741-2552/aaac92 10.1093/occmed/kqu215 10.1016/j.aap.2011.11.019 10.1080/01446193.2010.545993 10.1016/j.aap.2017.09.025 10.1080/00140130701817062 10.1111/psyp.12339 10.1177/001872089403600209 10.1061/(ASCE)CO.1943-7862.0001258 10.1002/ajim.22411 10.1016/j.ergon.2004.12.003 10.1093/occmed/kqg047 10.1016/j.smrv.2013.03.003 10.1061/(ASCE)CO.1943-7862.0001589 10.1016/j.artmed.2018.06.005 10.1016/j.displa.2013.01.002 10.1016/j.brainresrev.2008.07.001 10.1016/j.aap.2018.01.005 10.1016/j.autcon.2017.03.003 10.1016/j.trf.2016.04.007 10.1371/journal.pone.0048073 10.1016/j.eswa.2010.07.115 10.1016/j.neuroimage.2009.10.092 10.1177/0018720817706811 10.1080/08839510290030390 10.1016/j.aap.2009.11.011 10.1111/j.1469-8986.1973.tb00801.x 10.1061/(ASCE)CO.1943-7862.0001516 10.1177/0018720818761711 10.1108/ECAM-04-2017-0066 10.1016/j.bspc.2013.01.007 10.1016/j.aei.2018.08.020 10.1016/j.clinph.2008.03.012 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright Elsevier BV Jan 2020 |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier BV Jan 2020 |
DBID | AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/j.autcon.2019.103000 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering |
EISSN | 1872-7891 |
ExternalDocumentID | 10_1016_j_autcon_2019_103000 S0926580519304066 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A NEJ O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SSB SSD SST SSZ T5K WUQ ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SC 7SP 8FD EFKBS FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c380t-7c6861e1616f02b65e57c87fb022e0b4557cb024dc5c6a17c50da81dd0c5a15c3 |
IEDL.DBID | .~1 |
ISSN | 0926-5805 |
IngestDate | Wed Aug 13 04:37:26 EDT 2025 Tue Jul 01 03:18:11 EDT 2025 Thu Apr 24 22:57:49 EDT 2025 Fri Feb 23 02:49:23 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Construction equipment operator Toeplitz Inverse Covariance-Based Clustering Eye-tracking Mental fatigue identification and classification Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c380t-7c6861e1616f02b65e57c87fb022e0b4557cb024dc5c6a17c50da81dd0c5a15c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | http://hdl.handle.net/10397/87710 |
PQID | 2327893562 |
PQPubID | 2045277 |
ParticipantIDs | proquest_journals_2327893562 crossref_citationtrail_10_1016_j_autcon_2019_103000 crossref_primary_10_1016_j_autcon_2019_103000 elsevier_sciencedirect_doi_10_1016_j_autcon_2019_103000 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2020 2020-01-00 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: January 2020 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Automation in construction |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Wang, Xu (bb0080) 2016; 95 Murataa, Uetakeb, Takasawab (bb0045) 2005; 35 Morales, Diaz-Piedra, Rieiro, Roca-Gonzalez, Romero, Catena, Fuentes, Di Stasi (bb0155) 2017; 109 Stern, Boyer, Schroeder (bb0275) 1994; 36 Boksem, Tops (bb0225) 2008; 59 Williamson, Lombardi, Folkard, Stutts, Courtney, Connor (bb0325) 2011; 43 Somers, Francart, Bertrand (bb0140) 2018; 15 Wagstaff, Sigstad Lie (bb0005) 2011; 37 Borghini, Astolfi, Vecchiato, Mattia, Babiloni (bb0165) 2014; 44 Hart (bb0090) 2006; vol. 50 Hinze, Teizer (bb0030) 2011; 49 Aryal, Ghahramani, Becerik-Gerber (bb0055) 2017; 82 Zhang, Sparer, Murphy, Dennerlein, Fang, Katz, Caban-Martinez (bb0075) 2015; 58 Yamada, Kobayashi (bb0085) 2018 Laurent, Valderrama, Besserve, Guillard, Lachaux, Martinerie, Florence (bb0200) 2013; 8 He, Choi, Yang, Lu, Wu, Peng (bb0270) 2017; 65 Wong (bb0010) 1994; 44 Dawson, Searle, Paterson (bb0130) 2014; 18 Chan (bb0060) 2011; 29 Shapira, Rosenfeld, Mizrah (bb0035) 2008; 134 Hopstaken, van der Linden, Bakker, Kompier, Leung (bb0220) 2016; 42 Nath, Chaspari, Behzadan (bb0310) 2018; 38 Zhou, Wang, Zeng (bb0345) 2018; 5 Guo, Chen, Zhang, Pan, Wu (bb0260) 2016; 11 Fang, Cho (bb0025) 2017; 143 Schleicher, Galley, Briest, Galley (bb0280) 2008; 51 Wickens, Hollands, Banbury, Parasuraman (bb0330) 2015 Hasanzadeh, Esmaeili, Dodd (bb0145) 2018; 144 Greenlee, DeLucia, Newton (bb0250) 2018; 60 Hopstaken, van der Linden, Bakker, Kompier (bb0265) 2015; 52 United States Department of Labor (bb0040) 2016 Zhao, Zhao, Liu, Zheng (bb0125) 2012; 45 Techera, Hallowell, Littlejohn, Rajendran (bb0070) 2018; 144 Shen, Li, Ong, Shao, Wilder-Smith (bb0105) 2008; 119 Jacobe de Naurois, Bourdin, Stratulat, Diaz, Vercher (bb0210) 2017 Chen, Zhao, Ye, Zhang, Zou (bb0315) 2017; 85 Boksem, Meijman, Lorist (bb0110) 2005; 25 Li, Li, Wang, Umer, Fu, Xing (bb0020) 2019; 105 Kassner, Patera, Bulling (bb0230) 2014 McDonald, Lee, Schwarz, Brown (bb0195) 2018; 113 Zhang, Murphy, Fang, Caban-Martinez (bb0015) 2015; 65 Wang, Chen, Zhao, Dai, Zheng, Wu (bb0115) 2017; 82 Faure, Lobjois, Benguigui (bb0245) 2016; 40 Xiao, Ma, Lv, Cai, Teng, Xu, Chen (bb0255) 2015; 10 Wanyan, Zhuang, Lin, Xiao, Song (bb0240) 2018; 64 Jeelani, Albert, Han, Azevedo (bb0150) 2019; 145 Yamada, Kobayashi (bb0185) 2017 Kaplan (bb0335) 2001; 33 Zhao, Zheng, Zhao, Tu, Liu (bb0180) 2011; 38 Chieh, Mustafa, Hussain, Hendi, Majlis (bb0120) 2005 Yin, Zhang (bb0170) 2018; 283 Faber, Maurits, Lorist (bb0215) 2012; 7 Jebelli, Khalili, Hwang, Lee (bb0205) 2018 Hoddes, Zarcone, Smythe, Phillips, Dement (bb0095) 1973; 10 Hallac, Vare, Boyd, Leskovec (bb0290) 2017; 2017 Conati (bb0135) 2002; 16 Akerstedt, Axelsson, Lekander, Orsini, Kecklund (bb0050) 2014; 76 Song, Woon, Doong, Persad, Tijerina, Pandit, Cline, Giordani (bb0235) 2017; 59 Folkard, Tucker (bb0320) 2003; 53 Zargari Marandi, Madeleine, Omland, Vuillerme, Samani (bb0285) 2018; 8 Shi, Zeng, Meng (bb0350) 2017; 4 Witten, Frank, Hall, Pal (bb0295) 2017 Chen, Li, Wu, Wang, Qian, Sudlow (bb0160) 2013; 34 Edirisinghe (bb0355) 2019; 26 Fang, Jiang, Zhang, Wang (bb0065) 2015; 73 Akhavian, Behzadan (bb0305) 2016; 71 Esterman, Tamber-Rosenau, Chiu, Yantis (bb0300) 2010; 50 Xing, Li, Li, Zhong, Luo, Skitmore (bb0340) 2019; 105 Aaronson, Teel, Cassmeyer, Neuberger, Pallikkathayil, Pierce, Press, Williams, Wingate (bb0100) 1999; 31 Chen, Wang, Hua (bb0175) 2018 McDonald, Lee, Schwarz, Brown (bb0190) 2014; 56 Zhao (10.1016/j.autcon.2019.103000_bb0125) 2012; 45 Zhou (10.1016/j.autcon.2019.103000_bb0345) 2018; 5 Hoddes (10.1016/j.autcon.2019.103000_bb0095) 1973; 10 He (10.1016/j.autcon.2019.103000_bb0270) 2017; 65 Borghini (10.1016/j.autcon.2019.103000_bb0165) 2014; 44 McDonald (10.1016/j.autcon.2019.103000_bb0195) 2018; 113 Xiao (10.1016/j.autcon.2019.103000_bb0255) 2015; 10 Esterman (10.1016/j.autcon.2019.103000_bb0300) 2010; 50 Aryal (10.1016/j.autcon.2019.103000_bb0055) 2017; 82 Chen (10.1016/j.autcon.2019.103000_bb0315) 2017; 85 Boksem (10.1016/j.autcon.2019.103000_bb0110) 2005; 25 Fang (10.1016/j.autcon.2019.103000_bb0065) 2015; 73 Wong (10.1016/j.autcon.2019.103000_bb0010) 1994; 44 Conati (10.1016/j.autcon.2019.103000_bb0135) 2002; 16 Hasanzadeh (10.1016/j.autcon.2019.103000_bb0145) 2018; 144 Li (10.1016/j.autcon.2019.103000_bb0020) 2019; 105 Jeelani (10.1016/j.autcon.2019.103000_bb0150) 2019; 145 Hart (10.1016/j.autcon.2019.103000_bb0090) 2006; vol. 50 Akhavian (10.1016/j.autcon.2019.103000_bb0305) 2016; 71 Laurent (10.1016/j.autcon.2019.103000_bb0200) 2013; 8 Jacobe de Naurois (10.1016/j.autcon.2019.103000_bb0210) 2017 Guo (10.1016/j.autcon.2019.103000_bb0260) 2016; 11 United States Department of Labor (10.1016/j.autcon.2019.103000_bb0040) Shapira (10.1016/j.autcon.2019.103000_bb0035) 2008; 134 Wang (10.1016/j.autcon.2019.103000_bb0115) 2017; 82 Edirisinghe (10.1016/j.autcon.2019.103000_bb0355) 2019; 26 Wagstaff (10.1016/j.autcon.2019.103000_bb0005) 2011; 37 Aaronson (10.1016/j.autcon.2019.103000_bb0100) 1999; 31 Jebelli (10.1016/j.autcon.2019.103000_bb0205) 2018 Faure (10.1016/j.autcon.2019.103000_bb0245) 2016; 40 Witten (10.1016/j.autcon.2019.103000_bb0295) 2017 Somers (10.1016/j.autcon.2019.103000_bb0140) 2018; 15 Yamada (10.1016/j.autcon.2019.103000_bb0185) 2017 Wanyan (10.1016/j.autcon.2019.103000_bb0240) 2018; 64 Kassner (10.1016/j.autcon.2019.103000_bb0230) 2014 Folkard (10.1016/j.autcon.2019.103000_bb0320) 2003; 53 Zhao (10.1016/j.autcon.2019.103000_bb0180) 2011; 38 Hinze (10.1016/j.autcon.2019.103000_bb0030) 2011; 49 Wang (10.1016/j.autcon.2019.103000_bb0080) 2016; 95 Xing (10.1016/j.autcon.2019.103000_bb0340) 2019; 105 Hallac (10.1016/j.autcon.2019.103000_bb0290) 2017; 2017 Song (10.1016/j.autcon.2019.103000_bb0235) 2017; 59 Stern (10.1016/j.autcon.2019.103000_bb0275) 1994; 36 Zargari Marandi (10.1016/j.autcon.2019.103000_bb0285) 2018; 8 Shen (10.1016/j.autcon.2019.103000_bb0105) 2008; 119 Schleicher (10.1016/j.autcon.2019.103000_bb0280) 2008; 51 Techera (10.1016/j.autcon.2019.103000_bb0070) 2018; 144 Chen (10.1016/j.autcon.2019.103000_bb0160) 2013; 34 Greenlee (10.1016/j.autcon.2019.103000_bb0250) 2018; 60 Nath (10.1016/j.autcon.2019.103000_bb0310) 2018; 38 Zhang (10.1016/j.autcon.2019.103000_bb0075) 2015; 58 McDonald (10.1016/j.autcon.2019.103000_bb0190) 2014; 56 Hopstaken (10.1016/j.autcon.2019.103000_bb0265) 2015; 52 Morales (10.1016/j.autcon.2019.103000_bb0155) 2017; 109 Dawson (10.1016/j.autcon.2019.103000_bb0130) 2014; 18 Fang (10.1016/j.autcon.2019.103000_bb0025) 2017; 143 Shi (10.1016/j.autcon.2019.103000_bb0350) 2017; 4 Boksem (10.1016/j.autcon.2019.103000_bb0225) 2008; 59 Zhang (10.1016/j.autcon.2019.103000_bb0015) 2015; 65 Chen (10.1016/j.autcon.2019.103000_bb0175) 2018 Kaplan (10.1016/j.autcon.2019.103000_bb0335) 2001; 33 Chieh (10.1016/j.autcon.2019.103000_bb0120) 2005 Hopstaken (10.1016/j.autcon.2019.103000_bb0220) 2016; 42 Williamson (10.1016/j.autcon.2019.103000_bb0325) 2011; 43 Faber (10.1016/j.autcon.2019.103000_bb0215) 2012; 7 Murataa (10.1016/j.autcon.2019.103000_bb0045) 2005; 35 Akerstedt (10.1016/j.autcon.2019.103000_bb0050) 2014; 76 Yamada (10.1016/j.autcon.2019.103000_bb0085) 2018 Yin (10.1016/j.autcon.2019.103000_bb0170) 2018; 283 Wickens (10.1016/j.autcon.2019.103000_bb0330) 2015 Chan (10.1016/j.autcon.2019.103000_bb0060) 2011; 29 |
References_xml | – volume: 45 start-page: 83 year: 2012 end-page: 90 ident: bb0125 article-title: Electroencephalogram and electrocardiograph assessment of mental fatigue in a driving simulator publication-title: Accid. Anal. Prev. – volume: 105 year: 2019 ident: bb0340 article-title: A multicomponent and neurophysiological intervention for the emotional and mental states of high-altitude construction workers publication-title: Autom. Constr. – volume: 82 start-page: 154 year: 2017 end-page: 165 ident: bb0055 article-title: Monitoring fatigue in construction workers using physiological measurements publication-title: Autom. Constr. – volume: 44 start-page: 58 year: 2014 end-page: 75 ident: bb0165 article-title: Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness publication-title: Neurosci. Biobehav. Rev. – volume: 8 start-page: 400 year: 2013 end-page: 408 ident: bb0200 article-title: Multimodal information improves the rapid detection of mental fatigue publication-title: Biomedical Signal Processing and Control – volume: 7 year: 2012 ident: bb0215 article-title: Mental fatigue affects visual selective attention publication-title: PLoS One – volume: 85 start-page: 279 year: 2017 end-page: 291 ident: bb0315 article-title: Detecting driving stress in physiological signals based on multimodal feature analysis and kernel classifiers publication-title: Expert Syst. Appl. – volume: 43 start-page: 498 year: 2011 end-page: 515 ident: bb0325 article-title: The link between fatigue and safety publication-title: Accid. Anal. Prev. – volume: 283 start-page: 266 year: 2018 end-page: 281 ident: bb0170 article-title: Task-generic mental fatigue recognition based on neurophysiological signals and dynamical deep extreme learning machine publication-title: Neurocomputing – volume: vol. 50 start-page: 904 year: 2006 end-page: 908 ident: bb0090 article-title: NASA-task load index (NASA-TLX); 20 years later publication-title: Proceedings of the Human Factors and Ergonomics Society Annual Meeting – volume: 33 start-page: 480 year: 2001 end-page: 506 ident: bb0335 article-title: Meditation, restoration, and the management of mental fatigue publication-title: Environ. Behav. – volume: 44 start-page: 247 year: 1994 end-page: 252 ident: bb0010 article-title: Occupational injuries among construction workers in Hong Kong publication-title: Occup. Med. – volume: 51 start-page: 982 year: 2008 end-page: 1010 ident: bb0280 article-title: Blinks and saccades as indicators of fatigue in sleepiness warnings: looking tired? publication-title: Ergonomics – volume: 105 year: 2019 ident: bb0020 article-title: Evaluating the impact of mental fatigue on construction equipment operators’ ability to detect hazards using wearable eye-tracking technology publication-title: Autom. Constr. – year: 2017 ident: bb0210 article-title: Detection and prediction of driver drowsiness using artificial neural network models publication-title: Accident Analysis Prevention – volume: 56 start-page: 986 year: 2014 end-page: 998 ident: bb0190 article-title: Steering in a random forest: ensemble learning for detecting drowsiness-related lane departures publication-title: Hum. Factors – volume: 16 start-page: 555 year: 2002 end-page: 575 ident: bb0135 article-title: Probabilistic assessment of user’s emotions in educational games publication-title: Appl. Artif. Intell. – volume: 65 start-page: 245 year: 2015 end-page: 250 ident: bb0015 article-title: Influence of fatigue on construction workers’ physical and cognitive function publication-title: Occup. Med. – volume: 38 start-page: 1859 year: 2011 end-page: 1865 ident: bb0180 article-title: Multivariate autoregressive models and kernel learning algorithms for classifying driving mental fatigue based on electroencephalographic publication-title: Expert Syst. Appl. – year: 2017 ident: bb0295 article-title: Data Mining: Practical Machine Learning Tools and Techniques – volume: 49 start-page: 709 year: 2011 end-page: 718 ident: bb0030 article-title: Visibility-related fatalities related to construction equipment publication-title: Saf. Sci. – volume: 58 start-page: 220 year: 2015 end-page: 228 ident: bb0075 article-title: Development and validation of a fatigue assessment scale for U.S. construction workers publication-title: Am. J. Ind. Med. – volume: 36 start-page: 285 year: 1994 end-page: 297 ident: bb0275 article-title: Blink rate: a possible measure of fatigue publication-title: Hum. Factors – volume: 76 start-page: 280 year: 2014 end-page: 285 ident: bb0050 article-title: Do sleep, stress, and illness explain daily variations in fatigue? A prospective study publication-title: J. Psychosom. Res. – volume: 50 start-page: 572 year: 2010 end-page: 576 ident: bb0300 article-title: Avoiding non-independence in fMRI data analysis: leave one subject out publication-title: Neuroimage – volume: 59 start-page: 125 year: 2008 end-page: 139 ident: bb0225 article-title: Mental fatigue: costs and benefits publication-title: Brain Res. Rev. – volume: 73 start-page: 80 year: 2015 end-page: 91 ident: bb0065 article-title: An experimental method to study the effect of fatigue on construction workers’ safety performance publication-title: Saf. Sci. – volume: 26 start-page: 184 year: 2019 end-page: 223 ident: bb0355 article-title: Digital skin of the construction site: smart sensor technologies towards the future smart construction site publication-title: Eng. Constr. Archit. Manag. – start-page: 1151 year: 2014 end-page: 1160 ident: bb0230 article-title: Pupil: an open source platform for pervasive eye tracking and mobile gaze-based interaction publication-title: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing Adjunct Publication - UbiComp '14 Adjunct – volume: 64 start-page: 1 year: 2018 end-page: 7 ident: bb0240 article-title: Influence of mental workload on detecting information varieties revealed by mismatch negativity during flight simulation publication-title: Int. J. Ind. Ergon. – start-page: 165 year: 2005 end-page: 168 ident: bb0120 article-title: Development of vehicle driver drowsiness detection system using electrooculogram (EOG) publication-title: 2005 1st International Conference on Computers, Communications, & Signal Processing With Special Track on Biomedical Engineering (CCSP) – start-page: 275 year: 2017 end-page: 284 ident: bb0185 article-title: Fatigue detection model for older adults using eye-tracking data gathered while watching video: evaluation against diverse fatiguing tasks publication-title: 2017 International Conference on Healthcare Informatics (ICHI), IEEE, Park City, UT, USA – year: 2015 ident: bb0330 article-title: Engineering Psychology & Human Performance – volume: 95 start-page: 350 year: 2016 end-page: 357 ident: bb0080 article-title: Driver drowsiness detection based on non-intrusive metrics considering individual specifics publication-title: Accident Analysis Prevention – volume: 5 start-page: 78 year: 2018 end-page: 87 ident: bb0345 article-title: Smart construction site in mega construction projects: a case study on island tunneling project of Hong Kong-Zhuhai-Macao Bridge publication-title: Frontiers of Engineering Management – volume: 65 start-page: 473 year: 2017 end-page: 480 ident: bb0270 article-title: Detection of driver drowsiness using wearable devices: a feasibility study of the proximity sensor publication-title: Appl. Ergon. – volume: 82 start-page: 122 year: 2017 end-page: 137 ident: bb0115 article-title: Monitoring workers’ attention and vigilance in construction activities through a wireless and wearable electroencephalography system publication-title: Autom. Constr. – volume: 4 start-page: 41 year: 2017 end-page: 48 ident: bb0350 article-title: Intelligent data analytics is here to change engineering management publication-title: Frontiers of Engineering Management – volume: 144 year: 2018 ident: bb0145 article-title: Examining the relationship between construction workers’ visual attention and situation awareness under fall and tripping hazard conditions: using mobile eye tracking publication-title: J. Constr. Eng. Manag. – volume: 71 start-page: 198 year: 2016 end-page: 209 ident: bb0305 article-title: Smartphone-based construction workers’ activity recognition and classification publication-title: Autom. Constr. – volume: 109 start-page: 62 year: 2017 end-page: 69 ident: bb0155 article-title: Monitoring driver fatigue using a single-channel electroencephalographic device: a validation study by gaze-based, driving performance, and subjective data publication-title: Accid. Anal. Prev. – volume: 10 start-page: 431 year: 1973 end-page: 436 ident: bb0095 article-title: Quantification of sleepiness: a new approach publication-title: Psychophysiology – volume: 119 start-page: 1524 year: 2008 end-page: 1533 ident: bb0105 article-title: EEG-based mental fatigue measurement using multi-class support vector machines with confidence estimate publication-title: Clin. Neurophysiol. – volume: 18 start-page: 141 year: 2014 end-page: 152 ident: bb0130 article-title: Look before you (s)leep: evaluating the use of fatigue detection technologies within a fatigue risk management system for the road transport industry publication-title: Sleep Med. Rev. – volume: 143 year: 2017 ident: bb0025 article-title: Effectiveness analysis from a cognitive perspective for a real-time safety assistance system for mobile crane lifting operations publication-title: J. Constr. Eng. Manag. – volume: 38 start-page: 514 year: 2018 end-page: 526 ident: bb0310 article-title: Automated ergonomic risk monitoring using body-mounted sensors and machine learning publication-title: Adv. Eng. Inform. – start-page: 40 year: 2018 end-page: 50 ident: bb0205 article-title: A supervised learning-based construction workers’ stress recognition using a wearable electroencephalography (EEG) device publication-title: Construction Research Congress 2018 – volume: 145 year: 2019 ident: bb0150 article-title: Are visual search patterns predictive of hazard recognition performance? Empirical investigation using eye-tracking technology publication-title: J. Constr. Eng. Manag. – volume: 31 start-page: 45 year: 1999 end-page: 50 ident: bb0100 article-title: Defining and measuring fatigue publication-title: Image: Journal of Nursing Schofarship – volume: 15 year: 2018 ident: bb0140 article-title: A generic EEG artifact removal algorithm based on the multi-channel Wiener filter publication-title: J. Neural Eng. – year: 2018 ident: bb0175 article-title: Electroencephalography based fatigue detection using a novel feature fusion and extreme learning machine publication-title: Cogn. Syst. Res. – volume: 134 start-page: 320 year: 2008 end-page: 332 ident: bb0035 article-title: Vision system for tower cranes publication-title: J. Constr. Eng. Manag. – volume: 8 year: 2018 ident: bb0285 article-title: Eye movement characteristics reflected fatigue development in both young and elderly individuals publication-title: Sci. Rep. – year: 2018 ident: bb0085 article-title: Detecting mental fatigue from eye-tracking data gathered while watching video: evaluation in younger and older adults publication-title: Artificial Intelligence Medicine – volume: 35 start-page: 761 year: 2005 end-page: 770 ident: bb0045 article-title: Evaluation of mental fatigue using feature parameter extracted from event-related potential publication-title: Int. J. Ind. Ergon. – volume: 29 start-page: 341 year: 2011 end-page: 353 ident: bb0060 article-title: Fatigue: the most critical accident risk in oil and gas construction publication-title: Constr. Manag. Econ. – volume: 53 start-page: 95 year: 2003 end-page: 101 ident: bb0320 article-title: Shift work, safety and productivity publication-title: Occup. Med. – volume: 113 start-page: 25 year: 2018 end-page: 37 ident: bb0195 article-title: A contextual and temporal algorithm for driver drowsiness detection publication-title: Accident Analysis Prevention – volume: 40 start-page: 78 year: 2016 end-page: 90 ident: bb0245 article-title: The effects of driving environment complexity and dual tasking on drivers’ mental workload and eye blink behavior publication-title: Transport. Res. F: Traffic Psychol. Behav. – volume: 52 start-page: 305 year: 2015 end-page: 315 ident: bb0265 article-title: A multifaceted investigation of the link between mental fatigue and task disengagement publication-title: Psychophysiology – volume: 42 start-page: 878 year: 2016 end-page: 889 ident: bb0220 article-title: Shifts in attention during mental fatigue: evidence from subjective, behavioral, physiological, and eye-tracking data publication-title: Journal of Experimental Psychology: Human Perception Performance – volume: 10 year: 2015 ident: bb0255 article-title: Sustained attention is associated with error processing impairment: evidence from mental fatigue study in four-choice reaction time task publication-title: PLoS One – year: 2016 ident: bb0040 article-title: Commonly used statistics – volume: 25 start-page: 107 year: 2005 end-page: 116 ident: bb0110 article-title: Effects of mental fatigue on attention: an ERP study publication-title: Cogn. Brain Res. – volume: 34 start-page: 81 year: 2013 end-page: 88 ident: bb0160 article-title: EEG-based detection and evaluation of fatigue caused by watching 3DTV publication-title: Displays – volume: 37 start-page: 173 year: 2011 end-page: 185 ident: bb0005 article-title: Shift and night work and long working hours--a systematic review of safety implications publication-title: Scand. J. Work Environ. Health – volume: 144 year: 2018 ident: bb0070 article-title: Measuring and predicting fatigue in construction: empirical field study publication-title: J. Constr. Eng. Manag. – volume: 11 year: 2016 ident: bb0260 article-title: The impairing effect of mental fatigue on visual sustained attention under monotonous multi-object visual attention task in long durations: an event-related potential based study publication-title: PLoS One – volume: 2017 start-page: 215 year: 2017 end-page: 223 ident: bb0290 article-title: Toeplitz inverse covariance-based clustering of multivariate time series data publication-title: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 60 start-page: 465 year: 2018 end-page: 476 ident: bb0250 article-title: Driver vigilance in automated vehicles: hazard detection failures are a matter of time publication-title: Hum. Factors – volume: 59 start-page: 995 year: 2017 end-page: 1008 ident: bb0235 article-title: Fatigue in younger and older drivers: effectiveness of an alertness-maintaining task publication-title: Hum. Factors – volume: 11 issue: 9 year: 2016 ident: 10.1016/j.autcon.2019.103000_bb0260 article-title: The impairing effect of mental fatigue on visual sustained attention under monotonous multi-object visual attention task in long durations: an event-related potential based study publication-title: PLoS One doi: 10.1371/journal.pone.0163360 – volume: 37 start-page: 173 issue: 3 year: 2011 ident: 10.1016/j.autcon.2019.103000_bb0005 article-title: Shift and night work and long working hours--a systematic review of safety implications publication-title: Scand. J. Work Environ. Health doi: 10.5271/sjweh.3146 – volume: 95 start-page: 350 issue: Pt B year: 2016 ident: 10.1016/j.autcon.2019.103000_bb0080 article-title: Driver drowsiness detection based on non-intrusive metrics considering individual specifics publication-title: Accident Analysis Prevention doi: 10.1016/j.aap.2015.09.002 – volume: 64 start-page: 1 year: 2018 ident: 10.1016/j.autcon.2019.103000_bb0240 article-title: Influence of mental workload on detecting information varieties revealed by mismatch negativity during flight simulation publication-title: Int. J. Ind. Ergon. doi: 10.1016/j.ergon.2017.08.004 – volume: 33 start-page: 480 issue: 4 year: 2001 ident: 10.1016/j.autcon.2019.103000_bb0335 article-title: Meditation, restoration, and the management of mental fatigue publication-title: Environ. Behav. doi: 10.1177/00139160121973106 – volume: 4 start-page: 41 issue: 1 year: 2017 ident: 10.1016/j.autcon.2019.103000_bb0350 article-title: Intelligent data analytics is here to change engineering management publication-title: Frontiers of Engineering Management doi: 10.15302/J-FEM-2017003 – volume: 82 start-page: 122 year: 2017 ident: 10.1016/j.autcon.2019.103000_bb0115 article-title: Monitoring workers’ attention and vigilance in construction activities through a wireless and wearable electroencephalography system publication-title: Autom. Constr. doi: 10.1016/j.autcon.2017.02.001 – year: 2018 ident: 10.1016/j.autcon.2019.103000_bb0175 article-title: Electroencephalography based fatigue detection using a novel feature fusion and extreme learning machine publication-title: Cogn. Syst. Res. doi: 10.1016/j.cogsys.2018.08.018 – year: 2015 ident: 10.1016/j.autcon.2019.103000_bb0330 – volume: 73 start-page: 80 year: 2015 ident: 10.1016/j.autcon.2019.103000_bb0065 article-title: An experimental method to study the effect of fatigue on construction workers’ safety performance publication-title: Saf. Sci. doi: 10.1016/j.ssci.2014.11.019 – volume: 76 start-page: 280 issue: 4 year: 2014 ident: 10.1016/j.autcon.2019.103000_bb0050 article-title: Do sleep, stress, and illness explain daily variations in fatigue? A prospective study publication-title: J. Psychosom. Res. doi: 10.1016/j.jpsychores.2014.01.005 – start-page: 1151 year: 2014 ident: 10.1016/j.autcon.2019.103000_bb0230 article-title: Pupil: an open source platform for pervasive eye tracking and mobile gaze-based interaction – volume: 71 start-page: 198 year: 2016 ident: 10.1016/j.autcon.2019.103000_bb0305 article-title: Smartphone-based construction workers’ activity recognition and classification publication-title: Autom. Constr. doi: 10.1016/j.autcon.2016.08.015 – volume: 10 issue: 3 year: 2015 ident: 10.1016/j.autcon.2019.103000_bb0255 article-title: Sustained attention is associated with error processing impairment: evidence from mental fatigue study in four-choice reaction time task publication-title: PLoS One doi: 10.1371/journal.pone.0117837 – volume: 2017 start-page: 215 year: 2017 ident: 10.1016/j.autcon.2019.103000_bb0290 article-title: Toeplitz inverse covariance-based clustering of multivariate time series data – volume: 56 start-page: 986 issue: 5 year: 2014 ident: 10.1016/j.autcon.2019.103000_bb0190 article-title: Steering in a random forest: ensemble learning for detecting drowsiness-related lane departures publication-title: Hum. Factors doi: 10.1177/0018720813515272 – year: 2017 ident: 10.1016/j.autcon.2019.103000_bb0295 – volume: 25 start-page: 107 issue: 1 year: 2005 ident: 10.1016/j.autcon.2019.103000_bb0110 article-title: Effects of mental fatigue on attention: an ERP study publication-title: Cogn. Brain Res. doi: 10.1016/j.cogbrainres.2005.04.011 – volume: 85 start-page: 279 year: 2017 ident: 10.1016/j.autcon.2019.103000_bb0315 article-title: Detecting driving stress in physiological signals based on multimodal feature analysis and kernel classifiers publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.01.040 – volume: 49 start-page: 709 issue: 5 year: 2011 ident: 10.1016/j.autcon.2019.103000_bb0030 article-title: Visibility-related fatalities related to construction equipment publication-title: Saf. Sci. doi: 10.1016/j.ssci.2011.01.007 – volume: 42 start-page: 878 issue: 6 year: 2016 ident: 10.1016/j.autcon.2019.103000_bb0220 article-title: Shifts in attention during mental fatigue: evidence from subjective, behavioral, physiological, and eye-tracking data publication-title: Journal of Experimental Psychology: Human Perception Performance – volume: 65 start-page: 473 year: 2017 ident: 10.1016/j.autcon.2019.103000_bb0270 article-title: Detection of driver drowsiness using wearable devices: a feasibility study of the proximity sensor publication-title: Appl. Ergon. doi: 10.1016/j.apergo.2017.02.016 – volume: 8 issue: 1 year: 2018 ident: 10.1016/j.autcon.2019.103000_bb0285 article-title: Eye movement characteristics reflected fatigue development in both young and elderly individuals publication-title: Sci. Rep. doi: 10.1038/s41598-018-31577-1 – ident: 10.1016/j.autcon.2019.103000_bb0040 – start-page: 40 year: 2018 ident: 10.1016/j.autcon.2019.103000_bb0205 article-title: A supervised learning-based construction workers’ stress recognition using a wearable electroencephalography (EEG) device – volume: 105 year: 2019 ident: 10.1016/j.autcon.2019.103000_bb0020 article-title: Evaluating the impact of mental fatigue on construction equipment operators’ ability to detect hazards using wearable eye-tracking technology publication-title: Autom. Constr. doi: 10.1016/j.autcon.2019.102835 – volume: 134 start-page: 320 issue: 5 year: 2008 ident: 10.1016/j.autcon.2019.103000_bb0035 article-title: Vision system for tower cranes publication-title: J. Constr. Eng. Manag. doi: 10.1061/(ASCE)0733-9364(2008)134:5(320) – volume: 105 year: 2019 ident: 10.1016/j.autcon.2019.103000_bb0340 article-title: A multicomponent and neurophysiological intervention for the emotional and mental states of high-altitude construction workers publication-title: Autom. Constr. doi: 10.1016/j.autcon.2019.102836 – volume: 144 issue: 8 year: 2018 ident: 10.1016/j.autcon.2019.103000_bb0070 article-title: Measuring and predicting fatigue in construction: empirical field study publication-title: J. Constr. Eng. Manag. doi: 10.1061/(ASCE)CO.1943-7862.0001513 – volume: 44 start-page: 58 year: 2014 ident: 10.1016/j.autcon.2019.103000_bb0165 article-title: Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2012.10.003 – volume: 283 start-page: 266 year: 2018 ident: 10.1016/j.autcon.2019.103000_bb0170 article-title: Task-generic mental fatigue recognition based on neurophysiological signals and dynamical deep extreme learning machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.12.062 – volume: 44 start-page: 247 issue: 5 year: 1994 ident: 10.1016/j.autcon.2019.103000_bb0010 article-title: Occupational injuries among construction workers in Hong Kong publication-title: Occup. Med. doi: 10.1093/occmed/44.5.247 – volume: 15 issue: 3 year: 2018 ident: 10.1016/j.autcon.2019.103000_bb0140 article-title: A generic EEG artifact removal algorithm based on the multi-channel Wiener filter publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aaac92 – volume: 65 start-page: 245 issue: 3 year: 2015 ident: 10.1016/j.autcon.2019.103000_bb0015 article-title: Influence of fatigue on construction workers’ physical and cognitive function publication-title: Occup. Med. doi: 10.1093/occmed/kqu215 – volume: 45 start-page: 83 year: 2012 ident: 10.1016/j.autcon.2019.103000_bb0125 article-title: Electroencephalogram and electrocardiograph assessment of mental fatigue in a driving simulator publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2011.11.019 – volume: 29 start-page: 341 issue: 4 year: 2011 ident: 10.1016/j.autcon.2019.103000_bb0060 article-title: Fatigue: the most critical accident risk in oil and gas construction publication-title: Constr. Manag. Econ. doi: 10.1080/01446193.2010.545993 – volume: 109 start-page: 62 year: 2017 ident: 10.1016/j.autcon.2019.103000_bb0155 article-title: Monitoring driver fatigue using a single-channel electroencephalographic device: a validation study by gaze-based, driving performance, and subjective data publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2017.09.025 – volume: vol. 50 start-page: 904 year: 2006 ident: 10.1016/j.autcon.2019.103000_bb0090 article-title: NASA-task load index (NASA-TLX); 20 years later – volume: 51 start-page: 982 issue: 7 year: 2008 ident: 10.1016/j.autcon.2019.103000_bb0280 article-title: Blinks and saccades as indicators of fatigue in sleepiness warnings: looking tired? publication-title: Ergonomics doi: 10.1080/00140130701817062 – volume: 52 start-page: 305 issue: 3 year: 2015 ident: 10.1016/j.autcon.2019.103000_bb0265 article-title: A multifaceted investigation of the link between mental fatigue and task disengagement publication-title: Psychophysiology doi: 10.1111/psyp.12339 – volume: 36 start-page: 285 issue: 2 year: 1994 ident: 10.1016/j.autcon.2019.103000_bb0275 article-title: Blink rate: a possible measure of fatigue publication-title: Hum. Factors doi: 10.1177/001872089403600209 – volume: 143 issue: 4 year: 2017 ident: 10.1016/j.autcon.2019.103000_bb0025 article-title: Effectiveness analysis from a cognitive perspective for a real-time safety assistance system for mobile crane lifting operations publication-title: J. Constr. Eng. Manag. doi: 10.1061/(ASCE)CO.1943-7862.0001258 – volume: 58 start-page: 220 issue: 2 year: 2015 ident: 10.1016/j.autcon.2019.103000_bb0075 article-title: Development and validation of a fatigue assessment scale for U.S. construction workers publication-title: Am. J. Ind. Med. doi: 10.1002/ajim.22411 – volume: 35 start-page: 761 issue: 8 year: 2005 ident: 10.1016/j.autcon.2019.103000_bb0045 article-title: Evaluation of mental fatigue using feature parameter extracted from event-related potential publication-title: Int. J. Ind. Ergon. doi: 10.1016/j.ergon.2004.12.003 – start-page: 165 year: 2005 ident: 10.1016/j.autcon.2019.103000_bb0120 article-title: Development of vehicle driver drowsiness detection system using electrooculogram (EOG) – volume: 53 start-page: 95 issue: 2 year: 2003 ident: 10.1016/j.autcon.2019.103000_bb0320 article-title: Shift work, safety and productivity publication-title: Occup. Med. doi: 10.1093/occmed/kqg047 – volume: 18 start-page: 141 issue: 2 year: 2014 ident: 10.1016/j.autcon.2019.103000_bb0130 article-title: Look before you (s)leep: evaluating the use of fatigue detection technologies within a fatigue risk management system for the road transport industry publication-title: Sleep Med. Rev. doi: 10.1016/j.smrv.2013.03.003 – volume: 145 issue: 1 year: 2019 ident: 10.1016/j.autcon.2019.103000_bb0150 article-title: Are visual search patterns predictive of hazard recognition performance? Empirical investigation using eye-tracking technology publication-title: J. Constr. Eng. Manag. doi: 10.1061/(ASCE)CO.1943-7862.0001589 – year: 2018 ident: 10.1016/j.autcon.2019.103000_bb0085 article-title: Detecting mental fatigue from eye-tracking data gathered while watching video: evaluation in younger and older adults publication-title: Artificial Intelligence Medicine doi: 10.1016/j.artmed.2018.06.005 – volume: 34 start-page: 81 issue: 2 year: 2013 ident: 10.1016/j.autcon.2019.103000_bb0160 article-title: EEG-based detection and evaluation of fatigue caused by watching 3DTV publication-title: Displays doi: 10.1016/j.displa.2013.01.002 – volume: 59 start-page: 125 issue: 1 year: 2008 ident: 10.1016/j.autcon.2019.103000_bb0225 article-title: Mental fatigue: costs and benefits publication-title: Brain Res. Rev. doi: 10.1016/j.brainresrev.2008.07.001 – volume: 113 start-page: 25 year: 2018 ident: 10.1016/j.autcon.2019.103000_bb0195 article-title: A contextual and temporal algorithm for driver drowsiness detection publication-title: Accident Analysis Prevention doi: 10.1016/j.aap.2018.01.005 – volume: 82 start-page: 154 year: 2017 ident: 10.1016/j.autcon.2019.103000_bb0055 article-title: Monitoring fatigue in construction workers using physiological measurements publication-title: Autom. Constr. doi: 10.1016/j.autcon.2017.03.003 – volume: 40 start-page: 78 year: 2016 ident: 10.1016/j.autcon.2019.103000_bb0245 article-title: The effects of driving environment complexity and dual tasking on drivers’ mental workload and eye blink behavior publication-title: Transport. Res. F: Traffic Psychol. Behav. doi: 10.1016/j.trf.2016.04.007 – volume: 7 issue: 10 year: 2012 ident: 10.1016/j.autcon.2019.103000_bb0215 article-title: Mental fatigue affects visual selective attention publication-title: PLoS One doi: 10.1371/journal.pone.0048073 – volume: 5 start-page: 78 issue: 1 year: 2018 ident: 10.1016/j.autcon.2019.103000_bb0345 article-title: Smart construction site in mega construction projects: a case study on island tunneling project of Hong Kong-Zhuhai-Macao Bridge publication-title: Frontiers of Engineering Management – volume: 38 start-page: 1859 issue: 3 year: 2011 ident: 10.1016/j.autcon.2019.103000_bb0180 article-title: Multivariate autoregressive models and kernel learning algorithms for classifying driving mental fatigue based on electroencephalographic publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.07.115 – volume: 50 start-page: 572 issue: 2 year: 2010 ident: 10.1016/j.autcon.2019.103000_bb0300 article-title: Avoiding non-independence in fMRI data analysis: leave one subject out publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.10.092 – volume: 59 start-page: 995 issue: 6 year: 2017 ident: 10.1016/j.autcon.2019.103000_bb0235 article-title: Fatigue in younger and older drivers: effectiveness of an alertness-maintaining task publication-title: Hum. Factors doi: 10.1177/0018720817706811 – volume: 16 start-page: 555 issue: 7–8 year: 2002 ident: 10.1016/j.autcon.2019.103000_bb0135 article-title: Probabilistic assessment of user’s emotions in educational games publication-title: Appl. Artif. Intell. doi: 10.1080/08839510290030390 – year: 2017 ident: 10.1016/j.autcon.2019.103000_bb0210 article-title: Detection and prediction of driver drowsiness using artificial neural network models publication-title: Accident Analysis Prevention – volume: 43 start-page: 498 issue: 2 year: 2011 ident: 10.1016/j.autcon.2019.103000_bb0325 article-title: The link between fatigue and safety publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2009.11.011 – volume: 10 start-page: 431 issue: 4 year: 1973 ident: 10.1016/j.autcon.2019.103000_bb0095 article-title: Quantification of sleepiness: a new approach publication-title: Psychophysiology doi: 10.1111/j.1469-8986.1973.tb00801.x – volume: 144 issue: 7 year: 2018 ident: 10.1016/j.autcon.2019.103000_bb0145 article-title: Examining the relationship between construction workers’ visual attention and situation awareness under fall and tripping hazard conditions: using mobile eye tracking publication-title: J. Constr. Eng. Manag. doi: 10.1061/(ASCE)CO.1943-7862.0001516 – volume: 60 start-page: 465 issue: 4 year: 2018 ident: 10.1016/j.autcon.2019.103000_bb0250 article-title: Driver vigilance in automated vehicles: hazard detection failures are a matter of time publication-title: Hum. Factors doi: 10.1177/0018720818761711 – volume: 26 start-page: 184 issue: 2 year: 2019 ident: 10.1016/j.autcon.2019.103000_bb0355 article-title: Digital skin of the construction site: smart sensor technologies towards the future smart construction site publication-title: Eng. Constr. Archit. Manag. doi: 10.1108/ECAM-04-2017-0066 – start-page: 275 year: 2017 ident: 10.1016/j.autcon.2019.103000_bb0185 article-title: Fatigue detection model for older adults using eye-tracking data gathered while watching video: evaluation against diverse fatiguing tasks – volume: 8 start-page: 400 issue: 4 year: 2013 ident: 10.1016/j.autcon.2019.103000_bb0200 article-title: Multimodal information improves the rapid detection of mental fatigue publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2013.01.007 – volume: 31 start-page: 45 issue: 1 year: 1999 ident: 10.1016/j.autcon.2019.103000_bb0100 article-title: Defining and measuring fatigue publication-title: Image: Journal of Nursing Schofarship – volume: 38 start-page: 514 year: 2018 ident: 10.1016/j.autcon.2019.103000_bb0310 article-title: Automated ergonomic risk monitoring using body-mounted sensors and machine learning publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2018.08.020 – volume: 119 start-page: 1524 issue: 7 year: 2008 ident: 10.1016/j.autcon.2019.103000_bb0105 article-title: EEG-based mental fatigue measurement using multi-class support vector machines with confidence estimate publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2008.03.012 |
SSID | ssj0007069 |
Score | 2.5918283 |
Snippet | In the construction industry, the operator's mental fatigue is one of the most important causes of construction equipment-related accidents. Mental fatigue can... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 103000 |
SubjectTerms | Accidents Algorithms Classification Clustering Computer simulation Construction equipment Construction equipment operator Construction industry Covariance Excavators Eye movements Eye-tracking Fatigue Feasibility studies Feature extraction Machine learning Mental fatigue identification and classification Operators (personnel) Support vector machines Technology utilization Toeplitz Inverse Covariance-Based Clustering Tracking Wearable technology |
Title | Identification and classification of construction equipment operators' mental fatigue using wearable eye-tracking technology |
URI | https://dx.doi.org/10.1016/j.autcon.2019.103000 https://www.proquest.com/docview/2327893562 |
Volume | 109 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DD-pB_MT5RQ6Cp7i0zUd7FFGm4i462C2kaSIT2abrEEH8231JW6ciCN7akpSSl7z3y-v7_YLQERM2SnLwfgXnMWExLUiqGScuodp4MRGWeDbyTU90--xqwActdNZwYXxZZe37K58evHX9pFOPZmcyHHZuaRZD-AwQBGai8LLbjEk_y0_e52UekopKby8WxLdu6HOhxkvPSr_rhCCYefY59Ty338PTD0cdos_FGlqtYSM-rb5sHbXsaAMtNazi6QZa-SIsuIneKv6tqxNyWI8KbDxOnj8aO2zGc_lYbJ9mw1A7hMcTG_69T49xpfyPHXS5n1nsi-Tv8QssDk-4wvbVkvJZG59tx-Vnjn4L9S_O7866pD5ngZgkpSWRRqQisoD9hKNxLrjl0qTS5RDfLc0Zh1u4ZoXhRuhIGk4LDTi3oIbriJtkGy2MxiO7gzBPc8FcFFmtDeMJzSR1YdfkJM-ynLVR0gyvMrUIuT8L41E11WYPqjKK8kZRlVHaiHz2mlQiHH-0l43l1LfJpCBO_NFzvzG0qhfzVAHolADrACnu_vvFe2g59jv1kLzZRwtgXXsAcKbMD8N8PUSLp5fX3d4HJaz16w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB1ReqAcUAtUULbFh0qczDqJP5IjWoGW8nEpSNwsx7HRIrS77WaFKiF-O2MnYQEhIfWWRHYUeeyZ58m8Z4CfXLokK9H7VUKklKesornhgvqMGRvERHgW2Mhn53J4yX9diaslGHRcmFBW2fr-xqdHb90-6bej2Z-ORv3frEgxfEYIgjNRyg_wkePyDccY7D8s6jwUk43gXippaN7x52KRl5nXYduJUbAI9HMWiG5vx6dXnjqGn6PPsNbiRnLQfNoXWHLjdVjpaMWzdVh9piy4AfcNAde3GTlixhWxASgvHk08sZOFfixxf-ajWDxEJlMXf77P9kgj_U88drmeOxKq5K_JHa6OwLgi7p-j9V9jQ7qd1E9J-k24PDq8GAxpe9ACtVnOaqqszGXiEPxJz9JSCieUzZUvMcA7VnKBt3jNKyusNImyglUGgW7FrDCJsNlXWB5Pxm4LiMhLyX2SOGMsWoMVivm4bfJKFEXJtyHrhlfbVoU8HIZxq7tysxvdGEUHo-jGKNtAn3pNGxWOd9qrznL6xWzSGCje6dnrDK3b1TzTiDoV4jqEit_--8W7sDK8ODvVp8fnJzvwKQ3b9pjJ6cEyWtp9R2xTlz_i3H0EwOL3eQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+and+classification+of+construction+equipment+operators%27+mental+fatigue+using+wearable+eye-tracking+technology&rft.jtitle=Automation+in+construction&rft.au=Li%2C+Jue&rft.au=Li%2C+Heng&rft.au=Umer%2C+Waleed&rft.au=Wang%2C+Hongwei&rft.date=2020-01-01&rft.pub=Elsevier+B.V&rft.issn=0926-5805&rft.eissn=1872-7891&rft.volume=109&rft_id=info:doi/10.1016%2Fj.autcon.2019.103000&rft.externalDocID=S0926580519304066 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-5805&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-5805&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-5805&client=summon |