Deep learning and image processing for the automated analysis of thermal events on the first wall and divertor of fusion reactors
A multi-stage process that detects, tracks and classifies thermal events automatically using thermal imaging of the inside of fusion reactors is presented. The process relies on the Cascade R-CNN algorithm for the detection and classification and on the SORT algorithm for the tracking. The process i...
Saved in:
Published in | Plasma physics and controlled fusion Vol. 64; no. 10; pp. 104010 - 104021 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.10.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0741-3335 1361-6587 |
DOI | 10.1088/1361-6587/ac9015 |
Cover
Abstract | A multi-stage process that detects, tracks and classifies thermal events automatically using thermal imaging of the inside of fusion reactors is presented. The process relies on the Cascade R-CNN algorithm for the detection and classification and on the SORT algorithm for the tracking. The process is trained using a dataset of 325 thermal events distributed in seven classes, manually annotated from 20 infrared movies of the inside of the WEST tokamak. This dataset is created using user-friendly annotation tools, based on simple thresholding. The performance of the process is evaluated using modified indicators that emphasize the importance of the detection of the hottest zones of the hot spots. The modified mean average precision on a test dataset establishes at 27%. |
---|---|
AbstractList | A multi-stage process that detects, tracks and classifies thermal events automatically using thermal imaging of the inside of fusion reactors is presented. The process relies on the Cascade R-CNN algorithm for the detection and classification and on the SORT algorithm for the tracking. The process is trained using a dataset of 325 thermal events distributed in seven classes, manually annotated from 20 infrared movies of the inside of the WEST tokamak. This dataset is created using user-friendly annotation tools, based on simple thresholding. The performance of the process is evaluated using modified indicators that emphasize the importance of the detection of the hottest zones of the hot spots. The modified mean average precision on a test dataset establishes at 27%. |
Author | Grelier, Erwan Mitteau, Raphaël Moncada, Victor |
Author_xml | – sequence: 1 givenname: Erwan orcidid: 0000-0002-8488-1612 surname: Grelier fullname: Grelier, Erwan organization: CEA, IRFM , F-13108 Saint-Paul-lez-Durance, France – sequence: 2 givenname: Raphaël orcidid: 0000-0003-4708-0151 surname: Mitteau fullname: Mitteau, Raphaël organization: CEA, IRFM , F-13108 Saint-Paul-lez-Durance, France – sequence: 3 givenname: Victor orcidid: 0000-0001-8211-9555 surname: Moncada fullname: Moncada, Victor organization: CEA, IRFM , F-13108 Saint-Paul-lez-Durance, France |
BackLink | https://cea.hal.science/cea-04249027$$DView record in HAL |
BookMark | eNp9kEtLxDAUhYMoOI7uXWYrWCfpI22Xg68RBtzoOtymNxrpNCXJjLj0n5tamYWgq8DJ9x2454Qc9rZHQs45u-KsqhY8EzwRRVUuQNWMFwdkto8OyYyVOU-yLCuOyYn3b4xxXqViRj5vEAfaIbje9C8U-paaDbwgHZxV6P0YautoeEUK22A3ELCNGHQf3nhq9fjjNtBR3GEfYtJ_s9o4H-g7dN13Z2t26ELsiYLeehMph6Bi4k_JkYbO49nPOyfPd7dP16tk_Xj_cL1cJyqrWEi4bnRTlrVQKea8UnUm4tmCNWkKreYpqFKV0DKW11BwhgLKKtV5LYqGQ1azbE4upt5X6OTg4pXuQ1owcrVcS4UgWZ7mNUvLHY8sm1jlrPcO9V7gTI5zy3FbOW4rp7mjIn4pygQI8dLgwHT_iZeTaOwg3-zWxW393_gXRGKU9A |
CODEN | PLPHBZ |
CitedBy_id | crossref_primary_10_1016_j_fusengdes_2022_113362 crossref_primary_10_1088_1741_4326_ad961b crossref_primary_10_1016_j_jqsrt_2024_108925 crossref_primary_10_1088_1741_4326_ad346e crossref_primary_10_1585_pfr_18_1403018 crossref_primary_10_1016_j_egyai_2023_100330 crossref_primary_10_1016_j_fusengdes_2023_113528 crossref_primary_10_1063_5_0156956 crossref_primary_10_1109_TIM_2024_3368486 crossref_primary_10_1016_j_fusengdes_2023_113524 crossref_primary_10_1016_j_fusengdes_2023_113636 crossref_primary_10_1063_5_0186744 crossref_primary_10_1007_s10894_024_00405_y crossref_primary_10_1088_2058_6272_ad0d4e |
Cites_doi | 10.1109/CVPR.2019.00550 10.3390/electronics10030279 10.1007/978-3-319-24574-4_28 10.1016/j.fusengdes.2019.03.090 10.1109/83.366472 10.1109/ICIP.2017.8296962 10.1109/ICIP.2016.7533003 10.1016/j.fusengdes.2020.112223 |
ContentType | Journal Article |
Copyright | 2022 IOP Publishing Ltd Attribution - NonCommercial - NoDerivatives |
Copyright_xml | – notice: 2022 IOP Publishing Ltd – notice: Attribution - NonCommercial - NoDerivatives |
DBID | AAYXX CITATION 1XC VOOES |
DOI | 10.1088/1361-6587/ac9015 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics Computer Science |
EISSN | 1361-6587 |
ExternalDocumentID | oai_HAL_cea_04249027v1 10_1088_1361_6587_ac9015 ppcfac9015 |
GroupedDBID | -~X .DC 123 1JI 4.4 5B3 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 W28 XPP AAYXX CITATION 1XC VOOES |
ID | FETCH-LOGICAL-c380t-1fbfb7796c2e418c93608860b22adf12ac7c7ad0049a510e6a782f4965b1a3903 |
IEDL.DBID | IOP |
ISSN | 0741-3335 |
IngestDate | Fri May 09 12:16:06 EDT 2025 Tue Jul 01 02:47:50 EDT 2025 Thu Apr 24 23:03:08 EDT 2025 Wed Aug 21 03:34:55 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | image processing deep learning fusion reactors protection automated thermal events analysis computer vision |
Language | English |
License | This article is available under the terms of the IOP-Standard License. Attribution - NonCommercial - NoDerivatives: http://creativecommons.org/licenses/by-nc-nd |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c380t-1fbfb7796c2e418c93608860b22adf12ac7c7ad0049a510e6a782f4965b1a3903 |
Notes | PPCF-103790.R1 |
ORCID | 0000-0002-8488-1612 0000-0003-4708-0151 0000-0001-8211-9555 |
OpenAccessLink | https://cea.hal.science/cea-04249027 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1088_1361_6587_ac9015 hal_primary_oai_HAL_cea_04249027v1 iop_journals_10_1088_1361_6587_ac9015 crossref_primary_10_1088_1361_6587_ac9015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Plasma physics and controlled fusion |
PublicationTitleAbbrev | PPCF |
PublicationTitleAlternate | Plasma Phys. Control. Fusion |
PublicationYear | 2022 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Ronneberger (ppcfac9015bib9) 2015 Gupta (ppcfac9015bib11) 2019 Cai (ppcfac9015bib3) 2019 Wu (ppcfac9015bib4) 2019 Mitteau (ppcfac9015bib2) 2021; 165 Bewley (ppcfac9015bib6) 2016 Yen (ppcfac9015bib8) 1995; 4 Courtois (ppcfac9015bib1) 2019; 146 Paszke (ppcfac9015bib5) 2019; vol 32 Wojke (ppcfac9015bib7) 2017 Padilla (ppcfac9015bib10) 2021; 10 |
References_xml | – year: 2019 ident: ppcfac9015bib11 article-title: Lvis: a dataset for large vocabulary instance segmentation doi: 10.1109/CVPR.2019.00550 – volume: 10 start-page: 279 year: 2021 ident: ppcfac9015bib10 article-title: A comparative analysis of object detection metrics with a companion open-source toolkit publication-title: Electronics doi: 10.3390/electronics10030279 – year: 2015 ident: ppcfac9015bib9 article-title: U-net: convolutional networks for biomedical image segmentation doi: 10.1007/978-3-319-24574-4_28 – volume: 146 start-page: 2015 year: 2019 ident: ppcfac9015bib1 article-title: Full coverage infrared thermography diagnostic for WEST machine protection publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2019.03.090 – volume: 4 start-page: 370 year: 1995 ident: ppcfac9015bib8 article-title: A new criterion for automatic multilevel thresholding publication-title: IEEE Trans. Image Process. doi: 10.1109/83.366472 – volume: vol 32 start-page: 8024 year: 2019 ident: ppcfac9015bib5 article-title: PyTorch: an imperative style, high-performance deep learning library – year: 2019 ident: ppcfac9015bib3 article-title: Cascade R-CNN: high quality object detection and instance segmentation – year: 2019 ident: ppcfac9015bib4 article-title: Detectron2 – year: 2017 ident: ppcfac9015bib7 article-title: Simple online and realtime tracking with a deep association metric doi: 10.1109/ICIP.2017.8296962 – start-page: 3464 year: 2016 ident: ppcfac9015bib6 article-title: Simple online and realtime tracking doi: 10.1109/ICIP.2016.7533003 – volume: 165 year: 2021 ident: ppcfac9015bib2 article-title: WEST operation with real time feed back control based on wall component temperature toward machine protection in a steady state tungsten environment publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2020.112223 |
SSID | ssj0011826 |
Score | 2.457294 |
Snippet | A multi-stage process that detects, tracks and classifies thermal events automatically using thermal imaging of the inside of fusion reactors is presented. The... |
SourceID | hal crossref iop |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 104010 |
SubjectTerms | automated thermal events analysis Computer Science computer vision Computer Vision and Pattern Recognition deep learning fusion reactors protection image processing Physics Plasma Physics |
Title | Deep learning and image processing for the automated analysis of thermal events on the first wall and divertor of fusion reactors |
URI | https://iopscience.iop.org/article/10.1088/1361-6587/ac9015 https://cea.hal.science/cea-04249027 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED_RIiRetjGGVvYhC8EDD2lru41T7QltqwqCbQ-r1AekyHZsqNalEU03aW_7z3cXp9WYYEK8Rc7ZiT9y_l3u_DuAQzQ6lPdopiZdK6JeplAPWvzcUV_2NfEYKk5nhy8-xaNx72zSn2zAu_VZmHlRq_42Xgai4DCEdUBc0uEy5hFunKqjLe1mDdikxJW0vE8_f1m7EAg4Bw5OHkkp-7WP8q4Wbu1JjWuKiGzg0__aaIZP4XL1iiG-5Ft7WZq2_fUPe-Mj-_AMntQAlJ0E0R3YcPlz2KoCQe1iF35_cK5gdS6JK6bzjE2_o85hRThRQIWIcxniRqaX5RwBr8tQLFCbsLmnO6jsZ6yihsKSvJL1U4SZ7Keezao2MwoHQXOfKvgl_bFjiF6r1D8vYDz8-PX9KKrTNERWJt0y4t54o9QgtsL1eGIHMsYuxl0jhM48F9oqq3RGtohGDeBijajEE0-94VoOunIPmvk8dy-BofHYF7HTaFMZNMVUYkTGE40wSkhnvGxBZzVRqa05zCmVxiytfOlJktLApjSwaRjYFhyvaxSBv-M_sgc492sxIt4enZyn1umUHMQDtOB_8BYc4aSm9Ze-uLex_QfKvYJtQScqqvjA19Asb5buDeKc0ryt1vMf23zx7A |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB6RIlAvvFHD00Jw4LBJbGfXm2NFiVIopQcq9WZsrw0VYbOiG5C48c-Zsd0IECAkbivv2PJjPf5mZ_wNwGM0OlQIaKbWEyeKaaNQDzrc7qgvS0M8horT3eFXh9XiePripDzJeU7jXZhVl1X_CB8TUXCawhwQV4-5rHiBB6caG0en2bhrwgAulqiKKaZr__XRxo1A4DnxcPJCSllmP-XvWvnpXBq8p6jIAfbgh8NmfhXennczxZh8GK17O3Jff2Fw_I9xXIMrGYiy3SR-HS749gZcigGh7uwmfNvzvmM5p8Q7ZtqGnX5E3cO6dLOAChHvMsSPzKz7FQJf36BYojhhq0BvUOkvWaSIwpI2yoZThJvsi1kuY5sNhYWg2U8Vwpr-3DFEsTEF0C04nj9_82xR5HQNhZP1pC94sMEqNauc8FNeu5mscJjVxAphmsCFccop05BNYlAT-MogOgnEV2-5kbOJvA1b7ar1O8DQiCxF5Q3aVhZNMlVb0fDaIJwS0tsghzA-XyztMpc5pdRY6uhTr2tNk6tpcnWa3CE83dToEo_HX2Qf4fpvxIiAe7F7oJ03mhzFM7TkP_MhPMGF1XnHn_2xsTv_KPcQLh_tzfXB_uHLu7At6JJFDBm8B1v9p7W_j9Cntw_i5_0dSI33UA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+and+image+processing+for+the+automated+analysis+of+thermal+events+on+the+first+wall+and+divertor+of+fusion+reactors&rft.jtitle=Plasma+physics+and+controlled+fusion&rft.au=Grelier%2C+Erwan&rft.au=Mitteau%2C+Rapha%C3%ABl&rft.au=Moncada%2C+Victor&rft.date=2022-10-01&rft.pub=IOP+Publishing&rft.issn=0741-3335&rft.eissn=1361-6587&rft.volume=64&rft.issue=10&rft_id=info:doi/10.1088%2F1361-6587%2Fac9015&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_cea_04249027v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0741-3335&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0741-3335&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0741-3335&client=summon |