Ordinal Feature Selection for Iris and Palmprint Recognition
Ordinal measures have been demonstrated as an effective feature representation model for iris and palmprint recognition. However, ordinal measures are a general concept of image analysis and numerous variants with different parameter settings, such as location, scale, orientation, and so on, can be...
Saved in:
Published in | IEEE transactions on image processing Vol. 23; no. 9; pp. 3922 - 3934 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.09.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ordinal measures have been demonstrated as an effective feature representation model for iris and palmprint recognition. However, ordinal measures are a general concept of image analysis and numerous variants with different parameter settings, such as location, scale, orientation, and so on, can be derived to construct a huge feature space. This paper proposes a novel optimization formulation for ordinal feature selection with successful applications to both iris and palmprint recognition. The objective function of the proposed feature selection method has two parts, i.e., misclassification error of intra and interclass matching samples and weighted sparsity of ordinal feature descriptors. Therefore, the feature selection aims to achieve an accurate and sparse representation of ordinal measures. And, the optimization subjects to a number of linear inequality constraints, which require that all intra and interclass matching pairs are well separated with a large margin. Ordinal feature selection is formulated as a linear programming (LP) problem so that a solution can be efficiently obtained even on a large-scale feature pool and training database. Extensive experimental results demonstrate that the proposed LP formulation is advantageous over existing feature selection methods, such as mRMR, ReliefF, Boosting, and Lasso for biometric recognition, reporting state-of-the-art accuracy on CASIA and PolyU databases. |
---|---|
AbstractList | Ordinal measures have been demonstrated as an effective feature representation model for iris and palmprint recognition. However, ordinal measures are a general concept of image analysis and numerous variants with different parameter settings, such as location, scale, orientation, and so on, can be derived to construct a huge feature space. This paper proposes a novel optimization formulation for ordinal feature selection with successful applications to both iris and palmprint recognition. The objective function of the proposed feature selection method has two parts, i.e., misclassification error of intra and interclass matching samples and weighted sparsity of ordinal feature descriptors. Therefore, the feature selection aims to achieve an accurate and sparse representation of ordinal measures. And, the optimization subjects to a number of linear inequality constraints, which require that all intra and interclass matching pairs are well separated with a large margin. Ordinal feature selection is formulated as a linear programming (LP) problem so that a solution can be efficiently obtained even on a large-scale feature pool and training database. Extensive experimental results demonstrate that the proposed LP formulation is advantageous over existing feature selection methods, such as mRMR, ReliefF, Boosting, and Lasso for biometric recognition, reporting state-of-the-art accuracy on CASIA and PolyU databases.Ordinal measures have been demonstrated as an effective feature representation model for iris and palmprint recognition. However, ordinal measures are a general concept of image analysis and numerous variants with different parameter settings, such as location, scale, orientation, and so on, can be derived to construct a huge feature space. This paper proposes a novel optimization formulation for ordinal feature selection with successful applications to both iris and palmprint recognition. The objective function of the proposed feature selection method has two parts, i.e., misclassification error of intra and interclass matching samples and weighted sparsity of ordinal feature descriptors. Therefore, the feature selection aims to achieve an accurate and sparse representation of ordinal measures. And, the optimization subjects to a number of linear inequality constraints, which require that all intra and interclass matching pairs are well separated with a large margin. Ordinal feature selection is formulated as a linear programming (LP) problem so that a solution can be efficiently obtained even on a large-scale feature pool and training database. Extensive experimental results demonstrate that the proposed LP formulation is advantageous over existing feature selection methods, such as mRMR, ReliefF, Boosting, and Lasso for biometric recognition, reporting state-of-the-art accuracy on CASIA and PolyU databases. Ordinal measures have been demonstrated as an effective feature representation model for iris and palmprint recognition. However, ordinal measures are a general concept of image analysis and numerous variants with different parameter settings, such as location, scale, orientation, and so on, can be derived to construct a huge feature space. This paper proposes a novel optimization formulation for ordinal feature selection with successful applications to both iris and palmprint recognition. The objective function of the proposed feature selection method has two parts, i.e., misclassification error of intra and interclass matching samples and weighted sparsity of ordinal feature descriptors. Therefore, the feature selection aims to achieve an accurate and sparse representation of ordinal measures. And, the optimization subjects to a number of linear inequality constraints, which require that all intra and interclass matching pairs are well separated with a large margin. Ordinal feature selection is formulated as a linear programming (LP) problem so that a solution can be efficiently obtained even on a large-scale feature pool and training database. Extensive experimental results demonstrate that the proposed LP formulation is advantageous over existing feature selection methods, such as mRMR, ReliefF, Boosting, and Lasso for biometric recognition, reporting state-of-the-art accuracy on CASIA and PolyU databases. |
Author | Libin Wang Zhenan Sun Tieniu Tan |
Author_xml | – sequence: 1 givenname: Zhenan surname: Sun fullname: Sun, Zhenan – sequence: 2 givenname: Libin surname: Wang fullname: Wang, Libin – sequence: 3 givenname: Tieniu surname: Tan fullname: Tan, Tieniu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25029458$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0U1r3DAQBmARErpJ2nsgEAy59OLNjD5sC3IpoWkXAgnt9ixkeRy0eO1Esg_995HZ3RxyKD1Jh-cdpHfO2HE_9MTYBcISEfTNevW05IByyYXgQhdH7BS1xBxA8uN0B1XmJUq9YGcxbiBJhcUntuAKuJaqOmW3j6Hxve2ye7LjFCj7TR250Q991g4hWwUfM9s32ZPtti_B92P2i9zw3PuZfGYnre0ifdmf5-zP_ff13c_84fHH6u7bQ-5EBWOuShBNXaiStG1bR1iWigqJuha2apALdKLgLWkFtZXKOVRFVddYK1FxjbU4Z193c1_C8DpRHM3WR0ddZ3sapmhQKV2C5lL8DwUoK1WpRK8_0M0whdTFrKRGjhx0Uld7NdVbakwqYWvDX3OoMIFiB1wYYgzUGudHO9czBus7g2DmXZm0KzPvyux3lYLwIXiY_Y_I5S7iieidF-kzMj31DQF_mzw |
CODEN | IIPRE4 |
CitedBy_id | crossref_primary_10_1016_j_patcog_2017_02_005 crossref_primary_10_1109_TSMC_2018_2795609 crossref_primary_10_1016_j_inffus_2015_03_005 crossref_primary_10_1007_s11633_023_1444_6 crossref_primary_10_1109_TIFS_2016_2606083 crossref_primary_10_3233_JIFS_189142 crossref_primary_10_1109_TIP_2017_2733200 crossref_primary_10_1007_s12652_021_03190_0 crossref_primary_10_4018_IJITSA_292042 crossref_primary_10_1007_s11042_018_5655_8 crossref_primary_10_1117_1_JEI_25_3_033009 crossref_primary_10_1016_j_neucom_2018_03_081 crossref_primary_10_1109_TIFS_2016_2535901 crossref_primary_10_1016_j_patcog_2015_08_025 crossref_primary_10_1016_j_patcog_2016_02_010 crossref_primary_10_1109_TNNLS_2016_2551724 crossref_primary_10_3390_s20154250 crossref_primary_10_1142_S0219691318400027 crossref_primary_10_1109_TNNLS_2022_3160597 crossref_primary_10_1109_TSMC_2022_3233392 crossref_primary_10_1007_s11633_023_1436_6 crossref_primary_10_1109_TIM_2023_3342836 crossref_primary_10_1109_TIP_2017_2705424 crossref_primary_10_3390_s21144896 crossref_primary_10_1016_j_neucom_2020_12_095 crossref_primary_10_1109_TIFS_2024_3352389 crossref_primary_10_1109_TIP_2015_2478386 crossref_primary_10_1142_S021800142336001X crossref_primary_10_1007_s11042_019_08446_8 crossref_primary_10_1142_S021812661950107X crossref_primary_10_3390_s23031230 crossref_primary_10_1109_ACCESS_2023_3341229 crossref_primary_10_1109_TIP_2016_2549360 crossref_primary_10_1109_TIFS_2018_2833033 crossref_primary_10_1109_TIFS_2022_3154240 |
Cites_doi | 10.1023/B:VISI.0000013087.49260.fb 10.1109/ICB.2012.6199824 10.1016/j.patcog.2007.10.011 10.1016/j.patcog.2009.03.015 10.1109/TPAMI.2005.159 10.1109/ICPR.2004.1334184 10.1007/978-0-387-77326-1 10.1109/TKDE.2005.66 10.1017/CBO9780511804441 10.1016/j.patcog.2009.01.018 10.1109/TIP.2004.827237 10.1109/TIP.2008.2007610 10.1109/TPAMI.2008.183 10.1007/s11263-008-0180-2 10.1109/CVPR.2010.5539909 10.1109/TIFS.2013.2290064 10.1214/aos/1016218223 10.1002/cpa.20042 10.1109/TPAMI.2008.240 10.1109/TPAMI.2007.1014 10.1109/34.244676 10.1023/A:1025667309714 10.1145/2071389.2071391 10.1109/TKDE.2011.181 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2014 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2014 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 F28 FR3 |
DOI | 10.1109/TIP.2014.2332396 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | MEDLINE - Academic Technology Research Database Technology Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1941-0042 |
EndPage | 3934 |
ExternalDocumentID | 3386483001 25029458 10_1109_TIP_2014_2332396 6853409 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Basic Research Program of China grantid: 2012CB316300 – fundername: National Natural Science Foundation of China grantid: 61273272; 61135002 funderid: 10.13039/501100001809 |
GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYOK AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM PKN Z5M 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 F28 FR3 |
ID | FETCH-LOGICAL-c380t-5703db657e9affce1775e6419b3a8d1231c362fe950ba45cc1568bb1b538291b3 |
IEDL.DBID | RIE |
ISSN | 1057-7149 1941-0042 |
IngestDate | Fri Jul 11 15:36:32 EDT 2025 Fri Jul 11 00:44:45 EDT 2025 Mon Jun 30 05:19:05 EDT 2025 Wed Feb 19 02:15:46 EST 2025 Tue Jul 01 02:02:59 EDT 2025 Thu Apr 24 23:11:09 EDT 2025 Tue Aug 26 16:50:04 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | palmprint Iris linear programming ordinal measures feature selection |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c380t-5703db657e9affce1775e6419b3a8d1231c362fe950ba45cc1568bb1b538291b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 25029458 |
PQID | 1549121209 |
PQPubID | 85429 |
PageCount | 13 |
ParticipantIDs | proquest_journals_1549121209 proquest_miscellaneous_1550078585 crossref_citationtrail_10_1109_TIP_2014_2332396 pubmed_primary_25029458 crossref_primary_10_1109_TIP_2014_2332396 ieee_primary_6853409 proquest_miscellaneous_1559709243 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-09-01 |
PublicationDateYYYYMMDD | 2014-09-01 |
PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on image processing |
PublicationTitleAbbrev | TIP |
PublicationTitleAlternate | IEEE Trans Image Process |
PublicationYear | 2014 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref34 ref15 ref14 ref31 ref30 ref33 ref11 guo (ref13) 2003 ref32 ref10 he (ref24) 2009; 31 ref1 ref17 ref16 (ref19) 2014 (ref36) 2014 hall (ref8) 2000 ref23 sun (ref4) 2005; 1 ref26 tan (ref2) 2007 ref22 ref21 (ref35) 2014 (ref25) 2014 ref28 ref27 ref29 (ref20) 2014 marko (ref12) 2003; 53 das (ref9) 2001 ref6 sun (ref3) 2009; 31 ref5 yu (ref7) 2004; 5 wang (ref18) 2012 (ref37) 2014 |
References_xml | – year: 2014 ident: ref25 publication-title: CASIA Iris Image Database – ident: ref14 doi: 10.1023/B:VISI.0000013087.49260.fb – ident: ref28 doi: 10.1109/ICB.2012.6199824 – ident: ref34 doi: 10.1016/j.patcog.2007.10.011 – ident: ref32 doi: 10.1016/j.patcog.2009.03.015 – ident: ref11 doi: 10.1109/TPAMI.2005.159 – year: 2014 ident: ref36 publication-title: Casia palmprint database – ident: ref31 doi: 10.1109/ICPR.2004.1334184 – year: 2014 ident: ref35 publication-title: PolyU Palmprint Database – start-page: 74 year: 2001 ident: ref9 article-title: Filters, wrappers and a boosting-based hybrid for feature selection publication-title: Proc 18th Int Conf Mach Learn – ident: ref1 doi: 10.1007/978-0-387-77326-1 – ident: ref6 doi: 10.1109/TKDE.2005.66 – ident: ref21 doi: 10.1017/CBO9780511804441 – ident: ref30 doi: 10.1016/j.patcog.2009.01.018 – ident: ref27 doi: 10.1109/TIP.2004.827237 – ident: ref17 doi: 10.1109/TIP.2008.2007610 – year: 2014 ident: ref37 publication-title: Appendix of this Paper – start-page: 346 year: 2003 ident: ref13 article-title: Simultaneous feature selection and classifier training via linear programming: a case study for face expression recognition publication-title: Proc Conf Comput Vis Pattern Recognit (CVPR) – volume: 1 start-page: 279 year: 2005 ident: ref4 article-title: Ordinal palmprint representation for personal identification publication-title: Proc Conf Comput Vis Pattern Recognit (CVPR) – volume: 31 start-page: 1670 year: 2009 ident: ref24 article-title: Toward accurate and fast iris segmentation for iris biometrics publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2008.183 – volume: 5 start-page: 1205 year: 2004 ident: ref7 article-title: Efficient feature selection via analysis of relevance and redundancy publication-title: J Mach Learn Res – ident: ref15 doi: 10.1007/s11263-008-0180-2 – ident: ref33 doi: 10.1109/CVPR.2010.5539909 – year: 2014 ident: ref19 publication-title: CPLEX – ident: ref5 doi: 10.1109/TIFS.2013.2290064 – start-page: 35 year: 2007 ident: ref2 article-title: Ordinal representations for biometrics recognition publication-title: Proc 15th Eur Signal Process Conf – ident: ref22 doi: 10.1214/aos/1016218223 – ident: ref23 doi: 10.1002/cpa.20042 – volume: 31 start-page: 2211 year: 2009 ident: ref3 article-title: Ordinal measures for iris recognition publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2008.240 – year: 2014 ident: ref20 publication-title: LINDO – ident: ref16 doi: 10.1109/TPAMI.2007.1014 – ident: ref26 doi: 10.1109/34.244676 – start-page: 3358 year: 2012 ident: ref18 article-title: Robust regularized feature selection for iris recognition via linear programming publication-title: Proc Int Conf Pattern Recognit (ICPR) – volume: 53 start-page: 23 year: 2003 ident: ref12 article-title: Theoretical and empirical analysis of ReliefF and RReliefF publication-title: Mach Learn J doi: 10.1023/A:1025667309714 – ident: ref29 doi: 10.1145/2071389.2071391 – start-page: 359 year: 2000 ident: ref8 article-title: Correlation-based feature selection for discrete and numeric class machine learning publication-title: Proc 17th Int Conf Mach Learn – ident: ref10 doi: 10.1109/TKDE.2011.181 |
SSID | ssj0014516 |
Score | 2.3694534 |
Snippet | Ordinal measures have been demonstrated as an effective feature representation model for iris and palmprint recognition. However, ordinal measures are a... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3922 |
SubjectTerms | Algorithms Artificial Intelligence Biomedical imaging Biometry - methods Boosting Dermatoglyphics Drafting Feature recognition Hand - anatomy & histology Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Image processing Iris - anatomy & histology Iris recognition Linear programming Matching Mathematical models Optimization Pattern Recognition, Automated - methods Photography - methods Reporting Representations Reproducibility of Results Sensitivity and Specificity Skin - anatomy & histology Software packages Subtraction Technique Training |
Title | Ordinal Feature Selection for Iris and Palmprint Recognition |
URI | https://ieeexplore.ieee.org/document/6853409 https://www.ncbi.nlm.nih.gov/pubmed/25029458 https://www.proquest.com/docview/1549121209 https://www.proquest.com/docview/1550078585 https://www.proquest.com/docview/1559709243 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJ3oAulsgQCsj9YLU7CaxHccSl6oCbZGWIh4St8h2nAsoiyC59Nd3Ji-hqkXcomSSOJ5xZsbz-AC-qiKzXIkUF5JFByWVJjReuNAqI5wRJo4d7UMuL9PFnbi4l_dr8G2shfHet8lnfkaHbSy_WLmGtsrmKeoWQdV66-i4dbVaY8SAAGfbyKZUoUKzfwhJRnp--_OKcrjELOE84ZpQi1DxJ1oQzvsrbdTCq_zf0mw1zvk2LIexdokmD7OmtjP3-682ju_9mB3Y6k1P9r2TlY-w5qsJbPdmKOsX-csEPrzqUTiF018oQnQfGYvNs2c3LXIOspOhvcsIoZ6ZqmAExEKbhDW7HnKSVtUnuDs_u_2xCHvIhdDxLKpD6sdV2FQqr01ZOh8rJX0qYm25yQrUcrFDjVd6LSNrhHQO3b_M2tjifzNBdvNd2KhWld8HJqQ2eMonEjVgVlpTpCaJXKrxKY77MoD5MPW56_uREyzGY976JZHOkW858S3v-RbAyXjHU9eL4w3aKU35SNfPdgBHA3fzfrG-5NSlLk6oiDiA4_EyLjOKnZjKrxqikWRNoXP1Jo1WETq0PIC9TnLG9w8Cd_DvcR3CJo2-S147go36ufGf0dqp7ZdWzP8AS0b2ig |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT90wDLcQHMYOwGCDDtgyaRek9b22SZpG4jJNQ4-NxxB7SNyqJE0vm_qmR3vZXz-7X0KIIW5V67RJ7NR27PgH8FEVmeVKpLiQLDooqTSh8cKFVhnhjDBx7Ggfcn6Zzm7Et1t5uwafxrMw3vs2-cxP6LKN5RdL19BW2TRF3SLotN4G6n2ZdKe1xpgBQc62sU2pQoWG_xCUjPR0cX5FWVxiknCecE24Raj6Ey0I6f2ePmoBVv5va7Y652wb5kNvu1STX5OmthP390Ehx-cOZwe2euOTfe6k5RWs-WoXtntDlPXL_G4XXt6rUrgHpz9QiKgdmYvNyrOfLXYOMpShxcsIo56ZqmAExULbhDW7HrKSltVruDn7uvgyC3vQhdDxLKpDqshV2FQqr01ZOh8rJX0qYm25yQrUc7FDnVd6LSNrhHQOHcDM2tjinzNBhvM3sF4tK38ATEht8JZPJOrArLSmSE0SuVTjWxz3ZQDTYepz11ckJ2CM33nrmUQ6R77lxLe851sAJ2OLP101jido92jKR7p-tgM4Grib98v1Lqc6dXFCx4gD-DA-xoVG0RNT-WVDNJLsKXSvnqTRKkKXlgew30nO-P1B4N4-3q_38GK2mF_kF-eX3w9hk0bSpbIdwXq9avwx2j61fdeK_D9StPnU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ordinal+Feature+Selection+for+Iris+and+Palmprint+Recognition&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Sun%2C+Zhenan&rft.au=Wang%2C+Libin&rft.au=Tan%2C+Tieniu&rft.date=2014-09-01&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=23&rft.issue=9&rft.spage=3922&rft.epage=3934&rft_id=info:doi/10.1109%2FTIP.2014.2332396&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIP_2014_2332396 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |