MAGNETOHYDRODYNAMIC-PARTICLE-IN-CELL METHOD FOR COUPLING COSMIC RAYS WITH A THERMAL PLASMA: APPLICATION TO NON-RELATIVISTIC SHOCKS

ABSTRA CT We formulate a magnetohydrodynamic-particle-in-cell (MHD-PIC) method for describing the interaction between collisionless cosmic ray (CR) particles and a thermal plasma. The thermal plasma is treated as a fluid, obeying equations of ideal MHD, while CRs are treated as relativistic Lagrangi...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 809; no. 1; pp. 55 - 22
Main Authors Bai, Xue-Ning, Caprioli, Damiano, Sironi, Lorenzo, Spitkovsky, Anatoly
Format Journal Article
LanguageEnglish
Published United Kingdom The American Astronomical Society 10.08.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRA CT We formulate a magnetohydrodynamic-particle-in-cell (MHD-PIC) method for describing the interaction between collisionless cosmic ray (CR) particles and a thermal plasma. The thermal plasma is treated as a fluid, obeying equations of ideal MHD, while CRs are treated as relativistic Lagrangian particles subject to the Lorentz force. Backreaction from CRs to the gas is included in the form of momentum and energy feedback. In addition, we include the electromagnetic feedback due to CR-induced Hall effect that becomes important when the electron-ion drift velocity of the background plasma induced by CRs approaches the Alfvén velocity. Our method is applicable on scales much larger than the ion inertial length, bypassing the microscopic scales that must be resolved in conventional PIC methods, while retaining the full kinetic nature of the CRs. We have implemented and tested this method in the Athena MHD code, where the overall scheme is second-order accurate and fully conservative. As a first application, we describe a numerical experiment to study particle acceleration in non-relativistic shocks. Using a simplified prescription for ion injection, we reproduce the shock structure and the CR energy spectra obtained with more self-consistent hybrid-PIC simulations, but at substantially reduced computational cost. We also show that the CR-induced Hall effect reduces the growth rate of the Bell instability and affects the gas dynamics in the vicinity of the shock front. As a step forward, we are able to capture the transition of particle acceleration from non-relativistic to relativistic regimes, with momentum spectrum connecting smoothly through the transition, as expected from the theory of Fermi acceleration.
AbstractList We formulate a magnetohydrodynamic-particle-in-cell (MHD-PIC) method for describing the interaction between collisionless cosmic ray (CR) particles and a thermal plasma. The thermal plasma is treated as a fluid, obeying equations of ideal MHD, while CRs are treated as relativistic Lagrangian particles subject to the Lorentz force. Backreaction from CRs to the gas is included in the form of momentum and energy feedback. In addition, we include the electromagnetic feedback due to CR-induced Hall effect that becomes important when the electron–ion drift velocity of the background plasma induced by CRs approaches the Alfvén velocity. Our method is applicable on scales much larger than the ion inertial length, bypassing the microscopic scales that must be resolved in conventional PIC methods, while retaining the full kinetic nature of the CRs. We have implemented and tested this method in the Athena MHD code, where the overall scheme is second-order accurate and fully conservative. As a first application, we describe a numerical experiment to study particle acceleration in non-relativistic shocks. Using a simplified prescription for ion injection, we reproduce the shock structure and the CR energy spectra obtained with more self-consistent hybrid-PIC simulations, but at substantially reduced computational cost. We also show that the CR-induced Hall effect reduces the growth rate of the Bell instability and affects the gas dynamics in the vicinity of the shock front. As a step forward, we are able to capture the transition of particle acceleration from non-relativistic to relativistic regimes, with momentum spectrum f(p)∝p{sup −4} connecting smoothly through the transition, as expected from the theory of Fermi acceleration.
We formulate a magnetohydrodynamic-particle-in-cell (MHD-PIC) method for describing the interaction between collisionless cosmic ray (CR) particles and a thermal plasma. The thermal plasma is treated as a fluid, obeying equations of ideal MHD, while CRs are treated as relativistic Lagrangian particles subject to the Lorentz force. Backreaction from CRs to the gas is included in the form of momentum and energy feedback. In addition, we include the electromagnetic feedback due to CR-induced Hall effect that becomes important when the electron-ion drift velocity of the background plasma induced by CRs approaches the Alfven velocity. Our method is applicable on scales much larger than the ion inertial length, bypassing the microscopic scales that must be resolved in conventional PIC methods, while retaining the full kinetic nature of the CRs. We have implemented and tested this method in the Athena MHD code, where the overall scheme is second-order accurate and fully conservative. As a first application, we describe a numerical experiment to study particle acceleration in non-relativistic shocks. Using a simplified prescription for ion injection, we reproduce the shock structure and the CR energy spectra obtained with more self-consistent hybrid-PIC simulations, but at substantially reduced computational cost. We also show that the CR-induced Hall effect reduces the growth rate of the Bell instability and affects the gas dynamics in the vicinity of the shock front. As a step forward, we are able to capture the transition of particle acceleration from non-relativistic to relativistic regimes, with momentum spectrum [functionof] (p) [is proportional to] p super(-4) connecting smoothly through the transition, as expected from the theory of Fermi acceleration.
ABSTRA CT We formulate a magnetohydrodynamic-particle-in-cell (MHD-PIC) method for describing the interaction between collisionless cosmic ray (CR) particles and a thermal plasma. The thermal plasma is treated as a fluid, obeying equations of ideal MHD, while CRs are treated as relativistic Lagrangian particles subject to the Lorentz force. Backreaction from CRs to the gas is included in the form of momentum and energy feedback. In addition, we include the electromagnetic feedback due to CR-induced Hall effect that becomes important when the electron-ion drift velocity of the background plasma induced by CRs approaches the Alfvén velocity. Our method is applicable on scales much larger than the ion inertial length, bypassing the microscopic scales that must be resolved in conventional PIC methods, while retaining the full kinetic nature of the CRs. We have implemented and tested this method in the Athena MHD code, where the overall scheme is second-order accurate and fully conservative. As a first application, we describe a numerical experiment to study particle acceleration in non-relativistic shocks. Using a simplified prescription for ion injection, we reproduce the shock structure and the CR energy spectra obtained with more self-consistent hybrid-PIC simulations, but at substantially reduced computational cost. We also show that the CR-induced Hall effect reduces the growth rate of the Bell instability and affects the gas dynamics in the vicinity of the shock front. As a step forward, we are able to capture the transition of particle acceleration from non-relativistic to relativistic regimes, with momentum spectrum connecting smoothly through the transition, as expected from the theory of Fermi acceleration.
Author Caprioli, Damiano
Sironi, Lorenzo
Bai, Xue-Ning
Spitkovsky, Anatoly
Author_xml – sequence: 1
  givenname: Xue-Ning
  surname: Bai
  fullname: Bai, Xue-Ning
  organization: Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden St., MS-51, Cambridge, MA 02138, USA
– sequence: 2
  givenname: Damiano
  surname: Caprioli
  fullname: Caprioli, Damiano
  organization: Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544, USA
– sequence: 3
  givenname: Lorenzo
  surname: Sironi
  fullname: Sironi, Lorenzo
  organization: Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden St., MS-51, Cambridge, MA 02138, USA
– sequence: 4
  givenname: Anatoly
  surname: Spitkovsky
  fullname: Spitkovsky, Anatoly
  organization: Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544, USA
BackLink https://www.osti.gov/biblio/22879435$$D View this record in Osti.gov
BookMark eNqNkUFvmzAYhq2qk5p2_QM7WdplFxobMLZ3swgNaIAjoNtysggYjSqFDJPDrvvlM8q0ww5VT_YnPY9f-XtvwfUwDhqADxg9YMTYGiHkO4FHv68Z4mu8JuQKrDDxmON7hF6D1T_gBtwa87yMLucr8DsT2zyqZLzfFHKzz0WWhM5OFFUSppGT5E4YpSnMoiqWG_goCxjKp12a5Ft7KS0LC7Ev4bekiqGAVRwVmUjhLhVlJj5DsbNoKKpE5rCSMJe5U0Spnb8mpQ2AZSzDL-V78K6rj0bf_z3vwNNjVIWxk8qttVOn8RianYB7HB34gfrI9VqM7GcwRbRrUXvoGGnr9uC2JEC4Qy5uNSOI8ZoGGtUk8HHDvTvw8fLuaOZemaafdfOjGYdBN7NyXUa53ZWlPl2o0zT-PGszq5feNPp4rAc9no3ClAWYUhK8BQ0I9zmj2KLsgjbTaMykO2Xj67kfh3mq-6PCSC09qqUXtdSkbI8KK7KkuP-pp6l_qadfr0sPF6kfT-p5PE-D3exrwh-dW6O8
CitedBy_id crossref_primary_10_3847_1538_4357_ac56e1
crossref_primary_10_1007_s11214_024_01073_2
crossref_primary_10_1016_j_jcp_2018_04_020
crossref_primary_10_1093_mnras_stad175
crossref_primary_10_1088_1742_6596_719_1_012023
crossref_primary_10_1088_1742_6596_1623_1_012007
crossref_primary_10_1093_mnras_sty1260
crossref_primary_10_1007_s41115_018_0003_2
crossref_primary_10_1093_mnras_stx2509
crossref_primary_10_3847_1538_4357_abf7b3
crossref_primary_10_1007_s41115_021_00012_0
crossref_primary_10_3390_galaxies7010024
crossref_primary_10_1093_mnras_sty1743
crossref_primary_10_3847_1538_4357_ac2c7a
crossref_primary_10_1051_0004_6361_202449661
crossref_primary_10_1093_mnras_staa1771
crossref_primary_10_1093_mnras_staa2346
crossref_primary_10_1063_1_5054110
crossref_primary_10_3847_1538_4357_ab93c3
crossref_primary_10_1088_0034_4885_79_4_046901
crossref_primary_10_3847_1538_4357_ab328a
crossref_primary_10_1093_mnras_stab2635
crossref_primary_10_3847_1538_4357_acdc18
crossref_primary_10_3847_2041_8213_ac02cd
crossref_primary_10_3847_2041_8213_ab963d
crossref_primary_10_3847_1538_4357_ad8eb3
crossref_primary_10_1017_S0022377824000333
crossref_primary_10_1093_mnras_stac2909
crossref_primary_10_3847_1538_4357_ab58c8
crossref_primary_10_1051_0004_6361_201527376
crossref_primary_10_1093_mnras_stw1620
crossref_primary_10_3847_0004_637X_817_1_22
crossref_primary_10_3847_1538_4357_abedac
crossref_primary_10_1017_S0022377817000629
crossref_primary_10_1093_mnras_stw2276
crossref_primary_10_7498_aps_70_20210347
crossref_primary_10_1063_5_0134320
crossref_primary_10_3847_1538_4365_aab114
crossref_primary_10_1063_5_0257673
crossref_primary_10_1016_j_cpc_2022_108625
crossref_primary_10_1016_j_newar_2020_101543
crossref_primary_10_1017_S0022377823001113
crossref_primary_10_1093_mnras_sty2702
crossref_primary_10_1051_0004_6361_202450978
crossref_primary_10_1093_mnras_stz2624
crossref_primary_10_3847_0004_637X_824_1_48
crossref_primary_10_1007_s11214_018_0556_8
crossref_primary_10_1093_mnras_stac3231
crossref_primary_10_1063_5_0013662
crossref_primary_10_3847_1538_4357_aadd17
crossref_primary_10_1088_1742_6596_1031_1_012011
crossref_primary_10_1088_1742_6596_1620_1_012024
crossref_primary_10_1093_mnras_stac466
crossref_primary_10_1093_mnras_stae1773
crossref_primary_10_3847_0004_637X_822_2_88
crossref_primary_10_3847_1538_4357_abec41
crossref_primary_10_1093_mnras_stab296
crossref_primary_10_3847_1538_4357_ab191b
crossref_primary_10_3847_1538_4357_abbe06
crossref_primary_10_1051_swsc_2020053
crossref_primary_10_1093_mnras_staa728
crossref_primary_10_3847_1538_4357_abd6c2
crossref_primary_10_1093_mnras_stab1643
crossref_primary_10_1007_s00159_023_00149_2
crossref_primary_10_3847_1538_4357_ac1ba5
crossref_primary_10_1088_1742_6596_2156_1_012090
crossref_primary_10_1016_j_ppnp_2019_103751
crossref_primary_10_1093_mnras_staa3691
crossref_primary_10_1093_mnras_stab2813
crossref_primary_10_3847_1538_4357_ad8e64
crossref_primary_10_1063_5_0054501
crossref_primary_10_3847_1538_4357_ac6efe
crossref_primary_10_1093_mnras_stac895
crossref_primary_10_1088_1742_6596_1468_1_012093
crossref_primary_10_1051_0004_6361_202245359
crossref_primary_10_1093_mnras_stac2523
crossref_primary_10_1093_mnras_stac572
crossref_primary_10_1088_1742_6596_2742_1_012008
crossref_primary_10_1103_PhysRevResearch_4_033192
crossref_primary_10_1017_S0022377818000478
crossref_primary_10_1063_5_0040161
crossref_primary_10_1093_mnras_stad1548
crossref_primary_10_1103_PhysRevLett_128_115101
crossref_primary_10_1093_mnras_staa3465
crossref_primary_10_3847_1538_4357_aba68e
crossref_primary_10_1585_pfr_14_4406119
crossref_primary_10_1063_1_5058140
crossref_primary_10_1093_mnras_stac1791
crossref_primary_10_3847_1538_4357_ac0ce7
crossref_primary_10_3847_1538_4357_aabccd
crossref_primary_10_3847_1538_4357_ab1648
crossref_primary_10_1007_s40571_024_00847_3
crossref_primary_10_1007_s41115_020_0007_6
crossref_primary_10_1093_mnras_sty309
crossref_primary_10_3847_1538_4357_ac21ce
Cites_doi 10.1029/JA093iA09p09649
10.1088/0004-637X/794/1/46
10.1086/426895
10.1016/0021-9991(86)90076-8
10.1088/0004-637X/704/2/L75
10.1093/mnras/stt179
10.1086/513599
10.1093/mnras/182.2.147
10.1086/176447
10.1063/1.2837054
10.1016/j.jcp.2004.11.016
10.1088/0004-637X/707/1/404
10.1088/0004-637X/794/1/47
10.1111/j.1365-2966.2006.11093.x
10.1088/0004-637X/783/2/91
10.1016/j.cpc.2006.11.013
10.1088/0004-637X/708/2/965
10.1111/j.1365-2966.2008.14200.x
10.1088/0004-637X/794/2/153
10.1111/j.1745-3933.2005.00110.x
10.1088/0004-637X/728/1/60
10.1088/2041-8205/765/1/L20
10.1016/j.jcp.2007.12.017
10.1111/j.1365-2966.2011.19892.x
10.1088/2041-8205/757/2/L20
10.1088/0004-637X/773/2/158
10.1086/172046
10.1093/mnras/stt100
10.1086/421043
10.1088/0004-637X/694/1/626
10.1088/1475-7516/2012/07/038
10.1086/508154
10.1007/978-3-662-05012-5
10.1093/mnras/172.3.557
10.1126/science.1231160
10.1051/0004-6361/201117855
10.1086/421730
10.1029/92GL00379
10.1086/590054
10.1086/342724
10.1086/149981
10.1086/168544
10.1016/S0927-6505(97)00016-9
10.1086/182658
10.1046/j.1365-8711.2000.03363.x
10.1088/0004-637X/744/1/67
10.1088/0004-637X/733/1/63
10.1111/j.1365-2966.2005.08774.x
10.1146/annurev.nucl.57.090506.123011
10.1016/j.jcp.2013.11.035
10.1088/0067-0049/190/2/297
10.1063/1.2840133
10.1086/588755
10.1007/3-540-36530-3_8
10.1088/0004-637X/722/2/1437
10.1103/PhysRev.75.1169
10.1111/j.1365-2966.2004.08097.x
10.1088/2041-8205/798/2/L28
10.1086/304471
10.1016/j.newast.2008.06.003
ContentType Journal Article
Copyright 2015. The American Astronomical Society. All rights reserved.
Copyright_xml – notice: 2015. The American Astronomical Society. All rights reserved.
DBID AAYXX
CITATION
7TG
KL.
8FD
H8D
L7M
OTOTI
DOI 10.1088/0004-637X/809/1/55
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Meteorological & Geoastrophysical Abstracts - Academic

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
DocumentTitleAlternate MAGNETOHYDRODYNAMIC-PARTICLE-IN-CELL METHOD FOR COUPLING COSMIC RAYS WITH A THERMAL PLASMA: APPLICATION TO NON-RELATIVISTIC SHOCKS
EISSN 1538-4357
EndPage 22
ExternalDocumentID 22879435
10_1088_0004_637X_809_1_55
apj516981
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
2WC
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
AALHV
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
ADIYS
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
EJD
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
WH7
XSW
AAYXX
CITATION
7TG
KL.
8FD
H8D
L7M
ABPTK
OTOTI
ID FETCH-LOGICAL-c380t-69390b9b74023d106371707fd0dbf85dadb2d5601f021de85089a76e0a5641c93
IEDL.DBID IOP
ISSN 0004-637X
1538-4357
IngestDate Fri May 19 01:44:26 EDT 2023
Fri Jul 11 11:54:46 EDT 2025
Fri Jul 11 16:16:00 EDT 2025
Tue Jul 01 01:05:11 EDT 2025
Thu Apr 24 23:09:47 EDT 2025
Wed Aug 21 03:33:07 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://iopscience.iop.org/info/page/text-and-data-mining
http://iopscience.iop.org/page/copyright
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c380t-69390b9b74023d106371707fd0dbf85dadb2d5601f021de85089a76e0a5641c93
Notes ApJ97389
Compact Objects
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1765949871
PQPubID 23462
PageCount 22
ParticipantIDs osti_scitechconnect_22879435
iop_journals_10_1088_0004_637X_809_1_55
proquest_miscellaneous_1765949871
proquest_miscellaneous_1786177565
crossref_citationtrail_10_1088_0004_637X_809_1_55
crossref_primary_10_1088_0004_637X_809_1_55
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20150810
2015-08-10
PublicationDateYYYYMMDD 2015-08-10
PublicationDate_xml – month: 08
  year: 2015
  text: 20150810
  day: 10
PublicationDecade 2010
PublicationPlace United Kingdom
PublicationPlace_xml – name: United Kingdom
PublicationTitle The Astrophysical journal
PublicationTitleAbbrev APJ
PublicationTitleAlternate Astrophys. J
PublicationYear 2015
Publisher The American Astronomical Society
Publisher_xml – name: The American Astronomical Society
References 44
48
49
Guo X. (34) 2014; 794
Giacalone J. (31) 2004; 609
Caprioli D. (18) 2012; 7
Guo F. (33) 2013; 773
Kang H. (36) 2002; 579
Lehe R. (40) 2009; 707
Zirakashvili V. N. (65) 2010; 708
50
51
10
54
12
Caprioli D. (21) 2014; 794
56
14
58
59
16
Fonseca R. A. (26) 2000; 342
Niemiec J. (47) 2008; 684
Narayan R. (45) 2012; 757
Riquelme M. A. (52) 2009; 694
Riquelme M. A. (53) 2011; 733
1
Caprioli D. (22) 2014; 794
Zachary A. L. (64) 1987
3
4
7
8
Bai X.-N. (6) 2010; 722
9
61
63
Vladimirov A. (60) 2006; 652
23
24
Spitkovsky A. ed Bulik T. (55) 2005; 345
25
27
28
29
Stone J. M. (57) 2008; 178
Malkov M. A. (43) 1997; 485
Johansen A. (35) 2009; 704
Beresnyak A. (11) 2011; 728
Youdin A. N. (62) 2005; 620
32
Caprioli D. (17) 2015; 798
37
Niemiec J. (46) 2004; 610
38
39
Amano T. (2) 2007; 661
Gargaté L. (30) 2012; 744
Birdsall C. K. (13) 2005
Boris J. P. ed Haber I. (15) 1970
Bai X.-N. (5) 2010; 190
Caprioli D. (19) 2013; 765
Caprioli D. (20) 2014; 783
41
42
References_xml – ident: 49
  doi: 10.1029/JA093iA09p09649
– volume: 794
  start-page: 46
  issn: 0004-637X
  year: 2014
  ident: 21
  publication-title: ApJ
  doi: 10.1088/0004-637X/794/1/46
– volume: 620
  start-page: 459
  issn: 0004-637X
  year: 2005
  ident: 62
  publication-title: ApJ
  doi: 10.1086/426895
– start-page: 3
  year: 1970
  ident: 15
  publication-title: Proc. of the Fourth Conference on Numerical Simulation Plasmas
– ident: 63
  doi: 10.1016/0021-9991(86)90076-8
– volume: 704
  start-page: 75
  issn: 1538-4357
  year: 2009
  ident: 35
  publication-title: ApJ
  doi: 10.1088/0004-637X/704/2/L75
– ident: 10
  doi: 10.1093/mnras/stt179
– volume: 661
  start-page: 190
  issn: 0004-637X
  year: 2007
  ident: 2
  publication-title: ApJ
  doi: 10.1086/513599
– ident: 7
  doi: 10.1093/mnras/182.2.147
– ident: 23
  doi: 10.1086/176447
– ident: 59
  doi: 10.1063/1.2837054
– ident: 27
  doi: 10.1016/j.jcp.2004.11.016
– volume: 707
  start-page: 404
  issn: 0004-637X
  year: 2009
  ident: 40
  publication-title: ApJ
  doi: 10.1088/0004-637X/707/1/404
– volume: 794
  start-page: 47
  issn: 0004-637X
  year: 2014
  ident: 22
  publication-title: ApJ
  doi: 10.1088/0004-637X/794/1/47
– ident: 39
  doi: 10.1111/j.1365-2966.2006.11093.x
– volume: 783
  start-page: 91
  issn: 0004-637X
  year: 2014
  ident: 20
  publication-title: ApJ
  doi: 10.1088/0004-637X/783/2/91
– ident: 29
  doi: 10.1016/j.cpc.2006.11.013
– volume: 708
  start-page: 965
  issn: 0004-637X
  year: 2010
  ident: 65
  publication-title: ApJ
  doi: 10.1088/0004-637X/708/2/965
– ident: 4
  doi: 10.1111/j.1365-2966.2008.14200.x
– volume: 794
  start-page: 153
  issn: 0004-637X
  year: 2014
  ident: 34
  publication-title: ApJ
  doi: 10.1088/0004-637X/794/2/153
– ident: 3
  doi: 10.1111/j.1745-3933.2005.00110.x
– volume: 728
  start-page: 60
  issn: 0004-637X
  year: 2011
  ident: 11
  publication-title: ApJ
  doi: 10.1088/0004-637X/728/1/60
– volume: 765
  start-page: L20
  issn: 0004-637X
  year: 2013
  ident: 19
  publication-title: ApJL
  doi: 10.1088/2041-8205/765/1/L20
– ident: 28
  doi: 10.1016/j.jcp.2007.12.017
– ident: 50
  doi: 10.1111/j.1365-2966.2011.19892.x
– volume: 757
  start-page: L20
  issn: 0004-637X
  year: 2012
  ident: 45
  publication-title: ApJL
  doi: 10.1088/2041-8205/757/2/L20
– volume: 773
  start-page: 158
  issn: 0004-637X
  year: 2013
  ident: 33
  publication-title: ApJ
  doi: 10.1088/0004-637X/773/2/158
– ident: 48
  doi: 10.1086/172046
– ident: 51
  doi: 10.1093/mnras/stt100
– volume: 609
  start-page: 452
  issn: 0004-637X
  year: 2004
  ident: 31
  publication-title: ApJ
  doi: 10.1086/421043
– volume: 694
  start-page: 626
  issn: 0004-637X
  year: 2009
  ident: 52
  publication-title: ApJ
  doi: 10.1088/0004-637X/694/1/626
– volume: 7
  start-page: 38
  year: 2012
  ident: 18
  publication-title: JCAP
  doi: 10.1088/1475-7516/2012/07/038
– volume: 652
  start-page: 1246
  issn: 0004-637X
  year: 2006
  ident: 60
  publication-title: ApJ
  doi: 10.1086/508154
– volume: 342
  year: 2000
  ident: 26
  publication-title: in OSIRIS: A Three-dimensional, Fully Relativistic Particle in Cell Code for Modeling Plasma Based Accelerators
– ident: 41
  doi: 10.1007/978-3-662-05012-5
– ident: 54
  doi: 10.1093/mnras/172.3.557
– ident: 1
  doi: 10.1126/science.1231160
– ident: 44
  doi: 10.1051/0004-6361/201117855
– volume: 610
  start-page: 851
  issn: 0004-637X
  year: 2004
  ident: 46
  publication-title: ApJ
  doi: 10.1086/421730
– ident: 32
  doi: 10.1029/92GL00379
– volume: 684
  start-page: 1174
  issn: 0004-637X
  year: 2008
  ident: 47
  publication-title: ApJ
  doi: 10.1086/590054
– volume: 579
  start-page: 337
  issn: 0004-637X
  year: 2002
  ident: 36
  publication-title: ApJ
  doi: 10.1086/342724
– ident: 37
  doi: 10.1086/149981
– ident: 24
  doi: 10.1086/168544
– volume: 345
  year: 2005
  ident: 55
  publication-title: Proc. AIP Conf. Proc. 801, Astrophysical Sources of High Energy Particles and Radiation
– year: 2005
  ident: 13
  publication-title: Plasma Physics via Computer Simulation
– ident: 12
  doi: 10.1016/S0927-6505(97)00016-9
– ident: 14
  doi: 10.1086/182658
– ident: 42
  doi: 10.1046/j.1365-8711.2000.03363.x
– year: 1987
  ident: 64
– volume: 744
  start-page: 67
  issn: 0004-637X
  year: 2012
  ident: 30
  publication-title: ApJ
  doi: 10.1088/0004-637X/744/1/67
– volume: 733
  start-page: 63
  issn: 0004-637X
  year: 2011
  ident: 53
  publication-title: ApJ
  doi: 10.1088/0004-637X/733/1/63
– ident: 9
  doi: 10.1111/j.1365-2966.2005.08774.x
– ident: 58
  doi: 10.1146/annurev.nucl.57.090506.123011
– ident: 38
  doi: 10.1016/j.jcp.2013.11.035
– volume: 190
  start-page: 297
  issn: 0067-0049
  year: 2010
  ident: 5
  publication-title: ApJS
  doi: 10.1088/0067-0049/190/2/297
– ident: 16
  doi: 10.1063/1.2840133
– volume: 178
  start-page: 137
  issn: 0067-0049
  year: 2008
  ident: 57
  publication-title: ApJS
  doi: 10.1086/588755
– ident: 61
  doi: 10.1007/3-540-36530-3_8
– volume: 722
  start-page: 1437
  issn: 0004-637X
  year: 2010
  ident: 6
  publication-title: ApJ
  doi: 10.1088/0004-637X/722/2/1437
– ident: 25
  doi: 10.1103/PhysRev.75.1169
– ident: 8
  doi: 10.1111/j.1365-2966.2004.08097.x
– volume: 798
  start-page: L28
  issn: 0004-637X
  year: 2015
  ident: 17
  publication-title: ApJL
  doi: 10.1088/2041-8205/798/2/L28
– volume: 485
  start-page: 638
  issn: 0004-637X
  year: 1997
  ident: 43
  publication-title: ApJ
  doi: 10.1086/304471
– ident: 56
  doi: 10.1016/j.newast.2008.06.003
SSID ssj0004299
Score 2.550011
Snippet ABSTRA CT We formulate a magnetohydrodynamic-particle-in-cell (MHD-PIC) method for describing the interaction between collisionless cosmic ray (CR) particles...
We formulate a magnetohydrodynamic-particle-in-cell (MHD-PIC) method for describing the interaction between collisionless cosmic ray (CR) particles and a...
SourceID osti
proquest
crossref
iop
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 55
SubjectTerms ACCELERATION
acceleration of particles
ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
BYPASSES
Chromium
COSMIC RADIATION
COUPLING
ELECTRONS
ENERGY SPECTRA
Feedback
HALL EFFECT
instabilities
INSTABILITY
INTERACTIONS
ION DRIFT
KINETICS
LAGRANGIAN FUNCTION
LORENTZ FORCE
MAGNETOHYDRODYNAMICS
magnetohydrodynamics (MHD)
Mathematical analysis
Mathematical models
methods: numerical
MHD
PARTICLES
PLASMA
plasmas
RELATIVISTIC RANGE
SHOCK WAVES
SIMULATION
Thermal plasmas
VELOCITY
Title MAGNETOHYDRODYNAMIC-PARTICLE-IN-CELL METHOD FOR COUPLING COSMIC RAYS WITH A THERMAL PLASMA: APPLICATION TO NON-RELATIVISTIC SHOCKS
URI https://iopscience.iop.org/article/10.1088/0004-637X/809/1/55
https://www.proquest.com/docview/1765949871
https://www.proquest.com/docview/1786177565
https://www.osti.gov/biblio/22879435
Volume 809
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbYRUhcWFhAW3ZBRkJwQG4T52luUZrdBNIkalK2PUWxnVyAZkXbAxz55YyTFMRDFeISzWFiJ7Zn_I09D4ReUEk5g32NOIJpBBQeJ1WlccLMRhMmpRWtOgfZxA4X5tultRx8c7pYmPZmUP1jIPtEwf0QDg5xroo9MIltOMuJq7GJPrGsI3TbcGHrVPF7afYzLJKyAf32_EPMzN_b-GVfOoK-QUe3IGV_6Ohu47k86aurbrp8hcrf5MN4t-Vj8fW3bI7__U_30b0BkmKvZ36AbtXrU3TmbdQhefvpC36JO7o_A9mcojtZTz1E32beVRIUabiaztPpKvFgTkkGEDny44BECfGDOMazoAjTKQZzE_vpIouj5AqIHHjx3Fvl-DoqQuzhIgzmMy_GWezlM-8N9rJsH-aMixQnoPNVfY8ieh_l0AHOw9R_lz9Ci8ug8EMyFHUgwnC1LbGZwTTOuAOGqyHBIDXAoNScRmqSN64lK8mpVGZiA-hD1i4ASFY5dq1Vlm3qghmP0fG6XddnCFMpKl0I04GWAfVx1lgVl7RxKZegtuQI6fspLcWQ8VwV3vhYdjfvrqtu3s1SDXsJw17qpWWN0Osf79z0-T4Ocr-CGS0Hsd8c5LxQq6mEhaCS8wrlxSS2JQWDlcG3j9Dz_SorQb7VpU21rtsdNOnYFjMZ2LWHeFwAog5g8yf__EHn6C5gP4t02X0v0PH2865-Cvhqy591UgTP1Lj-Do9ODlI
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfYEGgvCAZoHQOMhOABmSZOnMS8RWm6hKVJ1KRsfbLiOHmCtlq7B175yzknKQiBKt7uwV_yne9-Z9-dEXpLFZUc7Bpxa24QUHiSVJUhCbdbo7YprWjVBcimTrSwP9-wfTRhlwuz3gyq_yOQfaHgfguHgDhP5x7YxLHcm7Fn8LE5Zmy8Ue0Rus8sMDYg0pl1_Ts1kvIBAfd9hryZf4_zh206gvlBT6_hpP2lpzvjM32MHg2oEfv9Gp-ge83qFJ35W32Pvf72Hb_DHd1fU2xP0YO8p56iHzP_Mg3LLFpO5tlkmfqw7SQHFBsHSUjilARhkuBZWEbZBINHiINskSdxeglEAW3x3F8W-DouI-zjMgrnMz_BeeIXM_8T9vN8n4mMywynoJb1Fxxl_CUuYAJcRFlwVTxDi2lYBhEZ_l0gteUZO-JwixuSSxd8S0uBz2iBz2e4rTKUbD2mKiWp0p5cCwBBNR5gPF65TmNUzLHNmlvP0fFqvWrOEKaqrsy6tl0YGYCZ5C2rpKKtR6UCzaJGyNzvuKiHouT6b4yvonsc9zz9OG4LzSUBXBKmYGyEPvzqs-lLchxs_R4YKYaTuT3Y8kIzW4D86fq5tQ40qneCgk_JYe0j9GYvBAKOoH5XqVbN-g6GdB3GbQ6u56E2HmBFF-Dz-X8v6DV6mE-mAnh-9QKdAFJjpKvFe4GOd7d3zUtAQzv5qpP3n5Qs8hY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetohydrodynamic-particle-in-cell+method+for+coupling+cosmic+rays+with+a+thermal+plasma%3A+application+to+non-relativistic+shocks&rft.jtitle=The+Astrophysical+journal&rft.au=Bai%2C+Xue-Ning&rft.au=Sironi%2C+Lorenzo&rft.au=Caprioli%2C+Damiano&rft.au=Spitkovsky%2C+Anatoly&rft.date=2015-08-10&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=809&rft.issue=1&rft_id=info:doi/10.1088%2F0004-637X%2F809%2F1%2F55&rft.externalDocID=22879435
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon