Deep learning and image processing for the automated analysis of thermal events on the first wall and divertor of fusion reactors

A multi-stage process that detects, tracks and classifies thermal events automatically using thermal imaging of the inside of fusion reactors is presented. The process relies on the Cascade R-CNN algorithm for the detection and classification and on the SORT algorithm for the tracking. The process i...

Full description

Saved in:
Bibliographic Details
Published inPlasma physics and controlled fusion Vol. 64; no. 10; pp. 104010 - 104021
Main Authors Grelier, Erwan, Mitteau, Raphaël, Moncada, Victor
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.10.2022
Subjects
Online AccessGet full text
ISSN0741-3335
1361-6587
DOI10.1088/1361-6587/ac9015

Cover

Abstract A multi-stage process that detects, tracks and classifies thermal events automatically using thermal imaging of the inside of fusion reactors is presented. The process relies on the Cascade R-CNN algorithm for the detection and classification and on the SORT algorithm for the tracking. The process is trained using a dataset of 325 thermal events distributed in seven classes, manually annotated from 20 infrared movies of the inside of the WEST tokamak. This dataset is created using user-friendly annotation tools, based on simple thresholding. The performance of the process is evaluated using modified indicators that emphasize the importance of the detection of the hottest zones of the hot spots. The modified mean average precision on a test dataset establishes at 27%.
AbstractList A multi-stage process that detects, tracks and classifies thermal events automatically using thermal imaging of the inside of fusion reactors is presented. The process relies on the Cascade R-CNN algorithm for the detection and classification and on the SORT algorithm for the tracking. The process is trained using a dataset of 325 thermal events distributed in seven classes, manually annotated from 20 infrared movies of the inside of the WEST tokamak. This dataset is created using user-friendly annotation tools, based on simple thresholding. The performance of the process is evaluated using modified indicators that emphasize the importance of the detection of the hottest zones of the hot spots. The modified mean average precision on a test dataset establishes at 27%.
Author Grelier, Erwan
Mitteau, Raphaël
Moncada, Victor
Author_xml – sequence: 1
  givenname: Erwan
  orcidid: 0000-0002-8488-1612
  surname: Grelier
  fullname: Grelier, Erwan
  organization: CEA, IRFM , F-13108 Saint-Paul-lez-Durance, France
– sequence: 2
  givenname: Raphaël
  orcidid: 0000-0003-4708-0151
  surname: Mitteau
  fullname: Mitteau, Raphaël
  organization: CEA, IRFM , F-13108 Saint-Paul-lez-Durance, France
– sequence: 3
  givenname: Victor
  orcidid: 0000-0001-8211-9555
  surname: Moncada
  fullname: Moncada, Victor
  organization: CEA, IRFM , F-13108 Saint-Paul-lez-Durance, France
BackLink https://cea.hal.science/cea-04249027$$DView record in HAL
BookMark eNp9kEtLxDAUhYMoOI7uXWYrWCfpI22Xg68RBtzoOtymNxrpNCXJjLj0n5tamYWgq8DJ9x2454Qc9rZHQs45u-KsqhY8EzwRRVUuQNWMFwdkto8OyYyVOU-yLCuOyYn3b4xxXqViRj5vEAfaIbje9C8U-paaDbwgHZxV6P0YautoeEUK22A3ELCNGHQf3nhq9fjjNtBR3GEfYtJ_s9o4H-g7dN13Z2t26ELsiYLeehMph6Bi4k_JkYbO49nPOyfPd7dP16tk_Xj_cL1cJyqrWEi4bnRTlrVQKea8UnUm4tmCNWkKreYpqFKV0DKW11BwhgLKKtV5LYqGQ1azbE4upt5X6OTg4pXuQ1owcrVcS4UgWZ7mNUvLHY8sm1jlrPcO9V7gTI5zy3FbOW4rp7mjIn4pygQI8dLgwHT_iZeTaOwg3-zWxW393_gXRGKU9A
CODEN PLPHBZ
CitedBy_id crossref_primary_10_1016_j_fusengdes_2022_113362
crossref_primary_10_1088_1741_4326_ad961b
crossref_primary_10_1016_j_jqsrt_2024_108925
crossref_primary_10_1088_1741_4326_ad346e
crossref_primary_10_1585_pfr_18_1403018
crossref_primary_10_1016_j_egyai_2023_100330
crossref_primary_10_1016_j_fusengdes_2023_113528
crossref_primary_10_1063_5_0156956
crossref_primary_10_1109_TIM_2024_3368486
crossref_primary_10_1016_j_fusengdes_2023_113524
crossref_primary_10_1016_j_fusengdes_2023_113636
crossref_primary_10_1063_5_0186744
crossref_primary_10_1007_s10894_024_00405_y
crossref_primary_10_1088_2058_6272_ad0d4e
Cites_doi 10.1109/CVPR.2019.00550
10.3390/electronics10030279
10.1007/978-3-319-24574-4_28
10.1016/j.fusengdes.2019.03.090
10.1109/83.366472
10.1109/ICIP.2017.8296962
10.1109/ICIP.2016.7533003
10.1016/j.fusengdes.2020.112223
ContentType Journal Article
Copyright 2022 IOP Publishing Ltd
Attribution - NonCommercial - NoDerivatives
Copyright_xml – notice: 2022 IOP Publishing Ltd
– notice: Attribution - NonCommercial - NoDerivatives
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1088/1361-6587/ac9015
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
EISSN 1361-6587
ExternalDocumentID oai_HAL_cea_04249027v1
10_1088_1361_6587_ac9015
ppcfac9015
GroupedDBID -~X
.DC
123
1JI
4.4
5B3
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
W28
XPP
AAYXX
CITATION
1XC
VOOES
ID FETCH-LOGICAL-c380t-1fbfb7796c2e418c93608860b22adf12ac7c7ad0049a510e6a782f4965b1a3903
IEDL.DBID IOP
ISSN 0741-3335
IngestDate Fri May 09 12:16:06 EDT 2025
Tue Jul 01 02:47:50 EDT 2025
Thu Apr 24 23:03:08 EDT 2025
Wed Aug 21 03:34:55 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords image processing
deep learning
fusion reactors protection
automated thermal events analysis
computer vision
Language English
License This article is available under the terms of the IOP-Standard License.
Attribution - NonCommercial - NoDerivatives: http://creativecommons.org/licenses/by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c380t-1fbfb7796c2e418c93608860b22adf12ac7c7ad0049a510e6a782f4965b1a3903
Notes PPCF-103790.R1
ORCID 0000-0002-8488-1612
0000-0003-4708-0151
0000-0001-8211-9555
OpenAccessLink https://cea.hal.science/cea-04249027
PageCount 12
ParticipantIDs crossref_citationtrail_10_1088_1361_6587_ac9015
hal_primary_oai_HAL_cea_04249027v1
iop_journals_10_1088_1361_6587_ac9015
crossref_primary_10_1088_1361_6587_ac9015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Plasma physics and controlled fusion
PublicationTitleAbbrev PPCF
PublicationTitleAlternate Plasma Phys. Control. Fusion
PublicationYear 2022
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Ronneberger (ppcfac9015bib9) 2015
Gupta (ppcfac9015bib11) 2019
Cai (ppcfac9015bib3) 2019
Wu (ppcfac9015bib4) 2019
Mitteau (ppcfac9015bib2) 2021; 165
Bewley (ppcfac9015bib6) 2016
Yen (ppcfac9015bib8) 1995; 4
Courtois (ppcfac9015bib1) 2019; 146
Paszke (ppcfac9015bib5) 2019; vol 32
Wojke (ppcfac9015bib7) 2017
Padilla (ppcfac9015bib10) 2021; 10
References_xml – year: 2019
  ident: ppcfac9015bib11
  article-title: Lvis: a dataset for large vocabulary instance segmentation
  doi: 10.1109/CVPR.2019.00550
– volume: 10
  start-page: 279
  year: 2021
  ident: ppcfac9015bib10
  article-title: A comparative analysis of object detection metrics with a companion open-source toolkit
  publication-title: Electronics
  doi: 10.3390/electronics10030279
– year: 2015
  ident: ppcfac9015bib9
  article-title: U-net: convolutional networks for biomedical image segmentation
  doi: 10.1007/978-3-319-24574-4_28
– volume: 146
  start-page: 2015
  year: 2019
  ident: ppcfac9015bib1
  article-title: Full coverage infrared thermography diagnostic for WEST machine protection
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2019.03.090
– volume: 4
  start-page: 370
  year: 1995
  ident: ppcfac9015bib8
  article-title: A new criterion for automatic multilevel thresholding
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.366472
– volume: vol 32
  start-page: 8024
  year: 2019
  ident: ppcfac9015bib5
  article-title: PyTorch: an imperative style, high-performance deep learning library
– year: 2019
  ident: ppcfac9015bib3
  article-title: Cascade R-CNN: high quality object detection and instance segmentation
– year: 2019
  ident: ppcfac9015bib4
  article-title: Detectron2
– year: 2017
  ident: ppcfac9015bib7
  article-title: Simple online and realtime tracking with a deep association metric
  doi: 10.1109/ICIP.2017.8296962
– start-page: 3464
  year: 2016
  ident: ppcfac9015bib6
  article-title: Simple online and realtime tracking
  doi: 10.1109/ICIP.2016.7533003
– volume: 165
  year: 2021
  ident: ppcfac9015bib2
  article-title: WEST operation with real time feed back control based on wall component temperature toward machine protection in a steady state tungsten environment
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2020.112223
SSID ssj0011826
Score 2.457294
Snippet A multi-stage process that detects, tracks and classifies thermal events automatically using thermal imaging of the inside of fusion reactors is presented. The...
SourceID hal
crossref
iop
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 104010
SubjectTerms automated thermal events analysis
Computer Science
computer vision
Computer Vision and Pattern Recognition
deep learning
fusion reactors protection
image processing
Physics
Plasma Physics
Title Deep learning and image processing for the automated analysis of thermal events on the first wall and divertor of fusion reactors
URI https://iopscience.iop.org/article/10.1088/1361-6587/ac9015
https://cea.hal.science/cea-04249027
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED_RIiRetjGGVvYhC8EDD2lru41T7QltqwqCbQ-r1AekyHZsqNalEU03aW_7z3cXp9WYYEK8Rc7ZiT9y_l3u_DuAQzQ6lPdopiZdK6JeplAPWvzcUV_2NfEYKk5nhy8-xaNx72zSn2zAu_VZmHlRq_42Xgai4DCEdUBc0uEy5hFunKqjLe1mDdikxJW0vE8_f1m7EAg4Bw5OHkkp-7WP8q4Wbu1JjWuKiGzg0__aaIZP4XL1iiG-5Ft7WZq2_fUPe-Mj-_AMntQAlJ0E0R3YcPlz2KoCQe1iF35_cK5gdS6JK6bzjE2_o85hRThRQIWIcxniRqaX5RwBr8tQLFCbsLmnO6jsZ6yihsKSvJL1U4SZ7Keezao2MwoHQXOfKvgl_bFjiF6r1D8vYDz8-PX9KKrTNERWJt0y4t54o9QgtsL1eGIHMsYuxl0jhM48F9oqq3RGtohGDeBijajEE0-94VoOunIPmvk8dy-BofHYF7HTaFMZNMVUYkTGE40wSkhnvGxBZzVRqa05zCmVxiytfOlJktLApjSwaRjYFhyvaxSBv-M_sgc492sxIt4enZyn1umUHMQDtOB_8BYc4aSm9Ze-uLex_QfKvYJtQScqqvjA19Asb5buDeKc0ryt1vMf23zx7A
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB6RIlAvvFHD00Jw4LBJbGfXm2NFiVIopQcq9WZsrw0VYbOiG5C48c-Zsd0IECAkbivv2PJjPf5mZ_wNwGM0OlQIaKbWEyeKaaNQDzrc7qgvS0M8horT3eFXh9XiePripDzJeU7jXZhVl1X_CB8TUXCawhwQV4-5rHiBB6caG0en2bhrwgAulqiKKaZr__XRxo1A4DnxcPJCSllmP-XvWvnpXBq8p6jIAfbgh8NmfhXennczxZh8GK17O3Jff2Fw_I9xXIMrGYiy3SR-HS749gZcigGh7uwmfNvzvmM5p8Q7ZtqGnX5E3cO6dLOAChHvMsSPzKz7FQJf36BYojhhq0BvUOkvWaSIwpI2yoZThJvsi1kuY5sNhYWg2U8Vwpr-3DFEsTEF0C04nj9_82xR5HQNhZP1pC94sMEqNauc8FNeu5mscJjVxAphmsCFccop05BNYlAT-MogOgnEV2-5kbOJvA1b7ar1O8DQiCxF5Q3aVhZNMlVb0fDaIJwS0tsghzA-XyztMpc5pdRY6uhTr2tNk6tpcnWa3CE83dToEo_HX2Qf4fpvxIiAe7F7oJ03mhzFM7TkP_MhPMGF1XnHn_2xsTv_KPcQLh_tzfXB_uHLu7At6JJFDBm8B1v9p7W_j9Cntw_i5_0dSI33UA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+and+image+processing+for+the+automated+analysis+of+thermal+events+on+the+first+wall+and+divertor+of+fusion+reactors&rft.jtitle=Plasma+physics+and+controlled+fusion&rft.au=Grelier%2C+Erwan&rft.au=Mitteau%2C+Rapha%C3%ABl&rft.au=Moncada%2C+Victor&rft.date=2022-10-01&rft.pub=IOP+Publishing&rft.issn=0741-3335&rft.eissn=1361-6587&rft.volume=64&rft.issue=10&rft_id=info:doi/10.1088%2F1361-6587%2Fac9015&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_cea_04249027v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0741-3335&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0741-3335&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0741-3335&client=summon