When Cold Radial Migration is Hot: Constraints from Resonant Overlap
It is widely accepted that stars in a spiral disk, like the Milky Way's, can radially migrate on the order of a scale length over the disk's lifetime. With the exception of cold torquing, also known as "churning," processes that contribute to the radial migration of stars are nec...
Saved in:
Published in | The Astrophysical journal Vol. 882; no. 2; pp. 111 - 123 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
The American Astronomical Society
10.09.2019
IOP Publishing |
Subjects | |
Online Access | Get full text |
ISSN | 0004-637X 1538-4357 |
DOI | 10.3847/1538-4357/ab341a |
Cover
Loading…
Abstract | It is widely accepted that stars in a spiral disk, like the Milky Way's, can radially migrate on the order of a scale length over the disk's lifetime. With the exception of cold torquing, also known as "churning," processes that contribute to the radial migration of stars are necessarily associated with kinematic heating. Additionally, it is an open question as to whether or not an episode of cold torquing is kinematically cold over long radial distances. This study uses a suite of analytically based simulations to investigate the dynamical response when stars are subject to cold torquing and are also resonant with an ultraharmonic. Model results demonstrate that these populations are kinematically heated and have rms changes in orbital angular momentum around corotation that can exceed those of populations that do not experience resonant overlap. Thus, kinematic heating can occur during episodes of cold torquing. In a case study of a Milky Way-like disk with an exponential surface density profile and flat rotation curve, up to 40% of cold torqued stars in the solar cylinder experience resonant overlap. This fraction increases toward the galactic center. To first approximation, the maximum radial excursions from cold torquing depend only on the strength of the spiral pattern and the underlying rotation curve. This work places an upper limit to these excursions to be the distance between the ultraharmonics, otherwise radial migration near corotation can kinematically heat. The diffusion rate for kinematically cold radial migration is thus constrained by limiting the step size in the random walk approximation. |
---|---|
AbstractList | It is widely accepted that stars in a spiral disk, like the Milky Way’s, can radially migrate on the order of a scale length over the disk’s lifetime. With the exception of cold torquing, also known as “churning,” processes that contribute to the radial migration of stars are necessarily associated with kinematic heating. Additionally, it is an open question as to whether or not an episode of cold torquing is kinematically cold over long radial distances. This study uses a suite of analytically based simulations to investigate the dynamical response when stars are subject to cold torquing and are also resonant with an ultraharmonic. Model results demonstrate that these populations are kinematically heated and have rms changes in orbital angular momentum around corotation that can exceed those of populations that do not experience resonant overlap. Thus, kinematic heating can occur during episodes of cold torquing. In a case study of a Milky Way-like disk with an exponential surface density profile and flat rotation curve, up to 40% of cold torqued stars in the solar cylinder experience resonant overlap. This fraction increases toward the galactic center. To first approximation, the maximum radial excursions from cold torquing depend only on the strength of the spiral pattern and the underlying rotation curve. This work places an upper limit to these excursions to be the distance between the ultraharmonics, otherwise radial migration near corotation can kinematically heat. The diffusion rate for kinematically cold radial migration is thus constrained by limiting the step size in the random walk approximation. |
Author | Schaffner, David A. Daniel, Kathryne J. McCluskey, Fiona Loebman, Sarah Kawaguchi, Codie Fiedler |
Author_xml | – sequence: 1 givenname: Kathryne J. orcidid: 0000-0003-2594-8052 surname: Daniel fullname: Daniel, Kathryne J. email: kjdaniel@brynmawr.edu organization: Bryn Mawr College, Department of Physics, 101 N Merion Ave., Bryn Mawr, PA 19010, USA – sequence: 2 givenname: David A. orcidid: 0000-0002-9180-6565 surname: Schaffner fullname: Schaffner, David A. organization: Bryn Mawr College, Department of Physics, 101 N Merion Ave., Bryn Mawr, PA 19010, USA – sequence: 3 givenname: Fiona surname: McCluskey fullname: McCluskey, Fiona organization: Bryn Mawr College, Department of Physics, 101 N Merion Ave., Bryn Mawr, PA 19010, USA – sequence: 4 givenname: Codie Fiedler surname: Kawaguchi fullname: Kawaguchi, Codie Fiedler organization: Los Alamos National Labs, P.O. Box 1663 MS E526, Los Alamos, NM 87545, USA – sequence: 5 givenname: Sarah orcidid: 0000-0003-3217-5967 surname: Loebman fullname: Loebman, Sarah organization: University of California Department of Physics, Davis,1 Shields Ave., Davis, CA 95616, USA |
BookMark | eNp9UE1LAzEQDVLBtnr3uCDeXJtsstmsN6kfFSqFougtpElWU7bJmqSC_95dVxREPQ0z897Me28EBtZZDcAhgqeYkWKCcsxSgvNiIlaYILEDhl-jARhCCElKcfG4B0YhrLs2K8shuHh41jaZulolS6GMqJNb8-RFNM4mJiQzF8_arQ3RC2NjSCrvNslSB2eFjcniVftaNPtgtxJ10AefdQzury7vprN0vri-mZ7PU4kZjCnNNGM0ExQSIqgqBVNEwpUusSIZoUrialXhXAq1KhiRCiKRF7SkiGlJyqrCY3DU3228e9nqEPnabb1tX_IM05yxrCxoi6I9SnoXgtcVlyZ-OOpM1BxB3iXGu3h4Fw_vE2uJ8Aex8WYj_Nt_lOOeYlzzLUY0a96K4RlHCPFGdcpPfsH9efYdYqKKEQ |
CitedBy_id | crossref_primary_10_1051_0004_6361_202142977 crossref_primary_10_1016_j_newar_2024_101721 crossref_primary_10_1093_mnras_staa3996 crossref_primary_10_1093_mnras_staa2750 crossref_primary_10_1051_0004_6361_201937188 crossref_primary_10_3847_1538_4357_acd69b crossref_primary_10_1093_mnras_stab1241 crossref_primary_10_1093_mnras_stac479 crossref_primary_10_1051_0004_6361_202452112 crossref_primary_10_3847_1538_4357_ab910c |
Cites_doi | 10.1086/149907 10.3847/0004-637X/823/2/114 10.1086/163134 10.1146/annurev.aa.20.090182.001341 10.1086/301009 10.3847/1538-4357/aadba5 10.3847/0004-637X/824/1/39 10.1016/0370-1573(79)90023-1 10.1086/586734 10.1103/PhysRevLett.88.174102 10.1086/344592 10.1086/150474 10.1088/0004-637X/737/1/8 10.1093/mnras/157.1.1 10.1088/0004-637X/722/1/112 10.1111/j.1365-2966.2009.15365.x 10.1103/PhysRevLett.99.154102 10.1046/j.1365-8711.2002.05806.x 10.1088/0004-637X/766/1/34 10.1088/0067-0049/219/1/12 10.1086/592556 10.1088/0067-0049/216/2/29 10.1093/mnras/stu2683 10.1111/j.1365-2966.2012.21860.x 10.1063/1.4948275 10.3847/0004-637X/823/1/4 10.1103/PhysRevE.91.023101 10.1111/j.1365-2966.2012.20712.x 10.1515/9781400828722 10.1093/mnras/stw2819 10.1093/mnras/stx1392 10.1126/science.220.4604.1339 10.1093/mnras/stx1483 10.1093/mnras/sty199 10.1111/j.1365-2966.2009.14750.x 10.1093/mnras/stx093 10.1103/RevModPhys.86.1 10.1093/mnras/stv745 10.1051/0004-6361/201015139 10.1086/506564 10.1088/0004-637X/808/2/132 10.1007/978-3-319-56570-5_3 10.3847/1538-4357/833/1/42 10.1086/185920 10.1093/mnras/stu2726 10.1086/145730 10.1086/149349 10.1086/345725 10.1051/0004-6361/201016276 10.1093/pasj/61.2.227 10.1086/523619 10.1111/j.1365-2966.2012.20411.x 10.1063/1.4919391 10.1088/0004-637X/714/1/663 10.3847/2041-8205/818/1/L6 |
ContentType | Journal Article |
Copyright | 2019. The American Astronomical Society. Copyright IOP Publishing Sep 10, 2019 |
Copyright_xml | – notice: 2019. The American Astronomical Society. – notice: Copyright IOP Publishing Sep 10, 2019 |
DBID | O3W TSCCA AAYXX CITATION 7TG 8FD H8D KL. L7M |
DOI | 10.3847/1538-4357/ab341a |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aerospace Database CrossRef |
Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
DocumentTitleAlternate | When Cold Radial Migration is Hot: Constraints from Resonant Overlap |
EISSN | 1538-4357 |
ExternalDocumentID | 10_3847_1538_4357_ab341a apjab341a |
GrantInformation_xml | – fundername: NSF grantid: PHY-1846943 – fundername: STScI grantid: HST-JF2-51395.001-A – fundername: NSF grantid: PHY-1607611 – fundername: NSF-DOE grantid: DE-SC0018258 |
GroupedDBID | -DZ -~X 123 1JI 23N 2FS 2WC 4.4 6J9 85S AAFWJ AAGCD AAJIO ABHWH ACBEA ACGFS ACHIP ACNCT ADACN AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 TSCCA WH7 XSW AAYXX CITATION 7TG 8FD AEINN H8D KL. L7M |
ID | FETCH-LOGICAL-c380t-62e8862a6044a6d9a8d4c0be93d4246dc3fbf35cadb784cd01a5769618ec49ff3 |
IEDL.DBID | O3W |
ISSN | 0004-637X |
IngestDate | Wed Aug 13 11:35:00 EDT 2025 Tue Jul 01 03:24:09 EDT 2025 Thu Apr 24 23:11:01 EDT 2025 Thu Jan 07 13:53:41 EST 2021 Wed Aug 21 03:33:08 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c380t-62e8862a6044a6d9a8d4c0be93d4246dc3fbf35cadb784cd01a5769618ec49ff3 |
Notes | Galaxies and Cosmology AAS17296 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2594-8052 0000-0002-9180-6565 0000-0003-3217-5967 |
OpenAccessLink | https://iopscience.iop.org/article/10.3847/1538-4357/ab341a |
PQID | 2365882976 |
PQPubID | 4562441 |
PageCount | 13 |
ParticipantIDs | crossref_citationtrail_10_3847_1538_4357_ab341a crossref_primary_10_3847_1538_4357_ab341a proquest_journals_2365882976 iop_journals_10_3847_1538_4357_ab341a |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-10 |
PublicationDateYYYYMMDD | 2019-09-10 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | The Astrophysical journal |
PublicationTitleAbbrev | APJ |
PublicationTitleAlternate | Astrophys. J |
PublicationYear | 2019 |
Publisher | The American Astronomical Society IOP Publishing |
Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing |
References | Roškar (apjab341abib46) 2008; 675 Pfenniger (apjab341abib40) 1990; 230 Alam (apjab341abib1) 2015; 219 Jurić (apjab341abib29) 2008; 673 Kordopatis (apjab341abib30) 2015; 447 Schönrich (apjab341abib50) 2009b; 396 Casagrande (apjab341abib13) 2011; 530 Barbanis (apjab341abib5) 1967; 150 Pichardo (apjab341abib41) 2003; 582 Sellwood (apjab341abib53) 2002; 336 Schönrich (apjab341abib51) 2017; 467 Aumer (apjab341abib3) 2017; 470 Binney (apjab341abib6) 1987 Binney (apjab341abib7) 2008 Daniel (apjab341abib17) 2018; 476 Lynden-Bell (apjab341abib35) 1972; 157 Martinet (apjab341abib36) 1974; 32 Sofue (apjab341abib54) 2009; 61 Wielen (apjab341abib63) 1996; 314 Quillen (apjab341abib43) 2003; 125 Rosso (apjab341abib44) 2007; 99 Buta (apjab341abib11) 2017; 470 Wegg (apjab341abib62) 2015; 450 Vera-Ciro (apjab341abib59) 2016; 824 Debattista (apjab341abib19) 2017; 434 de Jong (apjab341abib18) 2010; 714 Freeman (apjab341abib24) 1970; 160 Vera-Ciro (apjab341abib60) 2016; 833 Frankel (apjab341abib23) 2018; 865 Ness (apjab341abib39) 2016; 823 Solway (apjab341abib55) 2012; 422 Steinmetz (apjab341abib57) 2006; 132 Kuijken (apjab341abib31) 1991; 367 Schaffner (apjab341abib48) 2016; 23 Grand (apjab341abib26) 2012; 421 Schönrich (apjab341abib49) 2009a; 399 Daniel (apjab341abib16) 2015; 447 Hayden (apjab341abib27) 2015; 808 Loebman (apjab341abib33) 2016; 818 van der Kruit (apjab341abib58) 1987; 173 D’Onghia (apjab341abib22) 2013; 766 Goldreich (apjab341abib25) 1982; 20 Minchev (apjab341abib37) 2010; 722 Chirikov (apjab341abib14) 1979; 52 Bandt (apjab341abib4) 2002; 88 Bovy (apjab341abib9) 2019 Spitzer (apjab341abib56) 1953; 118 Loebman (apjab341abib34) 2011; 737 Weck (apjab341abib61) 2015; 91 Dehnen (apjab341abib20) 1999; 118 Sellwood (apjab341abib52) 2014; 86 Contopoulos (apjab341abib15) 1978; 64 Minchev (apjab341abib38) 2011; 527 Athanassoula (apjab341abib2) 1983; 127 Brown (apjab341abib10) 2015; 22 D’Onghia (apjab341abib21) 2016; 823 Portail (apjab341abib42) 2017; 465 Lin (apjab341abib32) 1969; 155 Bovy (apjab341abib8) 2015; 216 Roškar (apjab341abib45) 2012; 426 Rubin (apjab341abib47) 1983; 220 Jalali (apjab341abib28) 2008; 689 Carlberg (apjab341abib12) 1985; 292 |
References_xml | – volume: 155 start-page: 721 year: 1969 ident: apjab341abib32 publication-title: ApJ doi: 10.1086/149907 – volume: 823 start-page: 114 year: 2016 ident: apjab341abib39 publication-title: ApJ doi: 10.3847/0004-637X/823/2/114 – volume: 292 start-page: 79 year: 1985 ident: apjab341abib12 publication-title: ApJ doi: 10.1086/163134 – volume: 20 start-page: 249 year: 1982 ident: apjab341abib25 publication-title: ARA&A doi: 10.1146/annurev.aa.20.090182.001341 – volume: 118 start-page: 1190 year: 1999 ident: apjab341abib20 publication-title: AJ doi: 10.1086/301009 – volume: 865 start-page: 96 year: 2018 ident: apjab341abib23 publication-title: ApJ doi: 10.3847/1538-4357/aadba5 – volume: 824 start-page: 39 year: 2016 ident: apjab341abib59 publication-title: ApJ doi: 10.3847/0004-637X/824/1/39 – volume: 52 start-page: 263 year: 1979 ident: apjab341abib14 publication-title: PhR doi: 10.1016/0370-1573(79)90023-1 – volume: 675 start-page: L65 year: 2008 ident: apjab341abib46 publication-title: ApJL doi: 10.1086/586734 – volume: 88 year: 2002 ident: apjab341abib4 publication-title: PhRvL doi: 10.1103/PhysRevLett.88.174102 – volume: 32 start-page: 329 year: 1974 ident: apjab341abib36 publication-title: A&A – volume: 582 start-page: 230 year: 2003 ident: apjab341abib41 publication-title: ApJ doi: 10.1086/344592 – volume: 160 start-page: 811 year: 1970 ident: apjab341abib24 publication-title: ApJ doi: 10.1086/150474 – volume: 737 start-page: 8 year: 2011 ident: apjab341abib34 publication-title: ApJ doi: 10.1088/0004-637X/737/1/8 – volume: 157 start-page: 1 year: 1972 ident: apjab341abib35 publication-title: MNRAS doi: 10.1093/mnras/157.1.1 – volume: 722 start-page: 112 year: 2010 ident: apjab341abib37 publication-title: ApJ doi: 10.1088/0004-637X/722/1/112 – volume: 399 start-page: 1145 year: 2009a ident: apjab341abib49 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.15365.x – volume: 99 year: 2007 ident: apjab341abib44 publication-title: PhRvL doi: 10.1103/PhysRevLett.99.154102 – volume: 336 start-page: 785 year: 2002 ident: apjab341abib53 publication-title: MNRAS doi: 10.1046/j.1365-8711.2002.05806.x – volume: 766 start-page: 34 year: 2013 ident: apjab341abib22 publication-title: ApJ doi: 10.1088/0004-637X/766/1/34 – volume: 219 start-page: 12 year: 2015 ident: apjab341abib1 publication-title: ApJS doi: 10.1088/0067-0049/219/1/12 – volume: 689 start-page: 134 year: 2008 ident: apjab341abib28 publication-title: ApJ doi: 10.1086/592556 – volume: 216 start-page: 29 year: 2015 ident: apjab341abib8 publication-title: ApJS doi: 10.1088/0067-0049/216/2/29 – volume: 447 start-page: 3576 year: 2015 ident: apjab341abib16 publication-title: MNRAS doi: 10.1093/mnras/stu2683 – volume: 426 start-page: 2089 year: 2012 ident: apjab341abib45 publication-title: MNRAS doi: 10.1111/j.1365-2966.2012.21860.x – volume: 23 year: 2016 ident: apjab341abib48 publication-title: PhPl doi: 10.1063/1.4948275 – volume: 823 start-page: 4 year: 2016 ident: apjab341abib21 publication-title: ApJ doi: 10.3847/0004-637X/823/1/4 – volume: 91 year: 2015 ident: apjab341abib61 publication-title: PhRvE doi: 10.1103/PhysRevE.91.023101 – volume: 422 start-page: 1363 year: 2012 ident: apjab341abib55 publication-title: MNRAS doi: 10.1111/j.1365-2966.2012.20712.x – year: 2008 ident: apjab341abib7 doi: 10.1515/9781400828722 – volume: 465 start-page: 1621 year: 2017 ident: apjab341abib42 publication-title: MNRAS doi: 10.1093/mnras/stw2819 – volume: 470 start-page: 3819 year: 2017 ident: apjab341abib11 publication-title: MNRAS doi: 10.1093/mnras/stx1392 – volume: 314 start-page: 438 year: 1996 ident: apjab341abib63 publication-title: A&A – volume: 220 start-page: 1339 year: 1983 ident: apjab341abib47 publication-title: Sci doi: 10.1126/science.220.4604.1339 – volume: 470 start-page: 3685 year: 2017 ident: apjab341abib3 publication-title: MNRAS doi: 10.1093/mnras/stx1483 – volume: 476 start-page: 1561 year: 2018 ident: apjab341abib17 publication-title: MNRAS doi: 10.1093/mnras/sty199 – volume: 396 start-page: 203 year: 2009b ident: apjab341abib50 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.14750.x – volume: 467 start-page: 1154 year: 2017 ident: apjab341abib51 publication-title: MNRAS doi: 10.1093/mnras/stx093 – volume: 86 start-page: 1 year: 2014 ident: apjab341abib52 publication-title: RvMP doi: 10.1103/RevModPhys.86.1 – volume: 450 start-page: 4050 year: 2015 ident: apjab341abib62 publication-title: MNRAS doi: 10.1093/mnras/stv745 – year: 2019 ident: apjab341abib9 – volume: 527 start-page: A147 year: 2011 ident: apjab341abib38 publication-title: A&A doi: 10.1051/0004-6361/201015139 – volume: 127 start-page: 349 year: 1983 ident: apjab341abib2 publication-title: A&A – volume: 132 start-page: 1645 year: 2006 ident: apjab341abib57 publication-title: AJ doi: 10.1086/506564 – volume: 64 start-page: 323 year: 1978 ident: apjab341abib15 publication-title: A&A – volume: 173 start-page: 59 year: 1987 ident: apjab341abib58 publication-title: A&A – volume: 808 start-page: 132 year: 2015 ident: apjab341abib27 publication-title: ApJ doi: 10.1088/0004-637X/808/2/132 – volume: 434 start-page: 77 year: 2017 ident: apjab341abib19 publication-title: ASSL doi: 10.1007/978-3-319-56570-5_3 – volume: 833 start-page: 42 year: 2016 ident: apjab341abib60 publication-title: ApJ doi: 10.3847/1538-4357/833/1/42 – volume: 367 start-page: L9 year: 1991 ident: apjab341abib31 publication-title: ApJL doi: 10.1086/185920 – volume: 447 start-page: 3526 year: 2015 ident: apjab341abib30 publication-title: MNRAS doi: 10.1093/mnras/stu2726 – volume: 230 start-page: 55 year: 1990 ident: apjab341abib40 publication-title: A&A – volume: 118 start-page: 106 year: 1953 ident: apjab341abib56 publication-title: ApJ doi: 10.1086/145730 – volume: 150 start-page: 461 year: 1967 ident: apjab341abib5 publication-title: ApJ doi: 10.1086/149349 – volume: 125 start-page: 785 year: 2003 ident: apjab341abib43 publication-title: AJ doi: 10.1086/345725 – year: 1987 ident: apjab341abib6 – volume: 530 start-page: A138 year: 2011 ident: apjab341abib13 publication-title: A&A doi: 10.1051/0004-6361/201016276 – volume: 61 start-page: 227 year: 2009 ident: apjab341abib54 publication-title: PASJ doi: 10.1093/pasj/61.2.227 – volume: 673 start-page: 864 year: 2008 ident: apjab341abib29 publication-title: ApJ doi: 10.1086/523619 – volume: 421 start-page: 1529 year: 2012 ident: apjab341abib26 publication-title: MNRAS doi: 10.1111/j.1365-2966.2012.20411.x – volume: 22 year: 2015 ident: apjab341abib10 publication-title: PhPl doi: 10.1063/1.4919391 – volume: 714 start-page: 663 year: 2010 ident: apjab341abib18 publication-title: ApJ doi: 10.1088/0004-637X/714/1/663 – volume: 818 start-page: L6 year: 2016 ident: apjab341abib33 publication-title: ApJL doi: 10.3847/2041-8205/818/1/L6 |
SSID | ssj0004299 |
Score | 2.37375 |
Snippet | It is widely accepted that stars in a spiral disk, like the Milky Way's, can radially migrate on the order of a scale length over the disk's lifetime. With the... It is widely accepted that stars in a spiral disk, like the Milky Way’s, can radially migrate on the order of a scale length over the disk’s lifetime. With the... |
SourceID | proquest crossref iop |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 111 |
SubjectTerms | Angular momentum Approximation Astrophysics chaos Cold Computer simulation Constraints Corotation Cylinders Diffusion rate Galactic rotation galaxies: evolution galaxies: kinematics and dynamics galaxies: spiral Galaxy: disk Galaxy: evolution Heating Kinematics Mathematical analysis Milky Way Populations Random walk Stars |
Title | When Cold Radial Migration is Hot: Constraints from Resonant Overlap |
URI | https://iopscience.iop.org/article/10.3847/1538-4357/ab341a https://www.proquest.com/docview/2365882976 |
Volume | 882 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9RAEN4AhoQXogjhEC_7ICY-lGu7072tPhGUnCR6xEi4t83-6BLMeW1sNfG_d6ZbIERDfNuHabf5tjvzzezODGOvcukKXxQ-gVDaBNCGJGgUKjqDTwsTSuQI_S3fz3J2CeeLYrHG3t3lwtTNoPqPcRgLBUcIaX8L1KWTfo-ilZ9OjEUdjOToiVBSkec1F1f3SZF5OXBfSKSYLuIZ5T_f8MAmreO8fynm3tqcPWXbA03kJ_GjnrG1arXD9k9aClzX33_z17wfx7hEu8M2L-LoOXuP6nXFT-ul51-o7sCSf7q5jsvMb1o-q7u3nLp09r0hupZTfgmnID7diOHzXxTfa3bZ5dmHr6ezZGiVkDih0i6ReaXQNzEyBTDSl0Z5cKmtSuEhB-mdCDaIwhlvpwqcTzODjgZ1e6kclCGIPbaxqlfVPuOphVAYcMZCBpkD6zJFRAPCtLRK2RGb3IKl3VBHnD55qdGfIHg1wasJXh3hHbE3d080sYbGI7JHiL8eNlL7iNz4gZxpvml0FnROLo1ufBixw9slvJfKBRIuSiaWB_85zwu2hRSpv1WWpYdso_vxs3qJNKSzY7b-cX4x7n-6P8Yv1Ck |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RIhAXBAXULaX4AEgcwibxxJtwq1pWy6utEBV7s_yIUdGyiZqAxL9nJk6pKlDFzYdJbH225-V5ADzLlSt8UfgEQ2UTJBmSkFCo-Q0-LUyoSEcYonyP1OIU3y2L5djndMiFadqR9b-iYSwUHCHk-y2Jl06HO0pSfjY1lniwmbY-bMDNQirFvRuO5ZfLxMi8GvVfTJScLeM75T__ckUubdDcfzHnQeLM78HdUVUU-3Fh9-FGvd6C7f2OndfN91_ihRjG0TfRbcGtkzh6AIfEYtfioFl58YlrD6zEx7OvcavFWScWTf9acKfOoT9E3wnOMRHsyOeoGHH8k3187UM4nb_5fLBIxnYJiZNl2icqr0uyT4xKEY3ylSk9utTWlfSYo_JOBhtk4Yy3sxKdTzNDxgZ3fKkdViHIR7C5btb1NojUYigMOmMxw8yhdVnJygaGWWXL0k5gegGWdmMtcV7ySpNNwfBqhlczvDrCO4GXf75oYx2Na2ifE_56vEzdNXR7V-hM-02TwaBzNms0nYoJ7F5s4SVVLknp4oRitfOf8zyF2yeHc_3h7dH7x3CHNKYhyCxLd2GzP_9RPyGtpLd7w8n7DfdJ1w8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=When+Cold+Radial+Migration+is+Hot%3A+Constraints+from+Resonant+Overlap&rft.jtitle=The+Astrophysical+journal&rft.au=Daniel%2C+Kathryne+J&rft.au=Schaffner%2C+David+A&rft.au=McCluskey%2C+Fiona&rft.au=Codie+Fiedler+Kawaguchi&rft.date=2019-09-10&rft.pub=IOP+Publishing&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=882&rft.issue=2&rft_id=info:doi/10.3847%2F1538-4357%2Fab341a&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |