AraTSum: Arabic Twitter Trend Summarization Using Topic Analysis and Extractive Algorithms

Twitter’s trending topics enable users to view the topics currently being discussed on the platform. Users can stay up to date with news, events, and conversations. However, the platform’s method of sorting tweets by time can make it hard to gather semantic information. To fully comprehend the vario...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of computational intelligence systems Vol. 17; no. 1; pp. 1 - 18
Main Authors Monir, Enas, Salah, Ahmad
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 02.09.2024
Springer Nature B.V
Springer
Subjects
Online AccessGet full text
ISSN1875-6883
1875-6891
1875-6883
DOI10.1007/s44196-024-00546-0

Cover

Loading…
Abstract Twitter’s trending topics enable users to view the topics currently being discussed on the platform. Users can stay up to date with news, events, and conversations. However, the platform’s method of sorting tweets by time can make it hard to gather semantic information. To fully comprehend the various dimensions of trends and the diverse opinions surrounding them, users need to sift through a substantial number of results. Traditional techniques for content summarization, such as multi-document summarization, can facilitate information aggregation, categorization, and visualization of events, but there are two challenges. First, they fail to consider the topic’s polarity, which is essential to covering all aspects of the subject and incorporating less popular opinions. Second, some techniques only provide summaries at the topic level, potentially leaving out crucial dimensions that require representation in this summary. This research developed a novel summarization approach on Twitter which is known as ARAbic Trending SUMmarization (AraTSum). The proposed system generates the summary based on the extracted topics and aspects from the trend. The approach involves a topic sentiment-based technique that combines generative statistical Latent Dirichlet Allocation with a pre-trained model to automatically reflect the sentiments (negative or positive) of tweets in each topic; followed by extractive summarization algorithms in each cluster. The AraTSum was evaluated through several experiments on five different X datasets. The obtained results showed that AraTSum outperformed existing approaches on the ROUGE evaluation metric compared to state-of-the-art Twitter event summarizing algorithms. To ensure a comprehensive and accurate evaluation, three human experts were tasked with manually summarizing the utilized five datasets. The results demonstrated that the proposed AraTSum method is dependent on sentiment topical aspect analysis, and it enhances the summarization's performance.
AbstractList Twitter’s trending topics enable users to view the topics currently being discussed on the platform. Users can stay up to date with news, events, and conversations. However, the platform’s method of sorting tweets by time can make it hard to gather semantic information. To fully comprehend the various dimensions of trends and the diverse opinions surrounding them, users need to sift through a substantial number of results. Traditional techniques for content summarization, such as multi-document summarization, can facilitate information aggregation, categorization, and visualization of events, but there are two challenges. First, they fail to consider the topic’s polarity, which is essential to covering all aspects of the subject and incorporating less popular opinions. Second, some techniques only provide summaries at the topic level, potentially leaving out crucial dimensions that require representation in this summary. This research developed a novel summarization approach on Twitter which is known as ARAbic Trending SUMmarization (AraTSum). The proposed system generates the summary based on the extracted topics and aspects from the trend. The approach involves a topic sentiment-based technique that combines generative statistical Latent Dirichlet Allocation with a pre-trained model to automatically reflect the sentiments (negative or positive) of tweets in each topic; followed by extractive summarization algorithms in each cluster. The AraTSum was evaluated through several experiments on five different X datasets. The obtained results showed that AraTSum outperformed existing approaches on the ROUGE evaluation metric compared to state-of-the-art Twitter event summarizing algorithms. To ensure a comprehensive and accurate evaluation, three human experts were tasked with manually summarizing the utilized five datasets. The results demonstrated that the proposed AraTSum method is dependent on sentiment topical aspect analysis, and it enhances the summarization's performance.
Abstract Twitter’s trending topics enable users to view the topics currently being discussed on the platform. Users can stay up to date with news, events, and conversations. However, the platform’s method of sorting tweets by time can make it hard to gather semantic information. To fully comprehend the various dimensions of trends and the diverse opinions surrounding them, users need to sift through a substantial number of results. Traditional techniques for content summarization, such as multi-document summarization, can facilitate information aggregation, categorization, and visualization of events, but there are two challenges. First, they fail to consider the topic’s polarity, which is essential to covering all aspects of the subject and incorporating less popular opinions. Second, some techniques only provide summaries at the topic level, potentially leaving out crucial dimensions that require representation in this summary. This research developed a novel summarization approach on Twitter which is known as ARAbic Trending SUMmarization (AraTSum). The proposed system generates the summary based on the extracted topics and aspects from the trend. The approach involves a topic sentiment-based technique that combines generative statistical Latent Dirichlet Allocation with a pre-trained model to automatically reflect the sentiments (negative or positive) of tweets in each topic; followed by extractive summarization algorithms in each cluster. The AraTSum was evaluated through several experiments on five different X datasets. The obtained results showed that AraTSum outperformed existing approaches on the ROUGE evaluation metric compared to state-of-the-art Twitter event summarizing algorithms. To ensure a comprehensive and accurate evaluation, three human experts were tasked with manually summarizing the utilized five datasets. The results demonstrated that the proposed AraTSum method is dependent on sentiment topical aspect analysis, and it enhances the summarization's performance.
ArticleNumber 227
Author Monir, Enas
Salah, Ahmad
Author_xml – sequence: 1
  givenname: Enas
  surname: Monir
  fullname: Monir, Enas
  email: em.ahmed24@fci.zu.edu.eg
  organization: Faculty of Computers and Informatics, Zagazig University
– sequence: 2
  givenname: Ahmad
  surname: Salah
  fullname: Salah, Ahmad
  organization: Faculty of Computers and Informatics, Zagazig University, College of Computing and Information Sciences, University of Technology and Applied Sciences
BookMark eNp9kU9v1DAQxS1UJErpF-AUiXNg_C92uK2qApUqcSC9cLHGjr14tRsvthconx63QcCJk5_sN7_xzHtOzpa0eEJeUnhNAdSbIgQdhx6Y6AGkaOoJOadayX7Qmp_9o5-Ry1J2AMCoABDinHzeZJw-nQ5vuyZsdN30Pdbqczdlv8xdezlgjj-xxrR0dyUu225Kx-bbLLi_L7F02GzXP2pGV-M3323225Rj_XIoL8jTgPviL3-fF-Tu3fV09aG__fj-5mpz2zuuofZcBqqERUXRz44Fgc46a2kIowvBO4noNfVqFMoqyefBSo2BMzuywYKT_ILcrNw54c4cc2w_vjcJo3m8SHlrMNfo9t7wIbQ-GhxqJQY1a8YkOgxSgOIjh8Z6tbKOOX09-VLNLp1yG7UY3nbNJB2oaC62ulxOpWQf_nSlYB4iMWskpkViHiMxD2i-FpVmXrY-_0X_p-oXqCOQmg
Cites_doi 10.1016/j.asej.2013.11.002
10.11591/ijeecs.v31.i2.pp1008-1015
10.2196/21978
10.5815/ijmecs.2019.01.04
10.1007/s10844-018-0521-8
10.1109/TKDE.2016.2541148
10.1109/TAFFC.2021.3131516
10.1093/comjnl/bxt109
10.15676/ijeei.2021.13.4.3
10.3745/JIPS.02.0079
10.1145/3638050
10.1109/ICAC3N56670.2022.10074514
10.1007/978-3-030-88113-9_50
10.1109/WI.2016.86
10.1007/s00453-012-9717-4
10.3115/1073445.1073465
10.1145/3440084.3441182
10.1016/j.eswa.2020.113679
10.1162/tacl
10.1145/2339530.2339592
10.1109/ICCCNT56998.2023.10307950
10.1109/ICIS.2017.7960005
10.32473/flairs.36.133169
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOA
DOI 10.1007/s44196-024-00546-0
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1875-6883
EndPage 18
ExternalDocumentID oai_doaj_org_article_36fa7180ca87467d8225acaf54073930
10_1007_s44196_024_00546_0
GroupedDBID 0R~
4.4
5GY
AAFWJ
AAJSJ
AAKKN
AAYZJ
ABEEZ
ABFIM
ACACY
ACGFS
ACULB
ADBBV
ADCVX
AENEX
AFGXO
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AVBZW
BCNDV
BENPR
BGLVJ
C24
C6C
CS3
DU5
EBLON
EBS
EJD
GROUPED_DOAJ
GTTXZ
HCIFZ
HZ~
J~4
K7-
O9-
OK1
PIMPY
RSV
SOJ
TFW
TR2
AASML
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c380t-35f174ba71aedc2f4acbcbb1ff9cffec5aae81e7947b753d6b58af32b926b0c53
IEDL.DBID C6C
ISSN 1875-6883
1875-6891
IngestDate Wed Aug 27 01:32:42 EDT 2025
Thu Jul 24 01:44:22 EDT 2025
Tue Jul 01 01:20:23 EDT 2025
Fri Feb 21 02:39:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Topic modeling
X
Sentiment analysis
Twitter
Trending feature
Extractive summarization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c380t-35f174ba71aedc2f4acbcbb1ff9cffec5aae81e7947b753d6b58af32b926b0c53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.1007/s44196-024-00546-0
PQID 3100251614
PQPubID 4869256
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_36fa7180ca87467d8225acaf54073930
proquest_journals_3100251614
crossref_primary_10_1007_s44196_024_00546_0
springer_journals_10_1007_s44196_024_00546_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-02
PublicationDateYYYYMMDD 2024-09-02
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-02
  day: 02
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Abingdon
PublicationTitle International journal of computational intelligence systems
PublicationTitleAbbrev Int J Comput Intell Syst
PublicationYear 2024
Publisher Springer Netherlands
Springer Nature B.V
Springer
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
– name: Springer
References CR19
Alabid, Naseer (CR15) 2023; 31
CR18
CR17
CR16
CR14
CR36
CR13
CR35
Rudrapal, Das, Bhattacharya (CR1) 2018; 14
CR12
CR34
Boon-Itt, Skunkan (CR5) 2020
CR33
CR10
CR32
El-Fishawy, Hamouda, Attiya, Atef (CR8) 2014; 5
CR30
Bansal, Grover, Saini, Saha (CR20) 2021
Sweidan, El-Bendary, Elhariri (CR26) 2024
Gamal, Alfonse, El-Horbaty, Salem (CR31) 2019; 11
Habbat, Anoun, Hassouni (CR29) 2021; 13
CR4
CR3
CR6
CR9
CR27
CR25
CR24
Alhmiyani, Alhazmi (CR28) 2023; 23
CR23
Sharifi, Inouye, Kalita (CR2) 2014; 57
Ali, Noorian, Bagheri, Ding, Al-Obeidat (CR7) 2020; 54
CR22
CR21
Zhou, Wan, Xiao (CR11) 2016; 28
D Gamal (546_CR31) 2019; 11
SM Ali (546_CR7) 2020; 54
546_CR6
546_CR21
546_CR22
546_CR4
546_CR3
N Habbat (546_CR29) 2021; 13
546_CR25
546_CR23
546_CR24
D Rudrapal (546_CR1) 2018; 14
546_CR27
BP Sharifi (546_CR2) 2014; 57
X Zhou (546_CR11) 2016; 28
546_CR9
M Alhmiyani (546_CR28) 2023; 23
AH Sweidan (546_CR26) 2024
D Bansal (546_CR20) 2021
546_CR10
546_CR32
NN Alabid (546_CR15) 2023; 31
546_CR33
546_CR30
546_CR14
546_CR36
546_CR12
546_CR34
N El-Fishawy (546_CR8) 2014; 5
546_CR13
546_CR35
S Boon-Itt (546_CR5) 2020
546_CR18
546_CR19
546_CR16
546_CR17
References_xml – ident: CR22
– ident: CR18
– ident: CR4
– ident: CR14
– ident: CR16
– ident: CR12
– ident: CR30
– volume: 5
  start-page: 411
  issue: 2
  year: 2014
  end-page: 420
  ident: CR8
  article-title: Arabic summarization in Tw itter social network
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2013.11.002
– ident: CR10
– volume: 31
  start-page: 1008
  issue: 2
  year: 2023
  end-page: 1015
  ident: CR15
  article-title: Summarizing twitter posts regarding COVID-19 based on n-grams
  publication-title: Indones. J. Electr. Eng. Comput. Sci.
  doi: 10.11591/ijeecs.v31.i2.pp1008-1015
– year: 2020
  ident: CR5
  article-title: Public perception of the COVID-19 pandemic on twitter: sentiment analysis and topic modeling study
  publication-title: JMIR Public Health Surveill.
  doi: 10.2196/21978
– ident: CR33
– ident: CR35
– ident: CR6
– volume: 11
  start-page: 33
  issue: 1
  year: 2019
  end-page: 38
  ident: CR31
  article-title: Twitter Benchmark dataset for arabic sentiment analysis
  publication-title: Int. J. Mod. Educ. Comput. Sci.
  doi: 10.5815/ijmecs.2019.01.04
– volume: 54
  start-page: 129
  issue: 1
  year: 2020
  end-page: 156
  ident: CR7
  article-title: Topic and sentiment aware microblog summarization for twitter
  publication-title: J. Intell. Inf. Syst.
  doi: 10.1007/s10844-018-0521-8
– ident: CR25
– ident: CR27
– ident: CR23
– volume: 28
  start-page: 1650
  issue: 7
  year: 2016
  end-page: 1663
  ident: CR11
  article-title: CMiner: opinion extraction and summarization for Chinese microblogs
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2016.2541148
– ident: CR21
– year: 2021
  ident: CR20
  article-title: GenSumm: a joint framework for multi-task tweet classification and summarization using sentiment analysis and generative modelling
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2021.3131516
– ident: CR19
– volume: 57
  start-page: 378
  issue: 3
  year: 2014
  end-page: 402
  ident: CR2
  article-title: Summarization of twitter microblogs
  publication-title: Comput. J.
  doi: 10.1093/comjnl/bxt109
– volume: 23
  start-page: 1
  year: 2023
  end-page: 12
  ident: CR28
  article-title: Application of topic modeling techniques in arabic content: a systematic review
  publication-title: Int. J. Comput. Sci. Netw. Secur.
– volume: 13
  start-page: 801
  issue: 4
  year: 2021
  end-page: 812
  ident: CR29
  article-title: A novel hybrid network for Arabic sentiment analysis using fine-tuned AraBERT model
  publication-title: Int. J. Electr. Eng. Inform.
  doi: 10.15676/ijeei.2021.13.4.3
– ident: CR3
– ident: CR17
– ident: CR13
– volume: 14
  start-page: 79
  issue: 1
  year: 2018
  end-page: 100
  ident: CR1
  article-title: A survey on automatic Twitter event summarization
  publication-title: J. Inf. Process. Syst.
  doi: 10.3745/JIPS.02.0079
– year: 2024
  ident: CR26
  article-title: Autoregressive feature extraction with topic modeling for aspect-based sentiment analysis of arabic as a low-resource language
  publication-title: ACM Trans. Asian Low Resour. Lang. Inf. Process.
  doi: 10.1145/3638050
– ident: CR9
– ident: CR32
– ident: CR34
– ident: CR36
– ident: CR24
– ident: 546_CR22
– year: 2024
  ident: 546_CR26
  publication-title: ACM Trans. Asian Low Resour. Lang. Inf. Process.
  doi: 10.1145/3638050
– volume: 13
  start-page: 801
  issue: 4
  year: 2021
  ident: 546_CR29
  publication-title: Int. J. Electr. Eng. Inform.
  doi: 10.15676/ijeei.2021.13.4.3
– ident: 546_CR18
– year: 2021
  ident: 546_CR20
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2021.3131516
– ident: 546_CR25
  doi: 10.1109/ICAC3N56670.2022.10074514
– ident: 546_CR30
  doi: 10.1007/978-3-030-88113-9_50
– ident: 546_CR4
  doi: 10.1109/WI.2016.86
– ident: 546_CR32
  doi: 10.1007/s00453-012-9717-4
– volume: 5
  start-page: 411
  issue: 2
  year: 2014
  ident: 546_CR8
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2013.11.002
– volume: 14
  start-page: 79
  issue: 1
  year: 2018
  ident: 546_CR1
  publication-title: J. Inf. Process. Syst.
  doi: 10.3745/JIPS.02.0079
– ident: 546_CR10
– volume: 57
  start-page: 378
  issue: 3
  year: 2014
  ident: 546_CR2
  publication-title: Comput. J.
  doi: 10.1093/comjnl/bxt109
– volume: 54
  start-page: 129
  issue: 1
  year: 2020
  ident: 546_CR7
  publication-title: J. Intell. Inf. Syst.
  doi: 10.1007/s10844-018-0521-8
– ident: 546_CR14
– ident: 546_CR33
– ident: 546_CR36
  doi: 10.3115/1073445.1073465
– ident: 546_CR35
– ident: 546_CR16
– year: 2020
  ident: 546_CR5
  publication-title: JMIR Public Health Surveill.
  doi: 10.2196/21978
– ident: 546_CR23
  doi: 10.1145/3440084.3441182
– volume: 28
  start-page: 1650
  issue: 7
  year: 2016
  ident: 546_CR11
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2016.2541148
– ident: 546_CR19
– ident: 546_CR27
– ident: 546_CR9
  doi: 10.1016/j.eswa.2020.113679
– ident: 546_CR12
  doi: 10.1162/tacl
– ident: 546_CR13
  doi: 10.1145/2339530.2339592
– volume: 23
  start-page: 1
  year: 2023
  ident: 546_CR28
  publication-title: Int. J. Comput. Sci. Netw. Secur.
– volume: 11
  start-page: 33
  issue: 1
  year: 2019
  ident: 546_CR31
  publication-title: Int. J. Mod. Educ. Comput. Sci.
  doi: 10.5815/ijmecs.2019.01.04
– ident: 546_CR24
  doi: 10.1109/ICCCNT56998.2023.10307950
– ident: 546_CR3
  doi: 10.1162/tacl
– ident: 546_CR6
  doi: 10.1109/ICIS.2017.7960005
– ident: 546_CR34
– ident: 546_CR17
– ident: 546_CR21
  doi: 10.32473/flairs.36.133169
– volume: 31
  start-page: 1008
  issue: 2
  year: 2023
  ident: 546_CR15
  publication-title: Indones. J. Electr. Eng. Comput. Sci.
  doi: 10.11591/ijeecs.v31.i2.pp1008-1015
SSID ssj0002140044
ssib050732782
Score 2.3270907
Snippet Twitter’s trending topics enable users to view the topics currently being discussed on the platform. Users can stay up to date with news, events, and...
Abstract Twitter’s trending topics enable users to view the topics currently being discussed on the platform. Users can stay up to date with news, events, and...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Artificial Intelligence
Computational Intelligence
Control
Datasets
Engineering
Extractive summarization
Mathematical Logic and Foundations
Mechatronics
Research Article
Robotics
Sentiment analysis
Social networks
State-of-the-art reviews
Topic modeling
Trending feature
Trends
Twitter
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI7QTlx4IwYD5cANKrK26VpuA22akOCyTZq4RM4LJrGHtg74-ThZOzYkxIVb1foQ2U5sN_4-E3Kp41jbyOqAZzIMYmXSIFWmETBlAUA78LX7D_n4lHT68cOAD9ZGfbmesCU98FJxN1FiAc9PpiB1kzE0BjQOCqwjjouyyFfrLGNrxZQ7g8O68824QMl4rBzGfd9vGwcuTcGnjUjkCfs3sswfF6M-3rT3yE6RKNLmcoH7ZMuMD8huOYSBFnvykDw3Z9DrLka3KApyqGjvY-gQOtR3u9KuB6cVYEvqGwRobzJFuZKOhAKKtT5zD5d6N7T59jKZDfPX0fyI9Nut3n0nKAYmBCpKWR5E3GKBIVFfYLQKbQxKKinr1mbKdYdwAJPWDW7BhsQyRSeSp2CjUGZhIpni0TGpjCdjc0KoNVzL0FUzJosBkwJuFTBjLFPaaMaq5KpUnpgueTHEigHZq1qgqoVXtUDpO6fflaTjtPYv0NKisLT4y9JVUiutI4qNNhfufgJTNEwyquS6tNj359-XdPofSzoj26H3qAwdq0Yq-WxhzjFJyeWF98cvi6zitA
  priority: 102
  providerName: Directory of Open Access Journals
Title AraTSum: Arabic Twitter Trend Summarization Using Topic Analysis and Extractive Algorithms
URI https://link.springer.com/article/10.1007/s44196-024-00546-0
https://www.proquest.com/docview/3100251614
https://doaj.org/article/36fa7180ca87467d8225acaf54073930
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYLnBgR6yVD9wgIontNOEWEAhVgkuLhLhY4w0q0Ra1Yfl8xiYpi-DALUrGkTWL_MaeeSbkwHBuHHMmEoVKI65tHuXatqNYOwAwvvna70NeXWeXN7xzK25rmhzfC_Pj_P54gst1KJPlkUcX-DRL5kXCsnAwm51N91PSxHsjr_tifh_6be0JFP3fcOWPo9CwwlyskKUaGtLyw5arZMYO18hyc-0CraNwjSx-4RBcJ3flGHrd58EJDgTV17T32vcdOjRUu9JuaE6rmy1pKBCgvdETyjV0JBRQ7PytCu1SL5aWj_ejcb96GEw2yM3Fee_sMqovTIg0y-MqYsJhgqGgnYA1OnUctNJKJc4V2leHCACbJxZDsK0wTTGZEjk4lqoizVSsBdskc8PR0G4R6qwwKvXZjC04ICgQTkNsrYu1sSaOt8lho0r59MGLIacMyEHxEhUvg-IlSp96bU8lPad1eIGmlnWISJY5nHkea8j9HSgGoYsADc5TBLKC4U_2GlvJOtAm0p9PIERDkLFNjhr7fX7-e0o7_xPfJQtp8KQCHWqPzFXjZ7uPcKRSLTJflp1up4X-mPJW8MpWSO3fAS9u29g
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYDsCBHVFWH7hBpDSJ24RbQUVlvRAkxMUab6USXdSmwOczNk6hCA7cImccWeMZ-zkzb0zIkUoSZWKjApaJKEikToNU6noQSgMAypKv7X_I27ta6yG5emSPnhQ2KrPdy5CkW6knZDfcuF3CbBJYnIFPs2Qem-o2kevccxzs-htVrV0mniHze9epXcgV659CmD-Com6vuVglyx4k0sbnrK6RGd1bJyvlBQzU--M6WfpWTXCDPDWGkN-Pu6fYEURH0vytY7k61OW90ntHU_O0S-pSBWjeH6BcWZiEAoo13wtHnHrVtPHS7g87xXN3tEkeLpr5eSvwVycEMk7DIoiZwaOGgHoVtJKRSUAKKUTVmEzaPBEGoNOqRmesCzywqJpgKZg4EllUE6Fk8RaZ6_V7eptQo5kSkT3X6CwBhAfMSAi1NqFUWoVhhRyXquSDzwoZfFIL2Smeo-K5UzxH6TOr7YmkrW7tGvrDNvfOwuOawZGnoYTU3oaiEMQwkGBsscA4i_Eje-Vcce9yI24jFQjWEG5UyEk5f1-v_x7Szv_ED8lCK7-94TeXd9e7ZDFyVpWhce2RuWI41vsIUgpx4GzyAz0U32c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYJAQHdsSOD9wgIk3sNOFWlopdSBQJcbHGW6kEbdWmwOczdpOyCA7comQcWeMZzbNn3piQXc2YtrHVAc9kFDBl0iBVphqEygKAduRrdw55fZOc3bOLB_7whcXvq93LlOSQ0-C6NLXzg662ByPiGwZxXzzLAoc58GmcTDIX-ly6NjkenbJEFWejrGDL_D70W0Tyjfu_oc0fCVIfd-rzZLYAjLQ2XOEFMmbai2SuvIyBFr65SGa-dBZcIo-1HjTuBi-HOBBkS9HGW8vxdqivgaV3nrJWUDCpLxugjU4X5comJRRQ7PQ99ySqV0Nrz81Or5U_vfSXyX39tHF8FhTXKAQqTsM8iLnFbYeEagWMVpFloKSSsmJtplzNCAcwacWgY1Ylbl50InkKNo5kFiUyVDxeIRPtTtusEmoN1zJyexyTMUCowK2C0BgbKm10GK6RvVKVojvsliFGfZG94gUqXnjFC5Q-ctoeSbpO1_5Fp9cUheOIOLE48zRUkLqbUTQCGg4KrGscGGcx_mSzXCtRuF9fuKwFAjeEHmtkv1y_z89_T2n9f-I7ZOr2pC6uzm8uN8h05I0qQ9vaJBN5b2C2EK_kctub5Ac3e-PB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AraTSum%3A+Arabic+Twitter+Trend+Summarization+Using+Topic+Analysis+and+Extractive+Algorithms&rft.jtitle=International+journal+of+computational+intelligence+systems&rft.au=Monir%2C+Enas&rft.au=Salah%2C+Ahmad&rft.date=2024-09-02&rft.pub=Springer+Netherlands&rft.eissn=1875-6883&rft.volume=17&rft.issue=1&rft_id=info:doi/10.1007%2Fs44196-024-00546-0&rft.externalDocID=10_1007_s44196_024_00546_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1875-6883&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1875-6883&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1875-6883&client=summon