Synthesis and characterization of cell-laden double-network hydrogels based on silk fibroin and methacrylated hyaluronic acid
[Display omitted] •A biocompatible approach for synthesis the cell-laden double network hydrogel was presented.•The hydrogel exhibited properties which are suitable for load-bearing soft tissues engineering.•The hydrogel could support the proliferation and spreading of the 3D cultured cell. Repair o...
Saved in:
Published in | European polymer journal Vol. 118; pp. 382 - 392 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.09.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0014-3057 1873-1945 |
DOI | 10.1016/j.eurpolymj.2019.05.040 |
Cover
Loading…
Abstract | [Display omitted]
•A biocompatible approach for synthesis the cell-laden double network hydrogel was presented.•The hydrogel exhibited properties which are suitable for load-bearing soft tissues engineering.•The hydrogel could support the proliferation and spreading of the 3D cultured cell.
Repair or regeneration of load-bearing soft tissue is one of the great challenges in tissue engineering and regenerative medicine. The main obstacle is mismatch between the properties of most synthetic biomaterials and the target tissue, such as the biomechanical performance. Currently, development of novel hydrogels with high mechanical strength and biocompatibility is the main goal of load-bearing soft tissue engineering. In the paper, a double-network hydrogel strategy involving silk fibroin and methacrylated hyaluronic acid was utilized to synthesize hydrogels through a combination of sonication and photopolymerization. Furthermore, due to the biocompatibility of the entire fabrication process, preosteoblast cells could be encapsulated within the hydrogel with high viability. The hydrogel characterization results demonstrated that the SF-HAMA hydrogels have many excellent properties, such as high mechanical strength, high water content, a slow degradation rate and biocompatibility. Two-dimensional cell experiments confirmed that the preosteoblasts could quickly attach and subsequently proliferate on the hydrogels, shown by cellular fluorescence staining. In addition, the studies of preosteoblast encapsulation and the following fluorescent staining demonstrated that the DN hydrogel could support proliferation and spreading of encapsulated cells, which suggests promising application of the hydrogel in the soft tissue engineering field. |
---|---|
AbstractList | Repair or regeneration of load-bearing soft tissue is one of the great challenges in tissue engineering and regenerative medicine. The main obstacle is mismatch between the properties of most synthetic biomaterials and the target tissue, such as the biomechanical performance. Currently, development of novel hydrogels with high mechanical strength and biocompatibility is the main goal of load-bearing soft tissue engineering. In the paper, a double-network hydrogel strategy involving silk fibroin and methacrylated hyaluronic acid was utilized to synthesize hydrogels through a combination of sonication and photopolymerization. Furthermore, due to the biocompatibility of the entire fabrication process, preosteoblast cells could be encapsulated within the hydrogel with high viability. The hydrogel characterization results demonstrated that the SF-HAMA hydrogels have many excellent properties, such as high mechanical strength, high water content, a slow degradation rate and biocompatibility. Two-dimensional cell experiments confirmed that the preosteoblasts could quickly attach and subsequently proliferate on the hydrogels, shown by cellular fluorescence staining. In addition, the studies of preosteoblast encapsulation and the following fluorescent staining demonstrated that the DN hydrogel could support proliferation and spreading of encapsulated cells, which suggests promising application of the hydrogel in the soft tissue engineering field. [Display omitted] •A biocompatible approach for synthesis the cell-laden double network hydrogel was presented.•The hydrogel exhibited properties which are suitable for load-bearing soft tissues engineering.•The hydrogel could support the proliferation and spreading of the 3D cultured cell. Repair or regeneration of load-bearing soft tissue is one of the great challenges in tissue engineering and regenerative medicine. The main obstacle is mismatch between the properties of most synthetic biomaterials and the target tissue, such as the biomechanical performance. Currently, development of novel hydrogels with high mechanical strength and biocompatibility is the main goal of load-bearing soft tissue engineering. In the paper, a double-network hydrogel strategy involving silk fibroin and methacrylated hyaluronic acid was utilized to synthesize hydrogels through a combination of sonication and photopolymerization. Furthermore, due to the biocompatibility of the entire fabrication process, preosteoblast cells could be encapsulated within the hydrogel with high viability. The hydrogel characterization results demonstrated that the SF-HAMA hydrogels have many excellent properties, such as high mechanical strength, high water content, a slow degradation rate and biocompatibility. Two-dimensional cell experiments confirmed that the preosteoblasts could quickly attach and subsequently proliferate on the hydrogels, shown by cellular fluorescence staining. In addition, the studies of preosteoblast encapsulation and the following fluorescent staining demonstrated that the DN hydrogel could support proliferation and spreading of encapsulated cells, which suggests promising application of the hydrogel in the soft tissue engineering field. |
Author | Li, Kejiang Li, Bo Liao, Xiaoling Chen, Lin Li, Jiale Xiao, Wenqian Qu, Xiaohang Tan, Yunfei |
Author_xml | – sequence: 1 givenname: Wenqian surname: Xiao fullname: Xiao, Wenqian organization: Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China – sequence: 2 givenname: Xiaohang surname: Qu fullname: Qu, Xiaohang organization: Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China – sequence: 3 givenname: Jiale surname: Li fullname: Li, Jiale organization: Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China – sequence: 4 givenname: Lin surname: Chen fullname: Chen, Lin organization: Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China – sequence: 5 givenname: Yunfei surname: Tan fullname: Tan, Yunfei organization: Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China – sequence: 6 givenname: Kejiang surname: Li fullname: Li, Kejiang organization: Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China – sequence: 7 givenname: Bo surname: Li fullname: Li, Bo email: Libo@cqust.edu.cn organization: Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China – sequence: 8 givenname: Xiaoling surname: Liao fullname: Liao, Xiaoling email: zxc_228@163.com organization: Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China |
BookMark | eNqNkE-L1TAUR4OM4JvRz2DAdWvSpE27cDEM_oMBF-o6pMmtTScved6kSgW_u5154sKNrrK45_wC55JcxBSBkOec1Zzx7uVSw4qnFLbjUjeMDzVraybZI3LgvRIVH2R7QQ6McVkJ1qon5DLnhTGmRCcO5OfHLZYZss_UREftbNDYAuh_mOJTpGmiFkKognEQqUvrGKCKUL4nvKPz5jB9gZDpaDI4uvPZhzs6-RGTjw-LRyizsbgFU3Zi3kxYMUVvqbHePSWPJxMyPPv9XpHPb15_unlX3X54-_7m-rayomelatQ4wtRw1QnOJiUd40Zx1w7cOd41qh-kkNCA2k9CWNEprkQD0jjXd-2gxBV5cd49Yfq6Qi56SSvG_UvdNEPfSim6dqfUmbKYckaY9An90eCmOdP3rfWi_7TW9601a_Xeejdf_WVaXx4CFjQ-_Id_ffb3lvDNA-psPUQLziPYol3y_9z4BcaApVw |
CitedBy_id | crossref_primary_10_1039_D0TB02099K crossref_primary_10_3390_ma13122750 crossref_primary_10_1007_s10965_021_02765_x crossref_primary_10_1016_j_ijbiomac_2022_07_009 crossref_primary_10_3390_ijms251910523 crossref_primary_10_1007_s42242_022_00208_0 crossref_primary_10_1016_j_exer_2022_109027 crossref_primary_10_1002_SMMD_20220011 crossref_primary_10_1021_acs_chemrev_0c00923 crossref_primary_10_1039_D3TB02363J crossref_primary_10_1039_D2MA00568A crossref_primary_10_1016_j_procbio_2022_12_012 crossref_primary_10_1016_j_tibtech_2020_08_007 crossref_primary_10_1002_app_54312 crossref_primary_10_1016_j_mtchem_2022_101222 crossref_primary_10_1021_acs_chemmater_2c02791 crossref_primary_10_1002_jsfa_12736 crossref_primary_10_1016_j_eurpolymj_2021_110411 crossref_primary_10_1007_s10856_020_06466_7 crossref_primary_10_3390_gels7040255 crossref_primary_10_1016_j_bbrc_2023_01_097 crossref_primary_10_1016_j_ijbiomac_2024_130380 crossref_primary_10_3389_fbioe_2023_1329183 crossref_primary_10_3390_polym15030504 crossref_primary_10_1039_D3MH01581E |
Cites_doi | 10.1016/j.biomaterials.2009.01.034 10.1016/j.biomaterials.2007.11.003 10.1016/j.biomaterials.2007.07.021 10.1002/adma.200304907 10.1021/cr000108x 10.1021/bm049508a 10.1126/science.aaf3627 10.1016/j.biomaterials.2008.01.012 10.1002/adma.200800534 10.1016/j.biomaterials.2007.10.024 10.1002/adma.201003963 10.1021/acs.biomac.5b00652 10.1038/nprot.2011.379 10.1021/jp056350v 10.1021/bm1010504 10.1089/ten.tea.2008.0067 10.1016/S0142-9612(02)00420-9 10.1002/app.39990 10.1002/mame.201200377 10.1016/j.actbio.2010.01.001 10.1016/j.joca.2009.07.003 10.1016/j.actbio.2017.02.028 10.1155/2015/871218 10.1126/science.1214804 10.1002/bit.22361 10.1016/j.copbio.2016.02.008 10.1002/adma.201602268 10.1016/j.biomaterials.2011.12.050 10.1002/adma.201303233 10.1089/ten.teb.2007.0332 10.1021/acsami.7b04623 10.1021/bm050622i 10.1002/jbm.a.30821 10.1016/j.biomaterials.2010.12.023 10.1002/btpr.2058 10.1089/ten.2007.0093 10.1016/j.msec.2019.01.079 10.1039/b924290b 10.1016/j.carbpol.2012.10.028 10.1016/S0142-9612(03)00340-5 10.1039/C5TB00129C 10.1016/j.actbio.2015.11.034 10.1016/j.biomaterials.2014.10.021 10.1016/j.biomaterials.2010.02.059 10.1088/1758-5082/2/3/035003 10.1002/(SICI)1097-4636(19980305)39:3<351::AID-JBM2>3.0.CO;2-I 10.1016/j.jconrel.2015.02.008 10.1038/nmat1421 10.1002/(SICI)1097-4636(20000315)49:4<517::AID-JBM10>3.0.CO;2-8 |
ContentType | Journal Article |
Copyright | 2019 Copyright Elsevier BV Sep 2019 |
Copyright_xml | – notice: 2019 – notice: Copyright Elsevier BV Sep 2019 |
DBID | AAYXX CITATION 7SR 8FD JG9 |
DOI | 10.1016/j.eurpolymj.2019.05.040 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-1945 |
EndPage | 392 |
ExternalDocumentID | 10_1016_j_eurpolymj_2019_05_040 S0014305719307128 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADECG ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ H~9 IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SDF SDG SDP SES SEW SMS SPC SPCBC SSK SSZ T5K T9H WUQ XFK XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SR 8FD EFKBS JG9 |
ID | FETCH-LOGICAL-c380t-27bbef2176310f74d01a71d591dd162789434e2e774d33c3671732e4add865973 |
IEDL.DBID | .~1 |
ISSN | 0014-3057 |
IngestDate | Fri Jul 25 08:30:06 EDT 2025 Tue Jul 01 03:29:48 EDT 2025 Thu Apr 24 23:03:49 EDT 2025 Fri Feb 23 02:27:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Silk fibroin Double-network hydrogel Hyaluronic acid Tissue engineering |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c380t-27bbef2176310f74d01a71d591dd162789434e2e774d33c3671732e4add865973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2298544365 |
PQPubID | 2045478 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2298544365 crossref_primary_10_1016_j_eurpolymj_2019_05_040 crossref_citationtrail_10_1016_j_eurpolymj_2019_05_040 elsevier_sciencedirect_doi_10_1016_j_eurpolymj_2019_05_040 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-01 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | European polymer journal |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Rockwood, Preda, Yücel, Wang, Lovett, Kaplan (b0135) 2011; 6 Park, Tirelli, Hubbell (b0240) 2003; 24 Wang, Zhang (b0050) 2015; 31 Hu, Lu, Sun, Cebe, Wang, Zhang, Kaplan (b0065) 2010; 11 Calvert (b0200) 2009; 21 Su, Yao, Liu, Zhong, Chen, Shao (b0070) 2017; 9 Yang, Wang, Yao, Zhang, Wu, Jiang (b0125) 2015; 205 Ardila, Tamimi, Danford, Haskett, Kellar, Doetschman, Vande Geest (b0230) 2015; 37 Hwang, Sant, Masaeli, Kachouie, Zamanian, Lee, Khademhosseini (b0170) 2010; 2 Drury, Mooney (b0175) 2003; 24 Nicodemus, Bryant (b0185) 2008; 14 Rodell, Dusaj, Highley, Burdick (b0040) 2016; 28 Samal, Kaplan, Chiellini (b0155) 2013; 298 Shin, Olsen, Khademhosseini (b0035) 2012; 33 Matsumoto, Chen, Collette, Kim, Altman, Cebe, Kaplan (b0075) 2006; 110 Rich, Lee, Marshall, Clay, Chen, Mahmassani, Boppart, Kong (b0180) 2015; 16 Xiao, Li, Qu, Wang, Tan, Li, Li, Yue, Li, Liao (b0140) 2019; 99 Kapoor, Kundu (b0045) 2016; 31 Gong (b0030) 2010; 6 Gong, Katsuyama, Kurokawa, Osada (b0205) 2003; 15 Gotoh, Tsukada, Minoura (b0235) 1998; 39 Stella, D’Amore, Wagner, Sacks (b0005) 2010; 6 Seliktar (b0025) 2012; 336 Annabi, Tamayol, Uquillas, Akbari, Bertassoni, Cha, Camci-Unal, Dokmeci, Peppas, Khademhosseini (b0225) 2014; 26 Zhang, Khademhosseini (b0015) 2017; 356 Highley, Prestwich, Burdick (b0095) 2016; 40 Lee, Mooney (b0010) 2001; 101 Weng, Gouldstone, Wu, Chen (b0145) 2008; 29 Guziewicz, Best, Perez-Ramirez, Kaplan (b0060) 2011; 32 Khademhosseini, Langer (b0110) 2007; 28 Erickson, Huang, Sengupta, Kestle, Burdick, Mauck (b0115) 2009; 17 Borzacchiello, Russo, Malle, Schwach-Abdellaoui, Ambrosio (b0085) 2015; 2015 Garcia-Fuentes, Giger, Meinel, Merkle (b0160) 2008; 29 Pritchard, Normand, Hu, Budijono, Benczédi, Omenetto, Kaplan (b0150) 2014; 131 Kim, Chu (b0195) 2000; 49 Cha, Kim, Cao, Kong (b0210) 2010; 31 Tibbitt, Anseth (b0020) 2009; 103 Zhang, An, Pardo, Chiu, Song, Liu, Zhou, McDonough, Ma (b0215) 2017; 53 Collins, Birkinshaw (b0080) 2013; 92 Ifkovits, Burdick (b0105) 2007; 13 Hollister (b0190) 2005; 4 Wei, Xiao, Sun, Zhong, Guo, Fan, Zhang (b0130) 2015; 3 Jeon, Bouhadir, Mansour, Alsberg (b0220) 2009; 30 Wang, Kluge, Leisk, Kaplan (b0055) 2008; 29 Burdick, Chung, Jia, Randolph, Langer (b0100) 2005; 6 Chung, Burdick (b0120) 2009; 15 Gil, Frankowski, Bowman, Gozen, Hudson, Spontak (b0165) 2006; 7 Khademhosseini, Eng, Yeh, Fukuda, Blumling Iii, Langer, Burdick (b0245) 2006; 79A Burdick, Prestwich (b0090) 2011; 23 Gotoh (10.1016/j.eurpolymj.2019.05.040_b0235) 1998; 39 Rodell (10.1016/j.eurpolymj.2019.05.040_b0040) 2016; 28 Erickson (10.1016/j.eurpolymj.2019.05.040_b0115) 2009; 17 Weng (10.1016/j.eurpolymj.2019.05.040_b0145) 2008; 29 Wang (10.1016/j.eurpolymj.2019.05.040_b0050) 2015; 31 Yang (10.1016/j.eurpolymj.2019.05.040_b0125) 2015; 205 Annabi (10.1016/j.eurpolymj.2019.05.040_b0225) 2014; 26 Collins (10.1016/j.eurpolymj.2019.05.040_b0080) 2013; 92 Wei (10.1016/j.eurpolymj.2019.05.040_b0130) 2015; 3 Rockwood (10.1016/j.eurpolymj.2019.05.040_b0135) 2011; 6 Gong (10.1016/j.eurpolymj.2019.05.040_b0030) 2010; 6 Lee (10.1016/j.eurpolymj.2019.05.040_b0010) 2001; 101 Stella (10.1016/j.eurpolymj.2019.05.040_b0005) 2010; 6 Zhang (10.1016/j.eurpolymj.2019.05.040_b0215) 2017; 53 Samal (10.1016/j.eurpolymj.2019.05.040_b0155) 2013; 298 Su (10.1016/j.eurpolymj.2019.05.040_b0070) 2017; 9 Gil (10.1016/j.eurpolymj.2019.05.040_b0165) 2006; 7 Drury (10.1016/j.eurpolymj.2019.05.040_b0175) 2003; 24 Matsumoto (10.1016/j.eurpolymj.2019.05.040_b0075) 2006; 110 Ardila (10.1016/j.eurpolymj.2019.05.040_b0230) 2015; 37 Khademhosseini (10.1016/j.eurpolymj.2019.05.040_b0245) 2006; 79A Calvert (10.1016/j.eurpolymj.2019.05.040_b0200) 2009; 21 Khademhosseini (10.1016/j.eurpolymj.2019.05.040_b0110) 2007; 28 Jeon (10.1016/j.eurpolymj.2019.05.040_b0220) 2009; 30 Highley (10.1016/j.eurpolymj.2019.05.040_b0095) 2016; 40 Burdick (10.1016/j.eurpolymj.2019.05.040_b0100) 2005; 6 Rich (10.1016/j.eurpolymj.2019.05.040_b0180) 2015; 16 Xiao (10.1016/j.eurpolymj.2019.05.040_b0140) 2019; 99 Kim (10.1016/j.eurpolymj.2019.05.040_b0195) 2000; 49 Guziewicz (10.1016/j.eurpolymj.2019.05.040_b0060) 2011; 32 Nicodemus (10.1016/j.eurpolymj.2019.05.040_b0185) 2008; 14 Gong (10.1016/j.eurpolymj.2019.05.040_b0205) 2003; 15 Burdick (10.1016/j.eurpolymj.2019.05.040_b0090) 2011; 23 Borzacchiello (10.1016/j.eurpolymj.2019.05.040_b0085) 2015; 2015 Hwang (10.1016/j.eurpolymj.2019.05.040_b0170) 2010; 2 Kapoor (10.1016/j.eurpolymj.2019.05.040_b0045) 2016; 31 Chung (10.1016/j.eurpolymj.2019.05.040_b0120) 2009; 15 Cha (10.1016/j.eurpolymj.2019.05.040_b0210) 2010; 31 Ifkovits (10.1016/j.eurpolymj.2019.05.040_b0105) 2007; 13 Zhang (10.1016/j.eurpolymj.2019.05.040_b0015) 2017; 356 Pritchard (10.1016/j.eurpolymj.2019.05.040_b0150) 2014; 131 Tibbitt (10.1016/j.eurpolymj.2019.05.040_b0020) 2009; 103 Wang (10.1016/j.eurpolymj.2019.05.040_b0055) 2008; 29 Garcia-Fuentes (10.1016/j.eurpolymj.2019.05.040_b0160) 2008; 29 Park (10.1016/j.eurpolymj.2019.05.040_b0240) 2003; 24 Hollister (10.1016/j.eurpolymj.2019.05.040_b0190) 2005; 4 Hu (10.1016/j.eurpolymj.2019.05.040_b0065) 2010; 11 Shin (10.1016/j.eurpolymj.2019.05.040_b0035) 2012; 33 Seliktar (10.1016/j.eurpolymj.2019.05.040_b0025) 2012; 336 |
References_xml | – volume: 99 start-page: 57 year: 2019 end-page: 67 ident: b0140 article-title: Cell-laden interpenetrating network hydrogels formed from methacrylated gelatin and silk fibroin via a combination of sonication and photocrosslinking approaches publication-title: Mater. Sci. Eng. C – volume: 16 start-page: 2255 year: 2015 end-page: 2264 ident: b0180 article-title: Water-hydrogel binding affinity modulates freeze-drying-induced micropore architecture and skeletal myotube formation publication-title: Biomacromolecules – volume: 31 start-page: 630 year: 2015 end-page: 640 ident: b0050 article-title: Processing silk hydrogel and its applications in biomedical materials publication-title: Biotechnol. Progr. – volume: 32 start-page: 2642 year: 2011 end-page: 2650 ident: b0060 article-title: Lyophilized silk fibroin hydrogels for the sustained local delivery of therapeutic monoclonal antibodies publication-title: Biomaterials – volume: 17 start-page: 1639 year: 2009 end-page: 1648 ident: b0115 article-title: Macromer density influences mesenchymal stem cell chondrogenesis and maturation in photocrosslinked hyaluronic acid hydrogels publication-title: Osteoarthritis Cartilage – volume: 30 start-page: 2724 year: 2009 end-page: 2734 ident: b0220 article-title: Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties publication-title: Biomaterials – volume: 40 start-page: 35 year: 2016 end-page: 40 ident: b0095 article-title: Recent advances in hyaluronic acid hydrogels for biomedical applications publication-title: Curr. Opin. Biotechnol. – volume: 101 start-page: 1869 year: 2001 end-page: 1880 ident: b0010 article-title: Hydrogels for tissue engineering publication-title: Chem. Rev. – volume: 14 start-page: 149 year: 2008 end-page: 165 ident: b0185 article-title: Cell encapsulation in biodegradable hydrogels for tissue engineering applications publication-title: Tissue Eng. B Rev. – volume: 23 start-page: H41 year: 2011 end-page: H56 ident: b0090 article-title: Hyaluronic acid hydrogels for biomedical applications publication-title: Adv. Mater. – volume: 2015 start-page: 12 year: 2015 ident: b0085 article-title: Hyaluronic acid based hydrogels for regenerative medicine applications publication-title: Biomed. Res. Int. – volume: 9 start-page: 17489 year: 2017 end-page: 17498 ident: b0070 article-title: Enhancing mechanical properties of silk fibroin hydrogel through restricting the growth of β-sheet domains publication-title: ACS Appl. Mater. Interf. – volume: 24 start-page: 4337 year: 2003 end-page: 4351 ident: b0175 article-title: Hydrogels for tissue engineering: scaffold design variables and applications publication-title: Biomaterials – volume: 6 start-page: 1612 year: 2011 ident: b0135 article-title: Materials fabrication from Bombyx mori silk fibroin publication-title: Nat. Protoc. – volume: 6 start-page: 2365 year: 2010 end-page: 2381 ident: b0005 article-title: On the biomechanical function of scaffolds for engineering load-bearing soft tissues publication-title: Acta Biomater. – volume: 3 start-page: 2753 year: 2015 end-page: 2763 ident: b0130 article-title: A biocompatible hydrogel with improved stiffness and hydrophilicity for modular tissue engineering assembly publication-title: J. Mater. Chem. B – volume: 15 start-page: 243 year: 2009 end-page: 254 ident: b0120 article-title: Influence of three-dimensional hyaluronic acid microenvironments on mesenchymal stem cell chondrogenesis publication-title: Tissue Eng. Part A – volume: 33 start-page: 3143 year: 2012 end-page: 3152 ident: b0035 article-title: The mechanical properties and cytotoxicity of cell-laden double-network hydrogels based on photocrosslinkable gelatin and gellan gum biomacromolecules publication-title: Biomaterials – volume: 11 start-page: 3178 year: 2010 end-page: 3188 ident: b0065 article-title: Biomaterials from ultrasonication-induced silk fibroin−hyaluronic acid hydrogels publication-title: Biomacromolecules – volume: 336 start-page: 1124 year: 2012 end-page: 1128 ident: b0025 article-title: Designing cell-compatible hydrogels for biomedical applications publication-title: Science – volume: 53 start-page: 100 year: 2017 end-page: 108 ident: b0215 article-title: High-water-content and resilient PEG-containing hydrogels with low fibrotic response publication-title: Acta Biomater. – volume: 29 start-page: 2153 year: 2008 end-page: 2163 ident: b0145 article-title: Mechanically strong double network photocrosslinked hydrogels from N, N-dimethylacrylamide and glycidyl methacrylated hyaluronan publication-title: Biomaterials – volume: 103 start-page: 655 year: 2009 end-page: 663 ident: b0020 article-title: Hydrogels as extracellular matrix mimics for 3D cell culture publication-title: Biotechnol. Bioeng. – volume: 110 start-page: 21630 year: 2006 end-page: 21638 ident: b0075 article-title: Mechanisms of silk fibroin sol−gel transitions publication-title: J. Phys. Chem. B. – volume: 21 start-page: 743 year: 2009 end-page: 756 ident: b0200 article-title: Hydrogels for soft machines publication-title: Adv. Mater. – volume: 6 start-page: 2583 year: 2010 end-page: 2590 ident: b0030 article-title: Why are double network hydrogels so tough? publication-title: Soft Matter. – volume: 37 start-page: 164 year: 2015 end-page: 173 ident: b0230 article-title: TGFβ2 differentially modulates smooth muscle cell proliferation and migration in electrospun gelatin-fibrinogen constructs publication-title: Biomaterials – volume: 31 start-page: 17 year: 2016 end-page: 32 ident: b0045 article-title: Silk protein-based hydrogels: Promising advanced materials for biomedical applications publication-title: Acta Biomater. – volume: 356 year: 2017 ident: b0015 article-title: Advances in engineering hydrogels publication-title: Science – volume: 6 start-page: 386 year: 2005 end-page: 391 ident: b0100 article-title: Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks publication-title: Biomacromolecules – volume: 26 start-page: 85 year: 2014 end-page: 124 ident: b0225 article-title: 25th anniversary article: rational design and applications of hydrogels in regenerative medicine publication-title: Adv. Mater. – volume: 2 year: 2010 ident: b0170 article-title: Fabrication of three-dimensional porous cell-laden hydrogel for tissue engineering publication-title: Biofabrication – volume: 24 start-page: 893 year: 2003 end-page: 900 ident: b0240 article-title: Photopolymerized hyaluronic acid-based hydrogels and interpenetrating networks publication-title: Biomaterials – volume: 31 start-page: 4864 year: 2010 end-page: 4871 ident: b0210 article-title: Decoupled control of stiffness and permeability with a cell-encapsulating poly(ethylene glycol) dimethacrylate hydrogel publication-title: Biomaterials – volume: 29 start-page: 1054 year: 2008 end-page: 1064 ident: b0055 article-title: Sonication-induced gelation of silk fibroin for cell encapsulation publication-title: Biomaterials – volume: 92 start-page: 1262 year: 2013 end-page: 1279 ident: b0080 article-title: Hyaluronic acid based scaffolds for tissue engineering–A review publication-title: Carbohydr. Polym. – volume: 13 start-page: 2369 year: 2007 end-page: 2385 ident: b0105 article-title: Review: photopolymerizable and degradable biomaterials for tissue engineering applications publication-title: Tissue Eng. – volume: 39 start-page: 351 year: 1998 end-page: 357 ident: b0235 article-title: Effect of the chemical modification of the arginyl residue in Bombyx mori silk fibroin on the attachment and growth of fibroblast cells publication-title: J. Biomed. Mater. Res. – volume: 131 year: 2014 ident: b0150 article-title: Encapsulation of oil in silk fibroin biomaterials publication-title: J. Appl. Polym. Sci. – volume: 7 start-page: 728 year: 2006 end-page: 735 ident: b0165 article-title: Mixed protein blends composed of gelatin and bombyx mori silk fibroin: effects of solvent-induced crystallization and composition publication-title: Biomacromolecules. – volume: 79A start-page: 522 year: 2006 end-page: 532 ident: b0245 article-title: Micromolding of photocrosslinkable hyaluronic acid for cell encapsulation and entrapment publication-title: J. Biomed. Mater. Res. A – volume: 28 start-page: 5087 year: 2007 end-page: 5092 ident: b0110 article-title: Microengineered hydrogels for tissue engineering publication-title: Biomaterials – volume: 49 start-page: 517 year: 2000 end-page: 527 ident: b0195 article-title: Synthesis and characterization of dextran–methacrylate hydrogels and structural study by SEM publication-title: J. Biomed. Mater. Res. A – volume: 15 start-page: 1155 year: 2003 end-page: 1158 ident: b0205 article-title: Double-network hydrogels with extremely high mechanical strength publication-title: Adv. Mater. – volume: 205 start-page: 206 year: 2015 end-page: 217 ident: b0125 article-title: Hyaluronic acid nanogels with enzyme-sensitive cross-linking group for drug delivery publication-title: J. Controlled Release. – volume: 28 start-page: 8419 year: 2016 end-page: 8424 ident: b0040 article-title: Injectable and cytocompatible tough double-network hydrogels through tandem supramolecular and covalent crosslinking publication-title: Adv. Mater. – volume: 298 start-page: 1201 year: 2013 end-page: 1208 ident: b0155 article-title: Ultrasound sonication effects on silk fibroin protein publication-title: Macromol. Mater. Eng. – volume: 29 start-page: 633 year: 2008 end-page: 642 ident: b0160 article-title: The effect of hyaluronic acid on silk fibroin conformation publication-title: Biomaterials – volume: 4 start-page: 518 year: 2005 end-page: 524 ident: b0190 article-title: Porous scaffold design for tissue engineering publication-title: Nat. Mater. – volume: 30 start-page: 2724 issue: 14 year: 2009 ident: 10.1016/j.eurpolymj.2019.05.040_b0220 article-title: Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.01.034 – volume: 29 start-page: 1054 issue: 8 year: 2008 ident: 10.1016/j.eurpolymj.2019.05.040_b0055 article-title: Sonication-induced gelation of silk fibroin for cell encapsulation publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.11.003 – volume: 28 start-page: 5087 issue: 34 year: 2007 ident: 10.1016/j.eurpolymj.2019.05.040_b0110 article-title: Microengineered hydrogels for tissue engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.07.021 – volume: 15 start-page: 1155 issue: 14 year: 2003 ident: 10.1016/j.eurpolymj.2019.05.040_b0205 article-title: Double-network hydrogels with extremely high mechanical strength publication-title: Adv. Mater. doi: 10.1002/adma.200304907 – volume: 101 start-page: 1869 issue: 7 year: 2001 ident: 10.1016/j.eurpolymj.2019.05.040_b0010 article-title: Hydrogels for tissue engineering publication-title: Chem. Rev. doi: 10.1021/cr000108x – volume: 6 start-page: 386 issue: 1 year: 2005 ident: 10.1016/j.eurpolymj.2019.05.040_b0100 article-title: Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks publication-title: Biomacromolecules doi: 10.1021/bm049508a – volume: 356 issue: 6337 year: 2017 ident: 10.1016/j.eurpolymj.2019.05.040_b0015 article-title: Advances in engineering hydrogels publication-title: Science doi: 10.1126/science.aaf3627 – volume: 29 start-page: 2153 issue: 14 year: 2008 ident: 10.1016/j.eurpolymj.2019.05.040_b0145 article-title: Mechanically strong double network photocrosslinked hydrogels from N, N-dimethylacrylamide and glycidyl methacrylated hyaluronan publication-title: Biomaterials doi: 10.1016/j.biomaterials.2008.01.012 – volume: 21 start-page: 743 issue: 7 year: 2009 ident: 10.1016/j.eurpolymj.2019.05.040_b0200 article-title: Hydrogels for soft machines publication-title: Adv. Mater. doi: 10.1002/adma.200800534 – volume: 29 start-page: 633 issue: 6 year: 2008 ident: 10.1016/j.eurpolymj.2019.05.040_b0160 article-title: The effect of hyaluronic acid on silk fibroin conformation publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.10.024 – volume: 23 start-page: H41 issue: 12 year: 2011 ident: 10.1016/j.eurpolymj.2019.05.040_b0090 article-title: Hyaluronic acid hydrogels for biomedical applications publication-title: Adv. Mater. doi: 10.1002/adma.201003963 – volume: 16 start-page: 2255 issue: 8 year: 2015 ident: 10.1016/j.eurpolymj.2019.05.040_b0180 article-title: Water-hydrogel binding affinity modulates freeze-drying-induced micropore architecture and skeletal myotube formation publication-title: Biomacromolecules doi: 10.1021/acs.biomac.5b00652 – volume: 6 start-page: 1612 year: 2011 ident: 10.1016/j.eurpolymj.2019.05.040_b0135 article-title: Materials fabrication from Bombyx mori silk fibroin publication-title: Nat. Protoc. doi: 10.1038/nprot.2011.379 – volume: 110 start-page: 21630 issue: 43 year: 2006 ident: 10.1016/j.eurpolymj.2019.05.040_b0075 article-title: Mechanisms of silk fibroin sol−gel transitions publication-title: J. Phys. Chem. B. doi: 10.1021/jp056350v – volume: 11 start-page: 3178 issue: 11 year: 2010 ident: 10.1016/j.eurpolymj.2019.05.040_b0065 article-title: Biomaterials from ultrasonication-induced silk fibroin−hyaluronic acid hydrogels publication-title: Biomacromolecules doi: 10.1021/bm1010504 – volume: 15 start-page: 243 issue: 2 year: 2009 ident: 10.1016/j.eurpolymj.2019.05.040_b0120 article-title: Influence of three-dimensional hyaluronic acid microenvironments on mesenchymal stem cell chondrogenesis publication-title: Tissue Eng. Part A doi: 10.1089/ten.tea.2008.0067 – volume: 24 start-page: 893 issue: 6 year: 2003 ident: 10.1016/j.eurpolymj.2019.05.040_b0240 article-title: Photopolymerized hyaluronic acid-based hydrogels and interpenetrating networks publication-title: Biomaterials doi: 10.1016/S0142-9612(02)00420-9 – volume: 131 issue: 6 year: 2014 ident: 10.1016/j.eurpolymj.2019.05.040_b0150 article-title: Encapsulation of oil in silk fibroin biomaterials publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.39990 – volume: 298 start-page: 1201 issue: 11 year: 2013 ident: 10.1016/j.eurpolymj.2019.05.040_b0155 article-title: Ultrasound sonication effects on silk fibroin protein publication-title: Macromol. Mater. Eng. doi: 10.1002/mame.201200377 – volume: 6 start-page: 2365 issue: 7 year: 2010 ident: 10.1016/j.eurpolymj.2019.05.040_b0005 article-title: On the biomechanical function of scaffolds for engineering load-bearing soft tissues publication-title: Acta Biomater. doi: 10.1016/j.actbio.2010.01.001 – volume: 17 start-page: 1639 issue: 12 year: 2009 ident: 10.1016/j.eurpolymj.2019.05.040_b0115 article-title: Macromer density influences mesenchymal stem cell chondrogenesis and maturation in photocrosslinked hyaluronic acid hydrogels publication-title: Osteoarthritis Cartilage doi: 10.1016/j.joca.2009.07.003 – volume: 53 start-page: 100 year: 2017 ident: 10.1016/j.eurpolymj.2019.05.040_b0215 article-title: High-water-content and resilient PEG-containing hydrogels with low fibrotic response publication-title: Acta Biomater. doi: 10.1016/j.actbio.2017.02.028 – volume: 2015 start-page: 12 year: 2015 ident: 10.1016/j.eurpolymj.2019.05.040_b0085 article-title: Hyaluronic acid based hydrogels for regenerative medicine applications publication-title: Biomed. Res. Int. doi: 10.1155/2015/871218 – volume: 336 start-page: 1124 issue: 6085 year: 2012 ident: 10.1016/j.eurpolymj.2019.05.040_b0025 article-title: Designing cell-compatible hydrogels for biomedical applications publication-title: Science doi: 10.1126/science.1214804 – volume: 103 start-page: 655 issue: 4 year: 2009 ident: 10.1016/j.eurpolymj.2019.05.040_b0020 article-title: Hydrogels as extracellular matrix mimics for 3D cell culture publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.22361 – volume: 40 start-page: 35 year: 2016 ident: 10.1016/j.eurpolymj.2019.05.040_b0095 article-title: Recent advances in hyaluronic acid hydrogels for biomedical applications publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2016.02.008 – volume: 28 start-page: 8419 issue: 38 year: 2016 ident: 10.1016/j.eurpolymj.2019.05.040_b0040 article-title: Injectable and cytocompatible tough double-network hydrogels through tandem supramolecular and covalent crosslinking publication-title: Adv. Mater. doi: 10.1002/adma.201602268 – volume: 33 start-page: 3143 issue: 11 year: 2012 ident: 10.1016/j.eurpolymj.2019.05.040_b0035 article-title: The mechanical properties and cytotoxicity of cell-laden double-network hydrogels based on photocrosslinkable gelatin and gellan gum biomacromolecules publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.12.050 – volume: 26 start-page: 85 issue: 1 year: 2014 ident: 10.1016/j.eurpolymj.2019.05.040_b0225 article-title: 25th anniversary article: rational design and applications of hydrogels in regenerative medicine publication-title: Adv. Mater. doi: 10.1002/adma.201303233 – volume: 14 start-page: 149 issue: 2 year: 2008 ident: 10.1016/j.eurpolymj.2019.05.040_b0185 article-title: Cell encapsulation in biodegradable hydrogels for tissue engineering applications publication-title: Tissue Eng. B Rev. doi: 10.1089/ten.teb.2007.0332 – volume: 9 start-page: 17489 issue: 20 year: 2017 ident: 10.1016/j.eurpolymj.2019.05.040_b0070 article-title: Enhancing mechanical properties of silk fibroin hydrogel through restricting the growth of β-sheet domains publication-title: ACS Appl. Mater. Interf. doi: 10.1021/acsami.7b04623 – volume: 7 start-page: 728 issue: 3 year: 2006 ident: 10.1016/j.eurpolymj.2019.05.040_b0165 article-title: Mixed protein blends composed of gelatin and bombyx mori silk fibroin: effects of solvent-induced crystallization and composition publication-title: Biomacromolecules. doi: 10.1021/bm050622i – volume: 79A start-page: 522 issue: 3 year: 2006 ident: 10.1016/j.eurpolymj.2019.05.040_b0245 article-title: Micromolding of photocrosslinkable hyaluronic acid for cell encapsulation and entrapment publication-title: J. Biomed. Mater. Res. A doi: 10.1002/jbm.a.30821 – volume: 32 start-page: 2642 issue: 10 year: 2011 ident: 10.1016/j.eurpolymj.2019.05.040_b0060 article-title: Lyophilized silk fibroin hydrogels for the sustained local delivery of therapeutic monoclonal antibodies publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.12.023 – volume: 31 start-page: 630 issue: 3 year: 2015 ident: 10.1016/j.eurpolymj.2019.05.040_b0050 article-title: Processing silk hydrogel and its applications in biomedical materials publication-title: Biotechnol. Progr. doi: 10.1002/btpr.2058 – volume: 13 start-page: 2369 issue: 10 year: 2007 ident: 10.1016/j.eurpolymj.2019.05.040_b0105 article-title: Review: photopolymerizable and degradable biomaterials for tissue engineering applications publication-title: Tissue Eng. doi: 10.1089/ten.2007.0093 – volume: 99 start-page: 57 year: 2019 ident: 10.1016/j.eurpolymj.2019.05.040_b0140 article-title: Cell-laden interpenetrating network hydrogels formed from methacrylated gelatin and silk fibroin via a combination of sonication and photocrosslinking approaches publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2019.01.079 – volume: 6 start-page: 2583 issue: 12 year: 2010 ident: 10.1016/j.eurpolymj.2019.05.040_b0030 article-title: Why are double network hydrogels so tough? publication-title: Soft Matter. doi: 10.1039/b924290b – volume: 92 start-page: 1262 issue: 2 year: 2013 ident: 10.1016/j.eurpolymj.2019.05.040_b0080 article-title: Hyaluronic acid based scaffolds for tissue engineering–A review publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2012.10.028 – volume: 24 start-page: 4337 issue: 24 year: 2003 ident: 10.1016/j.eurpolymj.2019.05.040_b0175 article-title: Hydrogels for tissue engineering: scaffold design variables and applications publication-title: Biomaterials doi: 10.1016/S0142-9612(03)00340-5 – volume: 3 start-page: 2753 issue: 14 year: 2015 ident: 10.1016/j.eurpolymj.2019.05.040_b0130 article-title: A biocompatible hydrogel with improved stiffness and hydrophilicity for modular tissue engineering assembly publication-title: J. Mater. Chem. B doi: 10.1039/C5TB00129C – volume: 31 start-page: 17 year: 2016 ident: 10.1016/j.eurpolymj.2019.05.040_b0045 article-title: Silk protein-based hydrogels: Promising advanced materials for biomedical applications publication-title: Acta Biomater. doi: 10.1016/j.actbio.2015.11.034 – volume: 37 start-page: 164 year: 2015 ident: 10.1016/j.eurpolymj.2019.05.040_b0230 article-title: TGFβ2 differentially modulates smooth muscle cell proliferation and migration in electrospun gelatin-fibrinogen constructs publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.10.021 – volume: 31 start-page: 4864 issue: 18 year: 2010 ident: 10.1016/j.eurpolymj.2019.05.040_b0210 article-title: Decoupled control of stiffness and permeability with a cell-encapsulating poly(ethylene glycol) dimethacrylate hydrogel publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.02.059 – volume: 2 issue: 3 year: 2010 ident: 10.1016/j.eurpolymj.2019.05.040_b0170 article-title: Fabrication of three-dimensional porous cell-laden hydrogel for tissue engineering publication-title: Biofabrication doi: 10.1088/1758-5082/2/3/035003 – volume: 39 start-page: 351 year: 1998 ident: 10.1016/j.eurpolymj.2019.05.040_b0235 article-title: Effect of the chemical modification of the arginyl residue in Bombyx mori silk fibroin on the attachment and growth of fibroblast cells publication-title: J. Biomed. Mater. Res. doi: 10.1002/(SICI)1097-4636(19980305)39:3<351::AID-JBM2>3.0.CO;2-I – volume: 205 start-page: 206 year: 2015 ident: 10.1016/j.eurpolymj.2019.05.040_b0125 article-title: Hyaluronic acid nanogels with enzyme-sensitive cross-linking group for drug delivery publication-title: J. Controlled Release. doi: 10.1016/j.jconrel.2015.02.008 – volume: 4 start-page: 518 issue: 7 year: 2005 ident: 10.1016/j.eurpolymj.2019.05.040_b0190 article-title: Porous scaffold design for tissue engineering publication-title: Nat. Mater. doi: 10.1038/nmat1421 – volume: 49 start-page: 517 issue: 4 year: 2000 ident: 10.1016/j.eurpolymj.2019.05.040_b0195 article-title: Synthesis and characterization of dextran–methacrylate hydrogels and structural study by SEM publication-title: J. Biomed. Mater. Res. A doi: 10.1002/(SICI)1097-4636(20000315)49:4<517::AID-JBM10>3.0.CO;2-8 |
SSID | ssj0007363 |
Score | 2.4028523 |
Snippet | [Display omitted]
•A biocompatible approach for synthesis the cell-laden double network hydrogel was presented.•The hydrogel exhibited properties which are... Repair or regeneration of load-bearing soft tissue is one of the great challenges in tissue engineering and regenerative medicine. The main obstacle is... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 382 |
SubjectTerms | Biocompatibility Biomechanics Biomedical materials Chemical synthesis Double-network hydrogel Encapsulation Fluorescence Hyaluronic acid Hydrogels Moisture content Photopolymerization Regeneration (physiology) Silk fibroin Soft tissues Staining Tissue engineering Viability |
Title | Synthesis and characterization of cell-laden double-network hydrogels based on silk fibroin and methacrylated hyaluronic acid |
URI | https://dx.doi.org/10.1016/j.eurpolymj.2019.05.040 https://www.proquest.com/docview/2298544365 |
Volume | 118 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQPcAFlQKCFlY-cA0kTvxIb2jFalskLi0SN8uvQCAkaB-HPbS_nZk8tgIhcWgOkRJlIsfjzIztb74h5NTL3Mlc2MjFcMp8GiIbChExw6VzPHFwINriWkxvsp-3_HaDjIdcGIRV9ra_s-mtte7vnPe9ef5clpjjmyBflYQQBPwkw4RfZK-DMX329x_MQ6Z9NbUEdwC4fIXxCvAxTbV6ekCMV95SeOIqyPse6o2tbh3Q5DPZ6SNHetE1bpdshPoL2RoPBdv2yJ9fqxrCuXk5p6b21K2pmLtMS9oUFJfpo8qAraG-WdoqRHUHA6f3Kz9r7qAZFP2ap_D8vKweaQHT6aas2zditWnjZqsK4lMPEqZatsy61LjS75ObyeXv8TTqqytELlXxImLSglZgRiIgwitk5uPEyMTzPPE-EZggm6VZYAHiQ5-mLhW4X89CBgZRCZiGpAdks27qcEgoU8Ywm8dBGpU5K5RQVlnLVeEKDkHBERFDj2rXU49jBYxKDxizB71WhUZV6JhrUMURideCzx37xsci3weV6VcDSYOP-Fj4eFCy7v_luWYsV8gSKPjX_3n3N7KNVx0-7ZhsLmbLcAIBzcKO2hE7Ip8uflxNr18A6nr6Ew |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7R5UAviL5UKG196DUiceJHuKEVaCl0LwWJm-VX2tA0Qfs47IH_3nHirERViUNzyCHJRI7Hmflsz3wD8MWJ0oqSm8SmeCpc7hPjK55QzYS1LLN4hGiLOZ_dFl_v2N0OTMdcmBBWGW3_YNN7ax2vnMTePHmo65DjmwW-KoEQBP0klS9gN7BTFRPYPbu8ms23BlnksaBaFjYBmHgS5uXxe7pm8_s-hHmVPYtnWAj5t5P6y1z3PujiAPYjeCRnQ_tewY5vX8PedKzZ9gYev29aRHTLekl064jdsjEPyZakq0hYqU8ajeaGuG5tGp-0QyQ4-blxi-4HNoME1-YIPr-sm1-kwhl1V7f9G0PBaW0XmwYhqkMJ3ax7cl2ibe3ewu3F-c10lsQCC4nNZbpKqDCoGJyUcAR5lShcmmmROVZmzmU85MgWeeGpR4jo8tzmPGzZU1-gTZQcZyL5O5i0XevfA6FSa2rK1AstC2u45NJIY5isbMUQFxwCH3tU2cg-HopgNGoMM7tXW1WooAqVMoWqOIR0K_gwEHA8L3I6qkw9GUsK3cTzwsejklX8nZeK0lIGokDOjv7n3Z9hb3bz7VpdX86vPsDLcGcIVzuGyWqx9h8R36zMpzh-_wBw6_zE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+and+characterization+of+cell-laden+double-network+hydrogels+based+on+silk+fibroin+and+methacrylated+hyaluronic+acid&rft.jtitle=European+polymer+journal&rft.au=Xiao%2C+Wenqian&rft.au=Qu%2C+Xiaohang&rft.au=Li%2C+Jiale&rft.au=Chen%2C+Lin&rft.date=2019-09-01&rft.pub=Elsevier+Ltd&rft.issn=0014-3057&rft.eissn=1873-1945&rft.volume=118&rft.spage=382&rft.epage=392&rft_id=info:doi/10.1016%2Fj.eurpolymj.2019.05.040&rft.externalDocID=S0014305719307128 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-3057&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-3057&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-3057&client=summon |