Ultra-efficient heat pipes enabled by nickel-graphene nanocomposite coatings: Concept and fundamentals

Heat pipes are a type of passive and efficient two-phase devices. Despite of its wide applications in solar collectors, electronic cooling and energy recovery systems, the heat pipe technology has been stagnant in last two decades. Though, numerous designs to enhance the evaporation and mass transpo...

Full description

Saved in:
Bibliographic Details
Published inCarbon (New York) Vol. 191; pp. 384 - 392
Main Authors Chang, Wei, Huang, Guanghan, Luo, Kai, Wang, Pengtao, Li, Chen
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 01.05.2022
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Heat pipes are a type of passive and efficient two-phase devices. Despite of its wide applications in solar collectors, electronic cooling and energy recovery systems, the heat pipe technology has been stagnant in last two decades. Though, numerous designs to enhance the evaporation and mass transportation have been explored since its discovery, the intrinsic limitation induced by filmwise condensation (FWC) in the condenser section has not been effectively addressed. In this study, sustainable dropwise condensation (DWC), which can be 10 folds more efficient than the traditional FWC, was successfully induced on the condenser of heat pipes. The effective thermal conductivity (keff) of wickless heat pipes can be enhanced more than 7 times higher than the one without Ni-Gr nanocomposite coatings. Besides the drastically reduced thermal resistance resulted from DWC by fundamentally altering continuous film liquid flow into discrete droplet sliding, the liquid return from the condenser to the evaporator by gravity has been significantly accelerated. The new liquid return mode can also effectively manage the instability of geyser boiling with enhanced evaporation rate in the evaporator section and further, promote the heat pipe keff. This study shows a new feasibility to elevate heat pipe technologies to the next level. [Display omitted]
AbstractList Heat pipes are a type of passive and efficient two-phase devices. Despite of its wide applications in solar collectors, electronic cooling and energy recovery systems, the heat pipe technology has been stagnant in last two decades. Though, numerous designs to enhance the evaporation and mass transportation have been explored since its discovery, the intrinsic limitation induced by filmwise condensation (FWC) in the condenser section has not been effectively addressed. In this study, sustainable dropwise condensation (DWC), which can be 10 folds more efficient than the traditional FWC, was successfully induced on the condenser of heat pipes. The effective thermal conductivity (keff) of wickless heat pipes can be enhanced more than 7 times higher than the one without Ni-Gr nanocomposite coatings. Besides the drastically reduced thermal resistance resulted from DWC by fundamentally altering continuous film liquid flow into discrete droplet sliding, the liquid return from the condenser to the evaporator by gravity has been significantly accelerated. The new liquid return mode can also effectively manage the instability of geyser boiling with enhanced evaporation rate in the evaporator section and further, promote the heat pipe keff. This study shows a new feasibility to elevate heat pipe technologies to the next level.
Heat pipes are a type of passive and efficient two-phase devices. Despite of its wide applications in solar collectors, electronic cooling and energy recovery systems, the heat pipe technology has been stagnant in last two decades. Though, numerous designs to enhance the evaporation and mass transportation have been explored since its discovery, the intrinsic limitation induced by filmwise condensation (FWC) in the condenser section has not been effectively addressed. In this study, sustainable dropwise condensation (DWC), which can be 10 folds more efficient than the traditional FWC, was successfully induced on the condenser of heat pipes. The effective thermal conductivity (keff) of wickless heat pipes can be enhanced more than 7 times higher than the one without Ni-Gr nanocomposite coatings. Besides the drastically reduced thermal resistance resulted from DWC by fundamentally altering continuous film liquid flow into discrete droplet sliding, the liquid return from the condenser to the evaporator by gravity has been significantly accelerated. The new liquid return mode can also effectively manage the instability of geyser boiling with enhanced evaporation rate in the evaporator section and further, promote the heat pipe keff. This study shows a new feasibility to elevate heat pipe technologies to the next level. [Display omitted]
Author Li, Chen
Luo, Kai
Huang, Guanghan
Chang, Wei
Wang, Pengtao
Author_xml – sequence: 1
  givenname: Wei
  orcidid: 0000-0003-1918-0446
  surname: Chang
  fullname: Chang, Wei
  organization: Department of Mechanical Engineering, University of South Carolina, Columbia, SC, 29208, USA
– sequence: 2
  givenname: Guanghan
  orcidid: 0000-0002-5307-4084
  surname: Huang
  fullname: Huang, Guanghan
  organization: Department of Mechanical Engineering, University of South Carolina, Columbia, SC, 29208, USA
– sequence: 3
  givenname: Kai
  surname: Luo
  fullname: Luo, Kai
  organization: Department of Mechanical Engineering, University of South Carolina, Columbia, SC, 29208, USA
– sequence: 4
  givenname: Pengtao
  surname: Wang
  fullname: Wang, Pengtao
  organization: Department of Mechanical and Aerospace Engineering, University of Missouri Columbia, Columbia, MO, 65211, USA
– sequence: 5
  givenname: Chen
  orcidid: 0000-0003-2530-7810
  surname: Li
  fullname: Li, Chen
  email: li01@cec.sc.edu
  organization: Department of Mechanical Engineering, University of South Carolina, Columbia, SC, 29208, USA
BookMark eNp9kE1LAzEQhoNUsK3-Aw8Bz7sm2a-sB0GKX1DwYs8hm0za1DZZk1Tovzelnj3NDPO-7zDPDE2cd4DQLSUlJbS935ZKhsG7khHGSkJL0tYXaEp5VxUV7-kETQkhvGgZq67QLMZtHmtO6ykyq10KsgBjrLLgEt6ATHi0I0QMTg470Hg4YmfVF-yKdZDjBhxgJ51Xfj_6aBNg5WWybh0f8MI7BWPC0mlsDk7Lfc6Uu3iNLk0ucPNX52j18vy5eCuWH6_vi6dloSpOUlE10mgFdc37nvVtX3VSs0Zq6NVA-QCNMpp1TLbtkLecN6zuO6pzA5QYRqo5ujvnjsF_HyAmsfWH4PJJwdqG8obU9KSqzyoVfIwBjBiD3ctwFJSIE1GxFWei4kRUECoy0Wx7PNsgf_BjIYh4YqZA2wAqCe3t_wG_3NODmQ
CitedBy_id crossref_primary_10_1016_j_tsep_2023_101860
crossref_primary_10_1002_dro2_43
crossref_primary_10_1039_D4EE01235F
crossref_primary_10_1002_admi_202201687
Cites_doi 10.1016/j.applthermaleng.2006.10.020
10.1016/j.microrel.2011.11.016
10.1016/j.ijheatmasstransfer.2012.12.045
10.1016/j.enconman.2008.05.002
10.1016/j.applthermaleng.2015.11.048
10.1016/j.ijthermalsci.2010.01.016
10.1007/s11708-019-0610-6
10.1243/09576500260049034
10.1115/1.1560145
10.4236/jectc.2015.51001
10.1016/0017-9310(76)90064-8
10.1016/j.applthermaleng.2009.08.007
10.1016/j.ijheatmasstransfer.2011.01.002
10.1016/j.ijheatmasstransfer.2019.119170
10.1016/j.renene.2018.01.031
10.1080/08916158708946334
10.1016/j.applthermaleng.2012.07.042
10.1016/j.jare.2018.11.004
10.1016/j.scib.2021.06.006
10.1103/PhysRevLett.118.094501
10.1016/j.applthermaleng.2017.07.116
10.2298/TSCI100209056H
10.1016/j.ijheatmasstransfer.2018.12.114
10.1016/j.ijheatmasstransfer.2020.120680
10.1016/j.icheatmasstransfer.2014.08.020
10.1016/j.applthermaleng.2017.01.096
10.1016/j.ijheatmasstransfer.2009.12.065
10.1007/s13369-012-0272-8
10.1016/j.applthermaleng.2007.09.009
10.1016/j.applthermaleng.2011.12.004
10.1016/j.applthermaleng.2009.09.012
10.1016/j.ijheatmasstransfer.2018.12.112
10.1016/j.applthermaleng.2014.02.067
10.1016/S0735-1933(01)00237-8
10.1016/j.enconman.2014.07.041
10.1016/j.applthermaleng.2020.115332
10.1016/j.ijheatmasstransfer.2005.08.016
10.1016/j.applthermaleng.2009.07.011
10.1016/j.ijheatmasstransfer.2017.07.062
10.1016/j.expthermflusci.2012.06.008
10.1016/0017-9310(82)90123-5
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier BV May 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier BV May 2022
DBID AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1016/j.carbon.2022.01.064
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3891
EndPage 392
ExternalDocumentID 10_1016_j_carbon_2022_01_064
S0008622322000732
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSM
SSR
SSZ
T5K
TWZ
WUQ
XPP
ZMT
~02
~G-
AAHBH
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7SR
8FD
JG9
ID FETCH-LOGICAL-c380t-35afdce44899296937ad25ade9cb18be5cfd272a66b96988524971d885e10f203
IEDL.DBID AIKHN
ISSN 0008-6223
IngestDate Fri Sep 13 03:07:31 EDT 2024
Thu Sep 26 17:12:13 EDT 2024
Fri Feb 23 02:39:33 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Visualization
Heat pipe
Dropwise condensation
Nickel-graphene
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c380t-35afdce44899296937ad25ade9cb18be5cfd272a66b96988524971d885e10f203
ORCID 0000-0003-1918-0446
0000-0003-2530-7810
0000-0002-5307-4084
OpenAccessLink http://manuscript.elsevier.com/S0008622322000732/pdf/S0008622322000732.pdf
PQID 2651850410
PQPubID 2045273
PageCount 9
ParticipantIDs proquest_journals_2651850410
crossref_primary_10_1016_j_carbon_2022_01_064
elsevier_sciencedirect_doi_10_1016_j_carbon_2022_01_064
PublicationCentury 2000
PublicationDate May 2022
2022-05-00
20220501
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Carbon (New York)
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Yau, Ahmadzadehtalatapeh (bib6) Feb 2010; 30
Kim, Kim, Shin, You, Lee (bib24) Jul 5 2020; 175
Seban, Hodgson (bib38) 1982; 25
Faghri (bib7) Dec 2012; 134
Li, He, Zeng (bib17) Jan 10 2013; 50
Hanlon, Ma (bib42) Aug 2003; 125
Tang, Tang, Li, Qing, Lu, Chen (bib12) Jan 2013; 44
Khazaee, Hosseini, Noie (bib43) Apr 2010; 30
Khodabandeh, Furberg (bib45) Jul 2010; 49
Xia, Wang, Cheng, Ma (bib44) Apr 2017; 116
Chang, Cheng, Wang, Chen (bib3) Nov 2008; 49
Kim, Kim, Jeong, Bang (bib35) Oct 2017; 125
Ranjan, Murthy, Garimella (bib41) Oct 2009; 131
Seo, Kim, Seo, Shin, Nam, Lee (bib22) Feb 2021; 165
Shu (bib36) Sep 2012; 37
Bonner (bib19) Jun 2013; 61
Bonner (bib23) 2010
Yu, An, Wang (bib8) Mar 2019; 13
Hsieh, Huang, Shen (bib16) Jun 2012; 52
Sarafraz, Hormozi, Peyghambarzadeh (bib34) Oct 2014; 57
Lv, Zhang, Orejon, Askounis, Shen (bib25) Dec 2017; 115
Solomon, Ramachandran, Pillai (bib30) Apr 2012; 36
Tang, Ding, Yu, Li, Liu (bib5) May 2014; 66
Abdulshaheed, Wang, Huang, Li (bib14) Apr 2019; 133
Liu, Yang, Wang, Guo (bib31) Apr 2010; 53
Pan (bib40) Apr 2001; 28
Vemuri, Kim (bib27) Feb 2006; 49
Faghri (bib1) 1995
Alwazzan, Egab, Wang, Shang, Liang, Khan, Li (bib29) Apr 2019; 133
Chen, Ye, Fan, Ren, Zhang (bib9) Mar 5 2016; 96
Ozsoy, Corumlu (bib13) Jul 2018; 122
Mei, Yu, Zou, Luo (bib28) Apr 2011; 54
Rose (bib18) 2002; 216
Brahim, Dhaou, Jemni (bib2) Nov 2014; 87
Abd El-Baky, Mohamed (bib4) Mar 2007; 27
Ahlers, Buck-Emden, Bart (bib21) Mar 2019; 16
Chen, Gerner, Tien (bib37) 1987; 1
Chang, Peng, Egab, Zhang, Cheng, Li, Ma, Li (bib26) Sep 30 2021; 66
Kundan, Nguyen, Plawsky, Wayner, Chao, Sicker (bib11) Mar 3 2017; 118
Rose (bib20) 1976; 19
Jiao, Qiu, Zhang, Zhang (bib39) Aug 2008; 28
Shukla (bib10) 2015; 5
Han, Rhi (bib32) 2011; 15
Nguyen, Yu, Wayner, Plawsky, Kundan, Chao, Sicker (bib15) Mar 2020; 149
Jouhara, Robinson (bib33) Feb 2010; 30
Tang (10.1016/j.carbon.2022.01.064_bib5) 2014; 66
Bonner (10.1016/j.carbon.2022.01.064_bib19) 2013; 61
Mei (10.1016/j.carbon.2022.01.064_bib28) 2011; 54
Faghri (10.1016/j.carbon.2022.01.064_bib1) 1995
Seo (10.1016/j.carbon.2022.01.064_bib22) 2021; 165
Abdulshaheed (10.1016/j.carbon.2022.01.064_bib14) 2019; 133
Han (10.1016/j.carbon.2022.01.064_bib32) 2011; 15
Ranjan (10.1016/j.carbon.2022.01.064_bib41) 2009; 131
Hanlon (10.1016/j.carbon.2022.01.064_bib42) 2003; 125
Rose (10.1016/j.carbon.2022.01.064_bib20) 1976; 19
Khodabandeh (10.1016/j.carbon.2022.01.064_bib45) 2010; 49
Chang (10.1016/j.carbon.2022.01.064_bib3) 2008; 49
Ozsoy (10.1016/j.carbon.2022.01.064_bib13) 2018; 122
Bonner (10.1016/j.carbon.2022.01.064_bib23) 2010
Solomon (10.1016/j.carbon.2022.01.064_bib30) 2012; 36
Seban (10.1016/j.carbon.2022.01.064_bib38) 1982; 25
Jouhara (10.1016/j.carbon.2022.01.064_bib33) 2010; 30
Li (10.1016/j.carbon.2022.01.064_bib17) 2013; 50
Abd El-Baky (10.1016/j.carbon.2022.01.064_bib4) 2007; 27
Vemuri (10.1016/j.carbon.2022.01.064_bib27) 2006; 49
Shukla (10.1016/j.carbon.2022.01.064_bib10) 2015; 5
Yau (10.1016/j.carbon.2022.01.064_bib6) 2010; 30
Sarafraz (10.1016/j.carbon.2022.01.064_bib34) 2014; 57
Kim (10.1016/j.carbon.2022.01.064_bib35) 2017; 125
Shu (10.1016/j.carbon.2022.01.064_bib36) 2012; 37
Ahlers (10.1016/j.carbon.2022.01.064_bib21) 2019; 16
Rose (10.1016/j.carbon.2022.01.064_bib18) 2002; 216
Jiao (10.1016/j.carbon.2022.01.064_bib39) 2008; 28
Alwazzan (10.1016/j.carbon.2022.01.064_bib29) 2019; 133
Nguyen (10.1016/j.carbon.2022.01.064_bib15) 2020; 149
Liu (10.1016/j.carbon.2022.01.064_bib31) 2010; 53
Chen (10.1016/j.carbon.2022.01.064_bib37) 1987; 1
Kim (10.1016/j.carbon.2022.01.064_bib24) 2020; 175
Kundan (10.1016/j.carbon.2022.01.064_bib11) 2017; 118
Faghri (10.1016/j.carbon.2022.01.064_bib7) 2012; 134
Pan (10.1016/j.carbon.2022.01.064_bib40) 2001; 28
Khazaee (10.1016/j.carbon.2022.01.064_bib43) 2010; 30
Yu (10.1016/j.carbon.2022.01.064_bib8) 2019; 13
Hsieh (10.1016/j.carbon.2022.01.064_bib16) 2012; 52
Chen (10.1016/j.carbon.2022.01.064_bib9) 2016; 96
Xia (10.1016/j.carbon.2022.01.064_bib44) 2017; 116
Chang (10.1016/j.carbon.2022.01.064_bib26) 2021; 66
Brahim (10.1016/j.carbon.2022.01.064_bib2) 2014; 87
Tang (10.1016/j.carbon.2022.01.064_bib12) 2013; 44
Lv (10.1016/j.carbon.2022.01.064_bib25) 2017; 115
References_xml – volume: 53
  start-page: 1914
  year: Apr 2010
  end-page: 1920
  ident: bib31
  article-title: Influence of carbon nanotube suspension on the thermal performance of a miniature thermosyphon
  publication-title: Int. J. Heat Mass Tran.
  contributor:
    fullname: Guo
– volume: 15
  start-page: 195
  year: 2011
  end-page: 206
  ident: bib32
  article-title: Thermal characteristics of grooved heat pipe with hybrid nanofluids
  publication-title: Therm. Sci.
  contributor:
    fullname: Rhi
– volume: 27
  start-page: 795
  year: Mar 2007
  end-page: 801
  ident: bib4
  article-title: Heat pipe heat exchanger for heat recovery in air conditioning
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Mohamed
– volume: 37
  start-page: 1711
  year: Sep 2012
  end-page: 1721
  ident: bib36
  article-title: Laminar film condensation heat transfer on a vertical, non-isothermal, semi-infinite plate
  publication-title: Arabian J. Sci. Eng.
  contributor:
    fullname: Shu
– volume: 87
  start-page: 428
  year: Nov 2014
  end-page: 438
  ident: bib2
  article-title: Theoretical and experimental investigation of plate screen mesh heat pipe solar collector
  publication-title: Energy Convers. Manag.
  contributor:
    fullname: Jemni
– volume: 133
  start-page: 487
  year: Apr 2019
  end-page: 493
  ident: bib29
  article-title: Condensation heat transfer on nickel tubes: the role of atomic layer deposition of nickel oxide
  publication-title: Int. J. Heat Mass Tran.
  contributor:
    fullname: Li
– volume: 115
  start-page: 725
  year: Dec 2017
  end-page: 736
  ident: bib25
  article-title: Heat transfer performance of a lubricant-infused thermosyphon at various filling ratios
  publication-title: Int. J. Heat Mass Tran.
  contributor:
    fullname: Shen
– volume: 134
  year: Dec 2012
  ident: bib7
  article-title: Review and advances in heat pipe science and technology
  publication-title: J. Heat Tran.-Trans. ASME
  contributor:
    fullname: Faghri
– volume: 216
  start-page: 115
  year: 2002
  end-page: 128
  ident: bib18
  article-title: Dropwise condensation theory and experiment: a review
  publication-title: Proc. IME J. Power Energy
  contributor:
    fullname: Rose
– volume: 125
  start-page: 1456
  year: Oct 2017
  end-page: 1468
  ident: bib35
  article-title: Flow visualization and heat transfer performance of annular thermosyphon heat pipe
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Bang
– volume: 28
  start-page: 1417
  year: Aug 2008
  end-page: 1426
  ident: bib39
  article-title: Investigation on the effect of filling ratio on the steady-state heat transfer performance of a vertical two-phase closed thermosyphon
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Zhang
– volume: 54
  start-page: 2004
  year: Apr 2011
  end-page: 2013
  ident: bib28
  article-title: A numerical study on growth mechanism of dropwise condensation
  publication-title: Int. J. Heat Mass Tran.
  contributor:
    fullname: Luo
– volume: 125
  start-page: 644
  year: Aug 2003
  end-page: 652
  ident: bib42
  article-title: Evaporation heat transfer in sintered porous media
  publication-title: J. Heat Tran.-Trans. ASME
  contributor:
    fullname: Ma
– volume: 57
  start-page: 297
  year: Oct 2014
  end-page: 303
  ident: bib34
  article-title: Thermal performance and efficiency of a thermosyphon heat pipe working with a biologically ecofriendly nanofluid
  publication-title: Int. Commun. Heat Mass Tran.
  contributor:
    fullname: Peyghambarzadeh
– volume: 118
  year: Mar 3 2017
  ident: bib11
  article-title: Condensation on highly superheated surfaces: unstable thin films in a wickless heat pipe
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Sicker
– volume: 49
  start-page: 1183
  year: Jul 2010
  end-page: 1192
  ident: bib45
  article-title: Heat transfer, flow regime and instability of a nano- and micro-porous structure evaporator in a two-phase thermosyphon loop
  publication-title: Int. J. Therm. Sci.
  contributor:
    fullname: Furberg
– volume: 66
  start-page: 1877
  year: Sep 30 2021
  end-page: 1884
  ident: bib26
  article-title: Few-layer graphene on nickel enabled sustainable dropwise condensation
  publication-title: Sci. Bull.
  contributor:
    fullname: Li
– volume: 66
  start-page: 632
  year: May 2014
  end-page: 639
  ident: bib5
  article-title: A high power LED device with chips directly mounted on heat pipes
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Liu
– volume: 5
  start-page: 1
  year: 2015
  end-page: 14
  ident: bib10
  article-title: Heat pipe for aerospace applications—an overview
  publication-title: J. Electron. Cool. Therm. Control
  contributor:
    fullname: Shukla
– volume: 44
  start-page: 194
  year: Jan 2013
  end-page: 198
  ident: bib12
  article-title: Pool-boiling enhancement by novel metallic nanoporous surface
  publication-title: Exp. Therm. Fluid Sci.
  contributor:
    fullname: Chen
– volume: 122
  start-page: 26
  year: Jul 2018
  end-page: 34
  ident: bib13
  article-title: Thermal performance of a thermosyphon heat pipe evacuated tube solar collector using silver-water nanofluid for commercial applications
  publication-title: Renew. Energy
  contributor:
    fullname: Corumlu
– volume: 19
  start-page: 1363
  year: 1976
  end-page: 1370
  ident: bib20
  article-title: Further aspects of dropwise condensation theory
  publication-title: Int. J. Heat Mass Tran.
  contributor:
    fullname: Rose
– volume: 149
  year: Mar 2020
  ident: bib15
  article-title: Rip currents: a spontaneous heat transfer enhancement mechanism in a wickless heat pipe
  publication-title: Int. J. Heat Mass Tran.
  contributor:
    fullname: Sicker
– volume: 49
  start-page: 649
  year: Feb 2006
  end-page: 657
  ident: bib27
  article-title: An experimental and theoretical study on the concept of dropwise condensation
  publication-title: Int. J. Heat Mass Tran.
  contributor:
    fullname: Kim
– volume: 28
  start-page: 311
  year: Apr 2001
  end-page: 322
  ident: bib40
  article-title: Condensation heat transfer characteristics and concept of sub-flooding limit in a two-phase closed thermosyphon
  publication-title: Int. Commun. Heat Mass Tran.
  contributor:
    fullname: Pan
– year: 2010
  ident: bib23
  article-title: Dropwise condensation in vapor chambers
  publication-title: 2010 26th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM)
  contributor:
    fullname: Bonner
– volume: 30
  start-page: 406
  year: Apr 2010
  end-page: 412
  ident: bib43
  article-title: Experimental investigation of effective parameters and correlation of geyser boiling in a two-phase closed thermosyphon
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Noie
– volume: 52
  start-page: 1071
  year: Jun 2012
  end-page: 1079
  ident: bib16
  article-title: Experimental study of microrectangular groove structure covered with multi mesh layers on performance of flat plate heat pipe for LED lighting module
  publication-title: Microelectron. Reliab.
  contributor:
    fullname: Shen
– year: 1995
  ident: bib1
  article-title: Heat Pipe Science and Technology
  contributor:
    fullname: Faghri
– volume: 30
  start-page: 201
  year: Feb 2010
  end-page: 211
  ident: bib33
  article-title: Experimental investigation of small diameter two-phase closed thermosyphons charged with water, FC-84, FC-77 and FC-3283
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Robinson
– volume: 30
  start-page: 77
  year: Feb 2010
  end-page: 84
  ident: bib6
  article-title: A review on the application of horizontal heat pipe heat exchangers in air conditioning systems in the tropics
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Ahmadzadehtalatapeh
– volume: 1
  start-page: 93
  year: 1987
  end-page: 107
  ident: bib37
  article-title: General film condensation correlations
  publication-title: Exp. Heat Tran.
  contributor:
    fullname: Tien
– volume: 36
  start-page: 106
  year: Apr 2012
  end-page: 112
  ident: bib30
  article-title: Thermal performance of a heat pipe with nanoparticles coated wick
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Pillai
– volume: 131
  year: Oct 2009
  ident: bib41
  article-title: Analysis of the wicking and thin-film evaporation characteristics of microstructures
  publication-title: J. Heat Tran.-Trans. ASME
  contributor:
    fullname: Garimella
– volume: 96
  start-page: 1
  year: Mar 5 2016
  end-page: 17
  ident: bib9
  article-title: A review of small heat pipes for electronics
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Zhang
– volume: 165
  year: Feb 2021
  ident: bib22
  article-title: Modeling and optimization of hydrophobic surfaces for a two-phase closed thermosyphon
  publication-title: Int. J. Heat Mass Tran.
  contributor:
    fullname: Lee
– volume: 49
  start-page: 3398
  year: Nov 2008
  end-page: 3404
  ident: bib3
  article-title: Heat pipe for cooling of electronic equipment
  publication-title: Energy Convers. Manag.
  contributor:
    fullname: Chen
– volume: 16
  start-page: 1
  year: Mar 2019
  end-page: 13
  ident: bib21
  article-title: Is dropwise condensation feasible? A review on surface modifications for continuous dropwise condensation and a profitability analysis
  publication-title: J. Adv. Res.
  contributor:
    fullname: Bart
– volume: 133
  start-page: 474
  year: Apr 2019
  end-page: 486
  ident: bib14
  article-title: High performance copper-water heat pipes with nanoengineered evaporator sections
  publication-title: Int. J. Heat Mass Tran.
  contributor:
    fullname: Li
– volume: 50
  start-page: 342
  year: Jan 10 2013
  end-page: 351
  ident: bib17
  article-title: Evaporation and condensation heat transfer in a heat pipe with a sintered-grooved composite wick
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Zeng
– volume: 25
  start-page: 1291
  year: 1982
  end-page: 1300
  ident: bib38
  article-title: Laminar-film condensation in a tube with upward vapor flow
  publication-title: Int. J. Heat Mass Tran.
  contributor:
    fullname: Hodgson
– volume: 13
  start-page: 172
  year: Mar 2019
  end-page: 184
  ident: bib8
  article-title: Major applications of heat pipe and its advances coupled with sorption system: a review
  publication-title: Front. Energy
  contributor:
    fullname: Wang
– volume: 116
  start-page: 392
  year: Apr 2017
  end-page: 405
  ident: bib44
  article-title: Visualization study on the instabilities of phase-change heat transfer in a flat two-phase closed thermosyphon
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Ma
– volume: 61
  start-page: 245
  year: Jun 2013
  end-page: 253
  ident: bib19
  article-title: Correlation for dropwise condensation heat transfer: water, organic fluids, and inclination
  publication-title: Int. J. Heat Mass Tran.
  contributor:
    fullname: Bonner
– volume: 175
  year: Jul 5 2020
  ident: bib24
  article-title: Enhanced thermal performance of a thermosyphon for waste heat recovery: microporous coating at evaporator and hydrophobic coating at condenser
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Lee
– volume: 27
  start-page: 795
  issue: 4
  year: 2007
  ident: 10.1016/j.carbon.2022.01.064_bib4
  article-title: Heat pipe heat exchanger for heat recovery in air conditioning
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2006.10.020
  contributor:
    fullname: Abd El-Baky
– volume: 52
  start-page: 1071
  issue: 6
  year: 2012
  ident: 10.1016/j.carbon.2022.01.064_bib16
  article-title: Experimental study of microrectangular groove structure covered with multi mesh layers on performance of flat plate heat pipe for LED lighting module
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2011.11.016
  contributor:
    fullname: Hsieh
– volume: 61
  start-page: 245
  year: 2013
  ident: 10.1016/j.carbon.2022.01.064_bib19
  article-title: Correlation for dropwise condensation heat transfer: water, organic fluids, and inclination
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2012.12.045
  contributor:
    fullname: Bonner
– volume: 49
  start-page: 3398
  issue: 11
  year: 2008
  ident: 10.1016/j.carbon.2022.01.064_bib3
  article-title: Heat pipe for cooling of electronic equipment
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2008.05.002
  contributor:
    fullname: Chang
– volume: 96
  start-page: 1
  year: 2016
  ident: 10.1016/j.carbon.2022.01.064_bib9
  article-title: A review of small heat pipes for electronics
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.11.048
  contributor:
    fullname: Chen
– volume: 49
  start-page: 1183
  issue: 7
  year: 2010
  ident: 10.1016/j.carbon.2022.01.064_bib45
  article-title: Heat transfer, flow regime and instability of a nano- and micro-porous structure evaporator in a two-phase thermosyphon loop
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2010.01.016
  contributor:
    fullname: Khodabandeh
– volume: 13
  start-page: 172
  issue: 1
  year: 2019
  ident: 10.1016/j.carbon.2022.01.064_bib8
  article-title: Major applications of heat pipe and its advances coupled with sorption system: a review
  publication-title: Front. Energy
  doi: 10.1007/s11708-019-0610-6
  contributor:
    fullname: Yu
– volume: 216
  start-page: 115
  issue: A2
  year: 2002
  ident: 10.1016/j.carbon.2022.01.064_bib18
  article-title: Dropwise condensation theory and experiment: a review
  publication-title: Proc. IME J. Power Energy
  doi: 10.1243/09576500260049034
  contributor:
    fullname: Rose
– volume: 125
  start-page: 644
  issue: 4
  year: 2003
  ident: 10.1016/j.carbon.2022.01.064_bib42
  article-title: Evaporation heat transfer in sintered porous media
  publication-title: J. Heat Tran.-Trans. ASME
  doi: 10.1115/1.1560145
  contributor:
    fullname: Hanlon
– volume: 5
  start-page: 1
  year: 2015
  ident: 10.1016/j.carbon.2022.01.064_bib10
  article-title: Heat pipe for aerospace applications—an overview
  publication-title: J. Electron. Cool. Therm. Control
  doi: 10.4236/jectc.2015.51001
  contributor:
    fullname: Shukla
– year: 1995
  ident: 10.1016/j.carbon.2022.01.064_bib1
  contributor:
    fullname: Faghri
– volume: 19
  start-page: 1363
  issue: 12
  year: 1976
  ident: 10.1016/j.carbon.2022.01.064_bib20
  article-title: Further aspects of dropwise condensation theory
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/0017-9310(76)90064-8
  contributor:
    fullname: Rose
– volume: 30
  start-page: 201
  issue: 2–3
  year: 2010
  ident: 10.1016/j.carbon.2022.01.064_bib33
  article-title: Experimental investigation of small diameter two-phase closed thermosyphons charged with water, FC-84, FC-77 and FC-3283
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2009.08.007
  contributor:
    fullname: Jouhara
– volume: 54
  start-page: 2004
  issue: 9–10
  year: 2011
  ident: 10.1016/j.carbon.2022.01.064_bib28
  article-title: A numerical study on growth mechanism of dropwise condensation
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2011.01.002
  contributor:
    fullname: Mei
– volume: 149
  year: 2020
  ident: 10.1016/j.carbon.2022.01.064_bib15
  article-title: Rip currents: a spontaneous heat transfer enhancement mechanism in a wickless heat pipe
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2019.119170
  contributor:
    fullname: Nguyen
– volume: 122
  start-page: 26
  year: 2018
  ident: 10.1016/j.carbon.2022.01.064_bib13
  article-title: Thermal performance of a thermosyphon heat pipe evacuated tube solar collector using silver-water nanofluid for commercial applications
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.01.031
  contributor:
    fullname: Ozsoy
– volume: 1
  start-page: 93
  issue: 2
  year: 1987
  ident: 10.1016/j.carbon.2022.01.064_bib37
  article-title: General film condensation correlations
  publication-title: Exp. Heat Tran.
  doi: 10.1080/08916158708946334
  contributor:
    fullname: Chen
– volume: 50
  start-page: 342
  issue: 1
  year: 2013
  ident: 10.1016/j.carbon.2022.01.064_bib17
  article-title: Evaporation and condensation heat transfer in a heat pipe with a sintered-grooved composite wick
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2012.07.042
  contributor:
    fullname: Li
– volume: 16
  start-page: 1
  year: 2019
  ident: 10.1016/j.carbon.2022.01.064_bib21
  article-title: Is dropwise condensation feasible? A review on surface modifications for continuous dropwise condensation and a profitability analysis
  publication-title: J. Adv. Res.
  doi: 10.1016/j.jare.2018.11.004
  contributor:
    fullname: Ahlers
– volume: 66
  start-page: 1877
  issue: 18
  year: 2021
  ident: 10.1016/j.carbon.2022.01.064_bib26
  article-title: Few-layer graphene on nickel enabled sustainable dropwise condensation
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2021.06.006
  contributor:
    fullname: Chang
– volume: 118
  issue: 9
  year: 2017
  ident: 10.1016/j.carbon.2022.01.064_bib11
  article-title: Condensation on highly superheated surfaces: unstable thin films in a wickless heat pipe
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.094501
  contributor:
    fullname: Kundan
– volume: 125
  start-page: 1456
  year: 2017
  ident: 10.1016/j.carbon.2022.01.064_bib35
  article-title: Flow visualization and heat transfer performance of annular thermosyphon heat pipe
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.07.116
  contributor:
    fullname: Kim
– volume: 15
  start-page: 195
  issue: 1
  year: 2011
  ident: 10.1016/j.carbon.2022.01.064_bib32
  article-title: Thermal characteristics of grooved heat pipe with hybrid nanofluids
  publication-title: Therm. Sci.
  doi: 10.2298/TSCI100209056H
  contributor:
    fullname: Han
– volume: 133
  start-page: 474
  year: 2019
  ident: 10.1016/j.carbon.2022.01.064_bib14
  article-title: High performance copper-water heat pipes with nanoengineered evaporator sections
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2018.12.114
  contributor:
    fullname: Abdulshaheed
– volume: 165
  year: 2021
  ident: 10.1016/j.carbon.2022.01.064_bib22
  article-title: Modeling and optimization of hydrophobic surfaces for a two-phase closed thermosyphon
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2020.120680
  contributor:
    fullname: Seo
– volume: 57
  start-page: 297
  year: 2014
  ident: 10.1016/j.carbon.2022.01.064_bib34
  article-title: Thermal performance and efficiency of a thermosyphon heat pipe working with a biologically ecofriendly nanofluid
  publication-title: Int. Commun. Heat Mass Tran.
  doi: 10.1016/j.icheatmasstransfer.2014.08.020
  contributor:
    fullname: Sarafraz
– volume: 116
  start-page: 392
  year: 2017
  ident: 10.1016/j.carbon.2022.01.064_bib44
  article-title: Visualization study on the instabilities of phase-change heat transfer in a flat two-phase closed thermosyphon
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.01.096
  contributor:
    fullname: Xia
– volume: 53
  start-page: 1914
  issue: 9–10
  year: 2010
  ident: 10.1016/j.carbon.2022.01.064_bib31
  article-title: Influence of carbon nanotube suspension on the thermal performance of a miniature thermosyphon
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2009.12.065
  contributor:
    fullname: Liu
– volume: 37
  start-page: 1711
  issue: 6
  year: 2012
  ident: 10.1016/j.carbon.2022.01.064_bib36
  article-title: Laminar film condensation heat transfer on a vertical, non-isothermal, semi-infinite plate
  publication-title: Arabian J. Sci. Eng.
  doi: 10.1007/s13369-012-0272-8
  contributor:
    fullname: Shu
– volume: 28
  start-page: 1417
  issue: 11–12
  year: 2008
  ident: 10.1016/j.carbon.2022.01.064_bib39
  article-title: Investigation on the effect of filling ratio on the steady-state heat transfer performance of a vertical two-phase closed thermosyphon
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2007.09.009
  contributor:
    fullname: Jiao
– volume: 36
  start-page: 106
  year: 2012
  ident: 10.1016/j.carbon.2022.01.064_bib30
  article-title: Thermal performance of a heat pipe with nanoparticles coated wick
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2011.12.004
  contributor:
    fullname: Solomon
– volume: 30
  start-page: 406
  issue: 5
  year: 2010
  ident: 10.1016/j.carbon.2022.01.064_bib43
  article-title: Experimental investigation of effective parameters and correlation of geyser boiling in a two-phase closed thermosyphon
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2009.09.012
  contributor:
    fullname: Khazaee
– volume: 133
  start-page: 487
  year: 2019
  ident: 10.1016/j.carbon.2022.01.064_bib29
  article-title: Condensation heat transfer on nickel tubes: the role of atomic layer deposition of nickel oxide
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2018.12.112
  contributor:
    fullname: Alwazzan
– volume: 66
  start-page: 632
  issue: 1–2
  year: 2014
  ident: 10.1016/j.carbon.2022.01.064_bib5
  article-title: A high power LED device with chips directly mounted on heat pipes
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2014.02.067
  contributor:
    fullname: Tang
– volume: 134
  issue: 12
  year: 2012
  ident: 10.1016/j.carbon.2022.01.064_bib7
  article-title: Review and advances in heat pipe science and technology
  publication-title: J. Heat Tran.-Trans. ASME
  contributor:
    fullname: Faghri
– volume: 131
  issue: 10
  year: 2009
  ident: 10.1016/j.carbon.2022.01.064_bib41
  article-title: Analysis of the wicking and thin-film evaporation characteristics of microstructures
  publication-title: J. Heat Tran.-Trans. ASME
  contributor:
    fullname: Ranjan
– volume: 28
  start-page: 311
  issue: 3
  year: 2001
  ident: 10.1016/j.carbon.2022.01.064_bib40
  article-title: Condensation heat transfer characteristics and concept of sub-flooding limit in a two-phase closed thermosyphon
  publication-title: Int. Commun. Heat Mass Tran.
  doi: 10.1016/S0735-1933(01)00237-8
  contributor:
    fullname: Pan
– volume: 87
  start-page: 428
  year: 2014
  ident: 10.1016/j.carbon.2022.01.064_bib2
  article-title: Theoretical and experimental investigation of plate screen mesh heat pipe solar collector
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2014.07.041
  contributor:
    fullname: Brahim
– volume: 175
  year: 2020
  ident: 10.1016/j.carbon.2022.01.064_bib24
  article-title: Enhanced thermal performance of a thermosyphon for waste heat recovery: microporous coating at evaporator and hydrophobic coating at condenser
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2020.115332
  contributor:
    fullname: Kim
– volume: 49
  start-page: 649
  issue: 3–4
  year: 2006
  ident: 10.1016/j.carbon.2022.01.064_bib27
  article-title: An experimental and theoretical study on the concept of dropwise condensation
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2005.08.016
  contributor:
    fullname: Vemuri
– volume: 30
  start-page: 77
  issue: 2–3
  year: 2010
  ident: 10.1016/j.carbon.2022.01.064_bib6
  article-title: A review on the application of horizontal heat pipe heat exchangers in air conditioning systems in the tropics
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2009.07.011
  contributor:
    fullname: Yau
– volume: 115
  start-page: 725
  year: 2017
  ident: 10.1016/j.carbon.2022.01.064_bib25
  article-title: Heat transfer performance of a lubricant-infused thermosyphon at various filling ratios
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2017.07.062
  contributor:
    fullname: Lv
– volume: 44
  start-page: 194
  year: 2013
  ident: 10.1016/j.carbon.2022.01.064_bib12
  article-title: Pool-boiling enhancement by novel metallic nanoporous surface
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2012.06.008
  contributor:
    fullname: Tang
– volume: 25
  start-page: 1291
  issue: 9
  year: 1982
  ident: 10.1016/j.carbon.2022.01.064_bib38
  article-title: Laminar-film condensation in a tube with upward vapor flow
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/0017-9310(82)90123-5
  contributor:
    fullname: Seban
– year: 2010
  ident: 10.1016/j.carbon.2022.01.064_bib23
  article-title: Dropwise condensation in vapor chambers
  contributor:
    fullname: Bonner
SSID ssj0004814
Score 2.4583366
Snippet Heat pipes are a type of passive and efficient two-phase devices. Despite of its wide applications in solar collectors, electronic cooling and energy recovery...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 384
SubjectTerms Coatings
Condensation
Dropwise condensation
Energy recovery
Energy recovery systems
Evaporation
Evaporation rate
Evaporators
Feasibility studies
Geysers
Graphene
Heat conductivity
Heat exchangers
Heat pipe
Heat pipes
Heat recovery
Heat transfer
Liquid flow
Nanocomposites
Nickel-graphene
Pipes
Solar collectors
Thermal conductivity
Thermal resistance
Visualization
Title Ultra-efficient heat pipes enabled by nickel-graphene nanocomposite coatings: Concept and fundamentals
URI https://dx.doi.org/10.1016/j.carbon.2022.01.064
https://www.proquest.com/docview/2651850410/abstract/
Volume 191
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA5zO-hF_MTpHDl4jWvSNu28jeKYijs52C3kq1AZbdnqwYu_3Tf9QBRE8NavlPKmed4n5HneIHSjpO8HkhmiNNC3gE41URFlRFJtUp971lLnHX5e8sUqeFyH6x5KOi-Mk1W22N9geo3W7ZVJG81JmWXO4-voODACVq83AQ4PIB0FQR8NZg9Pi-WXPTJuSny7lX7XoHPQ1TIvLbeqcIVQGavrd_Lgtwz1A6vrBDQ_Qoctc8Sz5uOOUc_mJ2g_6TZsO0XpalNtJbF1UQjIJdjhLC6z0u6wrS1SBqt3nGcwcDekrlQNQIdzmRdOWO7UWxbrQjoh9O4OJ42hEcvc4NT5RZptAHZnaDW_f0kWpN1GgWg_9irihzI12sI8bApciAMfkYaF0tipVjRWNtSpYRGTnCu4G8chzMgiauDAUi9lnn-O-nmR2wuEKbcmtkzJFB4ywK3iGPiZCuH9QKwoGyLShU6UTbUM0cnIXkUTauFCLTwqINRDFHXxFd96XQCg_9Fy1HWHaEfdTjAeAv3wAupd_vvFV-jAnTWaxhHqV9s3ew28o1JjtHf7Qcft3_UJ4sLYWQ
link.rule.ids 315,786,790,4521,24144,27957,27958,45620,45714
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA5jHuZF_MTp1By8xjXpxzJvUhxTt5022C3kq1AZ3djqwYu_3TdpiyiI4K20aShvmidPyPO8L0K3SoZhJJkhSgN9i-hQEzWgjEiqTRYmgbXUeYens2S8iJ6X8bKF0sYL42SVNfZXmO7Rur7Tr6PZ3-S58_g6Og6MgPnzJsDhPUfnXf2Gu48vnUfEqwTf7pzfNW_8c17kpeVWrV0aVMZ89s4k-m19-oHUfvkZHaKDmjfih-rTjlDLFseokzbl2k5QtliVW0msTwkBKwl2KIs3-cbusPUGKYPVOy5ymLYr4vNUA8zhQhZrJyt32i2L9Vo6GfTuHqeVnRHLwuDMuUWqIgC7U7QYPc7TMamLKBAd8qAkYSwzoy3swobAhBJgI9KwWBo71IpyZWOdGTZgMkkUPOU8hv3YgBq4sDTIWBCeoXaxLuw5wjSxhlumZAaNDDArzoGdqRj6B1pFWReRJnRiU-XKEI2I7FVUoRYu1CKgAkLdRYMmvuLbmAuA8z_e7DXDIeo5txMsiYF8BBENLv7d8Q3qjOfTiZg8zV4u0b57Uqkbe6hdbt_sFTCQUl37P-wTu_TZJw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultra-efficient+heat+pipes+enabled+by+nickel-graphene+nanocomposite+coatings%3A+Concept+and+fundamentals&rft.jtitle=Carbon+%28New+York%29&rft.au=Chang%2C+Wei&rft.au=Huang%2C+Guanghan&rft.au=Luo%2C+Kai&rft.au=Wang%2C+Pengtao&rft.date=2022-05-01&rft.pub=Elsevier+BV&rft.issn=0008-6223&rft.eissn=1873-3891&rft.volume=191&rft.spage=384&rft_id=info:doi/10.1016%2Fj.carbon.2022.01.064&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6223&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6223&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6223&client=summon