Synthesis and characterization of cell-laden double-network hydrogels based on silk fibroin and methacrylated hyaluronic acid

[Display omitted] •A biocompatible approach for synthesis the cell-laden double network hydrogel was presented.•The hydrogel exhibited properties which are suitable for load-bearing soft tissues engineering.•The hydrogel could support the proliferation and spreading of the 3D cultured cell. Repair o...

Full description

Saved in:
Bibliographic Details
Published inEuropean polymer journal Vol. 118; pp. 382 - 392
Main Authors Xiao, Wenqian, Qu, Xiaohang, Li, Jiale, Chen, Lin, Tan, Yunfei, Li, Kejiang, Li, Bo, Liao, Xiaoling
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.09.2019
Elsevier BV
Subjects
Online AccessGet full text
ISSN0014-3057
1873-1945
DOI10.1016/j.eurpolymj.2019.05.040

Cover

Loading…
Abstract [Display omitted] •A biocompatible approach for synthesis the cell-laden double network hydrogel was presented.•The hydrogel exhibited properties which are suitable for load-bearing soft tissues engineering.•The hydrogel could support the proliferation and spreading of the 3D cultured cell. Repair or regeneration of load-bearing soft tissue is one of the great challenges in tissue engineering and regenerative medicine. The main obstacle is mismatch between the properties of most synthetic biomaterials and the target tissue, such as the biomechanical performance. Currently, development of novel hydrogels with high mechanical strength and biocompatibility is the main goal of load-bearing soft tissue engineering. In the paper, a double-network hydrogel strategy involving silk fibroin and methacrylated hyaluronic acid was utilized to synthesize hydrogels through a combination of sonication and photopolymerization. Furthermore, due to the biocompatibility of the entire fabrication process, preosteoblast cells could be encapsulated within the hydrogel with high viability. The hydrogel characterization results demonstrated that the SF-HAMA hydrogels have many excellent properties, such as high mechanical strength, high water content, a slow degradation rate and biocompatibility. Two-dimensional cell experiments confirmed that the preosteoblasts could quickly attach and subsequently proliferate on the hydrogels, shown by cellular fluorescence staining. In addition, the studies of preosteoblast encapsulation and the following fluorescent staining demonstrated that the DN hydrogel could support proliferation and spreading of encapsulated cells, which suggests promising application of the hydrogel in the soft tissue engineering field.
AbstractList Repair or regeneration of load-bearing soft tissue is one of the great challenges in tissue engineering and regenerative medicine. The main obstacle is mismatch between the properties of most synthetic biomaterials and the target tissue, such as the biomechanical performance. Currently, development of novel hydrogels with high mechanical strength and biocompatibility is the main goal of load-bearing soft tissue engineering. In the paper, a double-network hydrogel strategy involving silk fibroin and methacrylated hyaluronic acid was utilized to synthesize hydrogels through a combination of sonication and photopolymerization. Furthermore, due to the biocompatibility of the entire fabrication process, preosteoblast cells could be encapsulated within the hydrogel with high viability. The hydrogel characterization results demonstrated that the SF-HAMA hydrogels have many excellent properties, such as high mechanical strength, high water content, a slow degradation rate and biocompatibility. Two-dimensional cell experiments confirmed that the preosteoblasts could quickly attach and subsequently proliferate on the hydrogels, shown by cellular fluorescence staining. In addition, the studies of preosteoblast encapsulation and the following fluorescent staining demonstrated that the DN hydrogel could support proliferation and spreading of encapsulated cells, which suggests promising application of the hydrogel in the soft tissue engineering field.
[Display omitted] •A biocompatible approach for synthesis the cell-laden double network hydrogel was presented.•The hydrogel exhibited properties which are suitable for load-bearing soft tissues engineering.•The hydrogel could support the proliferation and spreading of the 3D cultured cell. Repair or regeneration of load-bearing soft tissue is one of the great challenges in tissue engineering and regenerative medicine. The main obstacle is mismatch between the properties of most synthetic biomaterials and the target tissue, such as the biomechanical performance. Currently, development of novel hydrogels with high mechanical strength and biocompatibility is the main goal of load-bearing soft tissue engineering. In the paper, a double-network hydrogel strategy involving silk fibroin and methacrylated hyaluronic acid was utilized to synthesize hydrogels through a combination of sonication and photopolymerization. Furthermore, due to the biocompatibility of the entire fabrication process, preosteoblast cells could be encapsulated within the hydrogel with high viability. The hydrogel characterization results demonstrated that the SF-HAMA hydrogels have many excellent properties, such as high mechanical strength, high water content, a slow degradation rate and biocompatibility. Two-dimensional cell experiments confirmed that the preosteoblasts could quickly attach and subsequently proliferate on the hydrogels, shown by cellular fluorescence staining. In addition, the studies of preosteoblast encapsulation and the following fluorescent staining demonstrated that the DN hydrogel could support proliferation and spreading of encapsulated cells, which suggests promising application of the hydrogel in the soft tissue engineering field.
Author Li, Kejiang
Li, Bo
Liao, Xiaoling
Chen, Lin
Li, Jiale
Xiao, Wenqian
Qu, Xiaohang
Tan, Yunfei
Author_xml – sequence: 1
  givenname: Wenqian
  surname: Xiao
  fullname: Xiao, Wenqian
  organization: Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
– sequence: 2
  givenname: Xiaohang
  surname: Qu
  fullname: Qu, Xiaohang
  organization: Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
– sequence: 3
  givenname: Jiale
  surname: Li
  fullname: Li, Jiale
  organization: Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
– sequence: 4
  givenname: Lin
  surname: Chen
  fullname: Chen, Lin
  organization: Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
– sequence: 5
  givenname: Yunfei
  surname: Tan
  fullname: Tan, Yunfei
  organization: Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
– sequence: 6
  givenname: Kejiang
  surname: Li
  fullname: Li, Kejiang
  organization: Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
– sequence: 7
  givenname: Bo
  surname: Li
  fullname: Li, Bo
  email: Libo@cqust.edu.cn
  organization: Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
– sequence: 8
  givenname: Xiaoling
  surname: Liao
  fullname: Liao, Xiaoling
  email: zxc_228@163.com
  organization: Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
BookMark eNqNkE-L1TAUR4OM4JvRz2DAdWvSpE27cDEM_oMBF-o6pMmtTScved6kSgW_u5154sKNrrK45_wC55JcxBSBkOec1Zzx7uVSw4qnFLbjUjeMDzVraybZI3LgvRIVH2R7QQ6McVkJ1qon5DLnhTGmRCcO5OfHLZYZss_UREftbNDYAuh_mOJTpGmiFkKognEQqUvrGKCKUL4nvKPz5jB9gZDpaDI4uvPZhzs6-RGTjw-LRyizsbgFU3Zi3kxYMUVvqbHePSWPJxMyPPv9XpHPb15_unlX3X54-_7m-rayomelatQ4wtRw1QnOJiUd40Zx1w7cOd41qh-kkNCA2k9CWNEprkQD0jjXd-2gxBV5cd49Yfq6Qi56SSvG_UvdNEPfSim6dqfUmbKYckaY9An90eCmOdP3rfWi_7TW9601a_Xeejdf_WVaXx4CFjQ-_Id_ffb3lvDNA-psPUQLziPYol3y_9z4BcaApVw
CitedBy_id crossref_primary_10_1039_D0TB02099K
crossref_primary_10_3390_ma13122750
crossref_primary_10_1007_s10965_021_02765_x
crossref_primary_10_1016_j_ijbiomac_2022_07_009
crossref_primary_10_3390_ijms251910523
crossref_primary_10_1007_s42242_022_00208_0
crossref_primary_10_1016_j_exer_2022_109027
crossref_primary_10_1002_SMMD_20220011
crossref_primary_10_1021_acs_chemrev_0c00923
crossref_primary_10_1039_D3TB02363J
crossref_primary_10_1039_D2MA00568A
crossref_primary_10_1016_j_procbio_2022_12_012
crossref_primary_10_1016_j_tibtech_2020_08_007
crossref_primary_10_1002_app_54312
crossref_primary_10_1016_j_mtchem_2022_101222
crossref_primary_10_1021_acs_chemmater_2c02791
crossref_primary_10_1002_jsfa_12736
crossref_primary_10_1016_j_eurpolymj_2021_110411
crossref_primary_10_1007_s10856_020_06466_7
crossref_primary_10_3390_gels7040255
crossref_primary_10_1016_j_bbrc_2023_01_097
crossref_primary_10_1016_j_ijbiomac_2024_130380
crossref_primary_10_3389_fbioe_2023_1329183
crossref_primary_10_3390_polym15030504
crossref_primary_10_1039_D3MH01581E
Cites_doi 10.1016/j.biomaterials.2009.01.034
10.1016/j.biomaterials.2007.11.003
10.1016/j.biomaterials.2007.07.021
10.1002/adma.200304907
10.1021/cr000108x
10.1021/bm049508a
10.1126/science.aaf3627
10.1016/j.biomaterials.2008.01.012
10.1002/adma.200800534
10.1016/j.biomaterials.2007.10.024
10.1002/adma.201003963
10.1021/acs.biomac.5b00652
10.1038/nprot.2011.379
10.1021/jp056350v
10.1021/bm1010504
10.1089/ten.tea.2008.0067
10.1016/S0142-9612(02)00420-9
10.1002/app.39990
10.1002/mame.201200377
10.1016/j.actbio.2010.01.001
10.1016/j.joca.2009.07.003
10.1016/j.actbio.2017.02.028
10.1155/2015/871218
10.1126/science.1214804
10.1002/bit.22361
10.1016/j.copbio.2016.02.008
10.1002/adma.201602268
10.1016/j.biomaterials.2011.12.050
10.1002/adma.201303233
10.1089/ten.teb.2007.0332
10.1021/acsami.7b04623
10.1021/bm050622i
10.1002/jbm.a.30821
10.1016/j.biomaterials.2010.12.023
10.1002/btpr.2058
10.1089/ten.2007.0093
10.1016/j.msec.2019.01.079
10.1039/b924290b
10.1016/j.carbpol.2012.10.028
10.1016/S0142-9612(03)00340-5
10.1039/C5TB00129C
10.1016/j.actbio.2015.11.034
10.1016/j.biomaterials.2014.10.021
10.1016/j.biomaterials.2010.02.059
10.1088/1758-5082/2/3/035003
10.1002/(SICI)1097-4636(19980305)39:3<351::AID-JBM2>3.0.CO;2-I
10.1016/j.jconrel.2015.02.008
10.1038/nmat1421
10.1002/(SICI)1097-4636(20000315)49:4<517::AID-JBM10>3.0.CO;2-8
ContentType Journal Article
Copyright 2019
Copyright Elsevier BV Sep 2019
Copyright_xml – notice: 2019
– notice: Copyright Elsevier BV Sep 2019
DBID AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1016/j.eurpolymj.2019.05.040
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-1945
EndPage 392
ExternalDocumentID 10_1016_j_eurpolymj_2019_05_040
S0014305719307128
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
H~9
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSK
SSZ
T5K
T9H
WUQ
XFK
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SR
8FD
EFKBS
JG9
ID FETCH-LOGICAL-c380t-27bbef2176310f74d01a71d591dd162789434e2e774d33c3671732e4add865973
IEDL.DBID .~1
ISSN 0014-3057
IngestDate Fri Jul 25 08:30:06 EDT 2025
Tue Jul 01 03:29:48 EDT 2025
Thu Apr 24 23:03:49 EDT 2025
Fri Feb 23 02:27:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Silk fibroin
Double-network hydrogel
Hyaluronic acid
Tissue engineering
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c380t-27bbef2176310f74d01a71d591dd162789434e2e774d33c3671732e4add865973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2298544365
PQPubID 2045478
PageCount 11
ParticipantIDs proquest_journals_2298544365
crossref_primary_10_1016_j_eurpolymj_2019_05_040
crossref_citationtrail_10_1016_j_eurpolymj_2019_05_040
elsevier_sciencedirect_doi_10_1016_j_eurpolymj_2019_05_040
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle European polymer journal
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Rockwood, Preda, Yücel, Wang, Lovett, Kaplan (b0135) 2011; 6
Park, Tirelli, Hubbell (b0240) 2003; 24
Wang, Zhang (b0050) 2015; 31
Hu, Lu, Sun, Cebe, Wang, Zhang, Kaplan (b0065) 2010; 11
Calvert (b0200) 2009; 21
Su, Yao, Liu, Zhong, Chen, Shao (b0070) 2017; 9
Yang, Wang, Yao, Zhang, Wu, Jiang (b0125) 2015; 205
Ardila, Tamimi, Danford, Haskett, Kellar, Doetschman, Vande Geest (b0230) 2015; 37
Hwang, Sant, Masaeli, Kachouie, Zamanian, Lee, Khademhosseini (b0170) 2010; 2
Drury, Mooney (b0175) 2003; 24
Nicodemus, Bryant (b0185) 2008; 14
Rodell, Dusaj, Highley, Burdick (b0040) 2016; 28
Samal, Kaplan, Chiellini (b0155) 2013; 298
Shin, Olsen, Khademhosseini (b0035) 2012; 33
Matsumoto, Chen, Collette, Kim, Altman, Cebe, Kaplan (b0075) 2006; 110
Rich, Lee, Marshall, Clay, Chen, Mahmassani, Boppart, Kong (b0180) 2015; 16
Xiao, Li, Qu, Wang, Tan, Li, Li, Yue, Li, Liao (b0140) 2019; 99
Kapoor, Kundu (b0045) 2016; 31
Gong (b0030) 2010; 6
Gong, Katsuyama, Kurokawa, Osada (b0205) 2003; 15
Gotoh, Tsukada, Minoura (b0235) 1998; 39
Stella, D’Amore, Wagner, Sacks (b0005) 2010; 6
Seliktar (b0025) 2012; 336
Annabi, Tamayol, Uquillas, Akbari, Bertassoni, Cha, Camci-Unal, Dokmeci, Peppas, Khademhosseini (b0225) 2014; 26
Zhang, Khademhosseini (b0015) 2017; 356
Highley, Prestwich, Burdick (b0095) 2016; 40
Lee, Mooney (b0010) 2001; 101
Weng, Gouldstone, Wu, Chen (b0145) 2008; 29
Guziewicz, Best, Perez-Ramirez, Kaplan (b0060) 2011; 32
Khademhosseini, Langer (b0110) 2007; 28
Erickson, Huang, Sengupta, Kestle, Burdick, Mauck (b0115) 2009; 17
Borzacchiello, Russo, Malle, Schwach-Abdellaoui, Ambrosio (b0085) 2015; 2015
Garcia-Fuentes, Giger, Meinel, Merkle (b0160) 2008; 29
Pritchard, Normand, Hu, Budijono, Benczédi, Omenetto, Kaplan (b0150) 2014; 131
Kim, Chu (b0195) 2000; 49
Cha, Kim, Cao, Kong (b0210) 2010; 31
Tibbitt, Anseth (b0020) 2009; 103
Zhang, An, Pardo, Chiu, Song, Liu, Zhou, McDonough, Ma (b0215) 2017; 53
Collins, Birkinshaw (b0080) 2013; 92
Ifkovits, Burdick (b0105) 2007; 13
Hollister (b0190) 2005; 4
Wei, Xiao, Sun, Zhong, Guo, Fan, Zhang (b0130) 2015; 3
Jeon, Bouhadir, Mansour, Alsberg (b0220) 2009; 30
Wang, Kluge, Leisk, Kaplan (b0055) 2008; 29
Burdick, Chung, Jia, Randolph, Langer (b0100) 2005; 6
Chung, Burdick (b0120) 2009; 15
Gil, Frankowski, Bowman, Gozen, Hudson, Spontak (b0165) 2006; 7
Khademhosseini, Eng, Yeh, Fukuda, Blumling Iii, Langer, Burdick (b0245) 2006; 79A
Burdick, Prestwich (b0090) 2011; 23
Gotoh (10.1016/j.eurpolymj.2019.05.040_b0235) 1998; 39
Rodell (10.1016/j.eurpolymj.2019.05.040_b0040) 2016; 28
Erickson (10.1016/j.eurpolymj.2019.05.040_b0115) 2009; 17
Weng (10.1016/j.eurpolymj.2019.05.040_b0145) 2008; 29
Wang (10.1016/j.eurpolymj.2019.05.040_b0050) 2015; 31
Yang (10.1016/j.eurpolymj.2019.05.040_b0125) 2015; 205
Annabi (10.1016/j.eurpolymj.2019.05.040_b0225) 2014; 26
Collins (10.1016/j.eurpolymj.2019.05.040_b0080) 2013; 92
Wei (10.1016/j.eurpolymj.2019.05.040_b0130) 2015; 3
Rockwood (10.1016/j.eurpolymj.2019.05.040_b0135) 2011; 6
Gong (10.1016/j.eurpolymj.2019.05.040_b0030) 2010; 6
Lee (10.1016/j.eurpolymj.2019.05.040_b0010) 2001; 101
Stella (10.1016/j.eurpolymj.2019.05.040_b0005) 2010; 6
Zhang (10.1016/j.eurpolymj.2019.05.040_b0215) 2017; 53
Samal (10.1016/j.eurpolymj.2019.05.040_b0155) 2013; 298
Su (10.1016/j.eurpolymj.2019.05.040_b0070) 2017; 9
Gil (10.1016/j.eurpolymj.2019.05.040_b0165) 2006; 7
Drury (10.1016/j.eurpolymj.2019.05.040_b0175) 2003; 24
Matsumoto (10.1016/j.eurpolymj.2019.05.040_b0075) 2006; 110
Ardila (10.1016/j.eurpolymj.2019.05.040_b0230) 2015; 37
Khademhosseini (10.1016/j.eurpolymj.2019.05.040_b0245) 2006; 79A
Calvert (10.1016/j.eurpolymj.2019.05.040_b0200) 2009; 21
Khademhosseini (10.1016/j.eurpolymj.2019.05.040_b0110) 2007; 28
Jeon (10.1016/j.eurpolymj.2019.05.040_b0220) 2009; 30
Highley (10.1016/j.eurpolymj.2019.05.040_b0095) 2016; 40
Burdick (10.1016/j.eurpolymj.2019.05.040_b0100) 2005; 6
Rich (10.1016/j.eurpolymj.2019.05.040_b0180) 2015; 16
Xiao (10.1016/j.eurpolymj.2019.05.040_b0140) 2019; 99
Kim (10.1016/j.eurpolymj.2019.05.040_b0195) 2000; 49
Guziewicz (10.1016/j.eurpolymj.2019.05.040_b0060) 2011; 32
Nicodemus (10.1016/j.eurpolymj.2019.05.040_b0185) 2008; 14
Gong (10.1016/j.eurpolymj.2019.05.040_b0205) 2003; 15
Burdick (10.1016/j.eurpolymj.2019.05.040_b0090) 2011; 23
Borzacchiello (10.1016/j.eurpolymj.2019.05.040_b0085) 2015; 2015
Hwang (10.1016/j.eurpolymj.2019.05.040_b0170) 2010; 2
Kapoor (10.1016/j.eurpolymj.2019.05.040_b0045) 2016; 31
Chung (10.1016/j.eurpolymj.2019.05.040_b0120) 2009; 15
Cha (10.1016/j.eurpolymj.2019.05.040_b0210) 2010; 31
Ifkovits (10.1016/j.eurpolymj.2019.05.040_b0105) 2007; 13
Zhang (10.1016/j.eurpolymj.2019.05.040_b0015) 2017; 356
Pritchard (10.1016/j.eurpolymj.2019.05.040_b0150) 2014; 131
Tibbitt (10.1016/j.eurpolymj.2019.05.040_b0020) 2009; 103
Wang (10.1016/j.eurpolymj.2019.05.040_b0055) 2008; 29
Garcia-Fuentes (10.1016/j.eurpolymj.2019.05.040_b0160) 2008; 29
Park (10.1016/j.eurpolymj.2019.05.040_b0240) 2003; 24
Hollister (10.1016/j.eurpolymj.2019.05.040_b0190) 2005; 4
Hu (10.1016/j.eurpolymj.2019.05.040_b0065) 2010; 11
Shin (10.1016/j.eurpolymj.2019.05.040_b0035) 2012; 33
Seliktar (10.1016/j.eurpolymj.2019.05.040_b0025) 2012; 336
References_xml – volume: 99
  start-page: 57
  year: 2019
  end-page: 67
  ident: b0140
  article-title: Cell-laden interpenetrating network hydrogels formed from methacrylated gelatin and silk fibroin via a combination of sonication and photocrosslinking approaches
  publication-title: Mater. Sci. Eng. C
– volume: 16
  start-page: 2255
  year: 2015
  end-page: 2264
  ident: b0180
  article-title: Water-hydrogel binding affinity modulates freeze-drying-induced micropore architecture and skeletal myotube formation
  publication-title: Biomacromolecules
– volume: 31
  start-page: 630
  year: 2015
  end-page: 640
  ident: b0050
  article-title: Processing silk hydrogel and its applications in biomedical materials
  publication-title: Biotechnol. Progr.
– volume: 32
  start-page: 2642
  year: 2011
  end-page: 2650
  ident: b0060
  article-title: Lyophilized silk fibroin hydrogels for the sustained local delivery of therapeutic monoclonal antibodies
  publication-title: Biomaterials
– volume: 17
  start-page: 1639
  year: 2009
  end-page: 1648
  ident: b0115
  article-title: Macromer density influences mesenchymal stem cell chondrogenesis and maturation in photocrosslinked hyaluronic acid hydrogels
  publication-title: Osteoarthritis Cartilage
– volume: 30
  start-page: 2724
  year: 2009
  end-page: 2734
  ident: b0220
  article-title: Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties
  publication-title: Biomaterials
– volume: 40
  start-page: 35
  year: 2016
  end-page: 40
  ident: b0095
  article-title: Recent advances in hyaluronic acid hydrogels for biomedical applications
  publication-title: Curr. Opin. Biotechnol.
– volume: 101
  start-page: 1869
  year: 2001
  end-page: 1880
  ident: b0010
  article-title: Hydrogels for tissue engineering
  publication-title: Chem. Rev.
– volume: 14
  start-page: 149
  year: 2008
  end-page: 165
  ident: b0185
  article-title: Cell encapsulation in biodegradable hydrogels for tissue engineering applications
  publication-title: Tissue Eng. B Rev.
– volume: 23
  start-page: H41
  year: 2011
  end-page: H56
  ident: b0090
  article-title: Hyaluronic acid hydrogels for biomedical applications
  publication-title: Adv. Mater.
– volume: 2015
  start-page: 12
  year: 2015
  ident: b0085
  article-title: Hyaluronic acid based hydrogels for regenerative medicine applications
  publication-title: Biomed. Res. Int.
– volume: 9
  start-page: 17489
  year: 2017
  end-page: 17498
  ident: b0070
  article-title: Enhancing mechanical properties of silk fibroin hydrogel through restricting the growth of β-sheet domains
  publication-title: ACS Appl. Mater. Interf.
– volume: 24
  start-page: 4337
  year: 2003
  end-page: 4351
  ident: b0175
  article-title: Hydrogels for tissue engineering: scaffold design variables and applications
  publication-title: Biomaterials
– volume: 6
  start-page: 1612
  year: 2011
  ident: b0135
  article-title: Materials fabrication from Bombyx mori silk fibroin
  publication-title: Nat. Protoc.
– volume: 6
  start-page: 2365
  year: 2010
  end-page: 2381
  ident: b0005
  article-title: On the biomechanical function of scaffolds for engineering load-bearing soft tissues
  publication-title: Acta Biomater.
– volume: 3
  start-page: 2753
  year: 2015
  end-page: 2763
  ident: b0130
  article-title: A biocompatible hydrogel with improved stiffness and hydrophilicity for modular tissue engineering assembly
  publication-title: J. Mater. Chem. B
– volume: 15
  start-page: 243
  year: 2009
  end-page: 254
  ident: b0120
  article-title: Influence of three-dimensional hyaluronic acid microenvironments on mesenchymal stem cell chondrogenesis
  publication-title: Tissue Eng. Part A
– volume: 33
  start-page: 3143
  year: 2012
  end-page: 3152
  ident: b0035
  article-title: The mechanical properties and cytotoxicity of cell-laden double-network hydrogels based on photocrosslinkable gelatin and gellan gum biomacromolecules
  publication-title: Biomaterials
– volume: 11
  start-page: 3178
  year: 2010
  end-page: 3188
  ident: b0065
  article-title: Biomaterials from ultrasonication-induced silk fibroin−hyaluronic acid hydrogels
  publication-title: Biomacromolecules
– volume: 336
  start-page: 1124
  year: 2012
  end-page: 1128
  ident: b0025
  article-title: Designing cell-compatible hydrogels for biomedical applications
  publication-title: Science
– volume: 53
  start-page: 100
  year: 2017
  end-page: 108
  ident: b0215
  article-title: High-water-content and resilient PEG-containing hydrogels with low fibrotic response
  publication-title: Acta Biomater.
– volume: 29
  start-page: 2153
  year: 2008
  end-page: 2163
  ident: b0145
  article-title: Mechanically strong double network photocrosslinked hydrogels from N, N-dimethylacrylamide and glycidyl methacrylated hyaluronan
  publication-title: Biomaterials
– volume: 103
  start-page: 655
  year: 2009
  end-page: 663
  ident: b0020
  article-title: Hydrogels as extracellular matrix mimics for 3D cell culture
  publication-title: Biotechnol. Bioeng.
– volume: 110
  start-page: 21630
  year: 2006
  end-page: 21638
  ident: b0075
  article-title: Mechanisms of silk fibroin sol−gel transitions
  publication-title: J. Phys. Chem. B.
– volume: 21
  start-page: 743
  year: 2009
  end-page: 756
  ident: b0200
  article-title: Hydrogels for soft machines
  publication-title: Adv. Mater.
– volume: 6
  start-page: 2583
  year: 2010
  end-page: 2590
  ident: b0030
  article-title: Why are double network hydrogels so tough?
  publication-title: Soft Matter.
– volume: 37
  start-page: 164
  year: 2015
  end-page: 173
  ident: b0230
  article-title: TGFβ2 differentially modulates smooth muscle cell proliferation and migration in electrospun gelatin-fibrinogen constructs
  publication-title: Biomaterials
– volume: 31
  start-page: 17
  year: 2016
  end-page: 32
  ident: b0045
  article-title: Silk protein-based hydrogels: Promising advanced materials for biomedical applications
  publication-title: Acta Biomater.
– volume: 356
  year: 2017
  ident: b0015
  article-title: Advances in engineering hydrogels
  publication-title: Science
– volume: 6
  start-page: 386
  year: 2005
  end-page: 391
  ident: b0100
  article-title: Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks
  publication-title: Biomacromolecules
– volume: 26
  start-page: 85
  year: 2014
  end-page: 124
  ident: b0225
  article-title: 25th anniversary article: rational design and applications of hydrogels in regenerative medicine
  publication-title: Adv. Mater.
– volume: 2
  year: 2010
  ident: b0170
  article-title: Fabrication of three-dimensional porous cell-laden hydrogel for tissue engineering
  publication-title: Biofabrication
– volume: 24
  start-page: 893
  year: 2003
  end-page: 900
  ident: b0240
  article-title: Photopolymerized hyaluronic acid-based hydrogels and interpenetrating networks
  publication-title: Biomaterials
– volume: 31
  start-page: 4864
  year: 2010
  end-page: 4871
  ident: b0210
  article-title: Decoupled control of stiffness and permeability with a cell-encapsulating poly(ethylene glycol) dimethacrylate hydrogel
  publication-title: Biomaterials
– volume: 29
  start-page: 1054
  year: 2008
  end-page: 1064
  ident: b0055
  article-title: Sonication-induced gelation of silk fibroin for cell encapsulation
  publication-title: Biomaterials
– volume: 92
  start-page: 1262
  year: 2013
  end-page: 1279
  ident: b0080
  article-title: Hyaluronic acid based scaffolds for tissue engineering–A review
  publication-title: Carbohydr. Polym.
– volume: 13
  start-page: 2369
  year: 2007
  end-page: 2385
  ident: b0105
  article-title: Review: photopolymerizable and degradable biomaterials for tissue engineering applications
  publication-title: Tissue Eng.
– volume: 39
  start-page: 351
  year: 1998
  end-page: 357
  ident: b0235
  article-title: Effect of the chemical modification of the arginyl residue in Bombyx mori silk fibroin on the attachment and growth of fibroblast cells
  publication-title: J. Biomed. Mater. Res.
– volume: 131
  year: 2014
  ident: b0150
  article-title: Encapsulation of oil in silk fibroin biomaterials
  publication-title: J. Appl. Polym. Sci.
– volume: 7
  start-page: 728
  year: 2006
  end-page: 735
  ident: b0165
  article-title: Mixed protein blends composed of gelatin and bombyx mori silk fibroin: effects of solvent-induced crystallization and composition
  publication-title: Biomacromolecules.
– volume: 79A
  start-page: 522
  year: 2006
  end-page: 532
  ident: b0245
  article-title: Micromolding of photocrosslinkable hyaluronic acid for cell encapsulation and entrapment
  publication-title: J. Biomed. Mater. Res. A
– volume: 28
  start-page: 5087
  year: 2007
  end-page: 5092
  ident: b0110
  article-title: Microengineered hydrogels for tissue engineering
  publication-title: Biomaterials
– volume: 49
  start-page: 517
  year: 2000
  end-page: 527
  ident: b0195
  article-title: Synthesis and characterization of dextran–methacrylate hydrogels and structural study by SEM
  publication-title: J. Biomed. Mater. Res. A
– volume: 15
  start-page: 1155
  year: 2003
  end-page: 1158
  ident: b0205
  article-title: Double-network hydrogels with extremely high mechanical strength
  publication-title: Adv. Mater.
– volume: 205
  start-page: 206
  year: 2015
  end-page: 217
  ident: b0125
  article-title: Hyaluronic acid nanogels with enzyme-sensitive cross-linking group for drug delivery
  publication-title: J. Controlled Release.
– volume: 28
  start-page: 8419
  year: 2016
  end-page: 8424
  ident: b0040
  article-title: Injectable and cytocompatible tough double-network hydrogels through tandem supramolecular and covalent crosslinking
  publication-title: Adv. Mater.
– volume: 298
  start-page: 1201
  year: 2013
  end-page: 1208
  ident: b0155
  article-title: Ultrasound sonication effects on silk fibroin protein
  publication-title: Macromol. Mater. Eng.
– volume: 29
  start-page: 633
  year: 2008
  end-page: 642
  ident: b0160
  article-title: The effect of hyaluronic acid on silk fibroin conformation
  publication-title: Biomaterials
– volume: 4
  start-page: 518
  year: 2005
  end-page: 524
  ident: b0190
  article-title: Porous scaffold design for tissue engineering
  publication-title: Nat. Mater.
– volume: 30
  start-page: 2724
  issue: 14
  year: 2009
  ident: 10.1016/j.eurpolymj.2019.05.040_b0220
  article-title: Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.01.034
– volume: 29
  start-page: 1054
  issue: 8
  year: 2008
  ident: 10.1016/j.eurpolymj.2019.05.040_b0055
  article-title: Sonication-induced gelation of silk fibroin for cell encapsulation
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2007.11.003
– volume: 28
  start-page: 5087
  issue: 34
  year: 2007
  ident: 10.1016/j.eurpolymj.2019.05.040_b0110
  article-title: Microengineered hydrogels for tissue engineering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2007.07.021
– volume: 15
  start-page: 1155
  issue: 14
  year: 2003
  ident: 10.1016/j.eurpolymj.2019.05.040_b0205
  article-title: Double-network hydrogels with extremely high mechanical strength
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200304907
– volume: 101
  start-page: 1869
  issue: 7
  year: 2001
  ident: 10.1016/j.eurpolymj.2019.05.040_b0010
  article-title: Hydrogels for tissue engineering
  publication-title: Chem. Rev.
  doi: 10.1021/cr000108x
– volume: 6
  start-page: 386
  issue: 1
  year: 2005
  ident: 10.1016/j.eurpolymj.2019.05.040_b0100
  article-title: Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks
  publication-title: Biomacromolecules
  doi: 10.1021/bm049508a
– volume: 356
  issue: 6337
  year: 2017
  ident: 10.1016/j.eurpolymj.2019.05.040_b0015
  article-title: Advances in engineering hydrogels
  publication-title: Science
  doi: 10.1126/science.aaf3627
– volume: 29
  start-page: 2153
  issue: 14
  year: 2008
  ident: 10.1016/j.eurpolymj.2019.05.040_b0145
  article-title: Mechanically strong double network photocrosslinked hydrogels from N, N-dimethylacrylamide and glycidyl methacrylated hyaluronan
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2008.01.012
– volume: 21
  start-page: 743
  issue: 7
  year: 2009
  ident: 10.1016/j.eurpolymj.2019.05.040_b0200
  article-title: Hydrogels for soft machines
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200800534
– volume: 29
  start-page: 633
  issue: 6
  year: 2008
  ident: 10.1016/j.eurpolymj.2019.05.040_b0160
  article-title: The effect of hyaluronic acid on silk fibroin conformation
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2007.10.024
– volume: 23
  start-page: H41
  issue: 12
  year: 2011
  ident: 10.1016/j.eurpolymj.2019.05.040_b0090
  article-title: Hyaluronic acid hydrogels for biomedical applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201003963
– volume: 16
  start-page: 2255
  issue: 8
  year: 2015
  ident: 10.1016/j.eurpolymj.2019.05.040_b0180
  article-title: Water-hydrogel binding affinity modulates freeze-drying-induced micropore architecture and skeletal myotube formation
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.5b00652
– volume: 6
  start-page: 1612
  year: 2011
  ident: 10.1016/j.eurpolymj.2019.05.040_b0135
  article-title: Materials fabrication from Bombyx mori silk fibroin
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2011.379
– volume: 110
  start-page: 21630
  issue: 43
  year: 2006
  ident: 10.1016/j.eurpolymj.2019.05.040_b0075
  article-title: Mechanisms of silk fibroin sol−gel transitions
  publication-title: J. Phys. Chem. B.
  doi: 10.1021/jp056350v
– volume: 11
  start-page: 3178
  issue: 11
  year: 2010
  ident: 10.1016/j.eurpolymj.2019.05.040_b0065
  article-title: Biomaterials from ultrasonication-induced silk fibroin−hyaluronic acid hydrogels
  publication-title: Biomacromolecules
  doi: 10.1021/bm1010504
– volume: 15
  start-page: 243
  issue: 2
  year: 2009
  ident: 10.1016/j.eurpolymj.2019.05.040_b0120
  article-title: Influence of three-dimensional hyaluronic acid microenvironments on mesenchymal stem cell chondrogenesis
  publication-title: Tissue Eng. Part A
  doi: 10.1089/ten.tea.2008.0067
– volume: 24
  start-page: 893
  issue: 6
  year: 2003
  ident: 10.1016/j.eurpolymj.2019.05.040_b0240
  article-title: Photopolymerized hyaluronic acid-based hydrogels and interpenetrating networks
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(02)00420-9
– volume: 131
  issue: 6
  year: 2014
  ident: 10.1016/j.eurpolymj.2019.05.040_b0150
  article-title: Encapsulation of oil in silk fibroin biomaterials
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.39990
– volume: 298
  start-page: 1201
  issue: 11
  year: 2013
  ident: 10.1016/j.eurpolymj.2019.05.040_b0155
  article-title: Ultrasound sonication effects on silk fibroin protein
  publication-title: Macromol. Mater. Eng.
  doi: 10.1002/mame.201200377
– volume: 6
  start-page: 2365
  issue: 7
  year: 2010
  ident: 10.1016/j.eurpolymj.2019.05.040_b0005
  article-title: On the biomechanical function of scaffolds for engineering load-bearing soft tissues
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2010.01.001
– volume: 17
  start-page: 1639
  issue: 12
  year: 2009
  ident: 10.1016/j.eurpolymj.2019.05.040_b0115
  article-title: Macromer density influences mesenchymal stem cell chondrogenesis and maturation in photocrosslinked hyaluronic acid hydrogels
  publication-title: Osteoarthritis Cartilage
  doi: 10.1016/j.joca.2009.07.003
– volume: 53
  start-page: 100
  year: 2017
  ident: 10.1016/j.eurpolymj.2019.05.040_b0215
  article-title: High-water-content and resilient PEG-containing hydrogels with low fibrotic response
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.02.028
– volume: 2015
  start-page: 12
  year: 2015
  ident: 10.1016/j.eurpolymj.2019.05.040_b0085
  article-title: Hyaluronic acid based hydrogels for regenerative medicine applications
  publication-title: Biomed. Res. Int.
  doi: 10.1155/2015/871218
– volume: 336
  start-page: 1124
  issue: 6085
  year: 2012
  ident: 10.1016/j.eurpolymj.2019.05.040_b0025
  article-title: Designing cell-compatible hydrogels for biomedical applications
  publication-title: Science
  doi: 10.1126/science.1214804
– volume: 103
  start-page: 655
  issue: 4
  year: 2009
  ident: 10.1016/j.eurpolymj.2019.05.040_b0020
  article-title: Hydrogels as extracellular matrix mimics for 3D cell culture
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.22361
– volume: 40
  start-page: 35
  year: 2016
  ident: 10.1016/j.eurpolymj.2019.05.040_b0095
  article-title: Recent advances in hyaluronic acid hydrogels for biomedical applications
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2016.02.008
– volume: 28
  start-page: 8419
  issue: 38
  year: 2016
  ident: 10.1016/j.eurpolymj.2019.05.040_b0040
  article-title: Injectable and cytocompatible tough double-network hydrogels through tandem supramolecular and covalent crosslinking
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602268
– volume: 33
  start-page: 3143
  issue: 11
  year: 2012
  ident: 10.1016/j.eurpolymj.2019.05.040_b0035
  article-title: The mechanical properties and cytotoxicity of cell-laden double-network hydrogels based on photocrosslinkable gelatin and gellan gum biomacromolecules
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.12.050
– volume: 26
  start-page: 85
  issue: 1
  year: 2014
  ident: 10.1016/j.eurpolymj.2019.05.040_b0225
  article-title: 25th anniversary article: rational design and applications of hydrogels in regenerative medicine
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201303233
– volume: 14
  start-page: 149
  issue: 2
  year: 2008
  ident: 10.1016/j.eurpolymj.2019.05.040_b0185
  article-title: Cell encapsulation in biodegradable hydrogels for tissue engineering applications
  publication-title: Tissue Eng. B Rev.
  doi: 10.1089/ten.teb.2007.0332
– volume: 9
  start-page: 17489
  issue: 20
  year: 2017
  ident: 10.1016/j.eurpolymj.2019.05.040_b0070
  article-title: Enhancing mechanical properties of silk fibroin hydrogel through restricting the growth of β-sheet domains
  publication-title: ACS Appl. Mater. Interf.
  doi: 10.1021/acsami.7b04623
– volume: 7
  start-page: 728
  issue: 3
  year: 2006
  ident: 10.1016/j.eurpolymj.2019.05.040_b0165
  article-title: Mixed protein blends composed of gelatin and bombyx mori silk fibroin: effects of solvent-induced crystallization and composition
  publication-title: Biomacromolecules.
  doi: 10.1021/bm050622i
– volume: 79A
  start-page: 522
  issue: 3
  year: 2006
  ident: 10.1016/j.eurpolymj.2019.05.040_b0245
  article-title: Micromolding of photocrosslinkable hyaluronic acid for cell encapsulation and entrapment
  publication-title: J. Biomed. Mater. Res. A
  doi: 10.1002/jbm.a.30821
– volume: 32
  start-page: 2642
  issue: 10
  year: 2011
  ident: 10.1016/j.eurpolymj.2019.05.040_b0060
  article-title: Lyophilized silk fibroin hydrogels for the sustained local delivery of therapeutic monoclonal antibodies
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.12.023
– volume: 31
  start-page: 630
  issue: 3
  year: 2015
  ident: 10.1016/j.eurpolymj.2019.05.040_b0050
  article-title: Processing silk hydrogel and its applications in biomedical materials
  publication-title: Biotechnol. Progr.
  doi: 10.1002/btpr.2058
– volume: 13
  start-page: 2369
  issue: 10
  year: 2007
  ident: 10.1016/j.eurpolymj.2019.05.040_b0105
  article-title: Review: photopolymerizable and degradable biomaterials for tissue engineering applications
  publication-title: Tissue Eng.
  doi: 10.1089/ten.2007.0093
– volume: 99
  start-page: 57
  year: 2019
  ident: 10.1016/j.eurpolymj.2019.05.040_b0140
  article-title: Cell-laden interpenetrating network hydrogels formed from methacrylated gelatin and silk fibroin via a combination of sonication and photocrosslinking approaches
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2019.01.079
– volume: 6
  start-page: 2583
  issue: 12
  year: 2010
  ident: 10.1016/j.eurpolymj.2019.05.040_b0030
  article-title: Why are double network hydrogels so tough?
  publication-title: Soft Matter.
  doi: 10.1039/b924290b
– volume: 92
  start-page: 1262
  issue: 2
  year: 2013
  ident: 10.1016/j.eurpolymj.2019.05.040_b0080
  article-title: Hyaluronic acid based scaffolds for tissue engineering–A review
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2012.10.028
– volume: 24
  start-page: 4337
  issue: 24
  year: 2003
  ident: 10.1016/j.eurpolymj.2019.05.040_b0175
  article-title: Hydrogels for tissue engineering: scaffold design variables and applications
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(03)00340-5
– volume: 3
  start-page: 2753
  issue: 14
  year: 2015
  ident: 10.1016/j.eurpolymj.2019.05.040_b0130
  article-title: A biocompatible hydrogel with improved stiffness and hydrophilicity for modular tissue engineering assembly
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C5TB00129C
– volume: 31
  start-page: 17
  year: 2016
  ident: 10.1016/j.eurpolymj.2019.05.040_b0045
  article-title: Silk protein-based hydrogels: Promising advanced materials for biomedical applications
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2015.11.034
– volume: 37
  start-page: 164
  year: 2015
  ident: 10.1016/j.eurpolymj.2019.05.040_b0230
  article-title: TGFβ2 differentially modulates smooth muscle cell proliferation and migration in electrospun gelatin-fibrinogen constructs
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.10.021
– volume: 31
  start-page: 4864
  issue: 18
  year: 2010
  ident: 10.1016/j.eurpolymj.2019.05.040_b0210
  article-title: Decoupled control of stiffness and permeability with a cell-encapsulating poly(ethylene glycol) dimethacrylate hydrogel
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.02.059
– volume: 2
  issue: 3
  year: 2010
  ident: 10.1016/j.eurpolymj.2019.05.040_b0170
  article-title: Fabrication of three-dimensional porous cell-laden hydrogel for tissue engineering
  publication-title: Biofabrication
  doi: 10.1088/1758-5082/2/3/035003
– volume: 39
  start-page: 351
  year: 1998
  ident: 10.1016/j.eurpolymj.2019.05.040_b0235
  article-title: Effect of the chemical modification of the arginyl residue in Bombyx mori silk fibroin on the attachment and growth of fibroblast cells
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/(SICI)1097-4636(19980305)39:3<351::AID-JBM2>3.0.CO;2-I
– volume: 205
  start-page: 206
  year: 2015
  ident: 10.1016/j.eurpolymj.2019.05.040_b0125
  article-title: Hyaluronic acid nanogels with enzyme-sensitive cross-linking group for drug delivery
  publication-title: J. Controlled Release.
  doi: 10.1016/j.jconrel.2015.02.008
– volume: 4
  start-page: 518
  issue: 7
  year: 2005
  ident: 10.1016/j.eurpolymj.2019.05.040_b0190
  article-title: Porous scaffold design for tissue engineering
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1421
– volume: 49
  start-page: 517
  issue: 4
  year: 2000
  ident: 10.1016/j.eurpolymj.2019.05.040_b0195
  article-title: Synthesis and characterization of dextran–methacrylate hydrogels and structural study by SEM
  publication-title: J. Biomed. Mater. Res. A
  doi: 10.1002/(SICI)1097-4636(20000315)49:4<517::AID-JBM10>3.0.CO;2-8
SSID ssj0007363
Score 2.4028523
Snippet [Display omitted] •A biocompatible approach for synthesis the cell-laden double network hydrogel was presented.•The hydrogel exhibited properties which are...
Repair or regeneration of load-bearing soft tissue is one of the great challenges in tissue engineering and regenerative medicine. The main obstacle is...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 382
SubjectTerms Biocompatibility
Biomechanics
Biomedical materials
Chemical synthesis
Double-network hydrogel
Encapsulation
Fluorescence
Hyaluronic acid
Hydrogels
Moisture content
Photopolymerization
Regeneration (physiology)
Silk fibroin
Soft tissues
Staining
Tissue engineering
Viability
Title Synthesis and characterization of cell-laden double-network hydrogels based on silk fibroin and methacrylated hyaluronic acid
URI https://dx.doi.org/10.1016/j.eurpolymj.2019.05.040
https://www.proquest.com/docview/2298544365
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQPcAFlQKCFlY-cA0kTvxIb2jFalskLi0SN8uvQCAkaB-HPbS_nZk8tgIhcWgOkRJlIsfjzIztb74h5NTL3Mlc2MjFcMp8GiIbChExw6VzPHFwINriWkxvsp-3_HaDjIdcGIRV9ra_s-mtte7vnPe9ef5clpjjmyBflYQQBPwkw4RfZK-DMX329x_MQ6Z9NbUEdwC4fIXxCvAxTbV6ekCMV95SeOIqyPse6o2tbh3Q5DPZ6SNHetE1bpdshPoL2RoPBdv2yJ9fqxrCuXk5p6b21K2pmLtMS9oUFJfpo8qAraG-WdoqRHUHA6f3Kz9r7qAZFP2ap_D8vKweaQHT6aas2zditWnjZqsK4lMPEqZatsy61LjS75ObyeXv8TTqqytELlXxImLSglZgRiIgwitk5uPEyMTzPPE-EZggm6VZYAHiQ5-mLhW4X89CBgZRCZiGpAdks27qcEgoU8Ywm8dBGpU5K5RQVlnLVeEKDkHBERFDj2rXU49jBYxKDxizB71WhUZV6JhrUMURideCzx37xsci3weV6VcDSYOP-Fj4eFCy7v_luWYsV8gSKPjX_3n3N7KNVx0-7ZhsLmbLcAIBzcKO2hE7Ip8uflxNr18A6nr6Ew
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7R5UAviL5UKG196DUiceJHuKEVaCl0LwWJm-VX2tA0Qfs47IH_3nHirERViUNzyCHJRI7Hmflsz3wD8MWJ0oqSm8SmeCpc7hPjK55QzYS1LLN4hGiLOZ_dFl_v2N0OTMdcmBBWGW3_YNN7ax2vnMTePHmo65DjmwW-KoEQBP0klS9gN7BTFRPYPbu8ms23BlnksaBaFjYBmHgS5uXxe7pm8_s-hHmVPYtnWAj5t5P6y1z3PujiAPYjeCRnQ_tewY5vX8PedKzZ9gYev29aRHTLekl064jdsjEPyZakq0hYqU8ajeaGuG5tGp-0QyQ4-blxi-4HNoME1-YIPr-sm1-kwhl1V7f9G0PBaW0XmwYhqkMJ3ax7cl2ibe3ewu3F-c10lsQCC4nNZbpKqDCoGJyUcAR5lShcmmmROVZmzmU85MgWeeGpR4jo8tzmPGzZU1-gTZQcZyL5O5i0XevfA6FSa2rK1AstC2u45NJIY5isbMUQFxwCH3tU2cg-HopgNGoMM7tXW1WooAqVMoWqOIR0K_gwEHA8L3I6qkw9GUsK3cTzwsejklX8nZeK0lIGokDOjv7n3Z9hb3bz7VpdX86vPsDLcGcIVzuGyWqx9h8R36zMpzh-_wBw6_zE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+and+characterization+of+cell-laden+double-network+hydrogels+based+on+silk+fibroin+and+methacrylated+hyaluronic+acid&rft.jtitle=European+polymer+journal&rft.au=Xiao%2C+Wenqian&rft.au=Qu%2C+Xiaohang&rft.au=Li%2C+Jiale&rft.au=Chen%2C+Lin&rft.date=2019-09-01&rft.pub=Elsevier+Ltd&rft.issn=0014-3057&rft.eissn=1873-1945&rft.volume=118&rft.spage=382&rft.epage=392&rft_id=info:doi/10.1016%2Fj.eurpolymj.2019.05.040&rft.externalDocID=S0014305719307128
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-3057&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-3057&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-3057&client=summon