Deep Ranking for Person Re-Identification via Joint Representation Learning
This paper proposes a novel approach to person re-identification, a fundamental task in distributed multi-camera surveillance systems. Although a variety of powerful algorithms have been presented in the past few years, most of them usually focus on designing hand-crafted features and learning metri...
Saved in:
Published in | IEEE transactions on image processing Vol. 25; no. 5; pp. 2353 - 2367 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.05.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper proposes a novel approach to person re-identification, a fundamental task in distributed multi-camera surveillance systems. Although a variety of powerful algorithms have been presented in the past few years, most of them usually focus on designing hand-crafted features and learning metrics either individually or sequentially. Different from previous works, we formulate a unified deep ranking framework that jointly tackles both of these key components to maximize their strengths. We start from the principle that the correct match of the probe image should be positioned in the top rank within the whole gallery set. An effective learning-to-rank algorithm is proposed to minimize the cost corresponding to the ranking disorders of the gallery. The ranking model is solved with a deep convolutional neural network (CNN) that builds the relation between input image pairs and their similarity scores through joint representation learning directly from raw image pixels. The proposed framework allows us to get rid of feature engineering and does not rely on any assumption. An extensive comparative evaluation is given, demonstrating that our approach significantly outperforms all the state-of-the-art approaches, including both traditional and CNN-based methods on the challenging VIPeR, CUHK-01, and CAVIAR4REID datasets. In addition, our approach has better ability to generalize across datasets without fine-tuning. |
---|---|
AbstractList | This paper proposes a novel approach to person re-identification, a fundamental task in distributed multi-camera surveillance systems. Although a variety of powerful algorithms have been presented in the past few years, most of them usually focus on designing hand-crafted features and learning metrics either individually or sequentially. Different from previous works, we formulate a unified deep ranking framework that jointly tackles both of these key components to maximize their strengths. We start from the principle that the correct match of the probe image should be positioned in the top rank within the whole gallery set. An effective learning-to-rank algorithm is proposed to minimize the cost corresponding to the ranking disorders of the gallery. The ranking model is solved with a deep convolutional neural network (CNN) that builds the relation between input image pairs and their similarity scores through joint representation learning directly from raw image pixels. The proposed framework allows us to get rid of feature engineering and does not rely on any assumption. An extensive comparative evaluation is given, demonstrating that our approach significantly outperforms all the state-of-the-art approaches, including both traditional and CNN-based methods on the challenging VIPeR, CUHK-01, and CAVIAR4REID datasets. In addition, our approach has better ability to generalize across datasets without fine-tuning. This paper proposes a novel approach to person re-identification, a fundamental task in distributed multi-camera surveillance systems. Although a variety of powerful algorithms have been presented in the past few years, most of them usually focus on designing hand-crafted features and learning metrics either individually or sequentially. Different from previous works, we formulate a unified deep ranking framework that jointly tackles both of these key components to maximize their strengths. We start from the principle that the correct match of the probe image should be positioned in the top rank within the whole gallery set. An effective learning-to-rank algorithm is proposed to minimize the cost corresponding to the ranking disorders of the gallery. The ranking model is solved with a deep convolutional neural network (CNN) that builds the relation between input image pairs and their similarity scores through joint representation learning directly from raw image pixels. The proposed framework allows us to get rid of feature engineering and does not rely on any assumption. An extensive comparative evaluation is given, demonstrating that our approach significantly outperforms all the state-of-the-art approaches, including both traditional and CNN-based methods on the challenging VIPeR, CUHK-01, and CAVIAR4REID datasets. In addition, our approach has better ability to generalize across datasets without fine-tuning.This paper proposes a novel approach to person re-identification, a fundamental task in distributed multi-camera surveillance systems. Although a variety of powerful algorithms have been presented in the past few years, most of them usually focus on designing hand-crafted features and learning metrics either individually or sequentially. Different from previous works, we formulate a unified deep ranking framework that jointly tackles both of these key components to maximize their strengths. We start from the principle that the correct match of the probe image should be positioned in the top rank within the whole gallery set. An effective learning-to-rank algorithm is proposed to minimize the cost corresponding to the ranking disorders of the gallery. The ranking model is solved with a deep convolutional neural network (CNN) that builds the relation between input image pairs and their similarity scores through joint representation learning directly from raw image pixels. The proposed framework allows us to get rid of feature engineering and does not rely on any assumption. An extensive comparative evaluation is given, demonstrating that our approach significantly outperforms all the state-of-the-art approaches, including both traditional and CNN-based methods on the challenging VIPeR, CUHK-01, and CAVIAR4REID datasets. In addition, our approach has better ability to generalize across datasets without fine-tuning. |
Author | Jian-Huang Lai Chun-Chao Guo Shi-Zhe Chen |
Author_xml | – sequence: 1 givenname: Shi-Zhe surname: Chen fullname: Chen, Shi-Zhe – sequence: 2 givenname: Chun-Chao surname: Guo fullname: Guo, Chun-Chao – sequence: 3 givenname: Jian-Huang surname: Lai fullname: Lai, Jian-Huang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27019494$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1P3DAQxa0KVD7aO1KlKhKXXrLM-CO2jxXQsmWlIkTPlkkmyHTX2dpZJP77GrJw4FD1ZMvv90bj9w7YThwiMXaEMEMEe3Izv5pxwGbGlVSW23dsH63EGkDynXIHpWuN0u6xg5zvAVAqbN6zPa6hcFbus8szonV17ePvEO-qfkjVFaU8xOqa6nlHcQx9aP0YystD8NWPIcSxaOtEuYiTsCCfYrF_YLu9X2b6uD0P2a9v5zenF_Xi5_f56ddF3QoDY616MmCNpLKOFhJVA-ZWIZHyuunAIopWgxIaPCeynDoB1pumIaWhU0ocsi_T3HUa_mwoj24VckvLpY80bLJDw5VqrBX6P1DQXGsDsqDHb9D7YZNi-YhDbXTJG58Hft5Sm9sVdW6dwsqnR_eSaAGaCWjTkHOi3rVhymlMPiwdgnuqzpXq3FN1bltdMcIb48vsf1g-TZZARK-4lsIabsRfpfGf3A |
CODEN | IIPRE4 |
CitedBy_id | crossref_primary_10_1117_1_JEI_27_2_023006 crossref_primary_10_1016_j_neucom_2021_01_010 crossref_primary_10_1007_s11042_023_16286_w crossref_primary_10_1007_s11042_018_6042_1 crossref_primary_10_1016_j_jvcir_2019_06_001 crossref_primary_10_1007_s40747_022_00699_5 crossref_primary_10_1109_TIP_2019_2915655 crossref_primary_10_1109_TIP_2023_3290515 crossref_primary_10_1109_ACCESS_2020_3024120 crossref_primary_10_1007_s00138_021_01239_w crossref_primary_10_1016_j_neucom_2017_12_042 crossref_primary_10_1016_j_patcog_2023_109669 crossref_primary_10_1109_JIOT_2019_2960549 crossref_primary_10_1016_j_patcog_2017_08_029 crossref_primary_10_1109_ACCESS_2019_2898906 crossref_primary_10_1177_1729881419858162 crossref_primary_10_1109_TCSVT_2018_2869898 crossref_primary_10_1016_j_adhoc_2019_102018 crossref_primary_10_1016_j_patcog_2018_01_033 crossref_primary_10_1007_s11042_018_6408_4 crossref_primary_10_1016_j_neunet_2019_06_004 crossref_primary_10_1016_j_patcog_2017_06_026 crossref_primary_10_1109_ACCESS_2021_3100571 crossref_primary_10_1007_s11263_018_1105_3 crossref_primary_10_1109_TMM_2018_2877886 crossref_primary_10_1109_JIOT_2020_2980549 crossref_primary_10_1016_j_neucom_2018_03_073 crossref_primary_10_1109_TCSVT_2017_2734740 crossref_primary_10_1109_ACCESS_2019_2939071 crossref_primary_10_1007_s11432_016_9086_8 crossref_primary_10_1016_j_neucom_2019_05_037 crossref_primary_10_1109_TIP_2019_2959923 crossref_primary_10_1109_TPAMI_2020_3009758 crossref_primary_10_1109_TIP_2017_2765836 crossref_primary_10_1109_TNNLS_2020_3029299 crossref_primary_10_1109_TMM_2018_2806224 crossref_primary_10_3390_rs16050775 crossref_primary_10_1016_j_neucom_2017_12_027 crossref_primary_10_1155_2017_9874345 crossref_primary_10_1088_1742_6596_1187_4_042111 crossref_primary_10_1109_TIP_2018_2818438 crossref_primary_10_1016_j_neucom_2018_07_081 crossref_primary_10_1109_TPAMI_2019_2928294 crossref_primary_10_1007_s00521_019_04424_1 crossref_primary_10_1016_j_cogsys_2018_04_003 crossref_primary_10_1109_TNNLS_2021_3123968 crossref_primary_10_1109_TCYB_2019_2916158 crossref_primary_10_1109_TIP_2021_3082298 crossref_primary_10_1016_j_patrec_2017_10_032 crossref_primary_10_1016_j_cviu_2017_11_009 crossref_primary_10_1007_s11042_020_09997_x crossref_primary_10_1049_iet_bmt_2016_0200 crossref_primary_10_1109_TITS_2017_2784486 crossref_primary_10_1109_TMM_2020_3011317 crossref_primary_10_1016_j_neucom_2017_02_085 crossref_primary_10_1109_TMM_2017_2755983 crossref_primary_10_1016_j_neucom_2019_12_094 crossref_primary_10_1109_TIP_2019_2928126 crossref_primary_10_1016_j_neucom_2017_02_003 crossref_primary_10_1016_j_neucom_2018_04_013 crossref_primary_10_1007_s11042_021_10953_6 crossref_primary_10_1109_TCYB_2019_2917713 crossref_primary_10_1109_ACCESS_2019_2914670 crossref_primary_10_3390_e21050449 crossref_primary_10_1016_j_neucom_2018_04_019 crossref_primary_10_1109_TCSVT_2017_2723429 crossref_primary_10_1016_j_patcog_2021_108138 crossref_primary_10_1007_s11042_017_4896_2 crossref_primary_10_1016_j_patrec_2018_04_029 crossref_primary_10_1109_TIP_2018_2870941 crossref_primary_10_1145_3089249 crossref_primary_10_1109_ACCESS_2018_2871149 crossref_primary_10_3390_electronics11131941 crossref_primary_10_1007_s13042_023_01993_5 crossref_primary_10_1109_TCSVT_2017_2748698 crossref_primary_10_1109_TIP_2021_3101158 crossref_primary_10_1117_1_JEI_28_3_033017 crossref_primary_10_1109_TCYB_2019_2909480 crossref_primary_10_1007_s42979_024_03271_9 crossref_primary_10_1109_TCYB_2017_2755044 crossref_primary_10_1109_TVT_2020_3043203 crossref_primary_10_1109_TMM_2020_3003779 crossref_primary_10_18178_joig_8_2_26_36 crossref_primary_10_1016_j_imavis_2017_12_005 crossref_primary_10_1007_s00138_018_0917_z crossref_primary_10_1016_j_neucom_2017_09_064 crossref_primary_10_1109_ACCESS_2023_3283258 crossref_primary_10_1007_s11042_016_4070_2 crossref_primary_10_1109_TIP_2022_3229621 crossref_primary_10_1016_j_neucom_2022_10_080 crossref_primary_10_1109_ACCESS_2019_2960030 crossref_primary_10_1109_TII_2017_2767557 crossref_primary_10_1109_TPAMI_2018_2886878 crossref_primary_10_1109_TCSVT_2018_2865749 crossref_primary_10_1016_j_patcog_2017_03_023 crossref_primary_10_1145_3610298 crossref_primary_10_1016_j_patcog_2016_12_022 crossref_primary_10_1016_j_neucom_2017_09_019 crossref_primary_10_1016_j_sigpro_2017_07_015 crossref_primary_10_1109_TIP_2018_2859025 crossref_primary_10_1016_j_cviu_2017_04_003 crossref_primary_10_1016_j_neucom_2019_01_093 crossref_primary_10_1109_ACCESS_2020_2979164 crossref_primary_10_1016_j_jvcir_2018_12_003 crossref_primary_10_1016_j_neucom_2017_07_019 crossref_primary_10_1109_TIP_2017_2683063 crossref_primary_10_1016_j_knosys_2021_106941 crossref_primary_10_1109_TIP_2021_3050839 crossref_primary_10_3390_app12104921 crossref_primary_10_1109_TNNLS_2018_2861991 crossref_primary_10_1007_s11042_021_10671_z crossref_primary_10_1016_j_neucom_2019_01_005 crossref_primary_10_1145_3369393 crossref_primary_10_1016_j_ins_2019_06_046 crossref_primary_10_1109_TPAMI_2017_2666805 crossref_primary_10_1016_j_patcog_2019_06_006 crossref_primary_10_1109_JSTARS_2021_3056198 crossref_primary_10_1109_TIP_2018_2851098 crossref_primary_10_1109_TIP_2019_2940684 crossref_primary_10_1016_j_cogsys_2020_10_002 crossref_primary_10_1109_TIP_2019_2914575 crossref_primary_10_1109_TCSVT_2020_3031303 crossref_primary_10_1117_1_JEI_27_3_033033 crossref_primary_10_1007_s10489_020_01844_8 |
Cites_doi | 10.1109/CVPR.2012.6247987 10.1109/TKDE.2008.239 10.1145/1273496.1273523 10.1109/CVPR.2014.27 10.1007/978-3-642-33863-2_38 10.1145/2543581.2543596 10.1145/2502081.2502112 10.1109/TPAMI.2015.2453984 10.1109/TPAMI.2007.250598 10.5244/C.24.21 10.1109/ICPR.2014.609 10.1109/CVPR.2010.5539926 10.1109/CVPR.2012.6247939 10.1109/CVPR.2013.461 10.1109/CVPR.2013.426 10.1109/ICPR.2014.16 10.1007/978-1-4471-6296-4_1 10.1109/TCSVT.2014.2305511 10.1109/CVPR.2014.81 10.1109/ICCV.2013.314 10.1109/CVPR.2014.242 10.5244/C.25.68 10.1109/CVPR.2014.180 10.1145/2647868.2654889 10.1109/TPAMI.2014.2377748 10.1109/CVPR.2013.463 10.1109/CVPR.2014.214 10.1109/TNNLS.2015.2506664 10.1109/TPAMI.2012.246 10.1109/TIP.2014.2331755 10.1109/CVPR.2013.460 10.1109/TIP.2010.2052823 10.1109/ICCV.2013.443 10.1109/CVPR.2014.26 10.5244/C.26.57 10.1109/TPAMI.2012.138 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 F28 FR3 |
DOI | 10.1109/TIP.2016.2545929 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | MEDLINE - Academic MEDLINE Technology Research Database Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1941-0042 |
EndPage | 2367 |
ExternalDocumentID | 4046710791 27019494 10_1109_TIP_2016_2545929 7439828 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61573387 funderid: 10.13039/501100001809 – fundername: Guangdong Program grantid: 2015B010105005 – fundername: Guangzhou Program grantid: 201508010032 |
GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYOK AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM PKN Z5M 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 F28 FR3 |
ID | FETCH-LOGICAL-c380t-5fe80984e01473415608b51ee5a76d09113c705370a2ee92ed309a866e570d553 |
IEDL.DBID | RIE |
ISSN | 1057-7149 1941-0042 |
IngestDate | Fri Jul 11 11:42:32 EDT 2025 Sun Aug 24 03:27:13 EDT 2025 Mon Jun 30 10:22:01 EDT 2025 Wed Feb 19 01:56:10 EST 2025 Tue Jul 01 02:03:07 EDT 2025 Thu Apr 24 23:11:51 EDT 2025 Wed Aug 27 02:58:24 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | deep convolutional neural network Person re-identification learning to rank |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c380t-5fe80984e01473415608b51ee5a76d09113c705370a2ee92ed309a866e570d553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 27019494 |
PQID | 1787110137 |
PQPubID | 85429 |
PageCount | 15 |
ParticipantIDs | crossref_citationtrail_10_1109_TIP_2016_2545929 proquest_journals_1787110137 ieee_primary_7439828 proquest_miscellaneous_1825569937 proquest_miscellaneous_1807277804 crossref_primary_10_1109_TIP_2016_2545929 pubmed_primary_27019494 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-05-01 |
PublicationDateYYYYMMDD | 2016-05-01 |
PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on image processing |
PublicationTitleAbbrev | TIP |
PublicationTitleAlternate | IEEE Trans Image Process |
PublicationYear | 2016 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref14 gray (ref9) 2008 ref52 weinberger (ref46) 2009; 10 ref10 sugiyama (ref37) 2007; 8 ref16 ref19 ref18 liu (ref11) 2012 yun (ref20) 2014 ref51 ref45 ref48 ref47 ref42 ref41 ref43 xiong (ref5) 2014 ref49 ref8 ref7 ref4 ref3 ref6 ref40 dikmen (ref15) 2010 lecun (ref21) 1990 ref34 krizhevsky (ref22) 2012 ref36 ref31 ref30 ref33 ref32 ref2 wei (ref50) 2014 ref1 ref39 boureau (ref44) 2010 ref38 sun (ref26) 2014 ref25 schroff (ref53) 2015 yang (ref35) 2014 li (ref17) 2012 ref28 ref27 chatfield (ref23) 2014 ref29 zeiler (ref24) 2014 |
References_xml | – ident: ref4 doi: 10.1109/CVPR.2012.6247987 – ident: ref43 doi: 10.1109/TKDE.2008.239 – ident: ref47 doi: 10.1145/1273496.1273523 – start-page: 391 year: 2012 ident: ref11 article-title: Person re-identification: What features are important? publication-title: Proc ECCV Workshops Demonstrations – ident: ref30 doi: 10.1109/CVPR.2014.27 – ident: ref48 doi: 10.1007/978-3-642-33863-2_38 – start-page: 2582 year: 2014 ident: ref20 article-title: Ranking via robust binary classification publication-title: Proc Adv Neural Inf Process Syst (NIPS) – ident: ref2 doi: 10.1145/2543581.2543596 – ident: ref41 doi: 10.1145/2502081.2502112 – ident: ref51 doi: 10.1109/TPAMI.2015.2453984 – start-page: 396 year: 1990 ident: ref21 article-title: Handwritten digit recognition with a back-propagation network publication-title: Proc Adv Neural Inf Process Syst (NIPS) – ident: ref38 doi: 10.1109/TPAMI.2007.250598 – ident: ref36 doi: 10.5244/C.24.21 – ident: ref12 doi: 10.1109/ICPR.2014.609 – ident: ref10 doi: 10.1109/CVPR.2010.5539926 – ident: ref16 doi: 10.1109/CVPR.2012.6247939 – year: 2014 ident: ref50 article-title: CNN: Single-label to multi-label – ident: ref8 doi: 10.1109/CVPR.2013.461 – ident: ref19 doi: 10.1109/CVPR.2013.426 – ident: ref29 doi: 10.1109/ICPR.2014.16 – ident: ref3 doi: 10.1007/978-1-4471-6296-4_1 – start-page: 1 year: 2014 ident: ref5 article-title: Person re-identification using kernel-based metric learning methods publication-title: Proc Eur Conf Comput Vis (ECCV) – start-page: 818 year: 2014 ident: ref24 article-title: Visualizing and understanding convolutional networks publication-title: Proc Eur Conf Comput Vis (ECCV) – year: 2014 ident: ref23 article-title: Return of the devil in the details: Delving deep into convolutional nets publication-title: Proc Brit Mach Vis Conf (BMVC) – ident: ref31 doi: 10.1109/TCSVT.2014.2305511 – ident: ref25 doi: 10.1109/CVPR.2014.81 – start-page: 262 year: 2008 ident: ref9 article-title: Viewpoint invariant pedestrian recognition with an ensemble of localized features publication-title: Proc Eur Conf Comput Vis (ECCV) – start-page: 501 year: 2010 ident: ref15 article-title: Pedestrian recognition with a learned metric publication-title: Proc Asian Conf Comput Vis (ACCV) – ident: ref14 doi: 10.1109/ICCV.2013.314 – volume: 10 start-page: 207 year: 2009 ident: ref46 article-title: Distance metric learning for large margin nearest neighbor classification publication-title: J Mach Learn Res – volume: 8 start-page: 1027 year: 2007 ident: ref37 article-title: Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis publication-title: J Mach Learn Res – ident: ref40 doi: 10.1109/CVPR.2014.242 – ident: ref32 doi: 10.5244/C.25.68 – ident: ref42 doi: 10.1109/CVPR.2014.180 – ident: ref45 doi: 10.1145/2647868.2654889 – start-page: 31 year: 2012 ident: ref17 article-title: Human reidentification with transferred metric learning publication-title: Proc Asian Conf Comput Vis (ACCV) – start-page: 536 year: 2014 ident: ref35 article-title: Salient color names for person re-identification publication-title: Proc Eur Conf Comput Vis (ECCV) – ident: ref49 doi: 10.1109/TPAMI.2014.2377748 – start-page: 1988 year: 2014 ident: ref26 article-title: Deep learning face representation by joint identification-verification publication-title: Proc Adv Neural Inf Process Syst (NIPS) – ident: ref18 doi: 10.1109/CVPR.2013.463 – ident: ref28 doi: 10.1109/CVPR.2014.214 – ident: ref27 doi: 10.1109/TNNLS.2015.2506664 – start-page: 1097 year: 2012 ident: ref22 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proc Adv Neural Inf Process Syst (NIPS) – start-page: 815 year: 2015 ident: ref53 article-title: FaceNet: A unified embedding for face recognition and clustering publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR) – ident: ref34 doi: 10.1109/TPAMI.2012.246 – ident: ref7 doi: 10.1109/TIP.2014.2331755 – ident: ref13 doi: 10.1109/CVPR.2013.460 – ident: ref1 doi: 10.1109/TIP.2010.2052823 – ident: ref52 doi: 10.1109/ICCV.2013.443 – ident: ref39 doi: 10.1109/CVPR.2014.26 – ident: ref33 doi: 10.5244/C.26.57 – ident: ref6 doi: 10.1109/TPAMI.2012.138 – start-page: 111 year: 2010 ident: ref44 article-title: A theoretical analysis of feature pooling in visual recognition publication-title: Proc Int Conf Machine Learn (ICML) |
SSID | ssj0014516 |
Score | 2.6080844 |
Snippet | This paper proposes a novel approach to person re-identification, a fundamental task in distributed multi-camera surveillance systems. Although a variety of... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2353 |
SubjectTerms | Algorithm design and analysis Algorithms Biometric Identification - methods Cameras Databases, Factual deep convolutional neural network Feature extraction Galleries Humans Image color analysis Learning learning to rank Machine Learning Measurement Neural networks Neural Networks (Computer) Person re-identification Probes Ranking Representations Similarity |
Title | Deep Ranking for Person Re-Identification via Joint Representation Learning |
URI | https://ieeexplore.ieee.org/document/7439828 https://www.ncbi.nlm.nih.gov/pubmed/27019494 https://www.proquest.com/docview/1787110137 https://www.proquest.com/docview/1807277804 https://www.proquest.com/docview/1825569937 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp3KAlldDaWUkLpXIrrN-JD5WbRGlokIIJG5RHrPVqlV2BVkO_PrOOE5KUYt6S-RJ_Bg_vvHY3wAcFUmZGFQ6tmpSxLpUNA86BnKJtTXzjyUlbw2cf7On1_rsxtyswPFwFwYR_eEzHPGj9-XX82rJW2VjBs9kIazCKhlu3V2twWPAAWe9Z9OklJF2vUtSuvHVlws-w2VHZAwZggNMAMws5NrpP1YjH17l30jTrzgnm3Del7U7aPJjtGzLUfXwhMbxfyvzEjYC9BQfur7yClaw2YLNAENFGOR3W7D-iKNwG75-QlyIy8KHWBAEccWFB-niEuPulu80bPuJ-1khzuazpqW0xe9rTY0IJK7fd-D65PPVx9M4RGCIK5XJNjZTzKTLNFL7poptPZmVJkE0RWprghqJqlJmhJHFBNFNsFbSFZm1aFJZG6N2Ya2ZN_gahCwJy9upM5hmukRLddf06qoJYTxCqRGMe03kVaAn5ygZP3NvpkiXkxpzVmMe1BjB--GLRUfN8YzsNmtgkAuNH8FBr-w8jN27PKE5jH6SqDSCwyGZRh27UooG50uSySQBPyZvek6G6d0Y_0Ww13WkIf--_-3_vVxv4AWXvjtYeQBr7e0S3xL4act3vtf_AnX4-aQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB5V7QE4UGihpBQwEhw4ZNd52IkPHBCl2u22VVVtpd5CHrOoAmVXbBYEv4W_wn9jxnHCQ9BbJW6J7Dxsj8ffeMbfADzLgyJQGMW-jsLcj4uI9KBhIBdoXTH_WFDw1sDxiR6dx4cX6mINvvVnYRDRBp_hgC-tL7-alyveKhsyeCYLwYVQTvDLZzLQli_H-zSaz8Pw4M309ch3OQT8Mkpl46sZptKkMZIpkERsrci0UAGiyhNd0WIZRGXCnCYyDxFNiFUkTZ5qjSqRleKcEKTgNwhnqLA9Hdb7KDjFrfWlqoSaFpvOCSrNcDo-5agxPSDzSxEAYcph5j2PTfzb-mcTuvwb29o17mATvne904a2vB-smmJQfv2DOPJ_7b47cNuBa_GqnQ13YQ3rLdh0QFs4Nbbcglu_sDBuw2QfcSHOcptEQhCIF6fWDBFn6LfnmGduY1N8uszF4fyybqhs8fPgVi0cTe27e3B-LQ28D-v1vMYHIGRB1oqeGYVJGheoqa9jujVlSCiWcLgHw27ks9IRsHMekA-ZNcSkyUhsMhabzImNBy_6JxYt-cgVdbd5xPt6brA92OuEK3PaaZkFpKXpJUGUePC0Lya9ws6ivMb5iuqkkqAt01NdVYcJ7BjherDTCm7__U7ed__-X0_gxmh6fJQdjU8mD-Emt6QNI92D9ebjCh8R1GuKx3bGCXh73TL6A_wyUvo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Ranking+for+Person+Re-Identification+via+Joint+Representation+Learning&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Chen%2C+Shi-Zhe&rft.au=Guo%2C+Chun-Chao&rft.au=Lai%2C+Jian-Huang&rft.date=2016-05-01&rft.issn=1941-0042&rft.eissn=1941-0042&rft.volume=25&rft.issue=5&rft.spage=2353&rft_id=info:doi/10.1109%2FTIP.2016.2545929&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |