AraTSum: Arabic Twitter Trend Summarization Using Topic Analysis and Extractive Algorithms
Twitter’s trending topics enable users to view the topics currently being discussed on the platform. Users can stay up to date with news, events, and conversations. However, the platform’s method of sorting tweets by time can make it hard to gather semantic information. To fully comprehend the vario...
Saved in:
Published in | International journal of computational intelligence systems Vol. 17; no. 1; pp. 1 - 18 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
02.09.2024
Springer Nature B.V Springer |
Subjects | |
Online Access | Get full text |
ISSN | 1875-6883 1875-6891 1875-6883 |
DOI | 10.1007/s44196-024-00546-0 |
Cover
Loading…
Abstract | Twitter’s trending topics enable users to view the topics currently being discussed on the platform. Users can stay up to date with news, events, and conversations. However, the platform’s method of sorting tweets by time can make it hard to gather semantic information. To fully comprehend the various dimensions of trends and the diverse opinions surrounding them, users need to sift through a substantial number of results. Traditional techniques for content summarization, such as multi-document summarization, can facilitate information aggregation, categorization, and visualization of events, but there are two challenges. First, they fail to consider the topic’s polarity, which is essential to covering all aspects of the subject and incorporating less popular opinions. Second, some techniques only provide summaries at the topic level, potentially leaving out crucial dimensions that require representation in this summary. This research developed a novel summarization approach on Twitter which is known as ARAbic Trending SUMmarization (AraTSum). The proposed system generates the summary based on the extracted topics and aspects from the trend. The approach involves a topic sentiment-based technique that combines generative statistical Latent Dirichlet Allocation with a pre-trained model to automatically reflect the sentiments (negative or positive) of tweets in each topic; followed by extractive summarization algorithms in each cluster. The AraTSum was evaluated through several experiments on five different X datasets. The obtained results showed that AraTSum outperformed existing approaches on the ROUGE evaluation metric compared to state-of-the-art Twitter event summarizing algorithms. To ensure a comprehensive and accurate evaluation, three human experts were tasked with manually summarizing the utilized five datasets. The results demonstrated that the proposed AraTSum method is dependent on sentiment topical aspect analysis, and it enhances the summarization's performance. |
---|---|
AbstractList | Twitter’s trending topics enable users to view the topics currently being discussed on the platform. Users can stay up to date with news, events, and conversations. However, the platform’s method of sorting tweets by time can make it hard to gather semantic information. To fully comprehend the various dimensions of trends and the diverse opinions surrounding them, users need to sift through a substantial number of results. Traditional techniques for content summarization, such as multi-document summarization, can facilitate information aggregation, categorization, and visualization of events, but there are two challenges. First, they fail to consider the topic’s polarity, which is essential to covering all aspects of the subject and incorporating less popular opinions. Second, some techniques only provide summaries at the topic level, potentially leaving out crucial dimensions that require representation in this summary. This research developed a novel summarization approach on Twitter which is known as ARAbic Trending SUMmarization (AraTSum). The proposed system generates the summary based on the extracted topics and aspects from the trend. The approach involves a topic sentiment-based technique that combines generative statistical Latent Dirichlet Allocation with a pre-trained model to automatically reflect the sentiments (negative or positive) of tweets in each topic; followed by extractive summarization algorithms in each cluster. The AraTSum was evaluated through several experiments on five different X datasets. The obtained results showed that AraTSum outperformed existing approaches on the ROUGE evaluation metric compared to state-of-the-art Twitter event summarizing algorithms. To ensure a comprehensive and accurate evaluation, three human experts were tasked with manually summarizing the utilized five datasets. The results demonstrated that the proposed AraTSum method is dependent on sentiment topical aspect analysis, and it enhances the summarization's performance. Abstract Twitter’s trending topics enable users to view the topics currently being discussed on the platform. Users can stay up to date with news, events, and conversations. However, the platform’s method of sorting tweets by time can make it hard to gather semantic information. To fully comprehend the various dimensions of trends and the diverse opinions surrounding them, users need to sift through a substantial number of results. Traditional techniques for content summarization, such as multi-document summarization, can facilitate information aggregation, categorization, and visualization of events, but there are two challenges. First, they fail to consider the topic’s polarity, which is essential to covering all aspects of the subject and incorporating less popular opinions. Second, some techniques only provide summaries at the topic level, potentially leaving out crucial dimensions that require representation in this summary. This research developed a novel summarization approach on Twitter which is known as ARAbic Trending SUMmarization (AraTSum). The proposed system generates the summary based on the extracted topics and aspects from the trend. The approach involves a topic sentiment-based technique that combines generative statistical Latent Dirichlet Allocation with a pre-trained model to automatically reflect the sentiments (negative or positive) of tweets in each topic; followed by extractive summarization algorithms in each cluster. The AraTSum was evaluated through several experiments on five different X datasets. The obtained results showed that AraTSum outperformed existing approaches on the ROUGE evaluation metric compared to state-of-the-art Twitter event summarizing algorithms. To ensure a comprehensive and accurate evaluation, three human experts were tasked with manually summarizing the utilized five datasets. The results demonstrated that the proposed AraTSum method is dependent on sentiment topical aspect analysis, and it enhances the summarization's performance. |
ArticleNumber | 227 |
Author | Monir, Enas Salah, Ahmad |
Author_xml | – sequence: 1 givenname: Enas surname: Monir fullname: Monir, Enas email: em.ahmed24@fci.zu.edu.eg organization: Faculty of Computers and Informatics, Zagazig University – sequence: 2 givenname: Ahmad surname: Salah fullname: Salah, Ahmad organization: Faculty of Computers and Informatics, Zagazig University, College of Computing and Information Sciences, University of Technology and Applied Sciences |
BookMark | eNp9kU9v1DAQxS1UJErpF-AUiXNg_C92uK2qApUqcSC9cLHGjr14tRsvthconx63QcCJk5_sN7_xzHtOzpa0eEJeUnhNAdSbIgQdhx6Y6AGkaOoJOadayX7Qmp_9o5-Ry1J2AMCoABDinHzeZJw-nQ5vuyZsdN30Pdbqczdlv8xdezlgjj-xxrR0dyUu225Kx-bbLLi_L7F02GzXP2pGV-M3323225Rj_XIoL8jTgPviL3-fF-Tu3fV09aG__fj-5mpz2zuuofZcBqqERUXRz44Fgc46a2kIowvBO4noNfVqFMoqyefBSo2BMzuywYKT_ILcrNw54c4cc2w_vjcJo3m8SHlrMNfo9t7wIbQ-GhxqJQY1a8YkOgxSgOIjh8Z6tbKOOX09-VLNLp1yG7UY3nbNJB2oaC62ulxOpWQf_nSlYB4iMWskpkViHiMxD2i-FpVmXrY-_0X_p-oXqCOQmg |
Cites_doi | 10.1016/j.asej.2013.11.002 10.11591/ijeecs.v31.i2.pp1008-1015 10.2196/21978 10.5815/ijmecs.2019.01.04 10.1007/s10844-018-0521-8 10.1109/TKDE.2016.2541148 10.1109/TAFFC.2021.3131516 10.1093/comjnl/bxt109 10.15676/ijeei.2021.13.4.3 10.3745/JIPS.02.0079 10.1145/3638050 10.1109/ICAC3N56670.2022.10074514 10.1007/978-3-030-88113-9_50 10.1109/WI.2016.86 10.1007/s00453-012-9717-4 10.3115/1073445.1073465 10.1145/3440084.3441182 10.1016/j.eswa.2020.113679 10.1162/tacl 10.1145/2339530.2339592 10.1109/ICCCNT56998.2023.10307950 10.1109/ICIS.2017.7960005 10.32473/flairs.36.133169 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D DOA |
DOI | 10.1007/s44196-024-00546-0 |
DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1875-6883 |
EndPage | 18 |
ExternalDocumentID | oai_doaj_org_article_36fa7180ca87467d8225acaf54073930 10_1007_s44196_024_00546_0 |
GroupedDBID | 0R~ 4.4 5GY AAFWJ AAJSJ AAKKN AAYZJ ABEEZ ABFIM ACACY ACGFS ACULB ADBBV ADCVX AENEX AFGXO AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AVBZW BCNDV BENPR BGLVJ C24 C6C CS3 DU5 EBLON EBS EJD GROUPED_DOAJ GTTXZ HCIFZ HZ~ J~4 K7- O9- OK1 PIMPY RSV SOJ TFW TR2 AASML AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c380t-35f174ba71aedc2f4acbcbb1ff9cffec5aae81e7947b753d6b58af32b926b0c53 |
IEDL.DBID | C6C |
ISSN | 1875-6883 1875-6891 |
IngestDate | Wed Aug 27 01:32:42 EDT 2025 Thu Jul 24 01:44:22 EDT 2025 Tue Jul 01 01:20:23 EDT 2025 Fri Feb 21 02:39:05 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Topic modeling X Sentiment analysis Trending feature Extractive summarization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c380t-35f174ba71aedc2f4acbcbb1ff9cffec5aae81e7947b753d6b58af32b926b0c53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doi.org/10.1007/s44196-024-00546-0 |
PQID | 3100251614 |
PQPubID | 4869256 |
PageCount | 18 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_36fa7180ca87467d8225acaf54073930 proquest_journals_3100251614 crossref_primary_10_1007_s44196_024_00546_0 springer_journals_10_1007_s44196_024_00546_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-02 |
PublicationDateYYYYMMDD | 2024-09-02 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht – name: Abingdon |
PublicationTitle | International journal of computational intelligence systems |
PublicationTitleAbbrev | Int J Comput Intell Syst |
PublicationYear | 2024 |
Publisher | Springer Netherlands Springer Nature B.V Springer |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V – name: Springer |
References | CR19 Alabid, Naseer (CR15) 2023; 31 CR18 CR17 CR16 CR14 CR36 CR13 CR35 Rudrapal, Das, Bhattacharya (CR1) 2018; 14 CR12 CR34 Boon-Itt, Skunkan (CR5) 2020 CR33 CR10 CR32 El-Fishawy, Hamouda, Attiya, Atef (CR8) 2014; 5 CR30 Bansal, Grover, Saini, Saha (CR20) 2021 Sweidan, El-Bendary, Elhariri (CR26) 2024 Gamal, Alfonse, El-Horbaty, Salem (CR31) 2019; 11 Habbat, Anoun, Hassouni (CR29) 2021; 13 CR4 CR3 CR6 CR9 CR27 CR25 CR24 Alhmiyani, Alhazmi (CR28) 2023; 23 CR23 Sharifi, Inouye, Kalita (CR2) 2014; 57 Ali, Noorian, Bagheri, Ding, Al-Obeidat (CR7) 2020; 54 CR22 CR21 Zhou, Wan, Xiao (CR11) 2016; 28 D Gamal (546_CR31) 2019; 11 SM Ali (546_CR7) 2020; 54 546_CR6 546_CR21 546_CR22 546_CR4 546_CR3 N Habbat (546_CR29) 2021; 13 546_CR25 546_CR23 546_CR24 D Rudrapal (546_CR1) 2018; 14 546_CR27 BP Sharifi (546_CR2) 2014; 57 X Zhou (546_CR11) 2016; 28 546_CR9 M Alhmiyani (546_CR28) 2023; 23 AH Sweidan (546_CR26) 2024 D Bansal (546_CR20) 2021 546_CR10 546_CR32 NN Alabid (546_CR15) 2023; 31 546_CR33 546_CR30 546_CR14 546_CR36 546_CR12 546_CR34 N El-Fishawy (546_CR8) 2014; 5 546_CR13 546_CR35 S Boon-Itt (546_CR5) 2020 546_CR18 546_CR19 546_CR16 546_CR17 |
References_xml | – ident: CR22 – ident: CR18 – ident: CR4 – ident: CR14 – ident: CR16 – ident: CR12 – ident: CR30 – volume: 5 start-page: 411 issue: 2 year: 2014 end-page: 420 ident: CR8 article-title: Arabic summarization in Tw itter social network publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2013.11.002 – ident: CR10 – volume: 31 start-page: 1008 issue: 2 year: 2023 end-page: 1015 ident: CR15 article-title: Summarizing twitter posts regarding COVID-19 based on n-grams publication-title: Indones. J. Electr. Eng. Comput. Sci. doi: 10.11591/ijeecs.v31.i2.pp1008-1015 – year: 2020 ident: CR5 article-title: Public perception of the COVID-19 pandemic on twitter: sentiment analysis and topic modeling study publication-title: JMIR Public Health Surveill. doi: 10.2196/21978 – ident: CR33 – ident: CR35 – ident: CR6 – volume: 11 start-page: 33 issue: 1 year: 2019 end-page: 38 ident: CR31 article-title: Twitter Benchmark dataset for arabic sentiment analysis publication-title: Int. J. Mod. Educ. Comput. Sci. doi: 10.5815/ijmecs.2019.01.04 – volume: 54 start-page: 129 issue: 1 year: 2020 end-page: 156 ident: CR7 article-title: Topic and sentiment aware microblog summarization for twitter publication-title: J. Intell. Inf. Syst. doi: 10.1007/s10844-018-0521-8 – ident: CR25 – ident: CR27 – ident: CR23 – volume: 28 start-page: 1650 issue: 7 year: 2016 end-page: 1663 ident: CR11 article-title: CMiner: opinion extraction and summarization for Chinese microblogs publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2016.2541148 – ident: CR21 – year: 2021 ident: CR20 article-title: GenSumm: a joint framework for multi-task tweet classification and summarization using sentiment analysis and generative modelling publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2021.3131516 – ident: CR19 – volume: 57 start-page: 378 issue: 3 year: 2014 end-page: 402 ident: CR2 article-title: Summarization of twitter microblogs publication-title: Comput. J. doi: 10.1093/comjnl/bxt109 – volume: 23 start-page: 1 year: 2023 end-page: 12 ident: CR28 article-title: Application of topic modeling techniques in arabic content: a systematic review publication-title: Int. J. Comput. Sci. Netw. Secur. – volume: 13 start-page: 801 issue: 4 year: 2021 end-page: 812 ident: CR29 article-title: A novel hybrid network for Arabic sentiment analysis using fine-tuned AraBERT model publication-title: Int. J. Electr. Eng. Inform. doi: 10.15676/ijeei.2021.13.4.3 – ident: CR3 – ident: CR17 – ident: CR13 – volume: 14 start-page: 79 issue: 1 year: 2018 end-page: 100 ident: CR1 article-title: A survey on automatic Twitter event summarization publication-title: J. Inf. Process. Syst. doi: 10.3745/JIPS.02.0079 – year: 2024 ident: CR26 article-title: Autoregressive feature extraction with topic modeling for aspect-based sentiment analysis of arabic as a low-resource language publication-title: ACM Trans. Asian Low Resour. Lang. Inf. Process. doi: 10.1145/3638050 – ident: CR9 – ident: CR32 – ident: CR34 – ident: CR36 – ident: CR24 – ident: 546_CR22 – year: 2024 ident: 546_CR26 publication-title: ACM Trans. Asian Low Resour. Lang. Inf. Process. doi: 10.1145/3638050 – volume: 13 start-page: 801 issue: 4 year: 2021 ident: 546_CR29 publication-title: Int. J. Electr. Eng. Inform. doi: 10.15676/ijeei.2021.13.4.3 – ident: 546_CR18 – year: 2021 ident: 546_CR20 publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2021.3131516 – ident: 546_CR25 doi: 10.1109/ICAC3N56670.2022.10074514 – ident: 546_CR30 doi: 10.1007/978-3-030-88113-9_50 – ident: 546_CR4 doi: 10.1109/WI.2016.86 – ident: 546_CR32 doi: 10.1007/s00453-012-9717-4 – volume: 5 start-page: 411 issue: 2 year: 2014 ident: 546_CR8 publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2013.11.002 – volume: 14 start-page: 79 issue: 1 year: 2018 ident: 546_CR1 publication-title: J. Inf. Process. Syst. doi: 10.3745/JIPS.02.0079 – ident: 546_CR10 – volume: 57 start-page: 378 issue: 3 year: 2014 ident: 546_CR2 publication-title: Comput. J. doi: 10.1093/comjnl/bxt109 – volume: 54 start-page: 129 issue: 1 year: 2020 ident: 546_CR7 publication-title: J. Intell. Inf. Syst. doi: 10.1007/s10844-018-0521-8 – ident: 546_CR14 – ident: 546_CR33 – ident: 546_CR36 doi: 10.3115/1073445.1073465 – ident: 546_CR35 – ident: 546_CR16 – year: 2020 ident: 546_CR5 publication-title: JMIR Public Health Surveill. doi: 10.2196/21978 – ident: 546_CR23 doi: 10.1145/3440084.3441182 – volume: 28 start-page: 1650 issue: 7 year: 2016 ident: 546_CR11 publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2016.2541148 – ident: 546_CR19 – ident: 546_CR27 – ident: 546_CR9 doi: 10.1016/j.eswa.2020.113679 – ident: 546_CR12 doi: 10.1162/tacl – ident: 546_CR13 doi: 10.1145/2339530.2339592 – volume: 23 start-page: 1 year: 2023 ident: 546_CR28 publication-title: Int. J. Comput. Sci. Netw. Secur. – volume: 11 start-page: 33 issue: 1 year: 2019 ident: 546_CR31 publication-title: Int. J. Mod. Educ. Comput. Sci. doi: 10.5815/ijmecs.2019.01.04 – ident: 546_CR24 doi: 10.1109/ICCCNT56998.2023.10307950 – ident: 546_CR3 doi: 10.1162/tacl – ident: 546_CR6 doi: 10.1109/ICIS.2017.7960005 – ident: 546_CR34 – ident: 546_CR17 – ident: 546_CR21 doi: 10.32473/flairs.36.133169 – volume: 31 start-page: 1008 issue: 2 year: 2023 ident: 546_CR15 publication-title: Indones. J. Electr. Eng. Comput. Sci. doi: 10.11591/ijeecs.v31.i2.pp1008-1015 |
SSID | ssj0002140044 ssib050732782 |
Score | 2.3270907 |
Snippet | Twitter’s trending topics enable users to view the topics currently being discussed on the platform. Users can stay up to date with news, events, and... Abstract Twitter’s trending topics enable users to view the topics currently being discussed on the platform. Users can stay up to date with news, events, and... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 1 |
SubjectTerms | Algorithms Artificial Intelligence Computational Intelligence Control Datasets Engineering Extractive summarization Mathematical Logic and Foundations Mechatronics Research Article Robotics Sentiment analysis Social networks State-of-the-art reviews Topic modeling Trending feature Trends |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI7QTlx4IwYD5cANKrK26VpuA22akOCyTZq4RM4LJrGHtg74-ThZOzYkxIVb1foQ2U5sN_4-E3Kp41jbyOqAZzIMYmXSIFWmETBlAUA78LX7D_n4lHT68cOAD9ZGfbmesCU98FJxN1FiAc9PpiB1kzE0BjQOCqwjjouyyFfrLGNrxZQ7g8O68824QMl4rBzGfd9vGwcuTcGnjUjkCfs3sswfF6M-3rT3yE6RKNLmcoH7ZMuMD8huOYSBFnvykDw3Z9DrLka3KApyqGjvY-gQOtR3u9KuB6cVYEvqGwRobzJFuZKOhAKKtT5zD5d6N7T59jKZDfPX0fyI9Nut3n0nKAYmBCpKWR5E3GKBIVFfYLQKbQxKKinr1mbKdYdwAJPWDW7BhsQyRSeSp2CjUGZhIpni0TGpjCdjc0KoNVzL0FUzJosBkwJuFTBjLFPaaMaq5KpUnpgueTHEigHZq1qgqoVXtUDpO6fflaTjtPYv0NKisLT4y9JVUiutI4qNNhfufgJTNEwyquS6tNj359-XdPofSzoj26H3qAwdq0Yq-WxhzjFJyeWF98cvi6zitA priority: 102 providerName: Directory of Open Access Journals |
Title | AraTSum: Arabic Twitter Trend Summarization Using Topic Analysis and Extractive Algorithms |
URI | https://link.springer.com/article/10.1007/s44196-024-00546-0 https://www.proquest.com/docview/3100251614 https://doaj.org/article/36fa7180ca87467d8225acaf54073930 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYLnBgR6yVD9wgIontNOEWEAhVgkuLhLhY4w0q0Ra1Yfl8xiYpi-DALUrGkTWL_MaeeSbkwHBuHHMmEoVKI65tHuXatqNYOwAwvvna70NeXWeXN7xzK25rmhzfC_Pj_P54gst1KJPlkUcX-DRL5kXCsnAwm51N91PSxHsjr_tifh_6be0JFP3fcOWPo9CwwlyskKUaGtLyw5arZMYO18hyc-0CraNwjSx-4RBcJ3flGHrd58EJDgTV17T32vcdOjRUu9JuaE6rmy1pKBCgvdETyjV0JBRQ7PytCu1SL5aWj_ejcb96GEw2yM3Fee_sMqovTIg0y-MqYsJhgqGgnYA1OnUctNJKJc4V2leHCACbJxZDsK0wTTGZEjk4lqoizVSsBdskc8PR0G4R6qwwKvXZjC04ICgQTkNsrYu1sSaOt8lho0r59MGLIacMyEHxEhUvg-IlSp96bU8lPad1eIGmlnWISJY5nHkea8j9HSgGoYsADc5TBLKC4U_2GlvJOtAm0p9PIERDkLFNjhr7fX7-e0o7_xPfJQtp8KQCHWqPzFXjZ7uPcKRSLTJflp1up4X-mPJW8MpWSO3fAS9u29g |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYDsCBHVFWH7hBpDSJ24RbQUVlvRAkxMUab6USXdSmwOczNk6hCA7cImccWeMZ-zkzb0zIkUoSZWKjApaJKEikToNU6noQSgMAypKv7X_I27ta6yG5emSPnhQ2KrPdy5CkW6knZDfcuF3CbBJYnIFPs2Qem-o2kevccxzs-htVrV0mniHze9epXcgV659CmD-Com6vuVglyx4k0sbnrK6RGd1bJyvlBQzU--M6WfpWTXCDPDWGkN-Pu6fYEURH0vytY7k61OW90ntHU_O0S-pSBWjeH6BcWZiEAoo13wtHnHrVtPHS7g87xXN3tEkeLpr5eSvwVycEMk7DIoiZwaOGgHoVtJKRSUAKKUTVmEzaPBEGoNOqRmesCzywqJpgKZg4EllUE6Fk8RaZ6_V7eptQo5kSkT3X6CwBhAfMSAi1NqFUWoVhhRyXquSDzwoZfFIL2Smeo-K5UzxH6TOr7YmkrW7tGvrDNvfOwuOawZGnoYTU3oaiEMQwkGBsscA4i_Eje-Vcce9yI24jFQjWEG5UyEk5f1-v_x7Szv_ED8lCK7-94TeXd9e7ZDFyVpWhce2RuWI41vsIUgpx4GzyAz0U32c |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYJAQHdsSOD9wgIk3sNOFWlopdSBQJcbHGW6kEbdWmwOczdpOyCA7comQcWeMZzbNn3piQXc2YtrHVAc9kFDBl0iBVphqEygKAduRrdw55fZOc3bOLB_7whcXvq93LlOSQ0-C6NLXzg662ByPiGwZxXzzLAoc58GmcTDIX-ly6NjkenbJEFWejrGDL_D70W0Tyjfu_oc0fCVIfd-rzZLYAjLQ2XOEFMmbai2SuvIyBFr65SGa-dBZcIo-1HjTuBi-HOBBkS9HGW8vxdqivgaV3nrJWUDCpLxugjU4X5comJRRQ7PQ99ySqV0Nrz81Or5U_vfSXyX39tHF8FhTXKAQqTsM8iLnFbYeEagWMVpFloKSSsmJtplzNCAcwacWgY1Ylbl50InkKNo5kFiUyVDxeIRPtTtusEmoN1zJyexyTMUCowK2C0BgbKm10GK6RvVKVojvsliFGfZG94gUqXnjFC5Q-ctoeSbpO1_5Fp9cUheOIOLE48zRUkLqbUTQCGg4KrGscGGcx_mSzXCtRuF9fuKwFAjeEHmtkv1y_z89_T2n9f-I7ZOr2pC6uzm8uN8h05I0qQ9vaJBN5b2C2EK_kctub5Ac3e-PB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AraTSum%3A+Arabic+Twitter+Trend+Summarization+Using+Topic+Analysis+and+Extractive+Algorithms&rft.jtitle=International+journal+of+computational+intelligence+systems&rft.au=Monir%2C+Enas&rft.au=Salah%2C+Ahmad&rft.date=2024-09-02&rft.pub=Springer+Netherlands&rft.eissn=1875-6883&rft.volume=17&rft.issue=1&rft_id=info:doi/10.1007%2Fs44196-024-00546-0&rft.externalDocID=10_1007_s44196_024_00546_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1875-6883&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1875-6883&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1875-6883&client=summon |