Haplotypes of ATP-Binding Cassette CaABCC6 in Chickpea from Kazakhstan Are Associated with Salinity Tolerance and Leaf Necrosis via Oxidative Stress

Salinity tolerance was studied in chickpea accessions from a germplasm collection and in cultivars from Kazakhstan. After NaCl treatment, significant differences were found between genotypes, which could be arranged into three groups. Those that performed poorest were found in group 1, comprising fi...

Full description

Saved in:
Bibliographic Details
Published inBiomolecules (Basel, Switzerland) Vol. 14; no. 7; p. 823
Main Authors Khassanova, Gulmira, Jatayev, Satyvaldy, Gabdola, Ademi, Kuzbakova, Marzhan, Zailasheva, Aray, Kylyshbayeva, Gulnar, Schramm, Carly, Schleyer, Kathryn, Philp-Dutton, Lauren, Sweetman, Crystal, Anderson, Peter, Jenkins, Colin L. D., Soole, Kathleen L., Shavrukov, Yuri
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 10.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Salinity tolerance was studied in chickpea accessions from a germplasm collection and in cultivars from Kazakhstan. After NaCl treatment, significant differences were found between genotypes, which could be arranged into three groups. Those that performed poorest were found in group 1, comprising five ICC accessions with the lowest chlorophyll content, the highest leaf necrosis (LN), Na+ accumulation, malondialdehyde (MDA) content, and a low glutathione ratio GSH/GSSG. Two cultivars, Privo-1 and Tassay, representing group 2, were moderate in these traits, while the best performance was for group 3, containing two other cultivars, Krasnokutsky-123 and Looch, which were found to have mostly green plants and an exact opposite pattern of traits. Marker–trait association (MTA) between 6K DArT markers and four traits (LN, Na+, MDA, and GSH/GSSG) revealed the presence of four possible candidate genes in the chickpea genome that may be associated with the three groups. One gene, ATP-binding cassette, CaABCC6, was selected, and three haplotypes, A, D1, and D2, were identified in plants from the three groups. Two of the most salt-tolerant cultivars from group 3 were found to have haplotype D2 with a novel identified SNP. RT-qPCR analysis confirmed that this gene was strongly expressed after NaCl treatment in the parental- and breeding-line plants of haplotype D2. Mass spectrometry of seed proteins showed a higher accumulation of glutathione reductase and S-transferase, but not peroxidase, in the D2 haplotype. In conclusion, the CaABCC6 gene was hypothesized to be associated with a better response to oxidative stress via glutathione metabolism, while other candidate genes are likely involved in the control of chlorophyll content and Na+ accumulation.
AbstractList Salinity tolerance was studied in chickpea accessions from a germplasm collection and in cultivars from Kazakhstan. After NaCl treatment, significant differences were found between genotypes, which could be arranged into three groups. Those that performed poorest were found in group 1, comprising five ICC accessions with the lowest chlorophyll content, the highest leaf necrosis (LN), Na+ accumulation, malondialdehyde (MDA) content, and a low glutathione ratio GSH/GSSG. Two cultivars, Privo-1 and Tassay, representing group 2, were moderate in these traits, while the best performance was for group 3, containing two other cultivars, Krasnokutsky-123 and Looch, which were found to have mostly green plants and an exact opposite pattern of traits. Marker–trait association (MTA) between 6K DArT markers and four traits (LN, Na+, MDA, and GSH/GSSG) revealed the presence of four possible candidate genes in the chickpea genome that may be associated with the three groups. One gene, ATP-binding cassette, CaABCC6, was selected, and three haplotypes, A, D1, and D2, were identified in plants from the three groups. Two of the most salt-tolerant cultivars from group 3 were found to have haplotype D2 with a novel identified SNP. RT-qPCR analysis confirmed that this gene was strongly expressed after NaCl treatment in the parental- and breeding-line plants of haplotype D2. Mass spectrometry of seed proteins showed a higher accumulation of glutathione reductase and S-transferase, but not peroxidase, in the D2 haplotype. In conclusion, the CaABCC6 gene was hypothesized to be associated with a better response to oxidative stress via glutathione metabolism, while other candidate genes are likely involved in the control of chlorophyll content and Na+ accumulation.
Salinity tolerance was studied in chickpea accessions from a germplasm collection and in cultivars from Kazakhstan. After NaCl treatment, significant differences were found between genotypes, which could be arranged into three groups. Those that performed poorest were found in group 1, comprising five ICC accessions with the lowest chlorophyll content, the highest leaf necrosis (LN), Na accumulation, malondialdehyde (MDA) content, and a low glutathione ratio GSH/GSSG. Two cultivars, Privo-1 and Tassay, representing group 2, were moderate in these traits, while the best performance was for group 3, containing two other cultivars, Krasnokutsky-123 and Looch, which were found to have mostly green plants and an exact opposite pattern of traits. Marker-trait association (MTA) between 6K DArT markers and four traits (LN, Na , MDA, and GSH/GSSG) revealed the presence of four possible candidate genes in the chickpea genome that may be associated with the three groups. One gene, ATP-binding cassette, , was selected, and three haplotypes, A, D1, and D2, were identified in plants from the three groups. Two of the most salt-tolerant cultivars from group 3 were found to have haplotype D2 with a novel identified SNP. RT-qPCR analysis confirmed that this gene was strongly expressed after NaCl treatment in the parental- and breeding-line plants of haplotype D2. Mass spectrometry of seed proteins showed a higher accumulation of glutathione reductase and S-transferase, but not peroxidase, in the D2 haplotype. In conclusion, the gene was hypothesized to be associated with a better response to oxidative stress via glutathione metabolism, while other candidate genes are likely involved in the control of chlorophyll content and Na accumulation.
Salinity tolerance was studied in chickpea accessions from a germplasm collection and in cultivars from Kazakhstan. After NaCl treatment, significant differences were found between genotypes, which could be arranged into three groups. Those that performed poorest were found in group 1, comprising five ICC accessions with the lowest chlorophyll content, the highest leaf necrosis (LN), Na+ accumulation, malondialdehyde (MDA) content, and a low glutathione ratio GSH/GSSG. Two cultivars, Privo-1 and Tassay, representing group 2, were moderate in these traits, while the best performance was for group 3, containing two other cultivars, Krasnokutsky-123 and Looch, which were found to have mostly green plants and an exact opposite pattern of traits. Marker-trait association (MTA) between 6K DArT markers and four traits (LN, Na+, MDA, and GSH/GSSG) revealed the presence of four possible candidate genes in the chickpea genome that may be associated with the three groups. One gene, ATP-binding cassette, CaABCC6, was selected, and three haplotypes, A, D1, and D2, were identified in plants from the three groups. Two of the most salt-tolerant cultivars from group 3 were found to have haplotype D2 with a novel identified SNP. RT-qPCR analysis confirmed that this gene was strongly expressed after NaCl treatment in the parental- and breeding-line plants of haplotype D2. Mass spectrometry of seed proteins showed a higher accumulation of glutathione reductase and S-transferase, but not peroxidase, in the D2 haplotype. In conclusion, the CaABCC6 gene was hypothesized to be associated with a better response to oxidative stress via glutathione metabolism, while other candidate genes are likely involved in the control of chlorophyll content and Na+ accumulation.Salinity tolerance was studied in chickpea accessions from a germplasm collection and in cultivars from Kazakhstan. After NaCl treatment, significant differences were found between genotypes, which could be arranged into three groups. Those that performed poorest were found in group 1, comprising five ICC accessions with the lowest chlorophyll content, the highest leaf necrosis (LN), Na+ accumulation, malondialdehyde (MDA) content, and a low glutathione ratio GSH/GSSG. Two cultivars, Privo-1 and Tassay, representing group 2, were moderate in these traits, while the best performance was for group 3, containing two other cultivars, Krasnokutsky-123 and Looch, which were found to have mostly green plants and an exact opposite pattern of traits. Marker-trait association (MTA) between 6K DArT markers and four traits (LN, Na+, MDA, and GSH/GSSG) revealed the presence of four possible candidate genes in the chickpea genome that may be associated with the three groups. One gene, ATP-binding cassette, CaABCC6, was selected, and three haplotypes, A, D1, and D2, were identified in plants from the three groups. Two of the most salt-tolerant cultivars from group 3 were found to have haplotype D2 with a novel identified SNP. RT-qPCR analysis confirmed that this gene was strongly expressed after NaCl treatment in the parental- and breeding-line plants of haplotype D2. Mass spectrometry of seed proteins showed a higher accumulation of glutathione reductase and S-transferase, but not peroxidase, in the D2 haplotype. In conclusion, the CaABCC6 gene was hypothesized to be associated with a better response to oxidative stress via glutathione metabolism, while other candidate genes are likely involved in the control of chlorophyll content and Na+ accumulation.
Author Khassanova, Gulmira
Jenkins, Colin L. D.
Anderson, Peter
Kuzbakova, Marzhan
Kylyshbayeva, Gulnar
Sweetman, Crystal
Philp-Dutton, Lauren
Shavrukov, Yuri
Zailasheva, Aray
Schleyer, Kathryn
Jatayev, Satyvaldy
Gabdola, Ademi
Soole, Kathleen L.
Schramm, Carly
Author_xml – sequence: 1
  givenname: Gulmira
  surname: Khassanova
  fullname: Khassanova, Gulmira
– sequence: 2
  givenname: Satyvaldy
  surname: Jatayev
  fullname: Jatayev, Satyvaldy
– sequence: 3
  givenname: Ademi
  orcidid: 0000-0003-3434-9609
  surname: Gabdola
  fullname: Gabdola, Ademi
– sequence: 4
  givenname: Marzhan
  orcidid: 0000-0002-1049-4011
  surname: Kuzbakova
  fullname: Kuzbakova, Marzhan
– sequence: 5
  givenname: Aray
  surname: Zailasheva
  fullname: Zailasheva, Aray
– sequence: 6
  givenname: Gulnar
  surname: Kylyshbayeva
  fullname: Kylyshbayeva, Gulnar
– sequence: 7
  givenname: Carly
  surname: Schramm
  fullname: Schramm, Carly
– sequence: 8
  givenname: Kathryn
  orcidid: 0009-0003-6506-6609
  surname: Schleyer
  fullname: Schleyer, Kathryn
– sequence: 9
  givenname: Lauren
  surname: Philp-Dutton
  fullname: Philp-Dutton, Lauren
– sequence: 10
  givenname: Crystal
  orcidid: 0000-0002-7922-8205
  surname: Sweetman
  fullname: Sweetman, Crystal
– sequence: 11
  givenname: Peter
  surname: Anderson
  fullname: Anderson, Peter
– sequence: 12
  givenname: Colin L. D.
  surname: Jenkins
  fullname: Jenkins, Colin L. D.
– sequence: 13
  givenname: Kathleen L.
  orcidid: 0000-0002-8837-3404
  surname: Soole
  fullname: Soole, Kathleen L.
– sequence: 14
  givenname: Yuri
  orcidid: 0000-0002-2941-0340
  surname: Shavrukov
  fullname: Shavrukov, Yuri
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39062537$$D View this record in MEDLINE/PubMed
BookMark eNpdkktvEzEQx1eoiD7ojTOyxIVDA37sxrvHdAW0IqJIDRK31diebZxu7K3tFMLn4APjkFJV-DKjmZ__mtdxceC8w6J4xeg7IRr6Xlm_ZiWVtObiWXHEOasnXIrvB0_8w-I0xhXNr6Y77kVxmL9OeSXkUfH7AsbBp-2IkfiezBZfJ-fWGetuSAsxYkqYndl5206JdaRdWn07IpA--DX5DL_gdhkTODILSGYxem0hoSE_bFqSaxiss2lLFn7AAE4jAWfIHKEnX1AHH20k9xbI1U9rINl7JNcpYIwvi-c9DBFPH-xJ8e3jh0V7MZlffbpsZ_OJFjVNEzHVmjFFmaw4rQ0wrRQKpLUQPSurvuS1qlBXvDdVA8ygyIlGa9CMshqkOCku97rGw6obg11D2HYebPc34MNNByFZPWBXKlYZqWhT8rJkpleGKqmU4FJnUYlZ6-1eawz-boMxdWsbNQ4DOPSb2AlaVyxXNeUZffMfuvKb4HKnO6qUvJENy9TrB2qj1mgey_u3uwyc7YHdJGPA_hFhtNtdR_f0OsQfmtCrxA
Cites_doi 10.1111/pbr.12927
10.3390/ijms22052352
10.1093/aobpla/plu004
10.3390/toxins16020085
10.1016/S0315-5463(74)73923-2
10.1186/s12870-014-0258-7
10.1007/s11947-009-0303-y
10.3390/genes14061125
10.1093/jxb/erv185
10.1104/pp.104.039909
10.1016/j.jplph.2015.05.002
10.1080/07352689.2022.2065136
10.1146/annurev-arplant-050718-100005
10.1186/1471-2229-8-22
10.1111/j.1467-7652.2012.00710.x
10.3389/fpls.2022.1074245
10.1093/pcp/pcn034
10.1111/nph.17779
10.1177/19458924231159176
10.4308/hjb.30.4.682-691
10.1111/j.1469-8137.2005.01487.x
10.1201/9781003214885-1
10.1042/bse0500145
10.1007/s00425-016-2533-3
10.3390/horticulturae10020156
10.1111/tpj.15352
10.1104/pp.18.00934
10.1074/jbc.M109.030247
10.3390/ijms222312848
10.1016/j.sjbs.2022.103464
10.2135/cropsci2015.07.0429
10.3390/agronomy13071814
10.1111/jipb.13599
10.1111/ppl.13780
10.1016/S1360-1385(02)02312-9
10.1007/s11033-022-08036-2
10.3389/fpls.2024.1297096
10.1111/j.1438-8677.2010.00380.x
10.1104/pp.16.01760
10.1186/s40538-015-0031-7
10.1093/bioinformatics/btm308
10.1007/s10681-005-1681-5
10.1046/j.1365-313X.1998.00076.x
10.1111/j.1365-313X.2011.04789.x
10.1021/acsomega.3c03325
10.1016/0958-1669(95)80024-7
10.1201/9781003300564
10.1074/jbc.M808632200
10.3390/genes13122350
10.3389/fpls.2022.952759
10.1111/1750-3841.15778
10.3389/fpls.2021.667910
10.1016/0003-2697(80)90139-6
10.1007/s11103-004-0274-3
10.1016/j.envexpbot.2018.12.009
10.3390/life12091426
10.1007/s004250050524
10.1016/j.gene.2023.148088
10.1046/j.1365-313X.2003.01901.x
10.3389/fpls.2024.1354413
10.1016/j.jplph.2019.02.012
10.21273/HORTSCI17409-23
10.1016/S0005-2736(00)00132-2
10.2225/vol13-issue5-fulltext-14
10.1016/j.plantsci.2021.110827
10.3390/genes8100255
10.3390/biom10040661
10.1371/journal.pone.0086039
10.1007/s12038-016-9602-4
10.1186/s12870-020-02331-5
10.31742/IJGPB.82.2.8
10.1007/s00299-017-2139-7
10.1093/plphys/kiab193
10.3390/ijms23126794
10.1007/s12038-012-9228-0
10.3390/ijms24044062
10.3390/foods13060887
10.1017/S1479262121000228
10.1111/j.1365-313X.2004.02125.x
10.3389/fpls.2023.1123631
10.1111/j.1365-3040.1993.tb00840.x
10.1007/BF00226215
10.3389/fgene.2019.00040
10.3389/fpls.2023.1082761
10.1016/j.chemosphere.2022.137419
10.3390/biom13121722
10.1007/s00425-012-1827-3
10.1016/j.febslet.2005.11.056
10.1007/s11738-012-1142-4
10.1038/s41598-018-37504-8
10.1023/A:1027385513483
10.1016/j.bbrc.2010.04.079
10.3389/fpls.2023.1080504
10.1371/journal.pone.0253188
10.1007/s40011-014-0382-z
10.1007/s00344-022-10655-9
10.1007/s11738-007-0059-9
10.3390/cells11152457
10.1186/s12870-018-1409-z
10.1093/emboj/20.8.1875
10.1104/pp.106.077982
10.1007/s10722-007-9214-9
10.1007/s00709-022-01786-7
10.1016/j.bbagen.2012.11.018
10.1007/BF00040624
10.1016/j.plaphy.2023.108037
10.1111/j.1365-3040.2011.02400.x
10.1007/s11738-023-03541-8
10.1038/srep11166
ContentType Journal Article
Copyright 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7T5
7TM
7TO
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
DOA
DOI 10.3390/biom14070823
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Immunology Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2218-273X
ExternalDocumentID oai_doaj_org_article_4b15d7b0942441dfbd0b7bb327c33f7e
39062537
10_3390_biom14070823
Genre Journal Article
GeographicLocations Kazakhstan
India
GeographicLocations_xml – name: Kazakhstan
– name: India
GrantInformation_xml – fundername: Science Committee of the Ministry of Science and Higher Education, Republic of Kazakhstan
  grantid: AP14869777
GroupedDBID 53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
EBD
ESX
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
IAO
IHR
ITC
KQ8
LK8
M1P
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RPM
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7T5
7TM
7TO
7XB
8FK
AZQEC
DWQXO
GNUQQ
H94
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
PUEGO
ID FETCH-LOGICAL-c380t-36cc11b0175208da1cbbe3e0833f145f428b5ec52fd59a1de333f9ccac1018a73
IEDL.DBID M48
ISSN 2218-273X
IngestDate Wed Aug 27 01:14:41 EDT 2025
Mon Jul 21 10:32:46 EDT 2025
Fri Jul 25 12:04:58 EDT 2025
Thu Apr 03 07:04:00 EDT 2025
Tue Jul 01 02:05:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords salinity
haplotype
SNP
glutathione
DArT analysis
malondialdehyde
chickpea
gene expression
oxidative stress
marker-trait association
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c380t-36cc11b0175208da1cbbe3e0833f145f428b5ec52fd59a1de333f9ccac1018a73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8837-3404
0000-0003-3434-9609
0000-0002-2941-0340
0009-0003-6506-6609
0000-0002-1049-4011
0000-0002-7922-8205
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/biom14070823
PMID 39062537
PQID 3084729791
PQPubID 2032425
ParticipantIDs doaj_primary_oai_doaj_org_article_4b15d7b0942441dfbd0b7bb327c33f7e
proquest_miscellaneous_3085114562
proquest_journals_3084729791
pubmed_primary_39062537
crossref_primary_10_3390_biom14070823
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-Jul-10
PublicationDateYYYYMMDD 2024-07-10
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-Jul-10
  day: 10
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Biomolecules (Basel, Switzerland)
PublicationTitleAlternate Biomolecules
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_94
Zia (ref_41) 2022; 49
Klein (ref_73) 2004; 39
Noctor (ref_21) 2012; 35
Khan (ref_6) 2015; 182
Krstic (ref_95) 2023; 37
ref_14
ref_99
Behrens (ref_111) 2019; 9
ref_96
Madesis (ref_27) 2017; 36
Naaz (ref_66) 2023; 8
Semagn (ref_36) 2010; 13
ref_17
Park (ref_64) 2012; 69
ref_15
Campbell (ref_8) 2023; 36
(ref_18) 1995; 6
Ledesma (ref_11) 2016; 56
Kolukisaoglu (ref_71) 2008; 49
Weining (ref_85) 1991; 82
Mittler (ref_19) 2002; 7
Kameoka (ref_105) 2021; 107
Khan (ref_7) 2016; 244
Jha (ref_40) 2021; 19
ref_23
Tari (ref_84) 2015; 57
Bachhawat (ref_22) 2013; 1830
Kaur (ref_101) 2015; 85
Eyidogan (ref_116) 2007; 29
Liang (ref_32) 2024; 66
ref_26
Chang (ref_93) 2012; 5
Rasool (ref_16) 2013; 35
Bradbury (ref_87) 2007; 23
ref_70
Hiremath (ref_38) 2012; 10
Ferrario (ref_67) 1993; 67
ref_79
ref_78
ref_76
(ref_55) 2021; 86
Kretzschmar (ref_58) 2011; 50
Kumar (ref_5) 2018; Volume 1
Kaur (ref_25) 2023; 313
Paudel (ref_10) 2024; 59
Cairns (ref_117) 2006; 141
Munns (ref_28) 2005; 167
ref_81
Mansour (ref_106) 2023; 42
ref_80
Griffith (ref_83) 1980; 106
Raichaudhuri (ref_72) 2009; 284
ref_89
ref_88
ref_86
Munns (ref_4) 1993; 16
Theodoulou (ref_57) 2000; 1465
Hodges (ref_82) 1999; 207
Wanke (ref_62) 2010; 12
Soares (ref_29) 2019; 161
ref_50
Fan (ref_92) 1974; 7
Rashmi (ref_107) 2023; 45
Tommasini (ref_109) 1998; 13
ref_56
ref_54
Gaedeke (ref_75) 2001; 20
Basu (ref_77) 2019; 180
ref_52
ref_51
Brunetti (ref_65) 2015; 66
Naeem (ref_43) 2021; 140
Ishikawa (ref_20) 1997; 17
Taji (ref_104) 2004; 135
ref_68
ref_63
Lee (ref_39) 2014; 6
Lamsaadi (ref_49) 2024; 42
Banasiak (ref_60) 2022; 233
Maliro (ref_13) 2008; 55
ref_118
ref_34
Jha (ref_112) 2022; 82
ref_33
Pandey (ref_114) 2023; 260
ref_31
Shavrukov (ref_90) 2013; 237
Parveen (ref_24) 2024; 898
Kujur (ref_47) 2015; 5
ref_113
Glombitza (ref_98) 2004; 54
Zuo (ref_110) 2017; 173
Milla (ref_115) 2003; 36
Do (ref_59) 2021; 187
Wulandari (ref_9) 2023; 30
ref_37
Garg (ref_91) 2010; 396
Ashraf (ref_97) 2022; 41
ref_103
Klein (ref_61) 2006; 580
ref_108
Varshney (ref_44) 2012; 37
Franzisky (ref_12) 2019; 236
Nagy (ref_74) 2009; 284
Zhang (ref_30) 2020; 71
ref_46
ref_45
ref_100
ref_42
ref_102
Collard (ref_35) 2005; 142
Dean (ref_69) 2022; 174
ref_1
Pandurangaiah (ref_53) 2016; 41
ref_3
ref_2
ref_48
Shao (ref_119) 2021; 30
References_xml – volume: 140
  start-page: 519
  year: 2021
  ident: ref_43
  article-title: Overview on domestication, breeding, genetic gain and improvement of tuber quality traits of potato using fast forwarding technique (GWAS): A review
  publication-title: Plant Breed.
  doi: 10.1111/pbr.12927
– ident: ref_118
  doi: 10.3390/ijms22052352
– volume: 6
  start-page: plu004
  year: 2014
  ident: ref_39
  article-title: Identifying the genes underlying quantitative traits: A rationale for the QTN programme
  publication-title: AoB Plants
  doi: 10.1093/aobpla/plu004
– ident: ref_94
  doi: 10.3390/toxins16020085
– volume: 7
  start-page: 256
  year: 1974
  ident: ref_92
  article-title: Dispersibility and isolation of proteins from legume flours
  publication-title: Can. Inst. Food Sci. Technol. J.
  doi: 10.1016/S0315-5463(74)73923-2
– ident: ref_42
  doi: 10.1186/s12870-014-0258-7
– volume: 5
  start-page: 618
  year: 2012
  ident: ref_93
  article-title: Isolation and characterization of chickpea (Cicer arietinum L.) seed protein fractions
  publication-title: Food Bioprocess. Technol.
  doi: 10.1007/s11947-009-0303-y
– ident: ref_88
– ident: ref_51
  doi: 10.3390/genes14061125
– volume: 66
  start-page: 3815
  year: 2015
  ident: ref_65
  article-title: Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance in Arabidopsis
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erv185
– volume: 135
  start-page: 1697
  year: 2004
  ident: ref_104
  article-title: Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray
  publication-title: Plant Physiol.
  doi: 10.1104/pp.104.039909
– volume: 182
  start-page: 1
  year: 2015
  ident: ref_6
  article-title: Salt sensitivity in chickpea: Growth, photosynthesis, seed yield components and tissue ion regulation in contrasting genotypes
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2015.05.002
– volume: 41
  start-page: 128
  year: 2022
  ident: ref_97
  article-title: Evolution of approaches to increase the salt tolerance of crops
  publication-title: Crit. Rev. Plant Sci.
  doi: 10.1080/07352689.2022.2065136
– ident: ref_1
– volume: 71
  start-page: 403
  year: 2020
  ident: ref_30
  article-title: Salt tolerance mechanisms of plants
  publication-title: Ann. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-050718-100005
– ident: ref_63
  doi: 10.1186/1471-2229-8-22
– volume: 10
  start-page: 716
  year: 2012
  ident: ref_38
  article-title: Large-scale development of cost-effective SNP marker assays for diversity assessment and genetic mapping in chickpea and comparative mapping in legumes
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/j.1467-7652.2012.00710.x
– ident: ref_37
  doi: 10.3389/fpls.2022.1074245
– volume: 49
  start-page: 557
  year: 2008
  ident: ref_71
  article-title: Comparative mutant analysis of Arabidopsis ABCC-type ABC transporters: AtMRP2 contributes to detoxification, vacuolar organic anion transport and chlorophyll degradation
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcn034
– volume: 233
  start-page: 1597
  year: 2022
  ident: ref_60
  article-title: ATP-binding cassette transporters in nonmodel plants
  publication-title: New Phytol.
  doi: 10.1111/nph.17779
– volume: 37
  start-page: 419
  year: 2023
  ident: ref_95
  article-title: The nasal innate immune proteome after saline irrigation: A pilot study in healthy individuals
  publication-title: Am. J. Rhinol. Allergy
  doi: 10.1177/19458924231159176
– volume: 30
  start-page: 682
  year: 2023
  ident: ref_9
  article-title: Morpho-physiology of mulberry (Morus sp.) plant on salinity stress tolerance
  publication-title: HAYATI J. Biosci.
  doi: 10.4308/hjb.30.4.682-691
– volume: 167
  start-page: 645
  year: 2005
  ident: ref_28
  article-title: Genes and salt tolerance: Bringing them together
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2005.01487.x
– ident: ref_2
  doi: 10.1201/9781003214885-1
– volume: 50
  start-page: 145
  year: 2011
  ident: ref_58
  article-title: Functions of ABC transporters in plants
  publication-title: Essays Biochem.
  doi: 10.1042/bse0500145
– volume: 244
  start-page: 623
  year: 2016
  ident: ref_7
  article-title: Salt sensitivity in chickpea is determined by sodium toxicity
  publication-title: Planta
  doi: 10.1007/s00425-016-2533-3
– ident: ref_3
  doi: 10.3390/horticulturae10020156
– volume: 107
  start-page: 876
  year: 2021
  ident: ref_105
  article-title: Cooperation of chloroplast ascorbate peroxidases and proton gradient regulation 5 is critical for protecting Arabidopsis plants from photo-oxidative stress
  publication-title: Plant J.
  doi: 10.1111/tpj.15352
– volume: 180
  start-page: 253
  year: 2019
  ident: ref_77
  article-title: ABC transporter-mediated transport of glutathione conjugates enhances seed yield and quality in chickpea
  publication-title: Plant Physiol.
  doi: 10.1104/pp.18.00934
– volume: Volume 1
  start-page: 85
  year: 2018
  ident: ref_5
  article-title: Strategies to mitigate the salt stress effects on photosynthetic apparatus and productivity of crop plants
  publication-title: Salinity Responses and Tolerance in Plants. Targeting Sensory, Transport and Signaling Mechanisms
– volume: 284
  start-page: 33614
  year: 2009
  ident: ref_74
  article-title: The Arabidopsis ATP-binding cassette protein AtMRP5/AtABCC5 is a high affinity inositol hexakisphosphate transporter involved in guard cell signaling and phytate storage
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.030247
– ident: ref_102
  doi: 10.3390/ijms222312848
– ident: ref_17
  doi: 10.1016/j.sjbs.2022.103464
– volume: 56
  start-page: 585
  year: 2016
  ident: ref_11
  article-title: A simple greenhouse method for screening salt tolerance in soybean
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2015.07.0429
– ident: ref_26
  doi: 10.3390/agronomy13071814
– volume: 66
  start-page: 303
  year: 2024
  ident: ref_32
  article-title: Designing salt stress-resilient crops: Current progress and future challenges
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/jipb.13599
– volume: 174
  start-page: e13780
  year: 2022
  ident: ref_69
  article-title: Transport of acylated anthocyanins by the Arabidopsis ATP-binding cassette transporters AtABCC1, AtABCC2, and AtABCC14
  publication-title: Physiol. Plant.
  doi: 10.1111/ppl.13780
– volume: 7
  start-page: 405
  year: 2002
  ident: ref_19
  article-title: Oxidative stress, antioxidants and stress tolerance
  publication-title: Trends Plant Sci.
  doi: 10.1016/S1360-1385(02)02312-9
– volume: 49
  start-page: 12077
  year: 2022
  ident: ref_41
  article-title: An overview of genome-wide association mapping studies in Poaceae species (model crops: Wheat and rice)
  publication-title: Mol. Biol. Rep.
  doi: 10.1007/s11033-022-08036-2
– ident: ref_52
  doi: 10.3389/fpls.2024.1297096
– volume: 12
  start-page: 15
  year: 2010
  ident: ref_62
  article-title: An update on the ABCC transporter family in plants: Many genes, many proteins, but how many functions?
  publication-title: Plant Biol.
  doi: 10.1111/j.1438-8677.2010.00380.x
– volume: 173
  start-page: 2096
  year: 2017
  ident: ref_110
  article-title: Mitochondrial ABC transporter ATM3 is essential for cytosolic iron-sulfur cluster assembly
  publication-title: Plant Physiol.
  doi: 10.1104/pp.16.01760
– ident: ref_23
  doi: 10.1186/s40538-015-0031-7
– volume: 23
  start-page: 2633
  year: 2007
  ident: ref_87
  article-title: TASSEL: Software for association mapping of complex traits in diverse samples
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm308
– volume: 142
  start-page: 169
  year: 2005
  ident: ref_35
  article-title: An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts
  publication-title: Euphytica
  doi: 10.1007/s10681-005-1681-5
– volume: 13
  start-page: 773
  year: 1998
  ident: ref_109
  article-title: An ABC-transporter of Arabidopsis thaliana has both glutathione-conjugate and chlorophyll catabolite transport activity
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.1998.00076.x
– ident: ref_86
– volume: 69
  start-page: 278
  year: 2012
  ident: ref_64
  article-title: The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2011.04789.x
– volume: 8
  start-page: 27597
  year: 2023
  ident: ref_66
  article-title: Impact of some toxic metals on important ABC transporters in soybean (Glycine max L.)
  publication-title: ACS Omega
  doi: 10.1021/acsomega.3c03325
– volume: 6
  start-page: 153
  year: 1995
  ident: ref_18
  article-title: Oxidative stress in plants
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/0958-1669(95)80024-7
– ident: ref_15
  doi: 10.1201/9781003300564
– volume: 284
  start-page: 8449
  year: 2009
  ident: ref_72
  article-title: Plant vacuolar ATP-binding cassette transporters that translocate folates and antifolates in vitro and contribute to antifolate tolerance in vivo
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M808632200
– ident: ref_113
  doi: 10.3390/genes13122350
– ident: ref_48
  doi: 10.3389/fpls.2022.952759
– volume: 86
  start-page: 2962
  year: 2021
  ident: ref_55
  article-title: Characterization of peptides with antioxidant activity and antidiabetic potential obtained from chickpea (Cicer arietinum L.) protein hydrolyzates
  publication-title: J. Food Sci.
  doi: 10.1111/1750-3841.15778
– ident: ref_14
  doi: 10.3389/fpls.2021.667910
– volume: 106
  start-page: 207
  year: 1980
  ident: ref_83
  article-title: Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine
  publication-title: Anal. Biochem.
  doi: 10.1016/0003-2697(80)90139-6
– volume: 54
  start-page: 817
  year: 2004
  ident: ref_98
  article-title: Crosstalk and differential response to abiotic and biotic stressors reflected at the transcriptional level of effector genes from secondary metabolism
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-004-0274-3
– volume: 161
  start-page: 4
  year: 2019
  ident: ref_29
  article-title: Plants facing oxidative challenges–A little help from the antioxidant networks
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2018.12.009
– ident: ref_50
  doi: 10.3390/life12091426
– volume: 207
  start-page: 604
  year: 1999
  ident: ref_82
  article-title: Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds
  publication-title: Planta
  doi: 10.1007/s004250050524
– volume: 898
  start-page: 148088
  year: 2024
  ident: ref_24
  article-title: Genome-wide analysis of glutathione peroxidase (GPX) gene family in chickpea (Cicer arietinum L.) under salinity stress
  publication-title: Gene
  doi: 10.1016/j.gene.2023.148088
– volume: 36
  start-page: 602
  year: 2003
  ident: ref_115
  article-title: Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.2003.01901.x
– ident: ref_80
  doi: 10.3389/fpls.2024.1354413
– volume: 236
  start-page: 23
  year: 2019
  ident: ref_12
  article-title: Shoot chloride translocation as a determinant for NaCl tolerance in Vicia faba L.
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2019.02.012
– volume: 59
  start-page: 209
  year: 2024
  ident: ref_10
  article-title: Effect of salt stress on the growth, physiology, and mineral nutrients of two Penstemon species
  publication-title: HortScience
  doi: 10.21273/HORTSCI17409-23
– ident: ref_78
– volume: 1465
  start-page: 79
  year: 2000
  ident: ref_57
  article-title: Plant ABC transporters
  publication-title: Biochim. Biophys. Acta–Biomembr.
  doi: 10.1016/S0005-2736(00)00132-2
– volume: 13
  start-page: 16
  year: 2010
  ident: ref_36
  article-title: The genetic dissection of quantitative traits in crops
  publication-title: Electron. J. Biotechnol.
  doi: 10.2225/vol13-issue5-fulltext-14
– volume: 30
  start-page: 110827
  year: 2021
  ident: ref_119
  article-title: GhGSTF12, a glutathione S-transferase gene, is essential for anthocyanin accumulation in cotton (Gossypium hirsutum L.)
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2021.110827
– ident: ref_108
  doi: 10.3390/genes8100255
– ident: ref_103
  doi: 10.3390/biom10040661
– ident: ref_45
  doi: 10.1371/journal.pone.0086039
– volume: 41
  start-page: 257
  year: 2016
  ident: ref_53
  article-title: Differential expression of carotenoid biosynthetic pathway genes in two contrasting tomato genotypes for lycopene content
  publication-title: J. Biosci.
  doi: 10.1007/s12038-016-9602-4
– ident: ref_81
  doi: 10.1186/s12870-020-02331-5
– volume: 82
  start-page: 193
  year: 2022
  ident: ref_112
  article-title: Elucidating genetic diversity and association mapping to identify SSR markers linked to 100 seed weight in chickpea (Cicer arietinum L.)
  publication-title: Indian J. Genet. Plant Breed.
  doi: 10.31742/IJGPB.82.2.8
– volume: 36
  start-page: 791
  year: 2017
  ident: ref_27
  article-title: Plant glutathione transferase-mediated stress tolerance: Functions and biotechnological applications
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-017-2139-7
– volume: 187
  start-page: 1876
  year: 2021
  ident: ref_59
  article-title: 2021 update on ATP-binding cassette (ABC) transporters: How they meet the needs of plants
  publication-title: Plant Physiol.
  doi: 10.1093/plphys/kiab193
– ident: ref_31
  doi: 10.3390/ijms23126794
– volume: 37
  start-page: 811
  year: 2012
  ident: ref_44
  article-title: Advances in genetics and molecular breeding of three legume crops of semi-arid tropics using next-generation sequencing and high-throughput genotyping technologies
  publication-title: J. Biosci.
  doi: 10.1007/s12038-012-9228-0
– ident: ref_100
  doi: 10.3390/ijms24044062
– ident: ref_56
  doi: 10.3390/foods13060887
– volume: 19
  start-page: 195
  year: 2021
  ident: ref_40
  article-title: Association mapping of genomic loci linked with Fusarium wilt resistance (Foc2) in chickpea
  publication-title: Plant Genet. Resour.
  doi: 10.1017/S1479262121000228
– volume: 39
  start-page: 219
  year: 2004
  ident: ref_73
  article-title: Disruption of AtMRP4, a guard cell plasma membrane ABCC-type ABC transporter, leads to deregulation of stomatal opening and increased drought susceptibility
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2004.02125.x
– ident: ref_34
  doi: 10.3389/fpls.2023.1123631
– volume: 16
  start-page: 15
  year: 1993
  ident: ref_4
  article-title: Physiological processes limiting plant growth in saline soils: Some dogmas and hypotheses
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.1993.tb00840.x
– volume: 82
  start-page: 209
  year: 1991
  ident: ref_85
  article-title: Identification and mapping of polymorphisms in cereals based on the polymerase chain reaction
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/BF00226215
– ident: ref_89
  doi: 10.3389/fgene.2019.00040
– volume: 42
  start-page: 1
  year: 2024
  ident: ref_49
  article-title: Molecular approaches to improve legume salt stress tolerance
  publication-title: Plant Mol. Biol. Rep.
– ident: ref_68
  doi: 10.3389/fpls.2023.1082761
– volume: 313
  start-page: 137419
  year: 2023
  ident: ref_25
  article-title: Morphological and antioxidant responses of Cicer arietinum L. genotypes exposed to combination stress of anthracene and sodium chloride
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2022.137419
– ident: ref_46
  doi: 10.3390/biom13121722
– volume: 237
  start-page: 1111
  year: 2013
  ident: ref_90
  article-title: HVP10 encoding V-PPase is a prime candidate for the barley HvNax3 sodium exclusion gene: Evidence from fine mapping and expression analysis
  publication-title: Planta
  doi: 10.1007/s00425-012-1827-3
– volume: 580
  start-page: 1112
  year: 2006
  ident: ref_61
  article-title: The multidrug resistance-associated protein (MRP/ABCC) subfamily of ATP-binding cassette transporters in plants
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2005.11.056
– volume: 35
  start-page: 1039
  year: 2013
  ident: ref_16
  article-title: Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-012-1142-4
– volume: 9
  start-page: 437
  year: 2019
  ident: ref_111
  article-title: Transport of anthocyanins and other flavonoids by the Arabidopsis ATP-binding cassette transporter AtABCC2
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-37504-8
– volume: 17
  start-page: 189
  year: 1997
  ident: ref_20
  article-title: The GS-X pump in plant, yeast, and animal cells: Structure, function, and gene expression
  publication-title: Biosci. Rep.
  doi: 10.1023/A:1027385513483
– volume: 396
  start-page: 283
  year: 2010
  ident: ref_91
  article-title: Validation of internal control genes for quantitative gene expression studies in chickpea (Cicer arietinum L.)
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2010.04.079
– ident: ref_96
– ident: ref_99
  doi: 10.3389/fpls.2023.1080504
– ident: ref_76
  doi: 10.1371/journal.pone.0253188
– volume: 85
  start-page: 615
  year: 2015
  ident: ref_101
  article-title: Abiotic stress tolerance of chickpea genotypes depends upon antioxidative potential and nutritional quality of seeds
  publication-title: Proc. Natl. Acad. Sci. India Sec. B Biol. Sci.
  doi: 10.1007/s40011-014-0382-z
– volume: 42
  start-page: 1364
  year: 2023
  ident: ref_106
  article-title: Role of vacuolar membrane transport systems in plant salinity tolerance
  publication-title: J. Plant Growth Regul.
  doi: 10.1007/s00344-022-10655-9
– ident: ref_79
– volume: 29
  start-page: 485
  year: 2007
  ident: ref_116
  article-title: Effect of salinity on antioxidant responses of chickpea seedlings
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-007-0059-9
– ident: ref_33
  doi: 10.3390/cells11152457
– ident: ref_54
  doi: 10.1186/s12870-018-1409-z
– volume: 20
  start-page: 1875
  year: 2001
  ident: ref_75
  article-title: The Arabidopsis thaliana ABC transporter AtMRP5 controls root development and stomata movement
  publication-title: EMBO J.
  doi: 10.1093/emboj/20.8.1875
– volume: 141
  start-page: 446
  year: 2006
  ident: ref_117
  article-title: Maturation of Arabidopsis seeds is dependent on glutathione biosynthesis within the embryo
  publication-title: Plant Physiol.
  doi: 10.1104/pp.106.077982
– volume: 55
  start-page: 53
  year: 2008
  ident: ref_13
  article-title: Sampling strategies and screening of chickpea (Cicer arietinum L.) germplasm for salt tolerance
  publication-title: Genet. Resour. Crop Evol.
  doi: 10.1007/s10722-007-9214-9
– volume: 260
  start-page: 453
  year: 2023
  ident: ref_114
  article-title: ABC transporters mined through comparative transcriptomics associate with organ-specific accumulation of picrosides in a medicinal herb, Picrorhiza kurroa
  publication-title: Protoplasma
  doi: 10.1007/s00709-022-01786-7
– volume: 1830
  start-page: 3154
  year: 2013
  ident: ref_22
  article-title: Glutathione transporters
  publication-title: Biochim. Biophys. Acta Gen. Subj.
  doi: 10.1016/j.bbagen.2012.11.018
– volume: 36
  start-page: 1
  year: 2023
  ident: ref_8
  article-title: Soluble phenolics, chlorophylls, and malondialdehyde are the best indicators of salt stress in Eichornia crassipes
  publication-title: Vegetos
– volume: 67
  start-page: 221
  year: 1993
  ident: ref_67
  article-title: Developmental expression of glutathione-S-transferase in maize and its possible connection with herbicide tolerance
  publication-title: Euphytica
  doi: 10.1007/BF00040624
– ident: ref_70
  doi: 10.1016/j.plaphy.2023.108037
– volume: 35
  start-page: 454
  year: 2012
  ident: ref_21
  article-title: Glutathione in plants: An integrated overview
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2011.02400.x
– volume: 45
  start-page: 66
  year: 2023
  ident: ref_107
  article-title: Role of ions and their transporters in combating salt stress in Pandanus odorifer (Forssk.) Kuntze
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-023-03541-8
– volume: 57
  start-page: 21
  year: 2015
  ident: ref_84
  article-title: The alleviation of the adverse effects of salt stress in the tomato plant by salicylic acid shows a time and organ-specific antioxidant response
  publication-title: Acta Biol. Cracov. Ser. Bot.
– volume: 5
  start-page: 11166
  year: 2015
  ident: ref_47
  article-title: A genome-wide SNP scan accelerates trait-regulatory genomic loci identification in chickpea
  publication-title: Sci. Rep.
  doi: 10.1038/srep11166
SSID ssj0000800823
Score 2.3033168
Snippet Salinity tolerance was studied in chickpea accessions from a germplasm collection and in cultivars from Kazakhstan. After NaCl treatment, significant...
SourceID doaj
proquest
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 823
SubjectTerms ATP-Binding Cassette Transporters - genetics
ATP-Binding Cassette Transporters - metabolism
chickpea
Chlorophyll
Chlorophyll - metabolism
Cicer - genetics
Cicer - metabolism
Cultivars
DArT analysis
Drought
Enzymes
Flowers & plants
Gene expression
Genotypes
Germplasm
Glutathione
Glutathione reductase
haplotype
Haplotypes
Heavy metals
Kazakhstan
Leaves
Legumes
Lipid peroxidation
malondialdehyde
Mass spectroscopy
Necrosis
Oxidative metabolism
Oxidative stress
Oxidative Stress - genetics
Plant breeding
Plant Leaves - genetics
Plant Leaves - metabolism
Plant Proteins - genetics
Plant Proteins - metabolism
Proteins
Proteomics
Salinity
Salinity effects
Salinity tolerance
Salt Tolerance - genetics
Seeds
Single-nucleotide polymorphism
Sodium chloride
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQUB6BggYJuEWN43idHHdXVCseBalbqbfIj4kILcmK3SLK7-AHM-NkV8sBceEWOZbieMaZ73NmPgvxMlOFRl2GlFMs0iIPWWqdDylOTOUkFkZFMZ0Pp5PFefH2Ql_sHfXFOWGDPPAwcceFkzoYRyyEApEMjQuZM86p3HilGoP89aWYt0emvow4qMzVkOmuiNcfczU7kQnDzX_EoCjV_3d8GePMyV1xZwSIMB0Gdk_cwu6-OJx2RI6_3sBriCmbcS_8UPxa2NVVz7uoa-gbmC4_pbM2lqnAnEAxZ_HQxXQ2n0-g7YDTLi5XaIFrSuCd_WkvPzM4pIchbO2EAXhvFs4s10xubmDZXyGfvoFguwDv0TZwivxi7Rq-txY-_mhDVA-Hs1h38kCcn7xZzhfpeMxC6lWZbVI18V5KR0uT7FUGK71zqJCwmWpkoRsiKE6j13kTdGVlQEU3KrK8Z7Uva9RDcdD1HT4W4AnuISu8yMITz8yqPMsDehdC0-Toy0S82k58vRrUNGpiIWyget9AiZixVXZ9WAM7NpBn1KNn1P_yjEQcbW1ajwtzXauMwnFemUom4sXuNi0p_k9iO-yvYx-CoUwNE_Fo8IXdSBTrOmtlnvyPET4Vt2mCCt4qltmRONh8u8ZnhHE27nl059_CoPpM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZguXBBwPIILGiQgFu0cRzXyQm1FauKx4K0Xam3yI8JRLskZdtFLL-DH8yMmxY4wC2yrcTOjO1vxjOfhXieqUKjLkPKIRZpkYcstc6HFEemchILoyKZzvvj0ey0eLPQi8HhthrCKrdrYlyoQ-_ZR36oMlpH88pU8tXya8q3RvHp6nCFxnVxg6nLWKvNwux8LIyGylxt4t0VWfeHnNNOJoXh4r92okjY_2-UGXebo9vi1gATYbyR6x1xDbu7Yn_ckYn85QpeQgzcjB7xffFzZpfnPftSV9A3MJ5_TCdtTFaBKUFjjuWhh_FkOh1B2wEHX5wt0QJnlsBb-8OefWaISB9D2EoLA7CHFk4sZ06ur2DenyPfwYFguwDv0DZwjDywdgXfWgsfvrchcojDScw-uSdOj17Pp7N0uGwh9arM1qkaeS-lowlKUiuDld45VEgITTWy0A2ZKU6j13kTdGVlQEUVFcnfM-eXNeq-2Ov6Dh8K8AT6kHleZOHJ2syqPMsDehdC0-Toy0S82P74ernh1KjJFmEB1X8KKBETlsquDTNhx4L-4lM9TKy6cFIH48hKJaAiQ-NC5oxzKjeeOmgwEQdbmdbD9FzVv5UpEc921TSx-LTEdthfxjYERtlATMSDjS7seqKY3Vkr8-j_L38sbtLQC3YFy-xA7K0vLvEJYZi1exoV9RecF_GC
  priority: 102
  providerName: ProQuest
Title Haplotypes of ATP-Binding Cassette CaABCC6 in Chickpea from Kazakhstan Are Associated with Salinity Tolerance and Leaf Necrosis via Oxidative Stress
URI https://www.ncbi.nlm.nih.gov/pubmed/39062537
https://www.proquest.com/docview/3084729791
https://www.proquest.com/docview/3085114562
https://doaj.org/article/4b15d7b0942441dfbd0b7bb327c33f7e
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1bb9MwFLZ2kdBeJmBcAqMyEvAWiOOkbh4QaqtNFbAysVbqW-TLCZR1SWk7tPI7-MGc4ybVJNhbFDuK7XMsf9_xuTD2KpJJCmnHheRiESaxi0JtrAuhrTIjIFHSJ9M5G7YH4-TjJJ3ssKbaaL2Ay_9SO6onNV7M3t78XH_ADf-eGCdS9ncUqI48QdGl0S7bxzNJUS2Dsxro_6hxEbZuPN__-eiA3ZOUrzelaui3jiefxf9u6OmPoNP77LDGjry7EfYDtgPlQ3bULZE3X635G-69Ob2Z_Ij9Gej5rCID65JXBe-OzsPe1Eew8D7iZXLwwYdur99v82nJySPjcg6aU7gJ_6R_68vvhBvxZ8AbEYLjZLblF5rCKVdrPqpmQIU5gOvS8c-gCz4Emth0yX9NNf9yM3U-sTi_8CEpj9j49GTUH4R1BYbQyk60CmXbWiEM7loUZcdpYY0BCQjbZCGStEDuYlKwaVy4NNPCgcSGDJXCUiIwreRjtldWJTxl3CISBEr-IhKLFDTK4ih2YI1zRRGD7QTsdbPw-XyTaCNHgkKyym_LKmA9ksq2D6XH9i-qxbe83m15YkTqlEHqiuhFuMK4yChjZKwsDlBBwI4bmeaNyuUywpM6zlQmAvZy24y7ja5QdAnVte-DCJVYY8CebHRhO5JGhZ7d2fKcHeCsEzINi-iY7a0W1_ACMc3KtNiumqgW2--dDM-_trxloOVV-C_q3vda
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lc9MwENaUcoALA5SHocAyQ7l5alt2FB8YJgl0UpIGZprO5Gb0WEOmxQ5NCoTfwe_gN7KrxAEOcOvNI2lkSbuSvl3tQ4hnkUwzzNouZBOLME1cFGpjXYgtlZsYUyV9MJ2jUat_kr6ZZJMt8bPxhWGzyuZM9Ae1qy3ryPdlROdokqs8fjn7HHLWKH5dbVJorNhigMuvJLLNXxy-IvruJcnB63GvH66zCoRWtqNFKFvWxrEhTqThtZ2OrTEokaCILOM0KwmPmwxtlpQuy3XsUFJFThO1HNxKK0n9XhFX6eKNWNhTE7XR6TD6aidyZV8vZR7tsw89iTCKi_-6-XyCgH-jWn-7HdwUN9awFDorProltrC6LXY6FYnkn5bwHLyhqNfA74gffT07q1l3O4e6hM74XdideucY6BEUZ9sh-uh0e70WTCtgY4_TGWpgTxYY6O_69CNDUvoZQsMd6IA1wnCs2VNzsYRxfYac8wNBVw6GqEsYIU9sOocvUw1vv02dj1kOx97b5Y44uRQy3BXbVV3hfQGWQCZyXJk4tSTdRnkSJQ6tca4sE7TtQOw1C1_MVjE8CpJ9mEDFnwQKRJepsmnDkbd9QX3-oVhv5CI1ceaUIamYgFHsSuMio4yRibI0QIWB2G1oWqyPg3nxm3kD8XRTTRuZX2d0hfWFb0PglwXSQNxb8cJmJJKjSWdSPfh_50_Etf74aFgMD0eDh-I6LUPKaug42hXbi_MLfET4aWEee6YF8f6yd8kve8Auqg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKiEuCCiPQAEjUW6rrNe7cfaAUJI2SkkJEU2l3hY_ZiFq2Q1NCoTfwa_h1zHj7AY4wK23lW15bc_Y_mY8D8aehzJOIOm4gEwsgjhyYaCNdQG0VWoExEr6YDpvxu3hSfz6NDndYj9rXxgyq6zPRH9Qu9KSjrwlQzxHo1SlopVXZhGT_cGr-eeAMkjRS2udTmPNIiNYfUXxbfHycB9pvRdFg4NpfxhUGQYCKzvhMpBta4UwyJU41I7TwhoDEhCWyFzESY7Y3CRgkyh3SaqFA4kVKU7aUqArrST2e41tK5KKGmy7dzCevNtoeAiLdSK5traXMg1b5FGPAo2i4r_uQZ8u4N8Y1991g1vsZgVSeXfNVbfZFhR32E63QAH904q_4N5s1Ovjd9iPoZ6fl6TJXfAy593pJOjNvKsM7yMwJ0si_Oj2-v02nxWcTD_O5qA5-bXwkf6uzz4SQMWfAa95BRwn_TA_1uS3uVzxaXkOlAEEuC4cPwKd8zHQxGYL_mWm-dtvM-cjmPNj7_tyl51cCSHusUZRFvCAcYuQEyjKjIgtyrphGoWRA2ucy_MIbKfJ9uqFz-briB4ZSkJEoOxPAjVZj6iyaUNxuH1BefEhq7Z1FhuROGVQRkaYJFxuXGiUMTJSFgeooMl2a5pm1eGwyH6zcpM921Tjtqa3Gl1AeenbIBQm8bTJ7q95YTMSSbGlE6ke_r_zp-w67pDs6HA8esRu4CrEpJMW4S5rLC8u4TGCqaV5UnEtZ--veqP8Ao88NEU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Haplotypes+of+ATP-Binding+Cassette+CaABCC6+in+Chickpea+from+Kazakhstan+Are+Associated+with+Salinity+Tolerance+and+Leaf+Necrosis+via+Oxidative+Stress&rft.jtitle=Biomolecules+%28Basel%2C+Switzerland%29&rft.au=Khassanova%2C+Gulmira&rft.au=Jatayev%2C+Satyvaldy&rft.au=Gabdola%2C+Ademi&rft.au=Kuzbakova%2C+Marzhan&rft.date=2024-07-10&rft.eissn=2218-273X&rft.volume=14&rft.issue=7&rft_id=info:doi/10.3390%2Fbiom14070823&rft_id=info%3Apmid%2F39062537&rft.externalDocID=39062537
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2218-273X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2218-273X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2218-273X&client=summon