Ordinal Feature Selection for Iris and Palmprint Recognition

Ordinal measures have been demonstrated as an effective feature representation model for iris and palmprint recognition. However, ordinal measures are a general concept of image analysis and numerous variants with different parameter settings, such as location, scale, orientation, and so on, can be...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 23; no. 9; pp. 3922 - 3934
Main Authors Sun, Zhenan, Wang, Libin, Tan, Tieniu
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ordinal measures have been demonstrated as an effective feature representation model for iris and palmprint recognition. However, ordinal measures are a general concept of image analysis and numerous variants with different parameter settings, such as location, scale, orientation, and so on, can be derived to construct a huge feature space. This paper proposes a novel optimization formulation for ordinal feature selection with successful applications to both iris and palmprint recognition. The objective function of the proposed feature selection method has two parts, i.e., misclassification error of intra and interclass matching samples and weighted sparsity of ordinal feature descriptors. Therefore, the feature selection aims to achieve an accurate and sparse representation of ordinal measures. And, the optimization subjects to a number of linear inequality constraints, which require that all intra and interclass matching pairs are well separated with a large margin. Ordinal feature selection is formulated as a linear programming (LP) problem so that a solution can be efficiently obtained even on a large-scale feature pool and training database. Extensive experimental results demonstrate that the proposed LP formulation is advantageous over existing feature selection methods, such as mRMR, ReliefF, Boosting, and Lasso for biometric recognition, reporting state-of-the-art accuracy on CASIA and PolyU databases.
AbstractList Ordinal measures have been demonstrated as an effective feature representation model for iris and palmprint recognition. However, ordinal measures are a general concept of image analysis and numerous variants with different parameter settings, such as location, scale, orientation, and so on, can be derived to construct a huge feature space. This paper proposes a novel optimization formulation for ordinal feature selection with successful applications to both iris and palmprint recognition. The objective function of the proposed feature selection method has two parts, i.e., misclassification error of intra and interclass matching samples and weighted sparsity of ordinal feature descriptors. Therefore, the feature selection aims to achieve an accurate and sparse representation of ordinal measures. And, the optimization subjects to a number of linear inequality constraints, which require that all intra and interclass matching pairs are well separated with a large margin. Ordinal feature selection is formulated as a linear programming (LP) problem so that a solution can be efficiently obtained even on a large-scale feature pool and training database. Extensive experimental results demonstrate that the proposed LP formulation is advantageous over existing feature selection methods, such as mRMR, ReliefF, Boosting, and Lasso for biometric recognition, reporting state-of-the-art accuracy on CASIA and PolyU databases.Ordinal measures have been demonstrated as an effective feature representation model for iris and palmprint recognition. However, ordinal measures are a general concept of image analysis and numerous variants with different parameter settings, such as location, scale, orientation, and so on, can be derived to construct a huge feature space. This paper proposes a novel optimization formulation for ordinal feature selection with successful applications to both iris and palmprint recognition. The objective function of the proposed feature selection method has two parts, i.e., misclassification error of intra and interclass matching samples and weighted sparsity of ordinal feature descriptors. Therefore, the feature selection aims to achieve an accurate and sparse representation of ordinal measures. And, the optimization subjects to a number of linear inequality constraints, which require that all intra and interclass matching pairs are well separated with a large margin. Ordinal feature selection is formulated as a linear programming (LP) problem so that a solution can be efficiently obtained even on a large-scale feature pool and training database. Extensive experimental results demonstrate that the proposed LP formulation is advantageous over existing feature selection methods, such as mRMR, ReliefF, Boosting, and Lasso for biometric recognition, reporting state-of-the-art accuracy on CASIA and PolyU databases.
Ordinal measures have been demonstrated as an effective feature representation model for iris and palmprint recognition. However, ordinal measures are a general concept of image analysis and numerous variants with different parameter settings, such as location, scale, orientation, and so on, can be derived to construct a huge feature space. This paper proposes a novel optimization formulation for ordinal feature selection with successful applications to both iris and palmprint recognition. The objective function of the proposed feature selection method has two parts, i.e., misclassification error of intra and interclass matching samples and weighted sparsity of ordinal feature descriptors. Therefore, the feature selection aims to achieve an accurate and sparse representation of ordinal measures. And, the optimization subjects to a number of linear inequality constraints, which require that all intra and interclass matching pairs are well separated with a large margin. Ordinal feature selection is formulated as a linear programming (LP) problem so that a solution can be efficiently obtained even on a large-scale feature pool and training database. Extensive experimental results demonstrate that the proposed LP formulation is advantageous over existing feature selection methods, such as mRMR, ReliefF, Boosting, and Lasso for biometric recognition, reporting state-of-the-art accuracy on CASIA and PolyU databases.
Author Libin Wang
Zhenan Sun
Tieniu Tan
Author_xml – sequence: 1
  givenname: Zhenan
  surname: Sun
  fullname: Sun, Zhenan
– sequence: 2
  givenname: Libin
  surname: Wang
  fullname: Wang, Libin
– sequence: 3
  givenname: Tieniu
  surname: Tan
  fullname: Tan, Tieniu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25029458$$D View this record in MEDLINE/PubMed
BookMark eNqN0U1r3DAQBmARErpJ2nsgEAy59OLNjD5sC3IpoWkXAgnt9ixkeRy0eO1Esg_995HZ3RxyKD1Jh-cdpHfO2HE_9MTYBcISEfTNevW05IByyYXgQhdH7BS1xBxA8uN0B1XmJUq9YGcxbiBJhcUntuAKuJaqOmW3j6Hxve2ye7LjFCj7TR250Q991g4hWwUfM9s32ZPtti_B92P2i9zw3PuZfGYnre0ifdmf5-zP_ff13c_84fHH6u7bQ-5EBWOuShBNXaiStG1bR1iWigqJuha2apALdKLgLWkFtZXKOVRFVddYK1FxjbU4Z193c1_C8DpRHM3WR0ddZ3sapmhQKV2C5lL8DwUoK1WpRK8_0M0whdTFrKRGjhx0Uld7NdVbakwqYWvDX3OoMIFiB1wYYgzUGudHO9czBus7g2DmXZm0KzPvyux3lYLwIXiY_Y_I5S7iieidF-kzMj31DQF_mzw
CODEN IIPRE4
CitedBy_id crossref_primary_10_1016_j_patcog_2017_02_005
crossref_primary_10_1109_TSMC_2018_2795609
crossref_primary_10_1016_j_inffus_2015_03_005
crossref_primary_10_1007_s11633_023_1444_6
crossref_primary_10_1109_TIFS_2016_2606083
crossref_primary_10_3233_JIFS_189142
crossref_primary_10_1109_TIP_2017_2733200
crossref_primary_10_1007_s12652_021_03190_0
crossref_primary_10_4018_IJITSA_292042
crossref_primary_10_1007_s11042_018_5655_8
crossref_primary_10_1117_1_JEI_25_3_033009
crossref_primary_10_1016_j_neucom_2018_03_081
crossref_primary_10_1109_TIFS_2016_2535901
crossref_primary_10_1016_j_patcog_2015_08_025
crossref_primary_10_1016_j_patcog_2016_02_010
crossref_primary_10_1109_TNNLS_2016_2551724
crossref_primary_10_3390_s20154250
crossref_primary_10_1142_S0219691318400027
crossref_primary_10_1109_TNNLS_2022_3160597
crossref_primary_10_1109_TSMC_2022_3233392
crossref_primary_10_1007_s11633_023_1436_6
crossref_primary_10_1109_TIM_2023_3342836
crossref_primary_10_1109_TIP_2017_2705424
crossref_primary_10_3390_s21144896
crossref_primary_10_1016_j_neucom_2020_12_095
crossref_primary_10_1109_TIFS_2024_3352389
crossref_primary_10_1109_TIP_2015_2478386
crossref_primary_10_1142_S021800142336001X
crossref_primary_10_1007_s11042_019_08446_8
crossref_primary_10_1142_S021812661950107X
crossref_primary_10_3390_s23031230
crossref_primary_10_1109_ACCESS_2023_3341229
crossref_primary_10_1109_TIP_2016_2549360
crossref_primary_10_1109_TIFS_2018_2833033
crossref_primary_10_1109_TIFS_2022_3154240
Cites_doi 10.1023/B:VISI.0000013087.49260.fb
10.1109/ICB.2012.6199824
10.1016/j.patcog.2007.10.011
10.1016/j.patcog.2009.03.015
10.1109/TPAMI.2005.159
10.1109/ICPR.2004.1334184
10.1007/978-0-387-77326-1
10.1109/TKDE.2005.66
10.1017/CBO9780511804441
10.1016/j.patcog.2009.01.018
10.1109/TIP.2004.827237
10.1109/TIP.2008.2007610
10.1109/TPAMI.2008.183
10.1007/s11263-008-0180-2
10.1109/CVPR.2010.5539909
10.1109/TIFS.2013.2290064
10.1214/aos/1016218223
10.1002/cpa.20042
10.1109/TPAMI.2008.240
10.1109/TPAMI.2007.1014
10.1109/34.244676
10.1023/A:1025667309714
10.1145/2071389.2071391
10.1109/TKDE.2011.181
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2014
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2014
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
DOI 10.1109/TIP.2014.2332396
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList MEDLINE - Academic
Technology Research Database

Technology Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 3934
ExternalDocumentID 3386483001
25029458
10_1109_TIP_2014_2332396
6853409
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Basic Research Program of China
  grantid: 2012CB316300
– fundername: National Natural Science Foundation of China
  grantid: 61273272; 61135002
  funderid: 10.13039/501100001809
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
PKN
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
ID FETCH-LOGICAL-c380t-5703db657e9affce1775e6419b3a8d1231c362fe950ba45cc1568bb1b538291b3
IEDL.DBID RIE
ISSN 1057-7149
1941-0042
IngestDate Fri Jul 11 15:36:32 EDT 2025
Fri Jul 11 00:44:45 EDT 2025
Mon Jun 30 05:19:05 EDT 2025
Wed Feb 19 02:15:46 EST 2025
Tue Jul 01 02:02:59 EDT 2025
Thu Apr 24 23:11:09 EDT 2025
Tue Aug 26 16:50:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords palmprint
Iris
linear programming
ordinal measures
feature selection
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c380t-5703db657e9affce1775e6419b3a8d1231c362fe950ba45cc1568bb1b538291b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 25029458
PQID 1549121209
PQPubID 85429
PageCount 13
ParticipantIDs proquest_journals_1549121209
proquest_miscellaneous_1550078585
crossref_citationtrail_10_1109_TIP_2014_2332396
pubmed_primary_25029458
crossref_primary_10_1109_TIP_2014_2332396
ieee_primary_6853409
proquest_miscellaneous_1559709243
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-09-01
PublicationDateYYYYMMDD 2014-09-01
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2014
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref34
ref15
ref14
ref31
ref30
ref33
ref11
guo (ref13) 2003
ref32
ref10
he (ref24) 2009; 31
ref1
ref17
ref16
(ref19) 2014
(ref36) 2014
hall (ref8) 2000
ref23
sun (ref4) 2005; 1
ref26
tan (ref2) 2007
ref22
ref21
(ref35) 2014
(ref25) 2014
ref28
ref27
ref29
(ref20) 2014
marko (ref12) 2003; 53
das (ref9) 2001
ref6
sun (ref3) 2009; 31
ref5
yu (ref7) 2004; 5
wang (ref18) 2012
(ref37) 2014
References_xml – year: 2014
  ident: ref25
  publication-title: CASIA Iris Image Database
– ident: ref14
  doi: 10.1023/B:VISI.0000013087.49260.fb
– ident: ref28
  doi: 10.1109/ICB.2012.6199824
– ident: ref34
  doi: 10.1016/j.patcog.2007.10.011
– ident: ref32
  doi: 10.1016/j.patcog.2009.03.015
– ident: ref11
  doi: 10.1109/TPAMI.2005.159
– year: 2014
  ident: ref36
  publication-title: Casia palmprint database
– ident: ref31
  doi: 10.1109/ICPR.2004.1334184
– year: 2014
  ident: ref35
  publication-title: PolyU Palmprint Database
– start-page: 74
  year: 2001
  ident: ref9
  article-title: Filters, wrappers and a boosting-based hybrid for feature selection
  publication-title: Proc 18th Int Conf Mach Learn
– ident: ref1
  doi: 10.1007/978-0-387-77326-1
– ident: ref6
  doi: 10.1109/TKDE.2005.66
– ident: ref21
  doi: 10.1017/CBO9780511804441
– ident: ref30
  doi: 10.1016/j.patcog.2009.01.018
– ident: ref27
  doi: 10.1109/TIP.2004.827237
– ident: ref17
  doi: 10.1109/TIP.2008.2007610
– year: 2014
  ident: ref37
  publication-title: Appendix of this Paper
– start-page: 346
  year: 2003
  ident: ref13
  article-title: Simultaneous feature selection and classifier training via linear programming: a case study for face expression recognition
  publication-title: Proc Conf Comput Vis Pattern Recognit (CVPR)
– volume: 1
  start-page: 279
  year: 2005
  ident: ref4
  article-title: Ordinal palmprint representation for personal identification
  publication-title: Proc Conf Comput Vis Pattern Recognit (CVPR)
– volume: 31
  start-page: 1670
  year: 2009
  ident: ref24
  article-title: Toward accurate and fast iris segmentation for iris biometrics
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2008.183
– volume: 5
  start-page: 1205
  year: 2004
  ident: ref7
  article-title: Efficient feature selection via analysis of relevance and redundancy
  publication-title: J Mach Learn Res
– ident: ref15
  doi: 10.1007/s11263-008-0180-2
– ident: ref33
  doi: 10.1109/CVPR.2010.5539909
– year: 2014
  ident: ref19
  publication-title: CPLEX
– ident: ref5
  doi: 10.1109/TIFS.2013.2290064
– start-page: 35
  year: 2007
  ident: ref2
  article-title: Ordinal representations for biometrics recognition
  publication-title: Proc 15th Eur Signal Process Conf
– ident: ref22
  doi: 10.1214/aos/1016218223
– ident: ref23
  doi: 10.1002/cpa.20042
– volume: 31
  start-page: 2211
  year: 2009
  ident: ref3
  article-title: Ordinal measures for iris recognition
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2008.240
– year: 2014
  ident: ref20
  publication-title: LINDO
– ident: ref16
  doi: 10.1109/TPAMI.2007.1014
– ident: ref26
  doi: 10.1109/34.244676
– start-page: 3358
  year: 2012
  ident: ref18
  article-title: Robust regularized feature selection for iris recognition via linear programming
  publication-title: Proc Int Conf Pattern Recognit (ICPR)
– volume: 53
  start-page: 23
  year: 2003
  ident: ref12
  article-title: Theoretical and empirical analysis of ReliefF and RReliefF
  publication-title: Mach Learn J
  doi: 10.1023/A:1025667309714
– ident: ref29
  doi: 10.1145/2071389.2071391
– start-page: 359
  year: 2000
  ident: ref8
  article-title: Correlation-based feature selection for discrete and numeric class machine learning
  publication-title: Proc 17th Int Conf Mach Learn
– ident: ref10
  doi: 10.1109/TKDE.2011.181
SSID ssj0014516
Score 2.3694534
Snippet Ordinal measures have been demonstrated as an effective feature representation model for iris and palmprint recognition. However, ordinal measures are a...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3922
SubjectTerms Algorithms
Artificial Intelligence
Biomedical imaging
Biometry - methods
Boosting
Dermatoglyphics
Drafting
Feature recognition
Hand - anatomy & histology
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image processing
Iris - anatomy & histology
Iris recognition
Linear programming
Matching
Mathematical models
Optimization
Pattern Recognition, Automated - methods
Photography - methods
Reporting
Representations
Reproducibility of Results
Sensitivity and Specificity
Skin - anatomy & histology
Software packages
Subtraction Technique
Training
Title Ordinal Feature Selection for Iris and Palmprint Recognition
URI https://ieeexplore.ieee.org/document/6853409
https://www.ncbi.nlm.nih.gov/pubmed/25029458
https://www.proquest.com/docview/1549121209
https://www.proquest.com/docview/1550078585
https://www.proquest.com/docview/1559709243
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJ3oAulsgQCsj9YLU7CaxHccSl6oCbZGWIh4St8h2nAsoiyC59Nd3Ji-hqkXcomSSOJ5xZsbz-AC-qiKzXIkUF5JFByWVJjReuNAqI5wRJo4d7UMuL9PFnbi4l_dr8G2shfHet8lnfkaHbSy_WLmGtsrmKeoWQdV66-i4dbVaY8SAAGfbyKZUoUKzfwhJRnp--_OKcrjELOE84ZpQi1DxJ1oQzvsrbdTCq_zf0mw1zvk2LIexdokmD7OmtjP3-682ju_9mB3Y6k1P9r2TlY-w5qsJbPdmKOsX-csEPrzqUTiF018oQnQfGYvNs2c3LXIOspOhvcsIoZ6ZqmAExEKbhDW7HnKSVtUnuDs_u_2xCHvIhdDxLKpD6sdV2FQqr01ZOh8rJX0qYm25yQrUcrFDjVd6LSNrhHQO3b_M2tjifzNBdvNd2KhWld8HJqQ2eMonEjVgVlpTpCaJXKrxKY77MoD5MPW56_uREyzGY976JZHOkW858S3v-RbAyXjHU9eL4w3aKU35SNfPdgBHA3fzfrG-5NSlLk6oiDiA4_EyLjOKnZjKrxqikWRNoXP1Jo1WETq0PIC9TnLG9w8Cd_DvcR3CJo2-S147go36ufGf0dqp7ZdWzP8AS0b2ig
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT90wDLcQHMYOwGCDDtgyaRek9b22SZpG4jJNQ4-NxxB7SNyqJE0vm_qmR3vZXz-7X0KIIW5V67RJ7NR27PgH8FEVmeVKpLiQLDooqTSh8cKFVhnhjDBx7Ggfcn6Zzm7Et1t5uwafxrMw3vs2-cxP6LKN5RdL19BW2TRF3SLotN4G6n2ZdKe1xpgBQc62sU2pQoWG_xCUjPR0cX5FWVxiknCecE24Raj6Ey0I6f2ePmoBVv5va7Y652wb5kNvu1STX5OmthP390Ehx-cOZwe2euOTfe6k5RWs-WoXtntDlPXL_G4XXt6rUrgHpz9QiKgdmYvNyrOfLXYOMpShxcsIo56ZqmAExULbhDW7HrKSltVruDn7uvgyC3vQhdDxLKpDqshV2FQqr01ZOh8rJX0qYm25yQrUc7FDnVd6LSNrhHQOHcDM2tjinzNBhvM3sF4tK38ATEht8JZPJOrArLSmSE0SuVTjWxz3ZQDTYepz11ckJ2CM33nrmUQ6R77lxLe851sAJ2OLP101jido92jKR7p-tgM4Grib98v1Lqc6dXFCx4gD-DA-xoVG0RNT-WVDNJLsKXSvnqTRKkKXlgew30nO-P1B4N4-3q_38GK2mF_kF-eX3w9hk0bSpbIdwXq9avwx2j61fdeK_D9StPnU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ordinal+Feature+Selection+for+Iris+and+Palmprint+Recognition&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Sun%2C+Zhenan&rft.au=Wang%2C+Libin&rft.au=Tan%2C+Tieniu&rft.date=2014-09-01&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=23&rft.issue=9&rft.spage=3922&rft.epage=3934&rft_id=info:doi/10.1109%2FTIP.2014.2332396&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIP_2014_2332396
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon