Haplotypes of ATP-Binding Cassette CaABCC6 in Chickpea from Kazakhstan Are Associated with Salinity Tolerance and Leaf Necrosis via Oxidative Stress
Salinity tolerance was studied in chickpea accessions from a germplasm collection and in cultivars from Kazakhstan. After NaCl treatment, significant differences were found between genotypes, which could be arranged into three groups. Those that performed poorest were found in group 1, comprising fi...
Saved in:
Published in | Biomolecules (Basel, Switzerland) Vol. 14; no. 7; p. 823 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
10.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Salinity tolerance was studied in chickpea accessions from a germplasm collection and in cultivars from Kazakhstan. After NaCl treatment, significant differences were found between genotypes, which could be arranged into three groups. Those that performed poorest were found in group 1, comprising five ICC accessions with the lowest chlorophyll content, the highest leaf necrosis (LN), Na+ accumulation, malondialdehyde (MDA) content, and a low glutathione ratio GSH/GSSG. Two cultivars, Privo-1 and Tassay, representing group 2, were moderate in these traits, while the best performance was for group 3, containing two other cultivars, Krasnokutsky-123 and Looch, which were found to have mostly green plants and an exact opposite pattern of traits. Marker–trait association (MTA) between 6K DArT markers and four traits (LN, Na+, MDA, and GSH/GSSG) revealed the presence of four possible candidate genes in the chickpea genome that may be associated with the three groups. One gene, ATP-binding cassette, CaABCC6, was selected, and three haplotypes, A, D1, and D2, were identified in plants from the three groups. Two of the most salt-tolerant cultivars from group 3 were found to have haplotype D2 with a novel identified SNP. RT-qPCR analysis confirmed that this gene was strongly expressed after NaCl treatment in the parental- and breeding-line plants of haplotype D2. Mass spectrometry of seed proteins showed a higher accumulation of glutathione reductase and S-transferase, but not peroxidase, in the D2 haplotype. In conclusion, the CaABCC6 gene was hypothesized to be associated with a better response to oxidative stress via glutathione metabolism, while other candidate genes are likely involved in the control of chlorophyll content and Na+ accumulation. |
---|---|
AbstractList | Salinity tolerance was studied in chickpea accessions from a germplasm collection and in cultivars from Kazakhstan. After NaCl treatment, significant differences were found between genotypes, which could be arranged into three groups. Those that performed poorest were found in group 1, comprising five ICC accessions with the lowest chlorophyll content, the highest leaf necrosis (LN), Na+ accumulation, malondialdehyde (MDA) content, and a low glutathione ratio GSH/GSSG. Two cultivars, Privo-1 and Tassay, representing group 2, were moderate in these traits, while the best performance was for group 3, containing two other cultivars, Krasnokutsky-123 and Looch, which were found to have mostly green plants and an exact opposite pattern of traits. Marker–trait association (MTA) between 6K DArT markers and four traits (LN, Na+, MDA, and GSH/GSSG) revealed the presence of four possible candidate genes in the chickpea genome that may be associated with the three groups. One gene, ATP-binding cassette, CaABCC6, was selected, and three haplotypes, A, D1, and D2, were identified in plants from the three groups. Two of the most salt-tolerant cultivars from group 3 were found to have haplotype D2 with a novel identified SNP. RT-qPCR analysis confirmed that this gene was strongly expressed after NaCl treatment in the parental- and breeding-line plants of haplotype D2. Mass spectrometry of seed proteins showed a higher accumulation of glutathione reductase and S-transferase, but not peroxidase, in the D2 haplotype. In conclusion, the CaABCC6 gene was hypothesized to be associated with a better response to oxidative stress via glutathione metabolism, while other candidate genes are likely involved in the control of chlorophyll content and Na+ accumulation. Salinity tolerance was studied in chickpea accessions from a germplasm collection and in cultivars from Kazakhstan. After NaCl treatment, significant differences were found between genotypes, which could be arranged into three groups. Those that performed poorest were found in group 1, comprising five ICC accessions with the lowest chlorophyll content, the highest leaf necrosis (LN), Na accumulation, malondialdehyde (MDA) content, and a low glutathione ratio GSH/GSSG. Two cultivars, Privo-1 and Tassay, representing group 2, were moderate in these traits, while the best performance was for group 3, containing two other cultivars, Krasnokutsky-123 and Looch, which were found to have mostly green plants and an exact opposite pattern of traits. Marker-trait association (MTA) between 6K DArT markers and four traits (LN, Na , MDA, and GSH/GSSG) revealed the presence of four possible candidate genes in the chickpea genome that may be associated with the three groups. One gene, ATP-binding cassette, , was selected, and three haplotypes, A, D1, and D2, were identified in plants from the three groups. Two of the most salt-tolerant cultivars from group 3 were found to have haplotype D2 with a novel identified SNP. RT-qPCR analysis confirmed that this gene was strongly expressed after NaCl treatment in the parental- and breeding-line plants of haplotype D2. Mass spectrometry of seed proteins showed a higher accumulation of glutathione reductase and S-transferase, but not peroxidase, in the D2 haplotype. In conclusion, the gene was hypothesized to be associated with a better response to oxidative stress via glutathione metabolism, while other candidate genes are likely involved in the control of chlorophyll content and Na accumulation. Salinity tolerance was studied in chickpea accessions from a germplasm collection and in cultivars from Kazakhstan. After NaCl treatment, significant differences were found between genotypes, which could be arranged into three groups. Those that performed poorest were found in group 1, comprising five ICC accessions with the lowest chlorophyll content, the highest leaf necrosis (LN), Na+ accumulation, malondialdehyde (MDA) content, and a low glutathione ratio GSH/GSSG. Two cultivars, Privo-1 and Tassay, representing group 2, were moderate in these traits, while the best performance was for group 3, containing two other cultivars, Krasnokutsky-123 and Looch, which were found to have mostly green plants and an exact opposite pattern of traits. Marker-trait association (MTA) between 6K DArT markers and four traits (LN, Na+, MDA, and GSH/GSSG) revealed the presence of four possible candidate genes in the chickpea genome that may be associated with the three groups. One gene, ATP-binding cassette, CaABCC6, was selected, and three haplotypes, A, D1, and D2, were identified in plants from the three groups. Two of the most salt-tolerant cultivars from group 3 were found to have haplotype D2 with a novel identified SNP. RT-qPCR analysis confirmed that this gene was strongly expressed after NaCl treatment in the parental- and breeding-line plants of haplotype D2. Mass spectrometry of seed proteins showed a higher accumulation of glutathione reductase and S-transferase, but not peroxidase, in the D2 haplotype. In conclusion, the CaABCC6 gene was hypothesized to be associated with a better response to oxidative stress via glutathione metabolism, while other candidate genes are likely involved in the control of chlorophyll content and Na+ accumulation.Salinity tolerance was studied in chickpea accessions from a germplasm collection and in cultivars from Kazakhstan. After NaCl treatment, significant differences were found between genotypes, which could be arranged into three groups. Those that performed poorest were found in group 1, comprising five ICC accessions with the lowest chlorophyll content, the highest leaf necrosis (LN), Na+ accumulation, malondialdehyde (MDA) content, and a low glutathione ratio GSH/GSSG. Two cultivars, Privo-1 and Tassay, representing group 2, were moderate in these traits, while the best performance was for group 3, containing two other cultivars, Krasnokutsky-123 and Looch, which were found to have mostly green plants and an exact opposite pattern of traits. Marker-trait association (MTA) between 6K DArT markers and four traits (LN, Na+, MDA, and GSH/GSSG) revealed the presence of four possible candidate genes in the chickpea genome that may be associated with the three groups. One gene, ATP-binding cassette, CaABCC6, was selected, and three haplotypes, A, D1, and D2, were identified in plants from the three groups. Two of the most salt-tolerant cultivars from group 3 were found to have haplotype D2 with a novel identified SNP. RT-qPCR analysis confirmed that this gene was strongly expressed after NaCl treatment in the parental- and breeding-line plants of haplotype D2. Mass spectrometry of seed proteins showed a higher accumulation of glutathione reductase and S-transferase, but not peroxidase, in the D2 haplotype. In conclusion, the CaABCC6 gene was hypothesized to be associated with a better response to oxidative stress via glutathione metabolism, while other candidate genes are likely involved in the control of chlorophyll content and Na+ accumulation. |
Author | Khassanova, Gulmira Jenkins, Colin L. D. Anderson, Peter Kuzbakova, Marzhan Kylyshbayeva, Gulnar Sweetman, Crystal Philp-Dutton, Lauren Shavrukov, Yuri Zailasheva, Aray Schleyer, Kathryn Jatayev, Satyvaldy Gabdola, Ademi Soole, Kathleen L. Schramm, Carly |
Author_xml | – sequence: 1 givenname: Gulmira surname: Khassanova fullname: Khassanova, Gulmira – sequence: 2 givenname: Satyvaldy surname: Jatayev fullname: Jatayev, Satyvaldy – sequence: 3 givenname: Ademi orcidid: 0000-0003-3434-9609 surname: Gabdola fullname: Gabdola, Ademi – sequence: 4 givenname: Marzhan orcidid: 0000-0002-1049-4011 surname: Kuzbakova fullname: Kuzbakova, Marzhan – sequence: 5 givenname: Aray surname: Zailasheva fullname: Zailasheva, Aray – sequence: 6 givenname: Gulnar surname: Kylyshbayeva fullname: Kylyshbayeva, Gulnar – sequence: 7 givenname: Carly surname: Schramm fullname: Schramm, Carly – sequence: 8 givenname: Kathryn orcidid: 0009-0003-6506-6609 surname: Schleyer fullname: Schleyer, Kathryn – sequence: 9 givenname: Lauren surname: Philp-Dutton fullname: Philp-Dutton, Lauren – sequence: 10 givenname: Crystal orcidid: 0000-0002-7922-8205 surname: Sweetman fullname: Sweetman, Crystal – sequence: 11 givenname: Peter surname: Anderson fullname: Anderson, Peter – sequence: 12 givenname: Colin L. D. surname: Jenkins fullname: Jenkins, Colin L. D. – sequence: 13 givenname: Kathleen L. orcidid: 0000-0002-8837-3404 surname: Soole fullname: Soole, Kathleen L. – sequence: 14 givenname: Yuri orcidid: 0000-0002-2941-0340 surname: Shavrukov fullname: Shavrukov, Yuri |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39062537$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkktvEzEQx1eoiD7ojTOyxIVDA37sxrvHdAW0IqJIDRK31diebZxu7K3tFMLn4APjkFJV-DKjmZ__mtdxceC8w6J4xeg7IRr6Xlm_ZiWVtObiWXHEOasnXIrvB0_8w-I0xhXNr6Y77kVxmL9OeSXkUfH7AsbBp-2IkfiezBZfJ-fWGetuSAsxYkqYndl5206JdaRdWn07IpA--DX5DL_gdhkTODILSGYxem0hoSE_bFqSaxiss2lLFn7AAE4jAWfIHKEnX1AHH20k9xbI1U9rINl7JNcpYIwvi-c9DBFPH-xJ8e3jh0V7MZlffbpsZ_OJFjVNEzHVmjFFmaw4rQ0wrRQKpLUQPSurvuS1qlBXvDdVA8ygyIlGa9CMshqkOCku97rGw6obg11D2HYebPc34MNNByFZPWBXKlYZqWhT8rJkpleGKqmU4FJnUYlZ6-1eawz-boMxdWsbNQ4DOPSb2AlaVyxXNeUZffMfuvKb4HKnO6qUvJENy9TrB2qj1mgey_u3uwyc7YHdJGPA_hFhtNtdR_f0OsQfmtCrxA |
Cites_doi | 10.1111/pbr.12927 10.3390/ijms22052352 10.1093/aobpla/plu004 10.3390/toxins16020085 10.1016/S0315-5463(74)73923-2 10.1186/s12870-014-0258-7 10.1007/s11947-009-0303-y 10.3390/genes14061125 10.1093/jxb/erv185 10.1104/pp.104.039909 10.1016/j.jplph.2015.05.002 10.1080/07352689.2022.2065136 10.1146/annurev-arplant-050718-100005 10.1186/1471-2229-8-22 10.1111/j.1467-7652.2012.00710.x 10.3389/fpls.2022.1074245 10.1093/pcp/pcn034 10.1111/nph.17779 10.1177/19458924231159176 10.4308/hjb.30.4.682-691 10.1111/j.1469-8137.2005.01487.x 10.1201/9781003214885-1 10.1042/bse0500145 10.1007/s00425-016-2533-3 10.3390/horticulturae10020156 10.1111/tpj.15352 10.1104/pp.18.00934 10.1074/jbc.M109.030247 10.3390/ijms222312848 10.1016/j.sjbs.2022.103464 10.2135/cropsci2015.07.0429 10.3390/agronomy13071814 10.1111/jipb.13599 10.1111/ppl.13780 10.1016/S1360-1385(02)02312-9 10.1007/s11033-022-08036-2 10.3389/fpls.2024.1297096 10.1111/j.1438-8677.2010.00380.x 10.1104/pp.16.01760 10.1186/s40538-015-0031-7 10.1093/bioinformatics/btm308 10.1007/s10681-005-1681-5 10.1046/j.1365-313X.1998.00076.x 10.1111/j.1365-313X.2011.04789.x 10.1021/acsomega.3c03325 10.1016/0958-1669(95)80024-7 10.1201/9781003300564 10.1074/jbc.M808632200 10.3390/genes13122350 10.3389/fpls.2022.952759 10.1111/1750-3841.15778 10.3389/fpls.2021.667910 10.1016/0003-2697(80)90139-6 10.1007/s11103-004-0274-3 10.1016/j.envexpbot.2018.12.009 10.3390/life12091426 10.1007/s004250050524 10.1016/j.gene.2023.148088 10.1046/j.1365-313X.2003.01901.x 10.3389/fpls.2024.1354413 10.1016/j.jplph.2019.02.012 10.21273/HORTSCI17409-23 10.1016/S0005-2736(00)00132-2 10.2225/vol13-issue5-fulltext-14 10.1016/j.plantsci.2021.110827 10.3390/genes8100255 10.3390/biom10040661 10.1371/journal.pone.0086039 10.1007/s12038-016-9602-4 10.1186/s12870-020-02331-5 10.31742/IJGPB.82.2.8 10.1007/s00299-017-2139-7 10.1093/plphys/kiab193 10.3390/ijms23126794 10.1007/s12038-012-9228-0 10.3390/ijms24044062 10.3390/foods13060887 10.1017/S1479262121000228 10.1111/j.1365-313X.2004.02125.x 10.3389/fpls.2023.1123631 10.1111/j.1365-3040.1993.tb00840.x 10.1007/BF00226215 10.3389/fgene.2019.00040 10.3389/fpls.2023.1082761 10.1016/j.chemosphere.2022.137419 10.3390/biom13121722 10.1007/s00425-012-1827-3 10.1016/j.febslet.2005.11.056 10.1007/s11738-012-1142-4 10.1038/s41598-018-37504-8 10.1023/A:1027385513483 10.1016/j.bbrc.2010.04.079 10.3389/fpls.2023.1080504 10.1371/journal.pone.0253188 10.1007/s40011-014-0382-z 10.1007/s00344-022-10655-9 10.1007/s11738-007-0059-9 10.3390/cells11152457 10.1186/s12870-018-1409-z 10.1093/emboj/20.8.1875 10.1104/pp.106.077982 10.1007/s10722-007-9214-9 10.1007/s00709-022-01786-7 10.1016/j.bbagen.2012.11.018 10.1007/BF00040624 10.1016/j.plaphy.2023.108037 10.1111/j.1365-3040.2011.02400.x 10.1007/s11738-023-03541-8 10.1038/srep11166 |
ContentType | Journal Article |
Copyright | 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7T5 7TM 7TO 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 DOA |
DOI | 10.3390/biom14070823 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Immunology Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Immunology Abstracts ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2218-273X |
ExternalDocumentID | oai_doaj_org_article_4b15d7b0942441dfbd0b7bb327c33f7e 39062537 10_3390_biom14070823 |
Genre | Journal Article |
GeographicLocations | Kazakhstan India |
GeographicLocations_xml | – name: Kazakhstan – name: India |
GrantInformation_xml | – fundername: Science Committee of the Ministry of Science and Higher Education, Republic of Kazakhstan grantid: AP14869777 |
GroupedDBID | 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AADQD AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION EBD ESX FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RPM UKHRP CGR CUY CVF ECM EIF NPM 3V. 7T5 7TM 7TO 7XB 8FK AZQEC DWQXO GNUQQ H94 K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 PUEGO |
ID | FETCH-LOGICAL-c380t-36cc11b0175208da1cbbe3e0833f145f428b5ec52fd59a1de333f9ccac1018a73 |
IEDL.DBID | M48 |
ISSN | 2218-273X |
IngestDate | Wed Aug 27 01:14:41 EDT 2025 Mon Jul 21 10:32:46 EDT 2025 Fri Jul 25 12:04:58 EDT 2025 Thu Apr 03 07:04:00 EDT 2025 Tue Jul 01 02:05:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | salinity haplotype SNP glutathione DArT analysis malondialdehyde chickpea gene expression oxidative stress marker-trait association |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c380t-36cc11b0175208da1cbbe3e0833f145f428b5ec52fd59a1de333f9ccac1018a73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8837-3404 0000-0003-3434-9609 0000-0002-2941-0340 0009-0003-6506-6609 0000-0002-1049-4011 0000-0002-7922-8205 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/biom14070823 |
PMID | 39062537 |
PQID | 3084729791 |
PQPubID | 2032425 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4b15d7b0942441dfbd0b7bb327c33f7e proquest_miscellaneous_3085114562 proquest_journals_3084729791 pubmed_primary_39062537 crossref_primary_10_3390_biom14070823 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-Jul-10 |
PublicationDateYYYYMMDD | 2024-07-10 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-Jul-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Biomolecules (Basel, Switzerland) |
PublicationTitleAlternate | Biomolecules |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_94 Zia (ref_41) 2022; 49 Klein (ref_73) 2004; 39 Noctor (ref_21) 2012; 35 Khan (ref_6) 2015; 182 Krstic (ref_95) 2023; 37 ref_14 ref_99 Behrens (ref_111) 2019; 9 ref_96 Madesis (ref_27) 2017; 36 Naaz (ref_66) 2023; 8 Semagn (ref_36) 2010; 13 ref_17 Park (ref_64) 2012; 69 ref_15 Campbell (ref_8) 2023; 36 (ref_18) 1995; 6 Ledesma (ref_11) 2016; 56 Kolukisaoglu (ref_71) 2008; 49 Weining (ref_85) 1991; 82 Mittler (ref_19) 2002; 7 Kameoka (ref_105) 2021; 107 Khan (ref_7) 2016; 244 Jha (ref_40) 2021; 19 ref_23 Tari (ref_84) 2015; 57 Bachhawat (ref_22) 2013; 1830 Kaur (ref_101) 2015; 85 Eyidogan (ref_116) 2007; 29 Liang (ref_32) 2024; 66 ref_26 Chang (ref_93) 2012; 5 Rasool (ref_16) 2013; 35 Bradbury (ref_87) 2007; 23 ref_70 Hiremath (ref_38) 2012; 10 Ferrario (ref_67) 1993; 67 ref_79 ref_78 ref_76 (ref_55) 2021; 86 Kretzschmar (ref_58) 2011; 50 Kumar (ref_5) 2018; Volume 1 Kaur (ref_25) 2023; 313 Paudel (ref_10) 2024; 59 Cairns (ref_117) 2006; 141 Munns (ref_28) 2005; 167 ref_81 Mansour (ref_106) 2023; 42 ref_80 Griffith (ref_83) 1980; 106 Raichaudhuri (ref_72) 2009; 284 ref_89 ref_88 ref_86 Munns (ref_4) 1993; 16 Theodoulou (ref_57) 2000; 1465 Hodges (ref_82) 1999; 207 Wanke (ref_62) 2010; 12 Soares (ref_29) 2019; 161 ref_50 Fan (ref_92) 1974; 7 Rashmi (ref_107) 2023; 45 Tommasini (ref_109) 1998; 13 ref_56 ref_54 Gaedeke (ref_75) 2001; 20 Basu (ref_77) 2019; 180 ref_52 ref_51 Brunetti (ref_65) 2015; 66 Naeem (ref_43) 2021; 140 Ishikawa (ref_20) 1997; 17 Taji (ref_104) 2004; 135 ref_68 ref_63 Lee (ref_39) 2014; 6 Lamsaadi (ref_49) 2024; 42 Banasiak (ref_60) 2022; 233 Maliro (ref_13) 2008; 55 ref_118 ref_34 Jha (ref_112) 2022; 82 ref_33 Pandey (ref_114) 2023; 260 ref_31 Shavrukov (ref_90) 2013; 237 Parveen (ref_24) 2024; 898 Kujur (ref_47) 2015; 5 ref_113 Glombitza (ref_98) 2004; 54 Zuo (ref_110) 2017; 173 Milla (ref_115) 2003; 36 Do (ref_59) 2021; 187 Wulandari (ref_9) 2023; 30 ref_37 Garg (ref_91) 2010; 396 Ashraf (ref_97) 2022; 41 ref_103 Klein (ref_61) 2006; 580 ref_108 Varshney (ref_44) 2012; 37 Franzisky (ref_12) 2019; 236 Nagy (ref_74) 2009; 284 Zhang (ref_30) 2020; 71 ref_46 ref_45 ref_100 ref_42 ref_102 Collard (ref_35) 2005; 142 Dean (ref_69) 2022; 174 ref_1 Pandurangaiah (ref_53) 2016; 41 ref_3 ref_2 ref_48 Shao (ref_119) 2021; 30 |
References_xml | – volume: 140 start-page: 519 year: 2021 ident: ref_43 article-title: Overview on domestication, breeding, genetic gain and improvement of tuber quality traits of potato using fast forwarding technique (GWAS): A review publication-title: Plant Breed. doi: 10.1111/pbr.12927 – ident: ref_118 doi: 10.3390/ijms22052352 – volume: 6 start-page: plu004 year: 2014 ident: ref_39 article-title: Identifying the genes underlying quantitative traits: A rationale for the QTN programme publication-title: AoB Plants doi: 10.1093/aobpla/plu004 – ident: ref_94 doi: 10.3390/toxins16020085 – volume: 7 start-page: 256 year: 1974 ident: ref_92 article-title: Dispersibility and isolation of proteins from legume flours publication-title: Can. Inst. Food Sci. Technol. J. doi: 10.1016/S0315-5463(74)73923-2 – ident: ref_42 doi: 10.1186/s12870-014-0258-7 – volume: 5 start-page: 618 year: 2012 ident: ref_93 article-title: Isolation and characterization of chickpea (Cicer arietinum L.) seed protein fractions publication-title: Food Bioprocess. Technol. doi: 10.1007/s11947-009-0303-y – ident: ref_88 – ident: ref_51 doi: 10.3390/genes14061125 – volume: 66 start-page: 3815 year: 2015 ident: ref_65 article-title: Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance in Arabidopsis publication-title: J. Exp. Bot. doi: 10.1093/jxb/erv185 – volume: 135 start-page: 1697 year: 2004 ident: ref_104 article-title: Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray publication-title: Plant Physiol. doi: 10.1104/pp.104.039909 – volume: 182 start-page: 1 year: 2015 ident: ref_6 article-title: Salt sensitivity in chickpea: Growth, photosynthesis, seed yield components and tissue ion regulation in contrasting genotypes publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2015.05.002 – volume: 41 start-page: 128 year: 2022 ident: ref_97 article-title: Evolution of approaches to increase the salt tolerance of crops publication-title: Crit. Rev. Plant Sci. doi: 10.1080/07352689.2022.2065136 – ident: ref_1 – volume: 71 start-page: 403 year: 2020 ident: ref_30 article-title: Salt tolerance mechanisms of plants publication-title: Ann. Rev. Plant Biol. doi: 10.1146/annurev-arplant-050718-100005 – ident: ref_63 doi: 10.1186/1471-2229-8-22 – volume: 10 start-page: 716 year: 2012 ident: ref_38 article-title: Large-scale development of cost-effective SNP marker assays for diversity assessment and genetic mapping in chickpea and comparative mapping in legumes publication-title: Plant Biotechnol. J. doi: 10.1111/j.1467-7652.2012.00710.x – ident: ref_37 doi: 10.3389/fpls.2022.1074245 – volume: 49 start-page: 557 year: 2008 ident: ref_71 article-title: Comparative mutant analysis of Arabidopsis ABCC-type ABC transporters: AtMRP2 contributes to detoxification, vacuolar organic anion transport and chlorophyll degradation publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcn034 – volume: 233 start-page: 1597 year: 2022 ident: ref_60 article-title: ATP-binding cassette transporters in nonmodel plants publication-title: New Phytol. doi: 10.1111/nph.17779 – volume: 37 start-page: 419 year: 2023 ident: ref_95 article-title: The nasal innate immune proteome after saline irrigation: A pilot study in healthy individuals publication-title: Am. J. Rhinol. Allergy doi: 10.1177/19458924231159176 – volume: 30 start-page: 682 year: 2023 ident: ref_9 article-title: Morpho-physiology of mulberry (Morus sp.) plant on salinity stress tolerance publication-title: HAYATI J. Biosci. doi: 10.4308/hjb.30.4.682-691 – volume: 167 start-page: 645 year: 2005 ident: ref_28 article-title: Genes and salt tolerance: Bringing them together publication-title: New Phytol. doi: 10.1111/j.1469-8137.2005.01487.x – ident: ref_2 doi: 10.1201/9781003214885-1 – volume: 50 start-page: 145 year: 2011 ident: ref_58 article-title: Functions of ABC transporters in plants publication-title: Essays Biochem. doi: 10.1042/bse0500145 – volume: 244 start-page: 623 year: 2016 ident: ref_7 article-title: Salt sensitivity in chickpea is determined by sodium toxicity publication-title: Planta doi: 10.1007/s00425-016-2533-3 – ident: ref_3 doi: 10.3390/horticulturae10020156 – volume: 107 start-page: 876 year: 2021 ident: ref_105 article-title: Cooperation of chloroplast ascorbate peroxidases and proton gradient regulation 5 is critical for protecting Arabidopsis plants from photo-oxidative stress publication-title: Plant J. doi: 10.1111/tpj.15352 – volume: 180 start-page: 253 year: 2019 ident: ref_77 article-title: ABC transporter-mediated transport of glutathione conjugates enhances seed yield and quality in chickpea publication-title: Plant Physiol. doi: 10.1104/pp.18.00934 – volume: Volume 1 start-page: 85 year: 2018 ident: ref_5 article-title: Strategies to mitigate the salt stress effects on photosynthetic apparatus and productivity of crop plants publication-title: Salinity Responses and Tolerance in Plants. Targeting Sensory, Transport and Signaling Mechanisms – volume: 284 start-page: 33614 year: 2009 ident: ref_74 article-title: The Arabidopsis ATP-binding cassette protein AtMRP5/AtABCC5 is a high affinity inositol hexakisphosphate transporter involved in guard cell signaling and phytate storage publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.030247 – ident: ref_102 doi: 10.3390/ijms222312848 – ident: ref_17 doi: 10.1016/j.sjbs.2022.103464 – volume: 56 start-page: 585 year: 2016 ident: ref_11 article-title: A simple greenhouse method for screening salt tolerance in soybean publication-title: Crop Sci. doi: 10.2135/cropsci2015.07.0429 – ident: ref_26 doi: 10.3390/agronomy13071814 – volume: 66 start-page: 303 year: 2024 ident: ref_32 article-title: Designing salt stress-resilient crops: Current progress and future challenges publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.13599 – volume: 174 start-page: e13780 year: 2022 ident: ref_69 article-title: Transport of acylated anthocyanins by the Arabidopsis ATP-binding cassette transporters AtABCC1, AtABCC2, and AtABCC14 publication-title: Physiol. Plant. doi: 10.1111/ppl.13780 – volume: 7 start-page: 405 year: 2002 ident: ref_19 article-title: Oxidative stress, antioxidants and stress tolerance publication-title: Trends Plant Sci. doi: 10.1016/S1360-1385(02)02312-9 – volume: 49 start-page: 12077 year: 2022 ident: ref_41 article-title: An overview of genome-wide association mapping studies in Poaceae species (model crops: Wheat and rice) publication-title: Mol. Biol. Rep. doi: 10.1007/s11033-022-08036-2 – ident: ref_52 doi: 10.3389/fpls.2024.1297096 – volume: 12 start-page: 15 year: 2010 ident: ref_62 article-title: An update on the ABCC transporter family in plants: Many genes, many proteins, but how many functions? publication-title: Plant Biol. doi: 10.1111/j.1438-8677.2010.00380.x – volume: 173 start-page: 2096 year: 2017 ident: ref_110 article-title: Mitochondrial ABC transporter ATM3 is essential for cytosolic iron-sulfur cluster assembly publication-title: Plant Physiol. doi: 10.1104/pp.16.01760 – ident: ref_23 doi: 10.1186/s40538-015-0031-7 – volume: 23 start-page: 2633 year: 2007 ident: ref_87 article-title: TASSEL: Software for association mapping of complex traits in diverse samples publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm308 – volume: 142 start-page: 169 year: 2005 ident: ref_35 article-title: An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts publication-title: Euphytica doi: 10.1007/s10681-005-1681-5 – volume: 13 start-page: 773 year: 1998 ident: ref_109 article-title: An ABC-transporter of Arabidopsis thaliana has both glutathione-conjugate and chlorophyll catabolite transport activity publication-title: Plant J. doi: 10.1046/j.1365-313X.1998.00076.x – ident: ref_86 – volume: 69 start-page: 278 year: 2012 ident: ref_64 article-title: The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury publication-title: Plant J. doi: 10.1111/j.1365-313X.2011.04789.x – volume: 8 start-page: 27597 year: 2023 ident: ref_66 article-title: Impact of some toxic metals on important ABC transporters in soybean (Glycine max L.) publication-title: ACS Omega doi: 10.1021/acsomega.3c03325 – volume: 6 start-page: 153 year: 1995 ident: ref_18 article-title: Oxidative stress in plants publication-title: Curr. Opin. Biotechnol. doi: 10.1016/0958-1669(95)80024-7 – ident: ref_15 doi: 10.1201/9781003300564 – volume: 284 start-page: 8449 year: 2009 ident: ref_72 article-title: Plant vacuolar ATP-binding cassette transporters that translocate folates and antifolates in vitro and contribute to antifolate tolerance in vivo publication-title: J. Biol. Chem. doi: 10.1074/jbc.M808632200 – ident: ref_113 doi: 10.3390/genes13122350 – ident: ref_48 doi: 10.3389/fpls.2022.952759 – volume: 86 start-page: 2962 year: 2021 ident: ref_55 article-title: Characterization of peptides with antioxidant activity and antidiabetic potential obtained from chickpea (Cicer arietinum L.) protein hydrolyzates publication-title: J. Food Sci. doi: 10.1111/1750-3841.15778 – ident: ref_14 doi: 10.3389/fpls.2021.667910 – volume: 106 start-page: 207 year: 1980 ident: ref_83 article-title: Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine publication-title: Anal. Biochem. doi: 10.1016/0003-2697(80)90139-6 – volume: 54 start-page: 817 year: 2004 ident: ref_98 article-title: Crosstalk and differential response to abiotic and biotic stressors reflected at the transcriptional level of effector genes from secondary metabolism publication-title: Plant Mol. Biol. doi: 10.1007/s11103-004-0274-3 – volume: 161 start-page: 4 year: 2019 ident: ref_29 article-title: Plants facing oxidative challenges–A little help from the antioxidant networks publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2018.12.009 – ident: ref_50 doi: 10.3390/life12091426 – volume: 207 start-page: 604 year: 1999 ident: ref_82 article-title: Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds publication-title: Planta doi: 10.1007/s004250050524 – volume: 898 start-page: 148088 year: 2024 ident: ref_24 article-title: Genome-wide analysis of glutathione peroxidase (GPX) gene family in chickpea (Cicer arietinum L.) under salinity stress publication-title: Gene doi: 10.1016/j.gene.2023.148088 – volume: 36 start-page: 602 year: 2003 ident: ref_115 article-title: Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways publication-title: Plant J. doi: 10.1046/j.1365-313X.2003.01901.x – ident: ref_80 doi: 10.3389/fpls.2024.1354413 – volume: 236 start-page: 23 year: 2019 ident: ref_12 article-title: Shoot chloride translocation as a determinant for NaCl tolerance in Vicia faba L. publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2019.02.012 – volume: 59 start-page: 209 year: 2024 ident: ref_10 article-title: Effect of salt stress on the growth, physiology, and mineral nutrients of two Penstemon species publication-title: HortScience doi: 10.21273/HORTSCI17409-23 – ident: ref_78 – volume: 1465 start-page: 79 year: 2000 ident: ref_57 article-title: Plant ABC transporters publication-title: Biochim. Biophys. Acta–Biomembr. doi: 10.1016/S0005-2736(00)00132-2 – volume: 13 start-page: 16 year: 2010 ident: ref_36 article-title: The genetic dissection of quantitative traits in crops publication-title: Electron. J. Biotechnol. doi: 10.2225/vol13-issue5-fulltext-14 – volume: 30 start-page: 110827 year: 2021 ident: ref_119 article-title: GhGSTF12, a glutathione S-transferase gene, is essential for anthocyanin accumulation in cotton (Gossypium hirsutum L.) publication-title: Plant Sci. doi: 10.1016/j.plantsci.2021.110827 – ident: ref_108 doi: 10.3390/genes8100255 – ident: ref_103 doi: 10.3390/biom10040661 – ident: ref_45 doi: 10.1371/journal.pone.0086039 – volume: 41 start-page: 257 year: 2016 ident: ref_53 article-title: Differential expression of carotenoid biosynthetic pathway genes in two contrasting tomato genotypes for lycopene content publication-title: J. Biosci. doi: 10.1007/s12038-016-9602-4 – ident: ref_81 doi: 10.1186/s12870-020-02331-5 – volume: 82 start-page: 193 year: 2022 ident: ref_112 article-title: Elucidating genetic diversity and association mapping to identify SSR markers linked to 100 seed weight in chickpea (Cicer arietinum L.) publication-title: Indian J. Genet. Plant Breed. doi: 10.31742/IJGPB.82.2.8 – volume: 36 start-page: 791 year: 2017 ident: ref_27 article-title: Plant glutathione transferase-mediated stress tolerance: Functions and biotechnological applications publication-title: Plant Cell Rep. doi: 10.1007/s00299-017-2139-7 – volume: 187 start-page: 1876 year: 2021 ident: ref_59 article-title: 2021 update on ATP-binding cassette (ABC) transporters: How they meet the needs of plants publication-title: Plant Physiol. doi: 10.1093/plphys/kiab193 – ident: ref_31 doi: 10.3390/ijms23126794 – volume: 37 start-page: 811 year: 2012 ident: ref_44 article-title: Advances in genetics and molecular breeding of three legume crops of semi-arid tropics using next-generation sequencing and high-throughput genotyping technologies publication-title: J. Biosci. doi: 10.1007/s12038-012-9228-0 – ident: ref_100 doi: 10.3390/ijms24044062 – ident: ref_56 doi: 10.3390/foods13060887 – volume: 19 start-page: 195 year: 2021 ident: ref_40 article-title: Association mapping of genomic loci linked with Fusarium wilt resistance (Foc2) in chickpea publication-title: Plant Genet. Resour. doi: 10.1017/S1479262121000228 – volume: 39 start-page: 219 year: 2004 ident: ref_73 article-title: Disruption of AtMRP4, a guard cell plasma membrane ABCC-type ABC transporter, leads to deregulation of stomatal opening and increased drought susceptibility publication-title: Plant J. doi: 10.1111/j.1365-313X.2004.02125.x – ident: ref_34 doi: 10.3389/fpls.2023.1123631 – volume: 16 start-page: 15 year: 1993 ident: ref_4 article-title: Physiological processes limiting plant growth in saline soils: Some dogmas and hypotheses publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.1993.tb00840.x – volume: 82 start-page: 209 year: 1991 ident: ref_85 article-title: Identification and mapping of polymorphisms in cereals based on the polymerase chain reaction publication-title: Theor. Appl. Genet. doi: 10.1007/BF00226215 – ident: ref_89 doi: 10.3389/fgene.2019.00040 – volume: 42 start-page: 1 year: 2024 ident: ref_49 article-title: Molecular approaches to improve legume salt stress tolerance publication-title: Plant Mol. Biol. Rep. – ident: ref_68 doi: 10.3389/fpls.2023.1082761 – volume: 313 start-page: 137419 year: 2023 ident: ref_25 article-title: Morphological and antioxidant responses of Cicer arietinum L. genotypes exposed to combination stress of anthracene and sodium chloride publication-title: Chemosphere doi: 10.1016/j.chemosphere.2022.137419 – ident: ref_46 doi: 10.3390/biom13121722 – volume: 237 start-page: 1111 year: 2013 ident: ref_90 article-title: HVP10 encoding V-PPase is a prime candidate for the barley HvNax3 sodium exclusion gene: Evidence from fine mapping and expression analysis publication-title: Planta doi: 10.1007/s00425-012-1827-3 – volume: 580 start-page: 1112 year: 2006 ident: ref_61 article-title: The multidrug resistance-associated protein (MRP/ABCC) subfamily of ATP-binding cassette transporters in plants publication-title: FEBS Lett. doi: 10.1016/j.febslet.2005.11.056 – volume: 35 start-page: 1039 year: 2013 ident: ref_16 article-title: Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-012-1142-4 – volume: 9 start-page: 437 year: 2019 ident: ref_111 article-title: Transport of anthocyanins and other flavonoids by the Arabidopsis ATP-binding cassette transporter AtABCC2 publication-title: Sci. Rep. doi: 10.1038/s41598-018-37504-8 – volume: 17 start-page: 189 year: 1997 ident: ref_20 article-title: The GS-X pump in plant, yeast, and animal cells: Structure, function, and gene expression publication-title: Biosci. Rep. doi: 10.1023/A:1027385513483 – volume: 396 start-page: 283 year: 2010 ident: ref_91 article-title: Validation of internal control genes for quantitative gene expression studies in chickpea (Cicer arietinum L.) publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2010.04.079 – ident: ref_96 – ident: ref_99 doi: 10.3389/fpls.2023.1080504 – ident: ref_76 doi: 10.1371/journal.pone.0253188 – volume: 85 start-page: 615 year: 2015 ident: ref_101 article-title: Abiotic stress tolerance of chickpea genotypes depends upon antioxidative potential and nutritional quality of seeds publication-title: Proc. Natl. Acad. Sci. India Sec. B Biol. Sci. doi: 10.1007/s40011-014-0382-z – volume: 42 start-page: 1364 year: 2023 ident: ref_106 article-title: Role of vacuolar membrane transport systems in plant salinity tolerance publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-022-10655-9 – ident: ref_79 – volume: 29 start-page: 485 year: 2007 ident: ref_116 article-title: Effect of salinity on antioxidant responses of chickpea seedlings publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-007-0059-9 – ident: ref_33 doi: 10.3390/cells11152457 – ident: ref_54 doi: 10.1186/s12870-018-1409-z – volume: 20 start-page: 1875 year: 2001 ident: ref_75 article-title: The Arabidopsis thaliana ABC transporter AtMRP5 controls root development and stomata movement publication-title: EMBO J. doi: 10.1093/emboj/20.8.1875 – volume: 141 start-page: 446 year: 2006 ident: ref_117 article-title: Maturation of Arabidopsis seeds is dependent on glutathione biosynthesis within the embryo publication-title: Plant Physiol. doi: 10.1104/pp.106.077982 – volume: 55 start-page: 53 year: 2008 ident: ref_13 article-title: Sampling strategies and screening of chickpea (Cicer arietinum L.) germplasm for salt tolerance publication-title: Genet. Resour. Crop Evol. doi: 10.1007/s10722-007-9214-9 – volume: 260 start-page: 453 year: 2023 ident: ref_114 article-title: ABC transporters mined through comparative transcriptomics associate with organ-specific accumulation of picrosides in a medicinal herb, Picrorhiza kurroa publication-title: Protoplasma doi: 10.1007/s00709-022-01786-7 – volume: 1830 start-page: 3154 year: 2013 ident: ref_22 article-title: Glutathione transporters publication-title: Biochim. Biophys. Acta Gen. Subj. doi: 10.1016/j.bbagen.2012.11.018 – volume: 36 start-page: 1 year: 2023 ident: ref_8 article-title: Soluble phenolics, chlorophylls, and malondialdehyde are the best indicators of salt stress in Eichornia crassipes publication-title: Vegetos – volume: 67 start-page: 221 year: 1993 ident: ref_67 article-title: Developmental expression of glutathione-S-transferase in maize and its possible connection with herbicide tolerance publication-title: Euphytica doi: 10.1007/BF00040624 – ident: ref_70 doi: 10.1016/j.plaphy.2023.108037 – volume: 35 start-page: 454 year: 2012 ident: ref_21 article-title: Glutathione in plants: An integrated overview publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2011.02400.x – volume: 45 start-page: 66 year: 2023 ident: ref_107 article-title: Role of ions and their transporters in combating salt stress in Pandanus odorifer (Forssk.) Kuntze publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-023-03541-8 – volume: 57 start-page: 21 year: 2015 ident: ref_84 article-title: The alleviation of the adverse effects of salt stress in the tomato plant by salicylic acid shows a time and organ-specific antioxidant response publication-title: Acta Biol. Cracov. Ser. Bot. – volume: 5 start-page: 11166 year: 2015 ident: ref_47 article-title: A genome-wide SNP scan accelerates trait-regulatory genomic loci identification in chickpea publication-title: Sci. Rep. doi: 10.1038/srep11166 |
SSID | ssj0000800823 |
Score | 2.3033168 |
Snippet | Salinity tolerance was studied in chickpea accessions from a germplasm collection and in cultivars from Kazakhstan. After NaCl treatment, significant... |
SourceID | doaj proquest pubmed crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 823 |
SubjectTerms | ATP-Binding Cassette Transporters - genetics ATP-Binding Cassette Transporters - metabolism chickpea Chlorophyll Chlorophyll - metabolism Cicer - genetics Cicer - metabolism Cultivars DArT analysis Drought Enzymes Flowers & plants Gene expression Genotypes Germplasm Glutathione Glutathione reductase haplotype Haplotypes Heavy metals Kazakhstan Leaves Legumes Lipid peroxidation malondialdehyde Mass spectroscopy Necrosis Oxidative metabolism Oxidative stress Oxidative Stress - genetics Plant breeding Plant Leaves - genetics Plant Leaves - metabolism Plant Proteins - genetics Plant Proteins - metabolism Proteins Proteomics Salinity Salinity effects Salinity tolerance Salt Tolerance - genetics Seeds Single-nucleotide polymorphism Sodium chloride |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQUB6BggYJuEWN43idHHdXVCseBalbqbfIj4kILcmK3SLK7-AHM-NkV8sBceEWOZbieMaZ73NmPgvxMlOFRl2GlFMs0iIPWWqdDylOTOUkFkZFMZ0Pp5PFefH2Ql_sHfXFOWGDPPAwcceFkzoYRyyEApEMjQuZM86p3HilGoP89aWYt0emvow4qMzVkOmuiNcfczU7kQnDzX_EoCjV_3d8GePMyV1xZwSIMB0Gdk_cwu6-OJx2RI6_3sBriCmbcS_8UPxa2NVVz7uoa-gbmC4_pbM2lqnAnEAxZ_HQxXQ2n0-g7YDTLi5XaIFrSuCd_WkvPzM4pIchbO2EAXhvFs4s10xubmDZXyGfvoFguwDv0TZwivxi7Rq-txY-_mhDVA-Hs1h38kCcn7xZzhfpeMxC6lWZbVI18V5KR0uT7FUGK71zqJCwmWpkoRsiKE6j13kTdGVlQEU3KrK8Z7Uva9RDcdD1HT4W4AnuISu8yMITz8yqPMsDehdC0-Toy0S82k58vRrUNGpiIWyget9AiZixVXZ9WAM7NpBn1KNn1P_yjEQcbW1ajwtzXauMwnFemUom4sXuNi0p_k9iO-yvYx-CoUwNE_Fo8IXdSBTrOmtlnvyPET4Vt2mCCt4qltmRONh8u8ZnhHE27nl059_CoPpM priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZguXBBwPIILGiQgFu0cRzXyQm1FauKx4K0Xam3yI8JRLskZdtFLL-DH8yMmxY4wC2yrcTOjO1vxjOfhXieqUKjLkPKIRZpkYcstc6HFEemchILoyKZzvvj0ey0eLPQi8HhthrCKrdrYlyoQ-_ZR36oMlpH88pU8tXya8q3RvHp6nCFxnVxg6nLWKvNwux8LIyGylxt4t0VWfeHnNNOJoXh4r92okjY_2-UGXebo9vi1gATYbyR6x1xDbu7Yn_ckYn85QpeQgzcjB7xffFzZpfnPftSV9A3MJ5_TCdtTFaBKUFjjuWhh_FkOh1B2wEHX5wt0QJnlsBb-8OefWaISB9D2EoLA7CHFk4sZ06ur2DenyPfwYFguwDv0DZwjDywdgXfWgsfvrchcojDScw-uSdOj17Pp7N0uGwh9arM1qkaeS-lowlKUiuDld45VEgITTWy0A2ZKU6j13kTdGVlQEUVFcnfM-eXNeq-2Ov6Dh8K8AT6kHleZOHJ2syqPMsDehdC0-Toy0S82P74ernh1KjJFmEB1X8KKBETlsquDTNhx4L-4lM9TKy6cFIH48hKJaAiQ-NC5oxzKjeeOmgwEQdbmdbD9FzVv5UpEc921TSx-LTEdthfxjYERtlATMSDjS7seqKY3Vkr8-j_L38sbtLQC3YFy-xA7K0vLvEJYZi1exoV9RecF_GC priority: 102 providerName: ProQuest |
Title | Haplotypes of ATP-Binding Cassette CaABCC6 in Chickpea from Kazakhstan Are Associated with Salinity Tolerance and Leaf Necrosis via Oxidative Stress |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39062537 https://www.proquest.com/docview/3084729791 https://www.proquest.com/docview/3085114562 https://doaj.org/article/4b15d7b0942441dfbd0b7bb327c33f7e |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1bb9MwFLZ2kdBeJmBcAqMyEvAWiOOkbh4QaqtNFbAysVbqW-TLCZR1SWk7tPI7-MGc4ybVJNhbFDuK7XMsf9_xuTD2KpJJCmnHheRiESaxi0JtrAuhrTIjIFHSJ9M5G7YH4-TjJJ3ssKbaaL2Ay_9SO6onNV7M3t78XH_ADf-eGCdS9ncUqI48QdGl0S7bxzNJUS2Dsxro_6hxEbZuPN__-eiA3ZOUrzelaui3jiefxf9u6OmPoNP77LDGjry7EfYDtgPlQ3bULZE3X635G-69Ob2Z_Ij9Gej5rCID65JXBe-OzsPe1Eew8D7iZXLwwYdur99v82nJySPjcg6aU7gJ_6R_68vvhBvxZ8AbEYLjZLblF5rCKVdrPqpmQIU5gOvS8c-gCz4Emth0yX9NNf9yM3U-sTi_8CEpj9j49GTUH4R1BYbQyk60CmXbWiEM7loUZcdpYY0BCQjbZCGStEDuYlKwaVy4NNPCgcSGDJXCUiIwreRjtldWJTxl3CISBEr-IhKLFDTK4ih2YI1zRRGD7QTsdbPw-XyTaCNHgkKyym_LKmA9ksq2D6XH9i-qxbe83m15YkTqlEHqiuhFuMK4yChjZKwsDlBBwI4bmeaNyuUywpM6zlQmAvZy24y7ja5QdAnVte-DCJVYY8CebHRhO5JGhZ7d2fKcHeCsEzINi-iY7a0W1_ACMc3KtNiumqgW2--dDM-_trxloOVV-C_q3vda |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lc9MwENaUcoALA5SHocAyQ7l5alt2FB8YJgl0UpIGZprO5Gb0WEOmxQ5NCoTfwe_gN7KrxAEOcOvNI2lkSbuSvl3tQ4hnkUwzzNouZBOLME1cFGpjXYgtlZsYUyV9MJ2jUat_kr6ZZJMt8bPxhWGzyuZM9Ae1qy3ryPdlROdokqs8fjn7HHLWKH5dbVJorNhigMuvJLLNXxy-IvruJcnB63GvH66zCoRWtqNFKFvWxrEhTqThtZ2OrTEokaCILOM0KwmPmwxtlpQuy3XsUFJFThO1HNxKK0n9XhFX6eKNWNhTE7XR6TD6aidyZV8vZR7tsw89iTCKi_-6-XyCgH-jWn-7HdwUN9awFDorProltrC6LXY6FYnkn5bwHLyhqNfA74gffT07q1l3O4e6hM74XdideucY6BEUZ9sh-uh0e70WTCtgY4_TGWpgTxYY6O_69CNDUvoZQsMd6IA1wnCs2VNzsYRxfYac8wNBVw6GqEsYIU9sOocvUw1vv02dj1kOx97b5Y44uRQy3BXbVV3hfQGWQCZyXJk4tSTdRnkSJQ6tca4sE7TtQOw1C1_MVjE8CpJ9mEDFnwQKRJepsmnDkbd9QX3-oVhv5CI1ceaUIamYgFHsSuMio4yRibI0QIWB2G1oWqyPg3nxm3kD8XRTTRuZX2d0hfWFb0PglwXSQNxb8cJmJJKjSWdSPfh_50_Etf74aFgMD0eDh-I6LUPKaug42hXbi_MLfET4aWEee6YF8f6yd8kve8Auqg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKiEuCCiPQAEjUW6rrNe7cfaAUJI2SkkJEU2l3hY_ZiFq2Q1NCoTfwa_h1zHj7AY4wK23lW15bc_Y_mY8D8aehzJOIOm4gEwsgjhyYaCNdQG0VWoExEr6YDpvxu3hSfz6NDndYj9rXxgyq6zPRH9Qu9KSjrwlQzxHo1SlopVXZhGT_cGr-eeAMkjRS2udTmPNIiNYfUXxbfHycB9pvRdFg4NpfxhUGQYCKzvhMpBta4UwyJU41I7TwhoDEhCWyFzESY7Y3CRgkyh3SaqFA4kVKU7aUqArrST2e41tK5KKGmy7dzCevNtoeAiLdSK5traXMg1b5FGPAo2i4r_uQZ8u4N8Y1991g1vsZgVSeXfNVbfZFhR32E63QAH904q_4N5s1Ovjd9iPoZ6fl6TJXfAy593pJOjNvKsM7yMwJ0si_Oj2-v02nxWcTD_O5qA5-bXwkf6uzz4SQMWfAa95BRwn_TA_1uS3uVzxaXkOlAEEuC4cPwKd8zHQxGYL_mWm-dtvM-cjmPNj7_tyl51cCSHusUZRFvCAcYuQEyjKjIgtyrphGoWRA2ucy_MIbKfJ9uqFz-briB4ZSkJEoOxPAjVZj6iyaUNxuH1BefEhq7Z1FhuROGVQRkaYJFxuXGiUMTJSFgeooMl2a5pm1eGwyH6zcpM921Tjtqa3Gl1AeenbIBQm8bTJ7q95YTMSSbGlE6ke_r_zp-w67pDs6HA8esRu4CrEpJMW4S5rLC8u4TGCqaV5UnEtZ--veqP8Ao88NEU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Haplotypes+of+ATP-Binding+Cassette+CaABCC6+in+Chickpea+from+Kazakhstan+Are+Associated+with+Salinity+Tolerance+and+Leaf+Necrosis+via+Oxidative+Stress&rft.jtitle=Biomolecules+%28Basel%2C+Switzerland%29&rft.au=Khassanova%2C+Gulmira&rft.au=Jatayev%2C+Satyvaldy&rft.au=Gabdola%2C+Ademi&rft.au=Kuzbakova%2C+Marzhan&rft.date=2024-07-10&rft.eissn=2218-273X&rft.volume=14&rft.issue=7&rft_id=info:doi/10.3390%2Fbiom14070823&rft_id=info%3Apmid%2F39062537&rft.externalDocID=39062537 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2218-273X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2218-273X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2218-273X&client=summon |