When Cold Radial Migration is Hot: Constraints from Resonant Overlap

It is widely accepted that stars in a spiral disk, like the Milky Way's, can radially migrate on the order of a scale length over the disk's lifetime. With the exception of cold torquing, also known as "churning," processes that contribute to the radial migration of stars are nec...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 882; no. 2; pp. 111 - 123
Main Authors Daniel, Kathryne J., Schaffner, David A., McCluskey, Fiona, Kawaguchi, Codie Fiedler, Loebman, Sarah
Format Journal Article
LanguageEnglish
Published Philadelphia The American Astronomical Society 10.09.2019
IOP Publishing
Subjects
Online AccessGet full text
ISSN0004-637X
1538-4357
DOI10.3847/1538-4357/ab341a

Cover

Loading…
Abstract It is widely accepted that stars in a spiral disk, like the Milky Way's, can radially migrate on the order of a scale length over the disk's lifetime. With the exception of cold torquing, also known as "churning," processes that contribute to the radial migration of stars are necessarily associated with kinematic heating. Additionally, it is an open question as to whether or not an episode of cold torquing is kinematically cold over long radial distances. This study uses a suite of analytically based simulations to investigate the dynamical response when stars are subject to cold torquing and are also resonant with an ultraharmonic. Model results demonstrate that these populations are kinematically heated and have rms changes in orbital angular momentum around corotation that can exceed those of populations that do not experience resonant overlap. Thus, kinematic heating can occur during episodes of cold torquing. In a case study of a Milky Way-like disk with an exponential surface density profile and flat rotation curve, up to 40% of cold torqued stars in the solar cylinder experience resonant overlap. This fraction increases toward the galactic center. To first approximation, the maximum radial excursions from cold torquing depend only on the strength of the spiral pattern and the underlying rotation curve. This work places an upper limit to these excursions to be the distance between the ultraharmonics, otherwise radial migration near corotation can kinematically heat. The diffusion rate for kinematically cold radial migration is thus constrained by limiting the step size in the random walk approximation.
AbstractList It is widely accepted that stars in a spiral disk, like the Milky Way’s, can radially migrate on the order of a scale length over the disk’s lifetime. With the exception of cold torquing, also known as “churning,” processes that contribute to the radial migration of stars are necessarily associated with kinematic heating. Additionally, it is an open question as to whether or not an episode of cold torquing is kinematically cold over long radial distances. This study uses a suite of analytically based simulations to investigate the dynamical response when stars are subject to cold torquing and are also resonant with an ultraharmonic. Model results demonstrate that these populations are kinematically heated and have rms changes in orbital angular momentum around corotation that can exceed those of populations that do not experience resonant overlap. Thus, kinematic heating can occur during episodes of cold torquing. In a case study of a Milky Way-like disk with an exponential surface density profile and flat rotation curve, up to 40% of cold torqued stars in the solar cylinder experience resonant overlap. This fraction increases toward the galactic center. To first approximation, the maximum radial excursions from cold torquing depend only on the strength of the spiral pattern and the underlying rotation curve. This work places an upper limit to these excursions to be the distance between the ultraharmonics, otherwise radial migration near corotation can kinematically heat. The diffusion rate for kinematically cold radial migration is thus constrained by limiting the step size in the random walk approximation.
Author Schaffner, David A.
Daniel, Kathryne J.
McCluskey, Fiona
Loebman, Sarah
Kawaguchi, Codie Fiedler
Author_xml – sequence: 1
  givenname: Kathryne J.
  orcidid: 0000-0003-2594-8052
  surname: Daniel
  fullname: Daniel, Kathryne J.
  email: kjdaniel@brynmawr.edu
  organization: Bryn Mawr College, Department of Physics, 101 N Merion Ave., Bryn Mawr, PA 19010, USA
– sequence: 2
  givenname: David A.
  orcidid: 0000-0002-9180-6565
  surname: Schaffner
  fullname: Schaffner, David A.
  organization: Bryn Mawr College, Department of Physics, 101 N Merion Ave., Bryn Mawr, PA 19010, USA
– sequence: 3
  givenname: Fiona
  surname: McCluskey
  fullname: McCluskey, Fiona
  organization: Bryn Mawr College, Department of Physics, 101 N Merion Ave., Bryn Mawr, PA 19010, USA
– sequence: 4
  givenname: Codie Fiedler
  surname: Kawaguchi
  fullname: Kawaguchi, Codie Fiedler
  organization: Los Alamos National Labs, P.O. Box 1663 MS E526, Los Alamos, NM 87545, USA
– sequence: 5
  givenname: Sarah
  orcidid: 0000-0003-3217-5967
  surname: Loebman
  fullname: Loebman, Sarah
  organization: University of California Department of Physics, Davis,1 Shields Ave., Davis, CA 95616, USA
BookMark eNp9UE1LAzEQDVLBtnr3uCDeXJtsstmsN6kfFSqFougtpElWU7bJmqSC_95dVxREPQ0z897Me28EBtZZDcAhgqeYkWKCcsxSgvNiIlaYILEDhl-jARhCCElKcfG4B0YhrLs2K8shuHh41jaZulolS6GMqJNb8-RFNM4mJiQzF8_arQ3RC2NjSCrvNslSB2eFjcniVftaNPtgtxJ10AefdQzury7vprN0vri-mZ7PU4kZjCnNNGM0ExQSIqgqBVNEwpUusSIZoUrialXhXAq1KhiRCiKRF7SkiGlJyqrCY3DU3228e9nqEPnabb1tX_IM05yxrCxoi6I9SnoXgtcVlyZ-OOpM1BxB3iXGu3h4Fw_vE2uJ8Aex8WYj_Nt_lOOeYlzzLUY0a96K4RlHCPFGdcpPfsH9efYdYqKKEQ
CitedBy_id crossref_primary_10_1051_0004_6361_202142977
crossref_primary_10_1016_j_newar_2024_101721
crossref_primary_10_1093_mnras_staa3996
crossref_primary_10_1093_mnras_staa2750
crossref_primary_10_1051_0004_6361_201937188
crossref_primary_10_3847_1538_4357_acd69b
crossref_primary_10_1093_mnras_stab1241
crossref_primary_10_1093_mnras_stac479
crossref_primary_10_1051_0004_6361_202452112
crossref_primary_10_3847_1538_4357_ab910c
Cites_doi 10.1086/149907
10.3847/0004-637X/823/2/114
10.1086/163134
10.1146/annurev.aa.20.090182.001341
10.1086/301009
10.3847/1538-4357/aadba5
10.3847/0004-637X/824/1/39
10.1016/0370-1573(79)90023-1
10.1086/586734
10.1103/PhysRevLett.88.174102
10.1086/344592
10.1086/150474
10.1088/0004-637X/737/1/8
10.1093/mnras/157.1.1
10.1088/0004-637X/722/1/112
10.1111/j.1365-2966.2009.15365.x
10.1103/PhysRevLett.99.154102
10.1046/j.1365-8711.2002.05806.x
10.1088/0004-637X/766/1/34
10.1088/0067-0049/219/1/12
10.1086/592556
10.1088/0067-0049/216/2/29
10.1093/mnras/stu2683
10.1111/j.1365-2966.2012.21860.x
10.1063/1.4948275
10.3847/0004-637X/823/1/4
10.1103/PhysRevE.91.023101
10.1111/j.1365-2966.2012.20712.x
10.1515/9781400828722
10.1093/mnras/stw2819
10.1093/mnras/stx1392
10.1126/science.220.4604.1339
10.1093/mnras/stx1483
10.1093/mnras/sty199
10.1111/j.1365-2966.2009.14750.x
10.1093/mnras/stx093
10.1103/RevModPhys.86.1
10.1093/mnras/stv745
10.1051/0004-6361/201015139
10.1086/506564
10.1088/0004-637X/808/2/132
10.1007/978-3-319-56570-5_3
10.3847/1538-4357/833/1/42
10.1086/185920
10.1093/mnras/stu2726
10.1086/145730
10.1086/149349
10.1086/345725
10.1051/0004-6361/201016276
10.1093/pasj/61.2.227
10.1086/523619
10.1111/j.1365-2966.2012.20411.x
10.1063/1.4919391
10.1088/0004-637X/714/1/663
10.3847/2041-8205/818/1/L6
ContentType Journal Article
Copyright 2019. The American Astronomical Society.
Copyright IOP Publishing Sep 10, 2019
Copyright_xml – notice: 2019. The American Astronomical Society.
– notice: Copyright IOP Publishing Sep 10, 2019
DBID O3W
TSCCA
AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
DOI 10.3847/1538-4357/ab341a
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Aerospace Database
CrossRef

Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
DocumentTitleAlternate When Cold Radial Migration is Hot: Constraints from Resonant Overlap
EISSN 1538-4357
ExternalDocumentID 10_3847_1538_4357_ab341a
apjab341a
GrantInformation_xml – fundername: NSF
  grantid: PHY-1846943
– fundername: STScI
  grantid: HST-JF2-51395.001-A
– fundername: NSF
  grantid: PHY-1607611
– fundername: NSF-DOE
  grantid: DE-SC0018258
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
2WC
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
TSCCA
WH7
XSW
AAYXX
CITATION
7TG
8FD
AEINN
H8D
KL.
L7M
ID FETCH-LOGICAL-c380t-62e8862a6044a6d9a8d4c0be93d4246dc3fbf35cadb784cd01a5769618ec49ff3
IEDL.DBID O3W
ISSN 0004-637X
IngestDate Wed Aug 13 11:35:00 EDT 2025
Tue Jul 01 03:24:09 EDT 2025
Thu Apr 24 23:11:01 EDT 2025
Thu Jan 07 13:53:41 EST 2021
Wed Aug 21 03:33:08 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c380t-62e8862a6044a6d9a8d4c0be93d4246dc3fbf35cadb784cd01a5769618ec49ff3
Notes Galaxies and Cosmology
AAS17296
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2594-8052
0000-0002-9180-6565
0000-0003-3217-5967
OpenAccessLink https://iopscience.iop.org/article/10.3847/1538-4357/ab341a
PQID 2365882976
PQPubID 4562441
PageCount 13
ParticipantIDs crossref_citationtrail_10_3847_1538_4357_ab341a
crossref_primary_10_3847_1538_4357_ab341a
proquest_journals_2365882976
iop_journals_10_3847_1538_4357_ab341a
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-10
PublicationDateYYYYMMDD 2019-09-10
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-10
  day: 10
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle The Astrophysical journal
PublicationTitleAbbrev APJ
PublicationTitleAlternate Astrophys. J
PublicationYear 2019
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
References Roškar (apjab341abib46) 2008; 675
Pfenniger (apjab341abib40) 1990; 230
Alam (apjab341abib1) 2015; 219
Jurić (apjab341abib29) 2008; 673
Kordopatis (apjab341abib30) 2015; 447
Schönrich (apjab341abib50) 2009b; 396
Casagrande (apjab341abib13) 2011; 530
Barbanis (apjab341abib5) 1967; 150
Pichardo (apjab341abib41) 2003; 582
Sellwood (apjab341abib53) 2002; 336
Schönrich (apjab341abib51) 2017; 467
Aumer (apjab341abib3) 2017; 470
Binney (apjab341abib6) 1987
Binney (apjab341abib7) 2008
Daniel (apjab341abib17) 2018; 476
Lynden-Bell (apjab341abib35) 1972; 157
Martinet (apjab341abib36) 1974; 32
Sofue (apjab341abib54) 2009; 61
Wielen (apjab341abib63) 1996; 314
Quillen (apjab341abib43) 2003; 125
Rosso (apjab341abib44) 2007; 99
Buta (apjab341abib11) 2017; 470
Wegg (apjab341abib62) 2015; 450
Vera-Ciro (apjab341abib59) 2016; 824
Debattista (apjab341abib19) 2017; 434
de Jong (apjab341abib18) 2010; 714
Freeman (apjab341abib24) 1970; 160
Vera-Ciro (apjab341abib60) 2016; 833
Frankel (apjab341abib23) 2018; 865
Ness (apjab341abib39) 2016; 823
Solway (apjab341abib55) 2012; 422
Steinmetz (apjab341abib57) 2006; 132
Kuijken (apjab341abib31) 1991; 367
Schaffner (apjab341abib48) 2016; 23
Grand (apjab341abib26) 2012; 421
Schönrich (apjab341abib49) 2009a; 399
Daniel (apjab341abib16) 2015; 447
Hayden (apjab341abib27) 2015; 808
Loebman (apjab341abib33) 2016; 818
van der Kruit (apjab341abib58) 1987; 173
D’Onghia (apjab341abib22) 2013; 766
Goldreich (apjab341abib25) 1982; 20
Minchev (apjab341abib37) 2010; 722
Chirikov (apjab341abib14) 1979; 52
Bandt (apjab341abib4) 2002; 88
Bovy (apjab341abib9) 2019
Spitzer (apjab341abib56) 1953; 118
Loebman (apjab341abib34) 2011; 737
Weck (apjab341abib61) 2015; 91
Dehnen (apjab341abib20) 1999; 118
Sellwood (apjab341abib52) 2014; 86
Contopoulos (apjab341abib15) 1978; 64
Minchev (apjab341abib38) 2011; 527
Athanassoula (apjab341abib2) 1983; 127
Brown (apjab341abib10) 2015; 22
D’Onghia (apjab341abib21) 2016; 823
Portail (apjab341abib42) 2017; 465
Lin (apjab341abib32) 1969; 155
Bovy (apjab341abib8) 2015; 216
Roškar (apjab341abib45) 2012; 426
Rubin (apjab341abib47) 1983; 220
Jalali (apjab341abib28) 2008; 689
Carlberg (apjab341abib12) 1985; 292
References_xml – volume: 155
  start-page: 721
  year: 1969
  ident: apjab341abib32
  publication-title: ApJ
  doi: 10.1086/149907
– volume: 823
  start-page: 114
  year: 2016
  ident: apjab341abib39
  publication-title: ApJ
  doi: 10.3847/0004-637X/823/2/114
– volume: 292
  start-page: 79
  year: 1985
  ident: apjab341abib12
  publication-title: ApJ
  doi: 10.1086/163134
– volume: 20
  start-page: 249
  year: 1982
  ident: apjab341abib25
  publication-title: ARA&A
  doi: 10.1146/annurev.aa.20.090182.001341
– volume: 118
  start-page: 1190
  year: 1999
  ident: apjab341abib20
  publication-title: AJ
  doi: 10.1086/301009
– volume: 865
  start-page: 96
  year: 2018
  ident: apjab341abib23
  publication-title: ApJ
  doi: 10.3847/1538-4357/aadba5
– volume: 824
  start-page: 39
  year: 2016
  ident: apjab341abib59
  publication-title: ApJ
  doi: 10.3847/0004-637X/824/1/39
– volume: 52
  start-page: 263
  year: 1979
  ident: apjab341abib14
  publication-title: PhR
  doi: 10.1016/0370-1573(79)90023-1
– volume: 675
  start-page: L65
  year: 2008
  ident: apjab341abib46
  publication-title: ApJL
  doi: 10.1086/586734
– volume: 88
  year: 2002
  ident: apjab341abib4
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.88.174102
– volume: 32
  start-page: 329
  year: 1974
  ident: apjab341abib36
  publication-title: A&A
– volume: 582
  start-page: 230
  year: 2003
  ident: apjab341abib41
  publication-title: ApJ
  doi: 10.1086/344592
– volume: 160
  start-page: 811
  year: 1970
  ident: apjab341abib24
  publication-title: ApJ
  doi: 10.1086/150474
– volume: 737
  start-page: 8
  year: 2011
  ident: apjab341abib34
  publication-title: ApJ
  doi: 10.1088/0004-637X/737/1/8
– volume: 157
  start-page: 1
  year: 1972
  ident: apjab341abib35
  publication-title: MNRAS
  doi: 10.1093/mnras/157.1.1
– volume: 722
  start-page: 112
  year: 2010
  ident: apjab341abib37
  publication-title: ApJ
  doi: 10.1088/0004-637X/722/1/112
– volume: 399
  start-page: 1145
  year: 2009a
  ident: apjab341abib49
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.15365.x
– volume: 99
  year: 2007
  ident: apjab341abib44
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.99.154102
– volume: 336
  start-page: 785
  year: 2002
  ident: apjab341abib53
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2002.05806.x
– volume: 766
  start-page: 34
  year: 2013
  ident: apjab341abib22
  publication-title: ApJ
  doi: 10.1088/0004-637X/766/1/34
– volume: 219
  start-page: 12
  year: 2015
  ident: apjab341abib1
  publication-title: ApJS
  doi: 10.1088/0067-0049/219/1/12
– volume: 689
  start-page: 134
  year: 2008
  ident: apjab341abib28
  publication-title: ApJ
  doi: 10.1086/592556
– volume: 216
  start-page: 29
  year: 2015
  ident: apjab341abib8
  publication-title: ApJS
  doi: 10.1088/0067-0049/216/2/29
– volume: 447
  start-page: 3576
  year: 2015
  ident: apjab341abib16
  publication-title: MNRAS
  doi: 10.1093/mnras/stu2683
– volume: 426
  start-page: 2089
  year: 2012
  ident: apjab341abib45
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.21860.x
– volume: 23
  year: 2016
  ident: apjab341abib48
  publication-title: PhPl
  doi: 10.1063/1.4948275
– volume: 823
  start-page: 4
  year: 2016
  ident: apjab341abib21
  publication-title: ApJ
  doi: 10.3847/0004-637X/823/1/4
– volume: 91
  year: 2015
  ident: apjab341abib61
  publication-title: PhRvE
  doi: 10.1103/PhysRevE.91.023101
– volume: 422
  start-page: 1363
  year: 2012
  ident: apjab341abib55
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.20712.x
– year: 2008
  ident: apjab341abib7
  doi: 10.1515/9781400828722
– volume: 465
  start-page: 1621
  year: 2017
  ident: apjab341abib42
  publication-title: MNRAS
  doi: 10.1093/mnras/stw2819
– volume: 470
  start-page: 3819
  year: 2017
  ident: apjab341abib11
  publication-title: MNRAS
  doi: 10.1093/mnras/stx1392
– volume: 314
  start-page: 438
  year: 1996
  ident: apjab341abib63
  publication-title: A&A
– volume: 220
  start-page: 1339
  year: 1983
  ident: apjab341abib47
  publication-title: Sci
  doi: 10.1126/science.220.4604.1339
– volume: 470
  start-page: 3685
  year: 2017
  ident: apjab341abib3
  publication-title: MNRAS
  doi: 10.1093/mnras/stx1483
– volume: 476
  start-page: 1561
  year: 2018
  ident: apjab341abib17
  publication-title: MNRAS
  doi: 10.1093/mnras/sty199
– volume: 396
  start-page: 203
  year: 2009b
  ident: apjab341abib50
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.14750.x
– volume: 467
  start-page: 1154
  year: 2017
  ident: apjab341abib51
  publication-title: MNRAS
  doi: 10.1093/mnras/stx093
– volume: 86
  start-page: 1
  year: 2014
  ident: apjab341abib52
  publication-title: RvMP
  doi: 10.1103/RevModPhys.86.1
– volume: 450
  start-page: 4050
  year: 2015
  ident: apjab341abib62
  publication-title: MNRAS
  doi: 10.1093/mnras/stv745
– year: 2019
  ident: apjab341abib9
– volume: 527
  start-page: A147
  year: 2011
  ident: apjab341abib38
  publication-title: A&A
  doi: 10.1051/0004-6361/201015139
– volume: 127
  start-page: 349
  year: 1983
  ident: apjab341abib2
  publication-title: A&A
– volume: 132
  start-page: 1645
  year: 2006
  ident: apjab341abib57
  publication-title: AJ
  doi: 10.1086/506564
– volume: 64
  start-page: 323
  year: 1978
  ident: apjab341abib15
  publication-title: A&A
– volume: 173
  start-page: 59
  year: 1987
  ident: apjab341abib58
  publication-title: A&A
– volume: 808
  start-page: 132
  year: 2015
  ident: apjab341abib27
  publication-title: ApJ
  doi: 10.1088/0004-637X/808/2/132
– volume: 434
  start-page: 77
  year: 2017
  ident: apjab341abib19
  publication-title: ASSL
  doi: 10.1007/978-3-319-56570-5_3
– volume: 833
  start-page: 42
  year: 2016
  ident: apjab341abib60
  publication-title: ApJ
  doi: 10.3847/1538-4357/833/1/42
– volume: 367
  start-page: L9
  year: 1991
  ident: apjab341abib31
  publication-title: ApJL
  doi: 10.1086/185920
– volume: 447
  start-page: 3526
  year: 2015
  ident: apjab341abib30
  publication-title: MNRAS
  doi: 10.1093/mnras/stu2726
– volume: 230
  start-page: 55
  year: 1990
  ident: apjab341abib40
  publication-title: A&A
– volume: 118
  start-page: 106
  year: 1953
  ident: apjab341abib56
  publication-title: ApJ
  doi: 10.1086/145730
– volume: 150
  start-page: 461
  year: 1967
  ident: apjab341abib5
  publication-title: ApJ
  doi: 10.1086/149349
– volume: 125
  start-page: 785
  year: 2003
  ident: apjab341abib43
  publication-title: AJ
  doi: 10.1086/345725
– year: 1987
  ident: apjab341abib6
– volume: 530
  start-page: A138
  year: 2011
  ident: apjab341abib13
  publication-title: A&A
  doi: 10.1051/0004-6361/201016276
– volume: 61
  start-page: 227
  year: 2009
  ident: apjab341abib54
  publication-title: PASJ
  doi: 10.1093/pasj/61.2.227
– volume: 673
  start-page: 864
  year: 2008
  ident: apjab341abib29
  publication-title: ApJ
  doi: 10.1086/523619
– volume: 421
  start-page: 1529
  year: 2012
  ident: apjab341abib26
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.20411.x
– volume: 22
  year: 2015
  ident: apjab341abib10
  publication-title: PhPl
  doi: 10.1063/1.4919391
– volume: 714
  start-page: 663
  year: 2010
  ident: apjab341abib18
  publication-title: ApJ
  doi: 10.1088/0004-637X/714/1/663
– volume: 818
  start-page: L6
  year: 2016
  ident: apjab341abib33
  publication-title: ApJL
  doi: 10.3847/2041-8205/818/1/L6
SSID ssj0004299
Score 2.37375
Snippet It is widely accepted that stars in a spiral disk, like the Milky Way's, can radially migrate on the order of a scale length over the disk's lifetime. With the...
It is widely accepted that stars in a spiral disk, like the Milky Way’s, can radially migrate on the order of a scale length over the disk’s lifetime. With the...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 111
SubjectTerms Angular momentum
Approximation
Astrophysics
chaos
Cold
Computer simulation
Constraints
Corotation
Cylinders
Diffusion rate
Galactic rotation
galaxies: evolution
galaxies: kinematics and dynamics
galaxies: spiral
Galaxy: disk
Galaxy: evolution
Heating
Kinematics
Mathematical analysis
Milky Way
Populations
Random walk
Stars
Title When Cold Radial Migration is Hot: Constraints from Resonant Overlap
URI https://iopscience.iop.org/article/10.3847/1538-4357/ab341a
https://www.proquest.com/docview/2365882976
Volume 882
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9RAEN4AhoQXogjhEC_7ICY-lGu7072tPhGUnCR6xEi4t83-6BLMeW1sNfG_d6ZbIERDfNuHabf5tjvzzezODGOvcukKXxQ-gVDaBNCGJGgUKjqDTwsTSuQI_S3fz3J2CeeLYrHG3t3lwtTNoPqPcRgLBUcIaX8L1KWTfo-ilZ9OjEUdjOToiVBSkec1F1f3SZF5OXBfSKSYLuIZ5T_f8MAmreO8fynm3tqcPWXbA03kJ_GjnrG1arXD9k9aClzX33_z17wfx7hEu8M2L-LoOXuP6nXFT-ul51-o7sCSf7q5jsvMb1o-q7u3nLp09r0hupZTfgmnID7diOHzXxTfa3bZ5dmHr6ezZGiVkDih0i6ReaXQNzEyBTDSl0Z5cKmtSuEhB-mdCDaIwhlvpwqcTzODjgZ1e6kclCGIPbaxqlfVPuOphVAYcMZCBpkD6zJFRAPCtLRK2RGb3IKl3VBHnD55qdGfIHg1wasJXh3hHbE3d080sYbGI7JHiL8eNlL7iNz4gZxpvml0FnROLo1ufBixw9slvJfKBRIuSiaWB_85zwu2hRSpv1WWpYdso_vxs3qJNKSzY7b-cX4x7n-6P8Yv1Ck
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RIhAXBAXULaX4AEgcwibxxJtwq1pWy6utEBV7s_yIUdGyiZqAxL9nJk6pKlDFzYdJbH225-V5ADzLlSt8UfgEQ2UTJBmSkFCo-Q0-LUyoSEcYonyP1OIU3y2L5djndMiFadqR9b-iYSwUHCHk-y2Jl06HO0pSfjY1lniwmbY-bMDNQirFvRuO5ZfLxMi8GvVfTJScLeM75T__ckUubdDcfzHnQeLM78HdUVUU-3Fh9-FGvd6C7f2OndfN91_ihRjG0TfRbcGtkzh6AIfEYtfioFl58YlrD6zEx7OvcavFWScWTf9acKfOoT9E3wnOMRHsyOeoGHH8k3187UM4nb_5fLBIxnYJiZNl2icqr0uyT4xKEY3ylSk9utTWlfSYo_JOBhtk4Yy3sxKdTzNDxgZ3fKkdViHIR7C5btb1NojUYigMOmMxw8yhdVnJygaGWWXL0k5gegGWdmMtcV7ySpNNwfBqhlczvDrCO4GXf75oYx2Na2ifE_56vEzdNXR7V-hM-02TwaBzNms0nYoJ7F5s4SVVLknp4oRitfOf8zyF2yeHc_3h7dH7x3CHNKYhyCxLd2GzP_9RPyGtpLd7w8n7DfdJ1w8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=When+Cold+Radial+Migration+is+Hot%3A+Constraints+from+Resonant+Overlap&rft.jtitle=The+Astrophysical+journal&rft.au=Daniel%2C+Kathryne+J&rft.au=Schaffner%2C+David+A&rft.au=McCluskey%2C+Fiona&rft.au=Codie+Fiedler+Kawaguchi&rft.date=2019-09-10&rft.pub=IOP+Publishing&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=882&rft.issue=2&rft_id=info:doi/10.3847%2F1538-4357%2Fab341a&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon