MAGNETOHYDRODYNAMIC-PARTICLE-IN-CELL METHOD FOR COUPLING COSMIC RAYS WITH A THERMAL PLASMA: APPLICATION TO NON-RELATIVISTIC SHOCKS
ABSTRA CT We formulate a magnetohydrodynamic-particle-in-cell (MHD-PIC) method for describing the interaction between collisionless cosmic ray (CR) particles and a thermal plasma. The thermal plasma is treated as a fluid, obeying equations of ideal MHD, while CRs are treated as relativistic Lagrangi...
Saved in:
Published in | The Astrophysical journal Vol. 809; no. 1; pp. 55 - 22 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United Kingdom
The American Astronomical Society
10.08.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRA CT We formulate a magnetohydrodynamic-particle-in-cell (MHD-PIC) method for describing the interaction between collisionless cosmic ray (CR) particles and a thermal plasma. The thermal plasma is treated as a fluid, obeying equations of ideal MHD, while CRs are treated as relativistic Lagrangian particles subject to the Lorentz force. Backreaction from CRs to the gas is included in the form of momentum and energy feedback. In addition, we include the electromagnetic feedback due to CR-induced Hall effect that becomes important when the electron-ion drift velocity of the background plasma induced by CRs approaches the Alfvén velocity. Our method is applicable on scales much larger than the ion inertial length, bypassing the microscopic scales that must be resolved in conventional PIC methods, while retaining the full kinetic nature of the CRs. We have implemented and tested this method in the Athena MHD code, where the overall scheme is second-order accurate and fully conservative. As a first application, we describe a numerical experiment to study particle acceleration in non-relativistic shocks. Using a simplified prescription for ion injection, we reproduce the shock structure and the CR energy spectra obtained with more self-consistent hybrid-PIC simulations, but at substantially reduced computational cost. We also show that the CR-induced Hall effect reduces the growth rate of the Bell instability and affects the gas dynamics in the vicinity of the shock front. As a step forward, we are able to capture the transition of particle acceleration from non-relativistic to relativistic regimes, with momentum spectrum connecting smoothly through the transition, as expected from the theory of Fermi acceleration. |
---|---|
AbstractList | We formulate a magnetohydrodynamic-particle-in-cell (MHD-PIC) method for describing the interaction between collisionless cosmic ray (CR) particles and a thermal plasma. The thermal plasma is treated as a fluid, obeying equations of ideal MHD, while CRs are treated as relativistic Lagrangian particles subject to the Lorentz force. Backreaction from CRs to the gas is included in the form of momentum and energy feedback. In addition, we include the electromagnetic feedback due to CR-induced Hall effect that becomes important when the electron–ion drift velocity of the background plasma induced by CRs approaches the Alfvén velocity. Our method is applicable on scales much larger than the ion inertial length, bypassing the microscopic scales that must be resolved in conventional PIC methods, while retaining the full kinetic nature of the CRs. We have implemented and tested this method in the Athena MHD code, where the overall scheme is second-order accurate and fully conservative. As a first application, we describe a numerical experiment to study particle acceleration in non-relativistic shocks. Using a simplified prescription for ion injection, we reproduce the shock structure and the CR energy spectra obtained with more self-consistent hybrid-PIC simulations, but at substantially reduced computational cost. We also show that the CR-induced Hall effect reduces the growth rate of the Bell instability and affects the gas dynamics in the vicinity of the shock front. As a step forward, we are able to capture the transition of particle acceleration from non-relativistic to relativistic regimes, with momentum spectrum f(p)∝p{sup −4} connecting smoothly through the transition, as expected from the theory of Fermi acceleration. We formulate a magnetohydrodynamic-particle-in-cell (MHD-PIC) method for describing the interaction between collisionless cosmic ray (CR) particles and a thermal plasma. The thermal plasma is treated as a fluid, obeying equations of ideal MHD, while CRs are treated as relativistic Lagrangian particles subject to the Lorentz force. Backreaction from CRs to the gas is included in the form of momentum and energy feedback. In addition, we include the electromagnetic feedback due to CR-induced Hall effect that becomes important when the electron-ion drift velocity of the background plasma induced by CRs approaches the Alfven velocity. Our method is applicable on scales much larger than the ion inertial length, bypassing the microscopic scales that must be resolved in conventional PIC methods, while retaining the full kinetic nature of the CRs. We have implemented and tested this method in the Athena MHD code, where the overall scheme is second-order accurate and fully conservative. As a first application, we describe a numerical experiment to study particle acceleration in non-relativistic shocks. Using a simplified prescription for ion injection, we reproduce the shock structure and the CR energy spectra obtained with more self-consistent hybrid-PIC simulations, but at substantially reduced computational cost. We also show that the CR-induced Hall effect reduces the growth rate of the Bell instability and affects the gas dynamics in the vicinity of the shock front. As a step forward, we are able to capture the transition of particle acceleration from non-relativistic to relativistic regimes, with momentum spectrum [functionof] (p) [is proportional to] p super(-4) connecting smoothly through the transition, as expected from the theory of Fermi acceleration. ABSTRA CT We formulate a magnetohydrodynamic-particle-in-cell (MHD-PIC) method for describing the interaction between collisionless cosmic ray (CR) particles and a thermal plasma. The thermal plasma is treated as a fluid, obeying equations of ideal MHD, while CRs are treated as relativistic Lagrangian particles subject to the Lorentz force. Backreaction from CRs to the gas is included in the form of momentum and energy feedback. In addition, we include the electromagnetic feedback due to CR-induced Hall effect that becomes important when the electron-ion drift velocity of the background plasma induced by CRs approaches the Alfvén velocity. Our method is applicable on scales much larger than the ion inertial length, bypassing the microscopic scales that must be resolved in conventional PIC methods, while retaining the full kinetic nature of the CRs. We have implemented and tested this method in the Athena MHD code, where the overall scheme is second-order accurate and fully conservative. As a first application, we describe a numerical experiment to study particle acceleration in non-relativistic shocks. Using a simplified prescription for ion injection, we reproduce the shock structure and the CR energy spectra obtained with more self-consistent hybrid-PIC simulations, but at substantially reduced computational cost. We also show that the CR-induced Hall effect reduces the growth rate of the Bell instability and affects the gas dynamics in the vicinity of the shock front. As a step forward, we are able to capture the transition of particle acceleration from non-relativistic to relativistic regimes, with momentum spectrum connecting smoothly through the transition, as expected from the theory of Fermi acceleration. |
Author | Caprioli, Damiano Sironi, Lorenzo Bai, Xue-Ning Spitkovsky, Anatoly |
Author_xml | – sequence: 1 givenname: Xue-Ning surname: Bai fullname: Bai, Xue-Ning organization: Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden St., MS-51, Cambridge, MA 02138, USA – sequence: 2 givenname: Damiano surname: Caprioli fullname: Caprioli, Damiano organization: Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544, USA – sequence: 3 givenname: Lorenzo surname: Sironi fullname: Sironi, Lorenzo organization: Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden St., MS-51, Cambridge, MA 02138, USA – sequence: 4 givenname: Anatoly surname: Spitkovsky fullname: Spitkovsky, Anatoly organization: Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544, USA |
BackLink | https://www.osti.gov/biblio/22879435$$D View this record in Osti.gov |
BookMark | eNqNkUFvmzAYhq2qk5p2_QM7WdplFxobMLZ3swgNaIAjoNtysggYjSqFDJPDrvvlM8q0ww5VT_YnPY9f-XtvwfUwDhqADxg9YMTYGiHkO4FHv68Z4mu8JuQKrDDxmON7hF6D1T_gBtwa87yMLucr8DsT2zyqZLzfFHKzz0WWhM5OFFUSppGT5E4YpSnMoiqWG_goCxjKp12a5Ft7KS0LC7Ev4bekiqGAVRwVmUjhLhVlJj5DsbNoKKpE5rCSMJe5U0Spnb8mpQ2AZSzDL-V78K6rj0bf_z3vwNNjVIWxk8qttVOn8RianYB7HB34gfrI9VqM7GcwRbRrUXvoGGnr9uC2JEC4Qy5uNSOI8ZoGGtUk8HHDvTvw8fLuaOZemaafdfOjGYdBN7NyXUa53ZWlPl2o0zT-PGszq5feNPp4rAc9no3ClAWYUhK8BQ0I9zmj2KLsgjbTaMykO2Xj67kfh3mq-6PCSC09qqUXtdSkbI8KK7KkuP-pp6l_qadfr0sPF6kfT-p5PE-D3exrwh-dW6O8 |
CitedBy_id | crossref_primary_10_3847_1538_4357_ac56e1 crossref_primary_10_1007_s11214_024_01073_2 crossref_primary_10_1016_j_jcp_2018_04_020 crossref_primary_10_1093_mnras_stad175 crossref_primary_10_1088_1742_6596_719_1_012023 crossref_primary_10_1088_1742_6596_1623_1_012007 crossref_primary_10_1093_mnras_sty1260 crossref_primary_10_1007_s41115_018_0003_2 crossref_primary_10_1093_mnras_stx2509 crossref_primary_10_3847_1538_4357_abf7b3 crossref_primary_10_1007_s41115_021_00012_0 crossref_primary_10_3390_galaxies7010024 crossref_primary_10_1093_mnras_sty1743 crossref_primary_10_3847_1538_4357_ac2c7a crossref_primary_10_1051_0004_6361_202449661 crossref_primary_10_1093_mnras_staa1771 crossref_primary_10_1093_mnras_staa2346 crossref_primary_10_1063_1_5054110 crossref_primary_10_3847_1538_4357_ab93c3 crossref_primary_10_1088_0034_4885_79_4_046901 crossref_primary_10_3847_1538_4357_ab328a crossref_primary_10_1093_mnras_stab2635 crossref_primary_10_3847_1538_4357_acdc18 crossref_primary_10_3847_2041_8213_ac02cd crossref_primary_10_3847_2041_8213_ab963d crossref_primary_10_3847_1538_4357_ad8eb3 crossref_primary_10_1017_S0022377824000333 crossref_primary_10_1093_mnras_stac2909 crossref_primary_10_3847_1538_4357_ab58c8 crossref_primary_10_1051_0004_6361_201527376 crossref_primary_10_1093_mnras_stw1620 crossref_primary_10_3847_0004_637X_817_1_22 crossref_primary_10_3847_1538_4357_abedac crossref_primary_10_1017_S0022377817000629 crossref_primary_10_1093_mnras_stw2276 crossref_primary_10_7498_aps_70_20210347 crossref_primary_10_1063_5_0134320 crossref_primary_10_3847_1538_4365_aab114 crossref_primary_10_1063_5_0257673 crossref_primary_10_1016_j_cpc_2022_108625 crossref_primary_10_1016_j_newar_2020_101543 crossref_primary_10_1017_S0022377823001113 crossref_primary_10_1093_mnras_sty2702 crossref_primary_10_1051_0004_6361_202450978 crossref_primary_10_1093_mnras_stz2624 crossref_primary_10_3847_0004_637X_824_1_48 crossref_primary_10_1007_s11214_018_0556_8 crossref_primary_10_1093_mnras_stac3231 crossref_primary_10_1063_5_0013662 crossref_primary_10_3847_1538_4357_aadd17 crossref_primary_10_1088_1742_6596_1031_1_012011 crossref_primary_10_1088_1742_6596_1620_1_012024 crossref_primary_10_1093_mnras_stac466 crossref_primary_10_1093_mnras_stae1773 crossref_primary_10_3847_0004_637X_822_2_88 crossref_primary_10_3847_1538_4357_abec41 crossref_primary_10_1093_mnras_stab296 crossref_primary_10_3847_1538_4357_ab191b crossref_primary_10_3847_1538_4357_abbe06 crossref_primary_10_1051_swsc_2020053 crossref_primary_10_1093_mnras_staa728 crossref_primary_10_3847_1538_4357_abd6c2 crossref_primary_10_1093_mnras_stab1643 crossref_primary_10_1007_s00159_023_00149_2 crossref_primary_10_3847_1538_4357_ac1ba5 crossref_primary_10_1088_1742_6596_2156_1_012090 crossref_primary_10_1016_j_ppnp_2019_103751 crossref_primary_10_1093_mnras_staa3691 crossref_primary_10_1093_mnras_stab2813 crossref_primary_10_3847_1538_4357_ad8e64 crossref_primary_10_1063_5_0054501 crossref_primary_10_3847_1538_4357_ac6efe crossref_primary_10_1093_mnras_stac895 crossref_primary_10_1088_1742_6596_1468_1_012093 crossref_primary_10_1051_0004_6361_202245359 crossref_primary_10_1093_mnras_stac2523 crossref_primary_10_1093_mnras_stac572 crossref_primary_10_1088_1742_6596_2742_1_012008 crossref_primary_10_1103_PhysRevResearch_4_033192 crossref_primary_10_1017_S0022377818000478 crossref_primary_10_1063_5_0040161 crossref_primary_10_1093_mnras_stad1548 crossref_primary_10_1103_PhysRevLett_128_115101 crossref_primary_10_1093_mnras_staa3465 crossref_primary_10_3847_1538_4357_aba68e crossref_primary_10_1585_pfr_14_4406119 crossref_primary_10_1063_1_5058140 crossref_primary_10_1093_mnras_stac1791 crossref_primary_10_3847_1538_4357_ac0ce7 crossref_primary_10_3847_1538_4357_aabccd crossref_primary_10_3847_1538_4357_ab1648 crossref_primary_10_1007_s40571_024_00847_3 crossref_primary_10_1007_s41115_020_0007_6 crossref_primary_10_1093_mnras_sty309 crossref_primary_10_3847_1538_4357_ac21ce |
Cites_doi | 10.1029/JA093iA09p09649 10.1088/0004-637X/794/1/46 10.1086/426895 10.1016/0021-9991(86)90076-8 10.1088/0004-637X/704/2/L75 10.1093/mnras/stt179 10.1086/513599 10.1093/mnras/182.2.147 10.1086/176447 10.1063/1.2837054 10.1016/j.jcp.2004.11.016 10.1088/0004-637X/707/1/404 10.1088/0004-637X/794/1/47 10.1111/j.1365-2966.2006.11093.x 10.1088/0004-637X/783/2/91 10.1016/j.cpc.2006.11.013 10.1088/0004-637X/708/2/965 10.1111/j.1365-2966.2008.14200.x 10.1088/0004-637X/794/2/153 10.1111/j.1745-3933.2005.00110.x 10.1088/0004-637X/728/1/60 10.1088/2041-8205/765/1/L20 10.1016/j.jcp.2007.12.017 10.1111/j.1365-2966.2011.19892.x 10.1088/2041-8205/757/2/L20 10.1088/0004-637X/773/2/158 10.1086/172046 10.1093/mnras/stt100 10.1086/421043 10.1088/0004-637X/694/1/626 10.1088/1475-7516/2012/07/038 10.1086/508154 10.1007/978-3-662-05012-5 10.1093/mnras/172.3.557 10.1126/science.1231160 10.1051/0004-6361/201117855 10.1086/421730 10.1029/92GL00379 10.1086/590054 10.1086/342724 10.1086/149981 10.1086/168544 10.1016/S0927-6505(97)00016-9 10.1086/182658 10.1046/j.1365-8711.2000.03363.x 10.1088/0004-637X/744/1/67 10.1088/0004-637X/733/1/63 10.1111/j.1365-2966.2005.08774.x 10.1146/annurev.nucl.57.090506.123011 10.1016/j.jcp.2013.11.035 10.1088/0067-0049/190/2/297 10.1063/1.2840133 10.1086/588755 10.1007/3-540-36530-3_8 10.1088/0004-637X/722/2/1437 10.1103/PhysRev.75.1169 10.1111/j.1365-2966.2004.08097.x 10.1088/2041-8205/798/2/L28 10.1086/304471 10.1016/j.newast.2008.06.003 |
ContentType | Journal Article |
Copyright | 2015. The American Astronomical Society. All rights reserved. |
Copyright_xml | – notice: 2015. The American Astronomical Society. All rights reserved. |
DBID | AAYXX CITATION 7TG KL. 8FD H8D L7M OTOTI |
DOI | 10.1088/0004-637X/809/1/55 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace OSTI.GOV |
DatabaseTitle | CrossRef Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Meteorological & Geoastrophysical Abstracts - Academic Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
DocumentTitleAlternate | MAGNETOHYDRODYNAMIC-PARTICLE-IN-CELL METHOD FOR COUPLING COSMIC RAYS WITH A THERMAL PLASMA: APPLICATION TO NON-RELATIVISTIC SHOCKS |
EISSN | 1538-4357 |
EndPage | 22 |
ExternalDocumentID | 22879435 10_1088_0004_637X_809_1_55 apj516981 |
GroupedDBID | -DZ -~X 123 1JI 23N 2FS 2WC 4.4 6J9 85S AAFWJ AAGCD AAJIO AALHV ABHWH ACBEA ACGFS ACHIP ACNCT ADACN ADIYS AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS EJD F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 WH7 XSW AAYXX CITATION 7TG KL. 8FD H8D L7M ABPTK OTOTI |
ID | FETCH-LOGICAL-c380t-69390b9b74023d106371707fd0dbf85dadb2d5601f021de85089a76e0a5641c93 |
IEDL.DBID | IOP |
ISSN | 0004-637X 1538-4357 |
IngestDate | Fri May 19 01:44:26 EDT 2023 Fri Jul 11 11:54:46 EDT 2025 Fri Jul 11 16:16:00 EDT 2025 Tue Jul 01 01:05:11 EDT 2025 Thu Apr 24 23:09:47 EDT 2025 Wed Aug 21 03:33:07 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://iopscience.iop.org/info/page/text-and-data-mining http://iopscience.iop.org/page/copyright |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c380t-69390b9b74023d106371707fd0dbf85dadb2d5601f021de85089a76e0a5641c93 |
Notes | ApJ97389 Compact Objects ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1765949871 |
PQPubID | 23462 |
PageCount | 22 |
ParticipantIDs | osti_scitechconnect_22879435 iop_journals_10_1088_0004_637X_809_1_55 proquest_miscellaneous_1765949871 proquest_miscellaneous_1786177565 crossref_citationtrail_10_1088_0004_637X_809_1_55 crossref_primary_10_1088_0004_637X_809_1_55 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20150810 2015-08-10 |
PublicationDateYYYYMMDD | 2015-08-10 |
PublicationDate_xml | – month: 08 year: 2015 text: 20150810 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | United Kingdom |
PublicationPlace_xml | – name: United Kingdom |
PublicationTitle | The Astrophysical journal |
PublicationTitleAbbrev | APJ |
PublicationTitleAlternate | Astrophys. J |
PublicationYear | 2015 |
Publisher | The American Astronomical Society |
Publisher_xml | – name: The American Astronomical Society |
References | 44 48 49 Guo X. (34) 2014; 794 Giacalone J. (31) 2004; 609 Caprioli D. (18) 2012; 7 Guo F. (33) 2013; 773 Kang H. (36) 2002; 579 Lehe R. (40) 2009; 707 Zirakashvili V. N. (65) 2010; 708 50 51 10 54 12 Caprioli D. (21) 2014; 794 56 14 58 59 16 Fonseca R. A. (26) 2000; 342 Niemiec J. (47) 2008; 684 Narayan R. (45) 2012; 757 Riquelme M. A. (52) 2009; 694 Riquelme M. A. (53) 2011; 733 1 Caprioli D. (22) 2014; 794 Zachary A. L. (64) 1987 3 4 7 8 Bai X.-N. (6) 2010; 722 9 61 63 Vladimirov A. (60) 2006; 652 23 24 Spitkovsky A. ed Bulik T. (55) 2005; 345 25 27 28 29 Stone J. M. (57) 2008; 178 Malkov M. A. (43) 1997; 485 Johansen A. (35) 2009; 704 Beresnyak A. (11) 2011; 728 Youdin A. N. (62) 2005; 620 32 Caprioli D. (17) 2015; 798 37 Niemiec J. (46) 2004; 610 38 39 Amano T. (2) 2007; 661 Gargaté L. (30) 2012; 744 Birdsall C. K. (13) 2005 Boris J. P. ed Haber I. (15) 1970 Bai X.-N. (5) 2010; 190 Caprioli D. (19) 2013; 765 Caprioli D. (20) 2014; 783 41 42 |
References_xml | – ident: 49 doi: 10.1029/JA093iA09p09649 – volume: 794 start-page: 46 issn: 0004-637X year: 2014 ident: 21 publication-title: ApJ doi: 10.1088/0004-637X/794/1/46 – volume: 620 start-page: 459 issn: 0004-637X year: 2005 ident: 62 publication-title: ApJ doi: 10.1086/426895 – start-page: 3 year: 1970 ident: 15 publication-title: Proc. of the Fourth Conference on Numerical Simulation Plasmas – ident: 63 doi: 10.1016/0021-9991(86)90076-8 – volume: 704 start-page: 75 issn: 1538-4357 year: 2009 ident: 35 publication-title: ApJ doi: 10.1088/0004-637X/704/2/L75 – ident: 10 doi: 10.1093/mnras/stt179 – volume: 661 start-page: 190 issn: 0004-637X year: 2007 ident: 2 publication-title: ApJ doi: 10.1086/513599 – ident: 7 doi: 10.1093/mnras/182.2.147 – ident: 23 doi: 10.1086/176447 – ident: 59 doi: 10.1063/1.2837054 – ident: 27 doi: 10.1016/j.jcp.2004.11.016 – volume: 707 start-page: 404 issn: 0004-637X year: 2009 ident: 40 publication-title: ApJ doi: 10.1088/0004-637X/707/1/404 – volume: 794 start-page: 47 issn: 0004-637X year: 2014 ident: 22 publication-title: ApJ doi: 10.1088/0004-637X/794/1/47 – ident: 39 doi: 10.1111/j.1365-2966.2006.11093.x – volume: 783 start-page: 91 issn: 0004-637X year: 2014 ident: 20 publication-title: ApJ doi: 10.1088/0004-637X/783/2/91 – ident: 29 doi: 10.1016/j.cpc.2006.11.013 – volume: 708 start-page: 965 issn: 0004-637X year: 2010 ident: 65 publication-title: ApJ doi: 10.1088/0004-637X/708/2/965 – ident: 4 doi: 10.1111/j.1365-2966.2008.14200.x – volume: 794 start-page: 153 issn: 0004-637X year: 2014 ident: 34 publication-title: ApJ doi: 10.1088/0004-637X/794/2/153 – ident: 3 doi: 10.1111/j.1745-3933.2005.00110.x – volume: 728 start-page: 60 issn: 0004-637X year: 2011 ident: 11 publication-title: ApJ doi: 10.1088/0004-637X/728/1/60 – volume: 765 start-page: L20 issn: 0004-637X year: 2013 ident: 19 publication-title: ApJL doi: 10.1088/2041-8205/765/1/L20 – ident: 28 doi: 10.1016/j.jcp.2007.12.017 – ident: 50 doi: 10.1111/j.1365-2966.2011.19892.x – volume: 757 start-page: L20 issn: 0004-637X year: 2012 ident: 45 publication-title: ApJL doi: 10.1088/2041-8205/757/2/L20 – volume: 773 start-page: 158 issn: 0004-637X year: 2013 ident: 33 publication-title: ApJ doi: 10.1088/0004-637X/773/2/158 – ident: 48 doi: 10.1086/172046 – ident: 51 doi: 10.1093/mnras/stt100 – volume: 609 start-page: 452 issn: 0004-637X year: 2004 ident: 31 publication-title: ApJ doi: 10.1086/421043 – volume: 694 start-page: 626 issn: 0004-637X year: 2009 ident: 52 publication-title: ApJ doi: 10.1088/0004-637X/694/1/626 – volume: 7 start-page: 38 year: 2012 ident: 18 publication-title: JCAP doi: 10.1088/1475-7516/2012/07/038 – volume: 652 start-page: 1246 issn: 0004-637X year: 2006 ident: 60 publication-title: ApJ doi: 10.1086/508154 – volume: 342 year: 2000 ident: 26 publication-title: in OSIRIS: A Three-dimensional, Fully Relativistic Particle in Cell Code for Modeling Plasma Based Accelerators – ident: 41 doi: 10.1007/978-3-662-05012-5 – ident: 54 doi: 10.1093/mnras/172.3.557 – ident: 1 doi: 10.1126/science.1231160 – ident: 44 doi: 10.1051/0004-6361/201117855 – volume: 610 start-page: 851 issn: 0004-637X year: 2004 ident: 46 publication-title: ApJ doi: 10.1086/421730 – ident: 32 doi: 10.1029/92GL00379 – volume: 684 start-page: 1174 issn: 0004-637X year: 2008 ident: 47 publication-title: ApJ doi: 10.1086/590054 – volume: 579 start-page: 337 issn: 0004-637X year: 2002 ident: 36 publication-title: ApJ doi: 10.1086/342724 – ident: 37 doi: 10.1086/149981 – ident: 24 doi: 10.1086/168544 – volume: 345 year: 2005 ident: 55 publication-title: Proc. AIP Conf. Proc. 801, Astrophysical Sources of High Energy Particles and Radiation – year: 2005 ident: 13 publication-title: Plasma Physics via Computer Simulation – ident: 12 doi: 10.1016/S0927-6505(97)00016-9 – ident: 14 doi: 10.1086/182658 – ident: 42 doi: 10.1046/j.1365-8711.2000.03363.x – year: 1987 ident: 64 – volume: 744 start-page: 67 issn: 0004-637X year: 2012 ident: 30 publication-title: ApJ doi: 10.1088/0004-637X/744/1/67 – volume: 733 start-page: 63 issn: 0004-637X year: 2011 ident: 53 publication-title: ApJ doi: 10.1088/0004-637X/733/1/63 – ident: 9 doi: 10.1111/j.1365-2966.2005.08774.x – ident: 58 doi: 10.1146/annurev.nucl.57.090506.123011 – ident: 38 doi: 10.1016/j.jcp.2013.11.035 – volume: 190 start-page: 297 issn: 0067-0049 year: 2010 ident: 5 publication-title: ApJS doi: 10.1088/0067-0049/190/2/297 – ident: 16 doi: 10.1063/1.2840133 – volume: 178 start-page: 137 issn: 0067-0049 year: 2008 ident: 57 publication-title: ApJS doi: 10.1086/588755 – ident: 61 doi: 10.1007/3-540-36530-3_8 – volume: 722 start-page: 1437 issn: 0004-637X year: 2010 ident: 6 publication-title: ApJ doi: 10.1088/0004-637X/722/2/1437 – ident: 25 doi: 10.1103/PhysRev.75.1169 – ident: 8 doi: 10.1111/j.1365-2966.2004.08097.x – volume: 798 start-page: L28 issn: 0004-637X year: 2015 ident: 17 publication-title: ApJL doi: 10.1088/2041-8205/798/2/L28 – volume: 485 start-page: 638 issn: 0004-637X year: 1997 ident: 43 publication-title: ApJ doi: 10.1086/304471 – ident: 56 doi: 10.1016/j.newast.2008.06.003 |
SSID | ssj0004299 |
Score | 2.550011 |
Snippet | ABSTRA CT We formulate a magnetohydrodynamic-particle-in-cell (MHD-PIC) method for describing the interaction between collisionless cosmic ray (CR) particles... We formulate a magnetohydrodynamic-particle-in-cell (MHD-PIC) method for describing the interaction between collisionless cosmic ray (CR) particles and a... |
SourceID | osti proquest crossref iop |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 55 |
SubjectTerms | ACCELERATION acceleration of particles ASTROPHYSICS, COSMOLOGY AND ASTRONOMY BYPASSES Chromium COSMIC RADIATION COUPLING ELECTRONS ENERGY SPECTRA Feedback HALL EFFECT instabilities INSTABILITY INTERACTIONS ION DRIFT KINETICS LAGRANGIAN FUNCTION LORENTZ FORCE MAGNETOHYDRODYNAMICS magnetohydrodynamics (MHD) Mathematical analysis Mathematical models methods: numerical MHD PARTICLES PLASMA plasmas RELATIVISTIC RANGE SHOCK WAVES SIMULATION Thermal plasmas VELOCITY |
Title | MAGNETOHYDRODYNAMIC-PARTICLE-IN-CELL METHOD FOR COUPLING COSMIC RAYS WITH A THERMAL PLASMA: APPLICATION TO NON-RELATIVISTIC SHOCKS |
URI | https://iopscience.iop.org/article/10.1088/0004-637X/809/1/55 https://www.proquest.com/docview/1765949871 https://www.proquest.com/docview/1786177565 https://www.osti.gov/biblio/22879435 |
Volume | 809 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbYRUhcWFhAW3ZBRkJwQG4T52luUZrdBNIkalK2PUWxnVyAZkXbAxz55YyTFMRDFeISzWFiJ7Zn_I09D4ReUEk5g32NOIJpBBQeJ1WlccLMRhMmpRWtOgfZxA4X5tultRx8c7pYmPZmUP1jIPtEwf0QDg5xroo9MIltOMuJq7GJPrGsI3TbcGHrVPF7afYzLJKyAf32_EPMzN_b-GVfOoK-QUe3IGV_6Ohu47k86aurbrp8hcrf5MN4t-Vj8fW3bI7__U_30b0BkmKvZ36AbtXrU3TmbdQhefvpC36JO7o_A9mcojtZTz1E32beVRIUabiaztPpKvFgTkkGEDny44BECfGDOMazoAjTKQZzE_vpIouj5AqIHHjx3Fvl-DoqQuzhIgzmMy_GWezlM-8N9rJsH-aMixQnoPNVfY8ieh_l0AHOw9R_lz9Ci8ug8EMyFHUgwnC1LbGZwTTOuAOGqyHBIDXAoNScRmqSN64lK8mpVGZiA-hD1i4ASFY5dq1Vlm3qghmP0fG6XddnCFMpKl0I04GWAfVx1lgVl7RxKZegtuQI6fspLcWQ8VwV3vhYdjfvrqtu3s1SDXsJw17qpWWN0Osf79z0-T4Ocr-CGS0Hsd8c5LxQq6mEhaCS8wrlxSS2JQWDlcG3j9Dz_SorQb7VpU21rtsdNOnYFjMZ2LWHeFwAog5g8yf__EHn6C5gP4t02X0v0PH2865-Cvhqy591UgTP1Lj-Do9ODlI |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfYEGgvCAZoHQOMhOABmSZOnMS8RWm6hKVJ1KRsfbLiOHmCtlq7B175yzknKQiBKt7uwV_yne9-Z9-dEXpLFZUc7Bpxa24QUHiSVJUhCbdbo7YprWjVBcimTrSwP9-wfTRhlwuz3gyq_yOQfaHgfguHgDhP5x7YxLHcm7Fn8LE5Zmy8Ue0Rus8sMDYg0pl1_Ts1kvIBAfd9hryZf4_zh206gvlBT6_hpP2lpzvjM32MHg2oEfv9Gp-ge83qFJ35W32Pvf72Hb_DHd1fU2xP0YO8p56iHzP_Mg3LLFpO5tlkmfqw7SQHFBsHSUjilARhkuBZWEbZBINHiINskSdxeglEAW3x3F8W-DouI-zjMgrnMz_BeeIXM_8T9vN8n4mMywynoJb1Fxxl_CUuYAJcRFlwVTxDi2lYBhEZ_l0gteUZO-JwixuSSxd8S0uBz2iBz2e4rTKUbD2mKiWp0p5cCwBBNR5gPF65TmNUzLHNmlvP0fFqvWrOEKaqrsy6tl0YGYCZ5C2rpKKtR6UCzaJGyNzvuKiHouT6b4yvonsc9zz9OG4LzSUBXBKmYGyEPvzqs-lLchxs_R4YKYaTuT3Y8kIzW4D86fq5tQ40qneCgk_JYe0j9GYvBAKOoH5XqVbN-g6GdB3GbQ6u56E2HmBFF-Dz-X8v6DV6mE-mAnh-9QKdAFJjpKvFe4GOd7d3zUtAQzv5qpP3n5Qs8hY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetohydrodynamic-particle-in-cell+method+for+coupling+cosmic+rays+with+a+thermal+plasma%3A+application+to+non-relativistic+shocks&rft.jtitle=The+Astrophysical+journal&rft.au=Bai%2C+Xue-Ning&rft.au=Sironi%2C+Lorenzo&rft.au=Caprioli%2C+Damiano&rft.au=Spitkovsky%2C+Anatoly&rft.date=2015-08-10&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=809&rft.issue=1&rft_id=info:doi/10.1088%2F0004-637X%2F809%2F1%2F55&rft.externalDocID=22879435 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |