Electrospun metal-organic framework based nanofibers for energy storage and environmental applications: current approaches and challenges

In recent years, a great deal of investigation has been performed based on the study of metal-organic frameworks (MOFs) combined with other materials, in order to overcome the tremendous challenge encountered by single MOFs in practical applications. Among them are MOF based composite nanofibers pre...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 1; no. 4; pp. 1642 - 1681
Main Authors Li, Xiangye, Zhou, Ruifeng, Wang, Zhenzhen, Zhang, Minghui, He, Tieshi
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 25.01.2022
Subjects
Online AccessGet full text
ISSN2050-7488
2050-7496
2050-7496
DOI10.1039/d1ta08413e

Cover

Abstract In recent years, a great deal of investigation has been performed based on the study of metal-organic frameworks (MOFs) combined with other materials, in order to overcome the tremendous challenge encountered by single MOFs in practical applications. Among them are MOF based composite nanofibers prepared via electrospinning with the advantages of inorganic porous materials and polymeric nanofibers, which have witnessed intensive development and extensive applications in energy storage and environment conservation fields. Beyond that, preparing MOF based composite nanofibers is also considered to be an effective route to broaden the practical application of MOFs. Herein, a comprehensive review of the recent developments of MOF based composite nanofibers prepared via the electrospinning process, serving as functional materials, is provided. From the perspective of fabrication, the major routes reported so far for fabricating MOF based composite nanofibers are first systematically discussed. Furthermore, the fundamental applications of MOF based composite nanofibers in energy storage and environmental protection are introduced in detail. Finally, a series of critical challenges in the above research area, and some directions for future research are put forward. Schematic illustration of the morphology, structure and preparation route of MOF based nanofiber composites and their applications (LLA stands for layer-by-layer assembly; ALD stands for atomic layer deposition).
AbstractList In recent years, a great deal of investigation has been performed based on the study of metal-organic frameworks (MOFs) combined with other materials, in order to overcome the tremendous challenge encountered by single MOFs in practical applications. Among them are MOF based composite nanofibers prepared via electrospinning with the advantages of inorganic porous materials and polymeric nanofibers, which have witnessed intensive development and extensive applications in energy storage and environment conservation fields. Beyond that, preparing MOF based composite nanofibers is also considered to be an effective route to broaden the practical application of MOFs. Herein, a comprehensive review of the recent developments of MOF based composite nanofibers prepared via the electrospinning process, serving as functional materials, is provided. From the perspective of fabrication, the major routes reported so far for fabricating MOF based composite nanofibers are first systematically discussed. Furthermore, the fundamental applications of MOF based composite nanofibers in energy storage and environmental protection are introduced in detail. Finally, a series of critical challenges in the above research area, and some directions for future research are put forward. Schematic illustration of the morphology, structure and preparation route of MOF based nanofiber composites and their applications (LLA stands for layer-by-layer assembly; ALD stands for atomic layer deposition).
In recent years, a great deal of investigation has been performed based on the study of metal–organic frameworks (MOFs) combined with other materials, in order to overcome the tremendous challenge encountered by single MOFs in practical applications. Among them are MOF based composite nanofibers prepared via electrospinning with the advantages of inorganic porous materials and polymeric nanofibers, which have witnessed intensive development and extensive applications in energy storage and environment conservation fields. Beyond that, preparing MOF based composite nanofibers is also considered to be an effective route to broaden the practical application of MOFs. Herein, a comprehensive review of the recent developments of MOF based composite nanofibers prepared via the electrospinning process, serving as functional materials, is provided. From the perspective of fabrication, the major routes reported so far for fabricating MOF based composite nanofibers are first systematically discussed. Furthermore, the fundamental applications of MOF based composite nanofibers in energy storage and environmental protection are introduced in detail. Finally, a series of critical challenges in the above research area, and some directions for future research are put forward.
In recent years, a great deal of investigation has been performed based on the study of metal–organic frameworks (MOFs) combined with other materials, in order to overcome the tremendous challenge encountered by single MOFs in practical applications. Among them are MOF based composite nanofibers prepared via electrospinning with the advantages of inorganic porous materials and polymeric nanofibers, which have witnessed intensive development and extensive applications in energy storage and environment conservation fields. Beyond that, preparing MOF based composite nanofibers is also considered to be an effective route to broaden the practical application of MOFs. Herein, a comprehensive review of the recent developments of MOF based composite nanofibers prepared via the electrospinning process, serving as functional materials, is provided. From the perspective of fabrication, the major routes reported so far for fabricating MOF based composite nanofibers are first systematically discussed. Furthermore, the fundamental applications of MOF based composite nanofibers in energy storage and environmental protection are introduced in detail. Finally, a series of critical challenges in the above research area, and some directions for future research are put forward.
Author Wang, Zhenzhen
He, Tieshi
Li, Xiangye
Zhou, Ruifeng
Zhang, Minghui
AuthorAffiliation Bohai University
Liaoning Engineering Technology Center of Supercapacitor
Lanzhou University of Technology
College of Chemistry & Materials Engineering
School of Material Science and Engineering
AuthorAffiliation_xml – name: College of Chemistry & Materials Engineering
– name: Bohai University
– name: School of Material Science and Engineering
– name: Liaoning Engineering Technology Center of Supercapacitor
– name: Lanzhou University of Technology
Author_xml – sequence: 1
  givenname: Xiangye
  surname: Li
  fullname: Li, Xiangye
– sequence: 2
  givenname: Ruifeng
  surname: Zhou
  fullname: Zhou, Ruifeng
– sequence: 3
  givenname: Zhenzhen
  surname: Wang
  fullname: Wang, Zhenzhen
– sequence: 4
  givenname: Minghui
  surname: Zhang
  fullname: Zhang, Minghui
– sequence: 5
  givenname: Tieshi
  surname: He
  fullname: He, Tieshi
BookMark eNptkU9rFTEUxYNUsNZu3AsBNyKMzb83k7gr9dkKhW7a9XAnc-c1NZM8k0ylH8FvbfqeVCjNJuHwO4ebe96SgxADEvKesy-cSXMy8gJMKy7xFTkUbMWaTpn24Omt9RtynPMdq0cz1hpzSP6sPdqSYt4ugc5YwDcxbSA4S6cEM_6O6ScdIONIA4Q4uQFTplNMFAOmzQPNJSbYIIUwVunepRhmDDWHwnbrnYXiYshfqV1SqvqjmiLYW8w7i70F7zFsML8jryfwGY__3Ufk5vv6-uyiubw6_3F2etlYqVlp-Chsp402g2hXQjEuFEzDoNSkjIRJ1X-NHWdCaA4D6wR2wI01atByZFoqeUQ-7XPrHL8WzKWfXbboPQSMS-5FK1ulhG5XFf34DL2LSwp1ukoJ0TLRdqZSn_eUrWvMCad-m9wM6aHnrH8spv_Gr093xawrzJ7B1pXdjkoC51-2fNhbUrZP0f-7ln8Bik2dag
CitedBy_id crossref_primary_10_2139_ssrn_4087096
crossref_primary_10_2174_0115734110280476240105074537
crossref_primary_10_1016_j_polymer_2022_124945
crossref_primary_10_1016_j_jpowsour_2025_236488
crossref_primary_10_1016_j_jpowsour_2025_236720
crossref_primary_10_1002_anie_202420001
crossref_primary_10_1016_j_jallcom_2024_173519
crossref_primary_10_1002_ange_202318822
crossref_primary_10_1021_acs_energyfuels_4c00249
crossref_primary_10_1016_j_apsusc_2022_156192
crossref_primary_10_1016_j_ccr_2023_215464
crossref_primary_10_1016_j_est_2024_113686
crossref_primary_10_1002_pat_6026
crossref_primary_10_1016_j_ensm_2023_01_034
crossref_primary_10_1007_s42765_023_00360_x
crossref_primary_10_1016_j_seppur_2022_121716
crossref_primary_10_1021_acsami_4c03655
crossref_primary_10_1021_acs_inorgchem_3c00764
crossref_primary_10_1039_D2RA01778D
crossref_primary_10_1177_23977914241232161
crossref_primary_10_1002_smll_202306353
crossref_primary_10_1039_D3SD00214D
crossref_primary_10_1016_j_jece_2024_112845
crossref_primary_10_1007_s42765_022_00214_y
crossref_primary_10_1016_j_diamond_2023_109803
crossref_primary_10_1021_acs_langmuir_3c03724
crossref_primary_10_1016_j_jece_2024_114819
crossref_primary_10_1016_j_pmatsci_2023_101159
crossref_primary_10_1016_j_jallcom_2025_178867
crossref_primary_10_1016_j_seppur_2024_129948
crossref_primary_10_1016_j_seppur_2022_121942
crossref_primary_10_1016_j_cej_2023_145840
crossref_primary_10_1039_D3NR04984A
crossref_primary_10_1039_D2TA08984J
crossref_primary_10_1016_j_ica_2022_121088
crossref_primary_10_1002_adtp_202400144
crossref_primary_10_1016_j_seppur_2023_126260
crossref_primary_10_1016_j_nanoen_2023_108858
crossref_primary_10_1021_acs_energyfuels_4c00471
crossref_primary_10_1016_j_matchemphys_2022_127289
crossref_primary_10_57634_RCR5055
crossref_primary_10_1039_D4CC03116D
crossref_primary_10_1016_j_est_2024_112826
crossref_primary_10_1002_ange_202420001
crossref_primary_10_1002_anie_202318822
crossref_primary_10_1016_j_cej_2024_154352
crossref_primary_10_1016_j_colsurfa_2024_133681
crossref_primary_10_1007_s10853_022_07525_w
crossref_primary_10_1016_j_ccr_2024_216360
crossref_primary_10_1016_j_scib_2022_09_014
crossref_primary_10_1016_j_jcis_2025_01_176
crossref_primary_10_1016_j_mtchem_2022_100974
Cites_doi 10.1016/j.ceramint.2021.05.261
10.1039/c2jm32570e
10.1039/C8CP05610B
10.1039/C9NJ05822B
10.1016/j.ensm.2017.12.027
10.1007/s00604-020-4112-3
10.1039/D1DT01336J
10.1016/j.nanoen.2017.09.055
10.1016/j.jallcom.2021.159348
10.1039/C6CS00426A
10.1007/s12221-014-0200-5
10.1039/D1NJ01302E
10.1021/acs.chemmater.0c03796
10.1039/C7EE00488E
10.1021/acsami.8b22415
10.1016/j.jechem.2021.04.060
10.1016/j.jpowsour.2016.10.053
10.1016/j.mtcomm.2017.08.001
10.1002/adma.201703614
10.1039/D0TA05100D
10.1016/j.carbpol.2020.116955
10.1016/j.matlet.2012.07.076
10.1039/c2jm35401b
10.1016/j.chemosphere.2018.03.047
10.1016/S1872-5805(21)60022-7
10.1021/acsomega.8b00792
10.1039/C9TA05239A
10.1002/adfm.202107136
10.1039/C8TA09394F
10.1016/j.jelechem.2019.113615
10.1016/j.jpowsour.2020.228856
10.1016/j.desal.2021.115338
10.1016/S1872-2067(21)63841-X
10.1016/j.ensm.2020.12.011
10.1016/j.jcis.2019.02.084
10.1016/j.ces.2018.07.025
10.1039/C9NR05795A
10.1021/acsaem.0c02379
10.1021/acsami.7b09209
10.1021/acsami.1c12751
10.1016/j.jcis.2020.05.113
10.1002/smll.202102349
10.1016/j.cej.2019.122150
10.1021/acsami.7b01621
10.1016/j.chroma.2021.462484
10.1039/C4CC08796H
10.1155/2019/6130152
10.1021/acsami.8b08167
10.1016/j.carbon.2020.10.033
10.1016/j.catcom.2018.02.027
10.1007/s10965-019-1806-5
10.1016/j.nanoen.2019.01.064
10.1016/j.memsci.2019.03.075
10.1021/acsnano.9b04670
10.1016/j.ensm.2019.05.022
10.1016/j.snb.2020.128768
10.1021/jacs.5b08752
10.1002/adma.201808338
10.1002/sscp.201800030
10.1016/j.est.2020.102032
10.1016/j.polymer.2021.124038
10.1016/j.nanoen.2019.04.045
10.1039/C8TA12246F
10.1016/j.jallcom.2020.157271
10.1021/acsami.0c10290
10.1007/s10853-020-05066-8
10.1039/C8TA10541C
10.1039/C9TA09928J
10.1016/j.jelechem.2020.114804
10.1016/j.cej.2017.07.156
10.1016/j.cej.2021.130913
10.1021/acssuschemeng.8b06447
10.1016/j.est.2019.100898
10.1016/j.compositesb.2019.107400
10.1016/j.cej.2020.124241
10.1016/j.est.2021.103263
10.1021/acsami.0c20404
10.1016/j.talanta.2021.122542
10.1016/j.jechem.2019.10.028
10.1039/D0DT03844J
10.1016/j.snb.2018.05.161
10.1016/j.cej.2019.122548
10.1016/j.biortech.2021.125358
10.1039/C7CS00505A
10.1016/j.jallcom.2021.160445
10.1021/acsami.8b14197
10.1016/j.mtcomm.2019.100862
10.1016/j.micromeso.2020.110006
10.1039/D0NR03549A
10.1016/j.est.2021.102611
10.1016/j.est.2020.102179
10.1016/j.jechem.2021.05.001
10.1021/acsami.8b07826
10.1016/j.nanoen.2021.105928
10.1002/smll.201704435
10.1016/j.cej.2019.04.065
10.1039/C5RA23147G
10.1021/acsami.0c08276
10.1039/C7TA08210J
10.1039/C4NR06640E
10.1007/s40843-020-1575-2
10.1039/C7NJ00525C
10.3390/catal10020195
10.1016/j.micromeso.2020.110257
10.1002/app.50431
10.1016/j.carbon.2018.10.064
10.1016/j.ensm.2021.06.010
10.1016/j.talanta.2020.121010
10.1039/C9TA04664J
10.1016/j.ccr.2021.214011
10.1016/j.electacta.2019.135103
10.1021/jacs.6b02553
10.1002/adfm.202006771
10.1016/j.seppur.2019.116360
10.1039/C9TA11701F
10.1016/j.cej.2021.129112
10.1016/j.memsci.2021.120045
10.1016/j.cej.2021.130184
10.1016/j.nanoen.2018.10.029
10.1016/j.ijhydene.2021.03.033
10.1016/j.jcat.2018.01.018
10.1021/ja00146a033
10.1039/C0CC02271C
10.1016/j.jpowsour.2018.10.038
10.1016/j.carbpol.2020.116731
10.1016/j.carbon.2018.04.075
10.1016/j.seppur.2020.116759
10.1016/j.micromeso.2021.111000
10.1039/C6CC09832K
10.1039/C8TA01861H
10.1039/D1TA02169A
10.1002/adem.201000246
10.1016/j.est.2021.103304
10.1039/C8TA02820F
10.1016/j.chemosphere.2020.127010
10.1016/j.carbon.2018.10.040
10.1016/j.cej.2021.129748
10.1002/adfm.201603607
10.1016/j.est.2020.102125
10.1016/j.apsusc.2019.01.064
10.1039/C7CS00283A
10.1021/acs.accounts.1c00333
10.1016/j.carbon.2016.12.016
10.1021/acs.energyfuels.1c01722
10.1016/j.pmatsci.2019.100579
10.1016/j.chemosphere.2020.127369
10.1002/anie.201606656
10.1021/acsami.6b05746
10.1016/j.jechem.2021.03.002
10.1016/j.jpowsour.2019.227262
10.1016/j.jhazmat.2014.09.046
10.1021/acsami.7b15315
10.1021/acsami.9b16420
10.1016/j.ensm.2019.12.019
10.1021/acsami.8b10110
10.1002/smll.201702049
10.1016/j.molliq.2021.115593
10.1016/j.electacta.2018.06.002
10.1039/C9QI00390H
10.1016/j.jpowsour.2018.10.080
10.1016/j.cej.2021.129200
10.1016/j.est.2021.102659
10.1016/j.est.2020.102195
10.1007/s11356-020-10746-8
10.1002/smll.202102893
10.1016/j.cej.2015.03.127
10.1016/j.micromeso.2018.05.004
10.1039/C8RA01260A
10.1016/j.micromeso.2021.111233
10.1039/D1TA01736E
10.1016/j.ijhydene.2015.05.088
10.1021/acs.jpcc.7b08239
10.1039/C5TA06472D
10.1016/j.jcis.2021.06.027
10.1039/D0TA08976A
10.1016/j.electacta.2020.137344
10.1002/advs.201901129
10.1002/cnma.201900110
10.1016/j.est.2021.102999
10.1016/j.jpowsour.2020.228794
10.1039/C8NR09454C
10.1016/j.jenvman.2021.113908
10.1039/D1TA01407B
10.1039/C9TA11390H
10.1016/j.jpowsour.2016.10.067
10.1016/j.memsci.2021.119742
10.1039/C6QI00042H
10.1002/ppsc.201700438
10.1016/S1872-5805(21)60009-4
10.1007/s12221-019-1196-7
10.1002/smtd.201800049
10.1002/smll.201900015
10.1021/acs.iecr.7b04202
10.1002/admt.201800135
10.1021/acsnano.7b06061
10.1002/eem2.12051
10.1039/C7TA06924C
10.1039/C8TA01286E
10.1016/j.jpowsour.2016.10.063
10.1016/j.snb.2021.129520
10.1039/D1TA03362J
10.1007/s12598-020-01694-w
10.15541/jim20200266
10.1007/s10965-020-2035-7
10.1016/j.ccr.2020.213438
10.1016/j.ces.2020.115650
10.1021/acsami.5b10078
10.1039/C8TA04539A
10.1016/j.electacta.2021.138346
10.1007/s10570-018-1696-4
10.1016/j.jallcom.2019.151961
10.1002/adfm.201804629
10.1021/acsami.8b01454
10.1039/C8TA08562E
10.1007/s12598-021-01735-y
10.1039/C8TA05400B
10.1016/j.apsusc.2018.08.110
10.1016/j.jpowsour.2018.12.014
10.1016/j.jechem.2021.04.043
10.1016/j.gee.2018.03.001
10.1016/j.talanta.2016.09.065
10.1007/s10853-021-05939-6
10.1016/j.carbon.2021.01.124
10.1088/1361-6528/aaf520
10.1039/C8TA07220E
10.1021/acsnano.7b02796
10.1002/admi.201901651
10.1016/j.jhazmat.2021.126101
10.14504/ajr.7.3.4
10.1039/C6TA09193H
10.1002/app.46462
10.1016/j.jelechem.2018.01.012
10.1016/j.chempr.2017.01.005
10.1016/j.est.2020.101525
10.1016/j.carbon.2019.09.027
10.1016/j.matlet.2017.04.069
10.1021/acs.iecr.6b02479
10.1016/j.cej.2019.123734
10.1016/j.jcis.2019.03.079
10.1016/j.est.2018.12.025
10.1039/c2dt32161k
10.1039/c4dt00023d
10.1007/s12274-020-3203-0
10.1039/D0TA11014K
10.1016/j.est.2021.103301
10.1016/j.jhazmat.2019.01.024
10.1039/D1EE00087J
10.1016/j.jallcom.2021.162191
10.1002/smll.202007062
10.1021/acs.chemmater.0c02782
10.1016/j.inoche.2017.05.021
10.1002/adem.201400565
10.1016/j.cej.2020.127813
10.1016/j.jhazmat.2021.127347
10.1039/D0CS00793E
10.1039/D0QM00878H
10.1016/j.envres.2020.109742
10.1016/j.jechem.2020.09.015
10.1039/C9NJ00417C
10.1021/acsami.8b11290
10.1021/acs.chemrev.0c00487
10.1016/j.jechem.2020.03.024
10.1016/j.nantod.2019.100796
10.2174/1573411016999200525003250
10.1016/j.memsci.2017.10.019
10.1016/j.aca.2017.05.035
10.1016/j.jechem.2021.05.010
10.1016/j.apsusc.2020.147290
10.1039/C7TA08166A
10.1039/D0TA00537A
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2022
Copyright_xml – notice: Copyright Royal Society of Chemistry 2022
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
DOI 10.1039/d1ta08413e
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 2050-7496
EndPage 1681
ExternalDocumentID 10_1039_D1TA08413E
d1ta08413e
GroupedDBID 0-7
0R
705
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFRAH
AFVBQ
AGSTE
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CKLOX
EBS
ECGLT
EE0
EF-
GNO
HZ
H~N
J3I
JG
O-G
O9-
R7C
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
0R~
AAJAE
AAWGC
AAXHV
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ALUYA
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c380t-1d2c78989b265240124afbb44f493af4006d7102281ab072e7a19c94b83d08343
ISSN 2050-7488
2050-7496
IngestDate Fri Jul 11 06:26:01 EDT 2025
Mon Jun 30 11:56:07 EDT 2025
Thu Apr 24 23:04:33 EDT 2025
Tue Jul 01 01:13:20 EDT 2025
Thu Jan 27 01:42:10 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c380t-1d2c78989b265240124afbb44f493af4006d7102281ab072e7a19c94b83d08343
Notes Minghui Zhang received her B.S. degrees from Bohai University. She is presently pursuing her master's degree at the School of Chemistry & Materials Engineering, Bohai University, China. Her research interests focus mainly on the design, fabrication, and application of organic metal frameworks for supercapacitors.
Ruifeng Zhou is now a post-graduate student majoring at the School of Chemistry and Materials Engineering, Bohai University, China. His scientific research directions are the preparation and application of environment-friendly materials.
Tieshi He received his Ph.D. degree in materials science from Hefei University of Technology, China in 2009. Since then, he has been working as an associate professor (2009-2019) and a professor (2019-) at the School of Chemical & Materials Engineering, Bohai University, China. His research interests involve advanced functional materials and devices for energy storage and conversion.
Zhenzhen Wang received her B.S. degrees from Anyang Normal University. She is currently studying for an M.Sc. degree at the School of Chemistry & Materials Engineering, Bohai University, China. Her research focuses on the design, optimization, and application of new energy storage materials.
Xiangye Li received his M.Sc. degree from Bohai University. He is currently pursuing his Ph.D. degree at the School of Materials Science and Engineering, Lanzhou University of Technology, China. His research interests focus mainly on the design and fabrication of new kinds of energy storage materials and the related mechanisms.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6885-2459
PQID 2622602679
PQPubID 2047523
PageCount 4
ParticipantIDs proquest_journals_2622602679
crossref_primary_10_1039_D1TA08413E
crossref_citationtrail_10_1039_D1TA08413E
rsc_primary_d1ta08413e
proquest_miscellaneous_2636442865
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-25
PublicationDateYYYYMMDD 2022-01-25
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-25
  day: 25
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2022
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Mirzaei (D1TA08413E/cit227/1) 2021; 50
Weng (D1TA08413E/cit104/1) 2021; 36
Hou (D1TA08413E/cit239/1) 2020; 247
Tian (D1TA08413E/cit152/1) 2020; 12
Ren (D1TA08413E/cit194/1) 2016; 336
Gao (D1TA08413E/cit26/1) 2021; 35
Zhou (D1TA08413E/cit203/1) 2021; 40
Tian (D1TA08413E/cit23/1) 2020; 8
Rasheed (D1TA08413E/cit214/1) 2020; 259
Ismail (D1TA08413E/cit114/1) 2017; 12
Peng (D1TA08413E/cit165/1) 2021; 14
Yao (D1TA08413E/cit150/1) 2019; 30
Wu (D1TA08413E/cit187/1) 2022; 64
Shangguan (D1TA08413E/cit294/1) 2018; 8
Keller (D1TA08413E/cit129/1) 2021; 50
Zhang (D1TA08413E/cit273/1) 2019; 31
Ren (D1TA08413E/cit279/1) 2015; 40
Li (D1TA08413E/cit28/1) 2019; 810
Wu (D1TA08413E/cit162/1) 2016; 336
Pothu (D1TA08413E/cit143/1) 2021; 17
Mi (D1TA08413E/cit262/1) 2020; 47
Zhang (D1TA08413E/cit171/1) 2020; 380
Hao (D1TA08413E/cit30/1) 2021; 42
Dou (D1TA08413E/cit228/1) 2021; 64
Jin (D1TA08413E/cit291/1) 2019; 20
Aslam (D1TA08413E/cit6/1) 2019; 855
Li (D1TA08413E/cit184/1) 2020; 531
Bai (D1TA08413E/cit25/1) 2019; 31
Samuel (D1TA08413E/cit153/1) 2019; 371
Wang (D1TA08413E/cit289/1) 2017; 330
Ji (D1TA08413E/cit57/1) 2017; 5
Xue (D1TA08413E/cit266/1) 2021; 9
Sankar (D1TA08413E/cit18/1) 2021; 9
Armstrong (D1TA08413E/cit69/1) 2018; 270
Mirhosseini (D1TA08413E/cit282/1) 2021; 28
Kumar (D1TA08413E/cit142/1) 2021; 33
Zhang (D1TA08413E/cit188/1) 2022; 38
Jing (D1TA08413E/cit58/1) 2020; 879
Chen (D1TA08413E/cit257/1) 2017; 10
Huang (D1TA08413E/cit181/1) 2019; 7
Chen (D1TA08413E/cit275/1) 2017; 2
Li (D1TA08413E/cit238/1) 2020; 237
Lim (D1TA08413E/cit205/1) 2021; 31
Ali (D1TA08413E/cit204/1) 2021; 172
Makhanya (D1TA08413E/cit13/1) 2021; 34
Lu (D1TA08413E/cit243/1) 2017; 9
Xu (D1TA08413E/cit174/1) 2018; 408
Gaikwad (D1TA08413E/cit226/1) 2021; 323
Chen (D1TA08413E/cit64/1) 2021; 423
McCarthy (D1TA08413E/cit241/1) 2017; 41
Wang (D1TA08413E/cit19/1) 2021; 9
Yang (D1TA08413E/cit186/1) 2019; 15
El Hankari (D1TA08413E/cit31/1) 2019; 106
Peng (D1TA08413E/cit40/1) 2021; 417
Zhao (D1TA08413E/cit280/1) 2015; 137
He (D1TA08413E/cit207/1) 2020; 32
Zhang (D1TA08413E/cit251/1) 2020; 392
Jiang (D1TA08413E/cit164/1) 2021; 17
Liu (D1TA08413E/cit290/1) 2020; 255
Chang (D1TA08413E/cit115/1) 2019; 30
An (D1TA08413E/cit176/1) 2020; 480
Ji (D1TA08413E/cit127/1) 2019; 142
Zhang (D1TA08413E/cit183/1) 2019; 61
Sridhar (D1TA08413E/cit168/1) 2020; 44
Balach (D1TA08413E/cit189/1) 2018; 6
Piri-Moghadam (D1TA08413E/cit42/1) 2017; 984
Zhu (D1TA08413E/cit283/1) 2019; 581
Wang (D1TA08413E/cit170/1) 2021; 17
Li (D1TA08413E/cit88/1) 2017; 82
Zhan (D1TA08413E/cit109/1) 2019; 26
Hung (D1TA08413E/cit1/1) 2021; 639
Senthil (D1TA08413E/cit159/1) 2022; 64
Joshi (D1TA08413E/cit148/1) 2018; 810
Chen (D1TA08413E/cit210/1) 2021; 416
Ma (D1TA08413E/cit5/1) 2021; 602
Li (D1TA08413E/cit12/1) 2021; 40
Yue (D1TA08413E/cit172/1) 2019; 177
Yaghi (D1TA08413E/cit24/1) 1995; 117
Fan (D1TA08413E/cit111/1) 2012; 22
Efome (D1TA08413E/cit55/1) 2018; 10
Lei (D1TA08413E/cit123/1) 2019; 25
Shao (D1TA08413E/cit167/1) 2018; 10
Mai (D1TA08413E/cit63/1) 2022; 643
Zhu (D1TA08413E/cit4/1) 2019; 29
Jang (D1TA08413E/cit105/1) 2020; 10
Lv (D1TA08413E/cit2/1) 2021; 446
Yue (D1TA08413E/cit269/1) 2019; 177
Singh (D1TA08413E/cit136/1) 2021; 43
Li (D1TA08413E/cit138/1) 2018; 14
Li (D1TA08413E/cit278/1) 2017; 11
Bechelany (D1TA08413E/cit117/1) 2015; 7
Li (D1TA08413E/cit182/1) 2019; 443
Lee (D1TA08413E/cit72/1) 2022; 892
Dai (D1TA08413E/cit120/1) 2020; 8
Yan (D1TA08413E/cit37/1) 2021; 50
Zhang (D1TA08413E/cit107/1) 2018; 10
Lu (D1TA08413E/cit98/1) 2017; 56
Wang (D1TA08413E/cit94/1) 2018; 10
Zhou (D1TA08413E/cit133/1) 2017; 46
Chen (D1TA08413E/cit271/1) 2021; 14
Amini (D1TA08413E/cit76/1) 2020; 187
Wei (D1TA08413E/cit10/1) 2021; 17
Chen (D1TA08413E/cit16/1) 2020; 30
Zhao (D1TA08413E/cit151/1) 2019; 6
Li (D1TA08413E/cit230/1) 2015; 274
Razzaq (D1TA08413E/cit200/1) 2020; 8
Li (D1TA08413E/cit256/1) 2018; 136
Yahyapour (D1TA08413E/cit296/1) 2021; 32
Olivieri (D1TA08413E/cit224/1) 2018; 546
Zhou (D1TA08413E/cit113/1) 2015; 51
Dubal (D1TA08413E/cit137/1) 2018; 47
Liang (D1TA08413E/cit300/1) 2020; 8
Zeng (D1TA08413E/cit253/1) 2016; 8
Yang (D1TA08413E/cit47/1) 2021; 138
Yao (D1TA08413E/cit122/1) 2019; 30
Khajavian (D1TA08413E/cit288/1) 2020; 241
Gao (D1TA08413E/cit97/1) 2016; 6
Jin (D1TA08413E/cit48/1) 2020; 7
Moghadam (D1TA08413E/cit21/1) 2016; 4
Armstrong (D1TA08413E/cit89/1) 2016; 55
Liang (D1TA08413E/cit178/1) 2021; 878
Xie (D1TA08413E/cit130/1) 2021; 36
Yang (D1TA08413E/cit169/1) 2019; 58
Zhang (D1TA08413E/cit246/1) 2021; 13
Xu (D1TA08413E/cit293/1) 2012; 87
Zhou (D1TA08413E/cit193/1) 2021; 31
Zhao (D1TA08413E/cit175/1) 2018; 462
Guo (D1TA08413E/cit247/1) 2018; 272
Ubaidullah (D1TA08413E/cit15/1) 2021; 33
Xiao (D1TA08413E/cit190/1) 2018; 6
Wang (D1TA08413E/cit245/1) 2020; 217
Dou (D1TA08413E/cit281/1) 2021; 64
Zeng (D1TA08413E/cit220/1) 2018; 192
Cherusseri (D1TA08413E/cit144/1) 2020; 12
Zhang (D1TA08413E/cit85/1) 2016; 138
Li (D1TA08413E/cit102/1) 2019; 476
Salunkhe (D1TA08413E/cit132/1) 2017; 11
Mehrafza (D1TA08413E/cit249/1) 2018; 1
Guan (D1TA08413E/cit201/1) 2017; 29
Liao (D1TA08413E/cit265/1) 2021; 868
Zhang (D1TA08413E/cit250/1) 2019; 55
Senthil (D1TA08413E/cit9/1) 2021; 44
Suh (D1TA08413E/cit80/1) 2017; 121
Wang (D1TA08413E/cit286/1) 2018; 5
Zhao (D1TA08413E/cit87/1) 2021; 13
Bian (D1TA08413E/cit95/1) 2018; 6
Xu (D1TA08413E/cit20/1) 2021; 9
Sanchez-Gonzalez (D1TA08413E/cit22/1) 2018; 6
Khan (D1TA08413E/cit135/1) 2021; 41
Zhang (D1TA08413E/cit43/1) 2021; 421
Zhang (D1TA08413E/cit131/1) 2021; 57
Zhang (D1TA08413E/cit268/1) 2020; 380
Li (D1TA08413E/cit82/1) 2019; 546
Wang (D1TA08413E/cit218/1) 2019; 11
Zhang (D1TA08413E/cit242/1) 2021; 13
Zhao (D1TA08413E/cit96/1) 2019; 7
Tan (D1TA08413E/cit116/1) 2019; 31
Dai (D1TA08413E/cit7/1) 2019; 328
Hao (D1TA08413E/cit86/1) 2019; 11
Liu (D1TA08413E/cit50/1) 2017; 5
Li (D1TA08413E/cit101/1) 2018; 6
Zhou (D1TA08413E/cit100/1) 2014; 43
Jin (D1TA08413E/cit99/1) 2013; 42
Zhang (D1TA08413E/cit45/1) 2020; 55
Zhong (D1TA08413E/cit206/1) 2019; 142
Adhikari (D1TA08413E/cit60/1) 2018; 20
Tao (D1TA08413E/cit68/1) 2017; 41
Xu (D1TA08413E/cit173/1) 2018; 6
Awadallah-F (D1TA08413E/cit221/1) 2019; 2019
Laurila (D1TA08413E/cit112/1) 2015; 17
Dai (D1TA08413E/cit44/1) 2020; 3
Liang (D1TA08413E/cit70/1) 2018; 6
Wu (D1TA08413E/cit32/1) 2019; 2
Dwyer (D1TA08413E/cit74/1) 2018; 10
Su (D1TA08413E/cit284/1) 2018; 25
Yuan (D1TA08413E/cit301/1) 2021; 84
Zhao (D1TA08413E/cit197/1) 2021; 39
Wen (D1TA08413E/cit215/1) 2018; 201
Wang (D1TA08413E/cit285/1) 2019; 11
Gong (D1TA08413E/cit149/1) 2019; 11
Wu (D1TA08413E/cit233/1) 2018; 6
Yang (D1TA08413E/cit272/1) 2021; 382
Seo (D1TA08413E/cit240/1) 2020; 12
Amirzehni (D1TA08413E/cit61/1) 2020; 325
Wu (D1TA08413E/cit199/1) 2021; 317
Khodayari (D1TA08413E/cit39/1) 2021; 1655
Topuz (D1TA08413E/cit56/1) 2022; 424
Ye (D1TA08413E/cit75/1) 2020; 23
Bai (D1TA08413E/cit255/1) 2020; 31
Chen (D1TA08413E/cit235/1) 2020; 12
Li (D1TA08413E/cit38/1) 2021; 57
Nguyen (D1TA08413E/cit8/1) 2019; 378
Li (D1TA08413E/cit49/1) 2021; 56
Lu (D1TA08413E/cit79/1) 2018; 110
Wei (D1TA08413E/cit198/1) 2021; 47
Liu (D1TA08413E/cit211/1) 2021; 421
Feng (D1TA08413E/cit276/1) 2021; 365
Yang (D1TA08413E/cit11/1) 2020; 8
Dai (D1TA08413E/cit185/1) 2020; 3
Leus (D1TA08413E/cit252/1) 2018; 360
Zhang (D1TA08413E/cit53/1) 2019; 61
Zhao (D1TA08413E/cit258/1) 2019; 6
Chen (D1TA08413E/cit287/1) 2021; 416
Li (D1TA08413E/cit270/1) 2020; 531
Yilmaz (D1TA08413E/cit33/1) 2019; 6
Martinez (D1TA08413E/cit62/1) 2020; 32
Ibrahim (D1TA08413E/cit213/1) 2021; 333
Zhao (D1TA08413E/cit125/1) 2020; 303
Di (D1TA08413E/cit90/1) 2019; 7
Zhang (D1TA08413E/cit27/1) 2021; 36
Rose (D1TA08413E/cit78/1) 2011; 13
Zhou (D1TA08413E/cit157/1) 2018; 28
Lee (D1TA08413E/cit110/1) 2021; 332
Jiamjirangkul (D1TA08413E/cit223/1) 2020; 221
Zhang (D1TA08413E/cit222/1) 2019; 7
Tian (D1TA08413E/cit145/1) 2019; 413
Liu (D1TA08413E/cit155/1) 2018; 6
Ostermann (D1TA08413E/cit83/1) 2011; 47
Niu (D1TA08413E/cit196/1) 2021; 40
Niu (D1TA08413E/cit41/1) 2017; 114
Zhou (D1TA08413E/cit146/1) 2019; 13
Zhu (D1TA08413E/cit260/1) 2018; 13
Lai (D1TA08413E/cit126/1) 2016; 26
Guo (D1TA08413E/cit166/1) 2017; 199
Hasan (D1TA08413E/cit212/1) 2015; 283
Liu (D1TA08413E/cit139/1) 2020; 26
Dai (D1TA08413E/cit292/1) 2018; 3
Du (D1TA08413E/cit274/1) 2018; 14
Schulze (D1TA08413E/cit29/1) 2019; 5
Nie (D1TA08413E/cit59/1) 2020; 250
Chen (D1TA08413E/cit73/1) 2020; 27
Dwyer (D1TA08413E/cit119/1) 2018; 10
Kosasang (D1TA08413E/cit195/1) 2019; 155
Liu (D1TA08413E/cit248/1) 2017; 162
Joshi (D1TA08413E/cit259/1) 2018; 810
Rose (D1TA08413E/cit84/1) 2010; 13
Wang (D1TA08413E/cit121/1) 2018; 281
Li (D1TA08413E/cit51/1) 2021; 36
Cao (D1TA08413E/cit141/1) 2017; 46
Deng (D1TA08413E/cit52/1) 2020; 388
Wang (D1TA08413E/cit128/1) 2017; 53
Mohamed (D1TA08413E/cit14/1) 2021; 34
Mehtab (D1TA08413E/cit17/1) 2019; 21
Zhang (D1TA08413E/cit106/1) 2016; 3
Dai (D1TA08413E/cit254/1) 2018; 3
Choi (D1TA08413E/cit225/1) 2020; 296
Lu (D1TA08413E/cit261/1) 2021; 853
Sun (D1TA08413E/cit160/1) 2022; 64
Chen (D1TA08413E/cit154/1) 2017; 10
Bai (D1TA08413E/cit209/1) 2018; 2
Xu (D1TA08413E/cit232/1) 2018; 135
Peng (D1TA08413E/cit46/1) 2020; 188
Zhao (D1TA08413E/cit93/1) 2021; 9
Lee (D1TA08413E/cit192/1) 2021; 54
Keum (D1TA08413E/cit124/1) 2020; 32
Ge (D1TA08413E/cit180/1) 2020; 7
Zhao (D1TA08413E/cit118/1) 2016; 55
Ding (D1TA08413E/cit231/1) 2018; 3
Sui (D1TA08413E/cit67/1) 2017; 9
Liu (D1TA08413E/cit71/1) 2016; 8
Guo (D1TA08413E/cit65/1) 2021; 233
Lee (D1TA08413E/cit217/1) 2020; 578
Lange (D1TA08413E/cit297/1) 2014; 15
Zhang (D1TA08413E/cit229/1) 2018; 10
Mallakpour (D1TA08413E/cit92/1) 2021; 45
Song (D1TA08413E/cit54/1) 2022; 427
Wang (D1TA08413E/cit264/1) 2021; 17
Wu (D1TA08413E/cit36/1) 2021; 176
Zhu (D1TA08413E/cit267/1) 2021; 32
Zhu (D1TA08413E/cit34/1) 2019; 23
Chang (D1TA08413E/cit77/1) 2019; 30
Guo (D1TA08413E/cit66/1) 2017; 13
Senthilkumar (D1TA08413E/cit177/1) 2020; 480
Wang (D1TA08413E/cit179/1) 2021; 230
Zhou (D1TA08413E/cit3/1) 2021; 62
Hou (D1TA08413E/cit236/1) 2018; 35
Hadjiivanov (D1TA08413E/cit35/1) 2021; 121
Guo (D1TA08413E/cit81/1) 2019; 544
Liu (D1TA08413E/cit219/1) 2018; 6
Zhou (D1TA08413E/cit244/1) 2018; 6
Ibrahim (D1TA08413E/cit134/1) 2021; 43
Meng (D1TA08413E/cit103/1) 2021; 5
Aguesse (D1TA08413E/cit161/1) 2016; 336
An (D1TA08413E/cit191/1) 2021; 41
Jiang (D1TA08413E/ci
References_xml – volume: 47
  start-page: 25387
  year: 2021
  ident: D1TA08413E/cit198/1
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2021.05.261
– volume: 22
  start-page: 16971
  year: 2012
  ident: D1TA08413E/cit108/1
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm32570e
– volume: 20
  start-page: 29001
  year: 2018
  ident: D1TA08413E/cit60/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP05610B
– volume: 44
  start-page: 5666
  year: 2020
  ident: D1TA08413E/cit168/1
  publication-title: New J. Chem.
  doi: 10.1039/C9NJ05822B
– volume: 13
  start-page: 72
  year: 2018
  ident: D1TA08413E/cit260/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2017.12.027
– volume: 187
  start-page: 152
  year: 2020
  ident: D1TA08413E/cit76/1
  publication-title: Microchim. Acta
  doi: 10.1007/s00604-020-4112-3
– volume: 50
  start-page: 10567
  year: 2021
  ident: D1TA08413E/cit227/1
  publication-title: Dalton Trans.
  doi: 10.1039/D1DT01336J
– volume: 41
  start-page: 417
  year: 2017
  ident: D1TA08413E/cit68/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.09.055
– volume: 869
  start-page: 159348
  year: 2021
  ident: D1TA08413E/cit163/1
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2021.159348
– volume: 46
  start-page: 2660
  year: 2017
  ident: D1TA08413E/cit141/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00426A
– volume: 15
  start-page: 200
  year: 2014
  ident: D1TA08413E/cit297/1
  publication-title: Fibers Polym.
  doi: 10.1007/s12221-014-0200-5
– volume: 45
  start-page: 8409
  year: 2021
  ident: D1TA08413E/cit92/1
  publication-title: New J. Chem.
  doi: 10.1039/D1NJ01302E
– volume: 32
  start-page: 10628
  year: 2020
  ident: D1TA08413E/cit62/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.0c03796
– volume: 380
  start-page: 8
  year: 2020
  ident: D1TA08413E/cit268/1
  publication-title: Chem. Eng. J.
– volume: 10
  start-page: 1777
  year: 2017
  ident: D1TA08413E/cit257/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE00488E
– volume: 11
  start-page: 11904
  year: 2019
  ident: D1TA08413E/cit86/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b22415
– volume: 64
  start-page: 286
  year: 2022
  ident: D1TA08413E/cit159/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2021.04.060
– volume: 336
  start-page: 35
  year: 2016
  ident: D1TA08413E/cit162/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.10.053
– volume: 12
  start-page: 119
  year: 2017
  ident: D1TA08413E/cit114/1
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2017.08.001
– volume: 29
  start-page: 1703614
  year: 2017
  ident: D1TA08413E/cit201/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703614
– volume: 8
  start-page: 16747
  year: 2020
  ident: D1TA08413E/cit300/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA05100D
– volume: 250
  start-page: 116955
  year: 2020
  ident: D1TA08413E/cit59/1
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2020.116955
– volume: 87
  start-page: 20
  year: 2012
  ident: D1TA08413E/cit293/1
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2012.07.076
– volume: 22
  start-page: 25272
  year: 2012
  ident: D1TA08413E/cit111/1
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm35401b
– volume: 201
  start-page: 627
  year: 2018
  ident: D1TA08413E/cit215/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.03.047
– volume: 36
  start-page: 322
  year: 2021
  ident: D1TA08413E/cit27/1
  publication-title: N. Carbon Mater.
  doi: 10.1016/S1872-5805(21)60022-7
– volume: 3
  start-page: 6860
  year: 2018
  ident: D1TA08413E/cit254/1
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b00792
– volume: 7
  start-page: 23280
  year: 2019
  ident: D1TA08413E/cit181/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA05239A
– volume: 31
  start-page: 2107136
  year: 2021
  ident: D1TA08413E/cit193/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202107136
– volume: 6
  start-page: 24756
  year: 2018
  ident: D1TA08413E/cit173/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA09394F
– volume: 32
  start-page: 3180
  year: 2021
  ident: D1TA08413E/cit296/1
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 855
  start-page: 113615
  year: 2019
  ident: D1TA08413E/cit6/1
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2019.113615
– volume: 480
  start-page: 228856
  year: 2020
  ident: D1TA08413E/cit176/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.228856
– volume: 520
  start-page: 115338
  year: 2021
  ident: D1TA08413E/cit234/1
  publication-title: Desalination
  doi: 10.1016/j.desal.2021.115338
– volume: 42
  start-page: 1903
  year: 2021
  ident: D1TA08413E/cit30/1
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(21)63841-X
– volume: 36
  start-page: 56
  year: 2021
  ident: D1TA08413E/cit130/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.12.011
– volume: 544
  start-page: 112
  year: 2019
  ident: D1TA08413E/cit81/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.02.084
– volume: 192
  start-page: 94
  year: 2018
  ident: D1TA08413E/cit220/1
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2018.07.025
– volume: 11
  start-page: 17782
  year: 2019
  ident: D1TA08413E/cit285/1
  publication-title: Nanoscale
  doi: 10.1039/C9NR05795A
– volume: 3
  start-page: 12378
  year: 2020
  ident: D1TA08413E/cit44/1
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c02379
– volume: 9
  start-page: 32248
  year: 2017
  ident: D1TA08413E/cit298/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b09209
– volume: 13
  start-page: 39976
  year: 2021
  ident: D1TA08413E/cit242/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c12751
– volume: 578
  start-page: 155
  year: 2020
  ident: D1TA08413E/cit217/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.05.113
– volume: 17
  start-page: 2102349
  year: 2021
  ident: D1TA08413E/cit170/1
  publication-title: Small
  doi: 10.1002/smll.202102349
– volume: 378
  start-page: 122150
  year: 2019
  ident: D1TA08413E/cit8/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122150
– volume: 9
  start-page: 13632
  year: 2017
  ident: D1TA08413E/cit243/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b01621
– volume: 1655
  start-page: 462484
  year: 2021
  ident: D1TA08413E/cit39/1
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2021.462484
– volume: 51
  start-page: 2706
  year: 2015
  ident: D1TA08413E/cit113/1
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC08796H
– volume: 2019
  start-page: 6130152
  year: 2019
  ident: D1TA08413E/cit221/1
  publication-title: J. Nanomater.
  doi: 10.1155/2019/6130152
– volume: 30
  start-page: 1009
  year: 2019
  ident: D1TA08413E/cit115/1
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 10
  start-page: 25794
  year: 2018
  ident: D1TA08413E/cit119/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b08167
– volume: 172
  start-page: 283
  year: 2021
  ident: D1TA08413E/cit204/1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.10.033
– volume: 110
  start-page: 23
  year: 2018
  ident: D1TA08413E/cit79/1
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2018.02.027
– volume: 26
  start-page: 145
  year: 2019
  ident: D1TA08413E/cit109/1
  publication-title: J. Polym. Res.
  doi: 10.1007/s10965-019-1806-5
– volume: 58
  start-page: 392
  year: 2019
  ident: D1TA08413E/cit169/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.01.064
– volume: 581
  start-page: 252
  year: 2019
  ident: D1TA08413E/cit283/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2019.03.075
– volume: 13
  start-page: 9578
  year: 2019
  ident: D1TA08413E/cit146/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b04670
– volume: 23
  start-page: 757
  year: 2019
  ident: D1TA08413E/cit34/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.05.022
– volume: 325
  start-page: 128768
  year: 2020
  ident: D1TA08413E/cit61/1
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2020.128768
– volume: 137
  start-page: 13756
  year: 2015
  ident: D1TA08413E/cit280/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b08752
– volume: 31
  start-page: 1808338
  year: 2019
  ident: D1TA08413E/cit273/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201808338
– volume: 1
  start-page: 7
  year: 2018
  ident: D1TA08413E/cit249/1
  publication-title: Sep. Sci. plus
  doi: 10.1002/sscp.201800030
– volume: 33
  start-page: 102032
  year: 2021
  ident: D1TA08413E/cit142/1
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2020.102032
– volume: 230
  start-page: 124038
  year: 2021
  ident: D1TA08413E/cit179/1
  publication-title: Polymer
  doi: 10.1016/j.polymer.2021.124038
– volume: 61
  start-page: 104
  year: 2019
  ident: D1TA08413E/cit53/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.04.045
– volume: 7
  start-page: 9040
  year: 2019
  ident: D1TA08413E/cit147/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA12246F
– volume: 853
  start-page: 7
  year: 2021
  ident: D1TA08413E/cit261/1
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.157271
– volume: 12
  start-page: 39227
  year: 2020
  ident: D1TA08413E/cit235/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c10290
– volume: 55
  start-page: 15275
  year: 2020
  ident: D1TA08413E/cit45/1
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-020-05066-8
– volume: 17
  start-page: 2102349
  year: 2021
  ident: D1TA08413E/cit264/1
  publication-title: Small
  doi: 10.1002/smll.202102349
– volume: 6
  start-page: 24949
  year: 2018
  ident: D1TA08413E/cit219/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA10541C
– volume: 7
  start-page: 27560
  year: 2019
  ident: D1TA08413E/cit222/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA09928J
– volume: 3
  start-page: 12378
  year: 2020
  ident: D1TA08413E/cit185/1
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c02379
– volume: 879
  start-page: 114804
  year: 2020
  ident: D1TA08413E/cit58/1
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2020.114804
– volume: 330
  start-page: 262
  year: 2017
  ident: D1TA08413E/cit289/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.07.156
– volume: 427
  start-page: 130913
  year: 2022
  ident: D1TA08413E/cit54/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.130913
– volume: 7
  start-page: 7716
  year: 2019
  ident: D1TA08413E/cit90/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b06447
– volume: 25
  start-page: 100898
  year: 2019
  ident: D1TA08413E/cit123/1
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2019.100898
– volume: 177
  start-page: 9
  year: 2019
  ident: D1TA08413E/cit269/1
  publication-title: Composites, Part B
  doi: 10.1016/j.compositesb.2019.107400
– volume: 388
  start-page: 124241
  year: 2020
  ident: D1TA08413E/cit52/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124241
– volume: 44
  start-page: 103263
  year: 2021
  ident: D1TA08413E/cit9/1
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2021.103263
– volume: 32
  start-page: 10
  year: 2021
  ident: D1TA08413E/cit267/1
  publication-title: Nanotechnology
– volume: 13
  start-page: 755
  year: 2021
  ident: D1TA08413E/cit87/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c20404
– volume: 233
  start-page: 122542
  year: 2021
  ident: D1TA08413E/cit65/1
  publication-title: Talanta
  doi: 10.1016/j.talanta.2021.122542
– volume: 47
  start-page: 221
  year: 2020
  ident: D1TA08413E/cit262/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2019.10.028
– volume: 50
  start-page: 2342
  year: 2021
  ident: D1TA08413E/cit37/1
  publication-title: Dalton Trans.
  doi: 10.1039/D0DT03844J
– volume: 272
  start-page: 185
  year: 2018
  ident: D1TA08413E/cit247/1
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2018.05.161
– volume: 380
  start-page: 122548
  year: 2020
  ident: D1TA08413E/cit171/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122548
– volume: 5
  start-page: 6
  year: 2018
  ident: D1TA08413E/cit286/1
  publication-title: Mater. Res. Express
– volume: 337
  start-page: 125358
  year: 2021
  ident: D1TA08413E/cit208/1
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2021.125358
– volume: 47
  start-page: 2065
  year: 2018
  ident: D1TA08413E/cit137/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00505A
– volume: 878
  start-page: 160445
  year: 2021
  ident: D1TA08413E/cit178/1
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2021.160445
– volume: 30
  start-page: 1009
  year: 2019
  ident: D1TA08413E/cit77/1
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 10
  start-page: 34802
  year: 2018
  ident: D1TA08413E/cit107/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b14197
– volume: 23
  start-page: 100862
  year: 2020
  ident: D1TA08413E/cit75/1
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2019.100862
– volume: 296
  start-page: 110006
  year: 2020
  ident: D1TA08413E/cit225/1
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2020.110006
– volume: 12
  start-page: 17649
  year: 2020
  ident: D1TA08413E/cit144/1
  publication-title: Nanoscale
  doi: 10.1039/D0NR03549A
– volume: 39
  start-page: 102611
  year: 2021
  ident: D1TA08413E/cit197/1
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2021.102611
– volume: 34
  start-page: 102179
  year: 2021
  ident: D1TA08413E/cit13/1
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2020.102179
– volume: 64
  start-page: 372
  year: 2022
  ident: D1TA08413E/cit187/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2021.05.001
– volume: 10
  start-page: 24164
  year: 2018
  ident: D1TA08413E/cit94/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b07826
– volume: 84
  start-page: 105928
  year: 2021
  ident: D1TA08413E/cit301/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.105928
– volume: 61
  start-page: 104
  year: 2019
  ident: D1TA08413E/cit183/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.04.045
– volume: 14
  start-page: 1704435
  year: 2018
  ident: D1TA08413E/cit138/1
  publication-title: Small
  doi: 10.1002/smll.201704435
– volume: 371
  start-page: 657
  year: 2019
  ident: D1TA08413E/cit153/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.04.065
– volume: 6
  start-page: 7078
  year: 2016
  ident: D1TA08413E/cit97/1
  publication-title: RSC Adv.
  doi: 10.1039/C5RA23147G
– volume: 12
  start-page: 32778
  year: 2020
  ident: D1TA08413E/cit240/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c08276
– volume: 6
  start-page: 334
  year: 2018
  ident: D1TA08413E/cit70/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA08210J
– volume: 7
  start-page: 5794
  year: 2015
  ident: D1TA08413E/cit117/1
  publication-title: Nanoscale
  doi: 10.1039/C4NR06640E
– volume: 64
  start-page: 1742
  year: 2021
  ident: D1TA08413E/cit281/1
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-020-1575-2
– volume: 41
  start-page: 8748
  year: 2017
  ident: D1TA08413E/cit241/1
  publication-title: New J. Chem.
  doi: 10.1039/C7NJ00525C
– volume: 10
  start-page: 195
  year: 2020
  ident: D1TA08413E/cit105/1
  publication-title: Catalysts
  doi: 10.3390/catal10020195
– volume: 303
  start-page: 110257
  year: 2020
  ident: D1TA08413E/cit125/1
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2020.110257
– volume: 138
  start-page: 50431
  year: 2021
  ident: D1TA08413E/cit47/1
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.50431
– volume: 142
  start-page: 379
  year: 2019
  ident: D1TA08413E/cit127/1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.10.064
– volume: 41
  start-page: 354
  year: 2021
  ident: D1TA08413E/cit191/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2021.06.010
– volume: 31
  start-page: 191
  year: 2019
  ident: D1TA08413E/cit25/1
  publication-title: Prog. Chem.
– volume: 217
  start-page: 121010
  year: 2020
  ident: D1TA08413E/cit245/1
  publication-title: Talanta
  doi: 10.1016/j.talanta.2020.121010
– volume: 7
  start-page: 22559
  year: 2019
  ident: D1TA08413E/cit96/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA04664J
– volume: 897
  start-page: 8
  year: 2021
  ident: D1TA08413E/cit277/1
  publication-title: J. Electroanal. Chem.
– volume: 446
  start-page: 214011
  year: 2021
  ident: D1TA08413E/cit2/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2021.214011
– volume: 328
  start-page: 135103
  year: 2019
  ident: D1TA08413E/cit7/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.135103
– volume: 138
  start-page: 5785
  year: 2016
  ident: D1TA08413E/cit85/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b02553
– volume: 31
  start-page: 2006771
  year: 2021
  ident: D1TA08413E/cit205/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202006771
– volume: 237
  start-page: 116360
  year: 2020
  ident: D1TA08413E/cit238/1
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2019.116360
– volume: 8
  start-page: 3803
  year: 2020
  ident: D1TA08413E/cit120/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA11701F
– volume: 416
  start-page: 129112
  year: 2021
  ident: D1TA08413E/cit210/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.129112
– volume: 643
  start-page: 120045
  year: 2022
  ident: D1TA08413E/cit63/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2021.120045
– volume: 423
  start-page: 130184
  year: 2021
  ident: D1TA08413E/cit64/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.130184
– volume: 55
  start-page: 226
  year: 2019
  ident: D1TA08413E/cit250/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.10.029
– volume: 46
  start-page: 19106
  year: 2021
  ident: D1TA08413E/cit299/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.03.033
– volume: 360
  start-page: 81
  year: 2018
  ident: D1TA08413E/cit252/1
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2018.01.018
– volume: 117
  start-page: 10401
  year: 1995
  ident: D1TA08413E/cit24/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00146a033
– volume: 47
  start-page: 442
  year: 2011
  ident: D1TA08413E/cit83/1
  publication-title: Chem. Commun.
  doi: 10.1039/C0CC02271C
– volume: 408
  start-page: 28
  year: 2018
  ident: D1TA08413E/cit174/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.10.038
– volume: 247
  start-page: 116731
  year: 2020
  ident: D1TA08413E/cit239/1
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2020.116731
– volume: 136
  start-page: 176
  year: 2018
  ident: D1TA08413E/cit256/1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.04.075
– volume: 241
  start-page: 116759
  year: 2020
  ident: D1TA08413E/cit288/1
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2020.116759
– volume: 317
  start-page: 111000
  year: 2021
  ident: D1TA08413E/cit199/1
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2021.111000
– volume: 53
  start-page: 1751
  year: 2017
  ident: D1TA08413E/cit128/1
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC09832K
– volume: 6
  start-page: 18543
  year: 2018
  ident: D1TA08413E/cit233/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA01861H
– volume: 9
  start-page: 14868
  year: 2021
  ident: D1TA08413E/cit19/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA02169A
– volume: 13
  start-page: 356
  year: 2011
  ident: D1TA08413E/cit78/1
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.201000246
– volume: 43
  start-page: 103304
  year: 2021
  ident: D1TA08413E/cit134/1
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2021.103304
– volume: 6
  start-page: 21676
  year: 2018
  ident: D1TA08413E/cit190/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA02820F
– volume: 255
  start-page: 127010
  year: 2020
  ident: D1TA08413E/cit290/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.127010
– volume: 142
  start-page: 115
  year: 2019
  ident: D1TA08413E/cit206/1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.10.040
– volume: 32
  start-page: 14
  year: 2020
  ident: D1TA08413E/cit207/1
  publication-title: Adv. Mater.
– volume: 421
  start-page: 129748
  year: 2021
  ident: D1TA08413E/cit43/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.129748
– volume: 26
  start-page: 8334
  year: 2016
  ident: D1TA08413E/cit126/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201603607
– volume: 11
  start-page: 17782
  year: 2019
  ident: D1TA08413E/cit218/1
  publication-title: Nanoscale
  doi: 10.1039/C9NR05795A
– volume: 33
  start-page: 102125
  year: 2021
  ident: D1TA08413E/cit15/1
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2020.102125
– volume: 476
  start-page: 61
  year: 2019
  ident: D1TA08413E/cit102/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.01.064
– volume: 46
  start-page: 6927
  year: 2017
  ident: D1TA08413E/cit133/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00283A
– volume: 54
  start-page: 3390
  year: 2021
  ident: D1TA08413E/cit192/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.1c00333
– volume: 114
  start-page: 250
  year: 2017
  ident: D1TA08413E/cit41/1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.12.016
– volume: 14
  start-page: 8
  year: 2018
  ident: D1TA08413E/cit274/1
  publication-title: Small
– volume: 868
  start-page: 11
  year: 2021
  ident: D1TA08413E/cit265/1
  publication-title: J. Alloys Compd.
– volume: 35
  start-page: 12884
  year: 2021
  ident: D1TA08413E/cit26/1
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.1c01722
– volume: 106
  start-page: 100579
  year: 2019
  ident: D1TA08413E/cit31/1
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2019.100579
– volume: 259
  start-page: 217369
  year: 2020
  ident: D1TA08413E/cit214/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.127369
– volume: 55
  start-page: 13224
  year: 2016
  ident: D1TA08413E/cit118/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201606656
– volume: 64
  start-page: 1742
  year: 2021
  ident: D1TA08413E/cit228/1
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-020-1575-2
– volume: 8
  start-page: 20274
  year: 2016
  ident: D1TA08413E/cit253/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b05746
– volume: 62
  start-page: 27
  year: 2021
  ident: D1TA08413E/cit3/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2021.03.002
– volume: 443
  start-page: 227262
  year: 2019
  ident: D1TA08413E/cit182/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.227262
– volume: 283
  start-page: 329
  year: 2015
  ident: D1TA08413E/cit212/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2014.09.046
– volume: 9
  start-page: 43171
  year: 2017
  ident: D1TA08413E/cit67/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b15315
– volume: 10
  start-page: 1777
  year: 2017
  ident: D1TA08413E/cit154/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE00488E
– volume: 12
  start-page: 1280
  year: 2020
  ident: D1TA08413E/cit152/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b16420
– volume: 26
  start-page: 1
  year: 2020
  ident: D1TA08413E/cit139/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.12.019
– volume: 10
  start-page: 33097
  year: 2018
  ident: D1TA08413E/cit167/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b10110
– volume: 13
  start-page: 1702049
  year: 2017
  ident: D1TA08413E/cit66/1
  publication-title: Small
  doi: 10.1002/smll.201702049
– volume: 333
  start-page: 115593
  year: 2021
  ident: D1TA08413E/cit213/1
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2021.115593
– volume: 281
  start-page: 582
  year: 2018
  ident: D1TA08413E/cit121/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.06.002
– volume: 6
  start-page: 1824
  year: 2019
  ident: D1TA08413E/cit151/1
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C9QI00390H
– volume: 408
  start-page: 82
  year: 2018
  ident: D1TA08413E/cit156/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.10.080
– volume: 417
  start-page: 129200
  year: 2021
  ident: D1TA08413E/cit40/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.129200
– volume: 40
  start-page: 102659
  year: 2021
  ident: D1TA08413E/cit196/1
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2021.102659
– volume: 34
  start-page: 102195
  year: 2021
  ident: D1TA08413E/cit14/1
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2020.102195
– volume: 28
  start-page: 4317
  year: 2021
  ident: D1TA08413E/cit282/1
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-020-10746-8
– volume: 9
  start-page: 11
  year: 2021
  ident: D1TA08413E/cit266/1
  publication-title: Front. Chem.
– volume: 17
  start-page: 2102893
  year: 2021
  ident: D1TA08413E/cit164/1
  publication-title: Small
  doi: 10.1002/smll.202102893
– volume: 274
  start-page: 238
  year: 2015
  ident: D1TA08413E/cit230/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.03.127
– volume: 270
  start-page: 34
  year: 2018
  ident: D1TA08413E/cit69/1
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2018.05.004
– volume: 8
  start-page: 10509
  year: 2018
  ident: D1TA08413E/cit294/1
  publication-title: RSC Adv.
  doi: 10.1039/C8RA01260A
– volume: 323
  start-page: 12
  year: 2021
  ident: D1TA08413E/cit226/1
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2021.111233
– volume: 9
  start-page: 11853
  year: 2021
  ident: D1TA08413E/cit20/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA01736E
– volume: 40
  start-page: 9382
  year: 2015
  ident: D1TA08413E/cit279/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.05.088
– volume: 121
  start-page: 24444
  year: 2017
  ident: D1TA08413E/cit80/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b08239
– volume: 4
  start-page: 529
  year: 2016
  ident: D1TA08413E/cit21/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA06472D
– volume: 31
  start-page: 980
  year: 2019
  ident: D1TA08413E/cit116/1
  publication-title: Prog. Chem.
– volume: 31
  start-page: 9
  year: 2020
  ident: D1TA08413E/cit255/1
  publication-title: Nanotechnology
– volume: 602
  start-page: 627
  year: 2021
  ident: D1TA08413E/cit5/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.06.027
– volume: 8
  start-page: 25316
  year: 2020
  ident: D1TA08413E/cit11/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA08976A
– volume: 365
  start-page: 8
  year: 2021
  ident: D1TA08413E/cit276/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2020.137344
– volume: 6
  start-page: 1901129
  year: 2019
  ident: D1TA08413E/cit33/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201901129
– volume: 5
  start-page: 1159
  year: 2019
  ident: D1TA08413E/cit29/1
  publication-title: Chemnanomat
  doi: 10.1002/cnma.201900110
– volume: 41
  start-page: 102999
  year: 2021
  ident: D1TA08413E/cit135/1
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2021.102999
– volume: 480
  start-page: 228794
  year: 2020
  ident: D1TA08413E/cit177/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.228794
– volume: 11
  start-page: 2492
  year: 2019
  ident: D1TA08413E/cit149/1
  publication-title: Nanoscale
  doi: 10.1039/C8NR09454C
– volume: 301
  start-page: 113908
  year: 2022
  ident: D1TA08413E/cit91/1
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2021.113908
– volume: 9
  start-page: 11961
  year: 2021
  ident: D1TA08413E/cit18/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA01407B
– volume: 8
  start-page: 1298
  year: 2020
  ident: D1TA08413E/cit200/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA11390H
– volume: 336
  start-page: 186
  year: 2016
  ident: D1TA08413E/cit161/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.10.067
– volume: 639
  start-page: 119742
  year: 2021
  ident: D1TA08413E/cit1/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2021.119742
– volume: 3
  start-page: 896
  year: 2016
  ident: D1TA08413E/cit106/1
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C6QI00042H
– volume: 35
  start-page: 1700438
  year: 2018
  ident: D1TA08413E/cit236/1
  publication-title: Part. Part. Syst. Charact.
  doi: 10.1002/ppsc.201700438
– volume: 36
  start-page: 117
  year: 2021
  ident: D1TA08413E/cit104/1
  publication-title: N. Carbon Mater.
  doi: 10.1016/S1872-5805(21)60009-4
– volume: 20
  start-page: 2070
  year: 2019
  ident: D1TA08413E/cit291/1
  publication-title: Fibers Polym.
  doi: 10.1007/s12221-019-1196-7
– volume: 2
  start-page: 1800049
  year: 2018
  ident: D1TA08413E/cit209/1
  publication-title: Small Methods
  doi: 10.1002/smtd.201800049
– volume: 13
  start-page: 39976
  year: 2021
  ident: D1TA08413E/cit246/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c12751
– volume: 15
  start-page: 1900015
  year: 2019
  ident: D1TA08413E/cit186/1
  publication-title: Small
  doi: 10.1002/smll.201900015
– volume: 56
  start-page: 14502
  year: 2017
  ident: D1TA08413E/cit98/1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.7b04202
– volume: 3
  start-page: 1800135
  year: 2018
  ident: D1TA08413E/cit231/1
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201800135
– volume: 11
  start-page: 11417
  year: 2017
  ident: D1TA08413E/cit278/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b06061
– volume: 2
  start-page: 251
  year: 2019
  ident: D1TA08413E/cit32/1
  publication-title: Energy Environ. Mater.
  doi: 10.1002/eem2.12051
– volume: 6
  start-page: 3402
  year: 2018
  ident: D1TA08413E/cit101/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA06924C
– volume: 6
  start-page: 12298
  year: 2018
  ident: D1TA08413E/cit244/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA01286E
– volume: 6
  start-page: 1824
  year: 2019
  ident: D1TA08413E/cit258/1
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C9QI00390H
– volume: 336
  start-page: 115
  year: 2016
  ident: D1TA08413E/cit194/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.10.063
– volume: 332
  start-page: 8
  year: 2021
  ident: D1TA08413E/cit110/1
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2021.129520
– volume: 9
  start-page: 15586
  year: 2021
  ident: D1TA08413E/cit202/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA03362J
– volume: 40
  start-page: 2657
  year: 2021
  ident: D1TA08413E/cit12/1
  publication-title: Rare Met.
  doi: 10.1007/s12598-020-01694-w
– volume: 36
  start-page: 592
  year: 2021
  ident: D1TA08413E/cit51/1
  publication-title: J. Inorg. Mater.
  doi: 10.15541/jim20200266
– volume: 27
  start-page: 69
  year: 2020
  ident: D1TA08413E/cit73/1
  publication-title: J. Polym. Res.
  doi: 10.1007/s10965-020-2035-7
– volume: 420
  start-page: 213438
  year: 2020
  ident: D1TA08413E/cit140/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2020.213438
– volume: 221
  start-page: 115650
  year: 2020
  ident: D1TA08413E/cit223/1
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2020.115650
– volume: 3
  start-page: 6860
  year: 2018
  ident: D1TA08413E/cit292/1
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b00792
– volume: 8
  start-page: 2552
  year: 2016
  ident: D1TA08413E/cit71/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b10078
– volume: 6
  start-page: 15807
  year: 2018
  ident: D1TA08413E/cit95/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA04539A
– volume: 382
  start-page: 11
  year: 2021
  ident: D1TA08413E/cit272/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2021.138346
– volume: 25
  start-page: 1997
  year: 2018
  ident: D1TA08413E/cit284/1
  publication-title: Cellulose
  doi: 10.1007/s10570-018-1696-4
– volume: 10
  start-page: 34802
  year: 2018
  ident: D1TA08413E/cit229/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b14197
– volume: 810
  start-page: 151961
  year: 2019
  ident: D1TA08413E/cit28/1
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.151961
– volume: 890
  start-page: 9
  year: 2022
  ident: D1TA08413E/cit263/1
  publication-title: J. Alloys Compd.
– volume: 28
  start-page: 1804629
  year: 2018
  ident: D1TA08413E/cit157/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201804629
– volume: 10
  start-page: 18619
  year: 2018
  ident: D1TA08413E/cit55/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b01454
– volume: 6
  start-page: 24702
  year: 2018
  ident: D1TA08413E/cit155/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA08562E
– volume: 40
  start-page: 3375
  year: 2021
  ident: D1TA08413E/cit203/1
  publication-title: Rare Met.
  doi: 10.1007/s12598-021-01735-y
– volume: 6
  start-page: 1690016909
  year: 2018
  ident: D1TA08413E/cit22/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA05400B
– volume: 462
  start-page: 337
  year: 2018
  ident: D1TA08413E/cit175/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.08.110
– volume: 413
  start-page: 50
  year: 2019
  ident: D1TA08413E/cit145/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.12.014
– volume: 64
  start-page: 463
  year: 2022
  ident: D1TA08413E/cit158/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2021.04.043
– volume: 3
  start-page: 191
  year: 2018
  ident: D1TA08413E/cit216/1
  publication-title: Green Energy Environ.
  doi: 10.1016/j.gee.2018.03.001
– volume: 162
  start-page: 261
  year: 2017
  ident: D1TA08413E/cit248/1
  publication-title: Talanta
  doi: 10.1016/j.talanta.2016.09.065
– volume: 56
  start-page: 10745
  year: 2021
  ident: D1TA08413E/cit49/1
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-021-05939-6
– volume: 176
  start-page: 88
  year: 2021
  ident: D1TA08413E/cit36/1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2021.01.124
– volume: 30
  start-page: 085404
  year: 2019
  ident: D1TA08413E/cit122/1
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aaf520
– volume: 6
  start-page: 23127
  year: 2018
  ident: D1TA08413E/cit189/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA07220E
– volume: 11
  start-page: 5293
  year: 2017
  ident: D1TA08413E/cit132/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b02796
– volume: 7
  start-page: 1901651
  year: 2020
  ident: D1TA08413E/cit180/1
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201901651
– volume: 416
  start-page: 126101
  year: 2021
  ident: D1TA08413E/cit287/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.126101
– volume: 7
  start-page: 20
  year: 2020
  ident: D1TA08413E/cit48/1
  publication-title: AATCC J. Res.
  doi: 10.14504/ajr.7.3.4
– volume: 5
  start-page: 1211
  year: 2017
  ident: D1TA08413E/cit50/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA09193H
– volume: 135
  start-page: 46462
  year: 2018
  ident: D1TA08413E/cit232/1
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.46462
– volume: 810
  start-page: 239
  year: 2018
  ident: D1TA08413E/cit259/1
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2018.01.012
– volume: 2
  start-page: 299
  year: 2017
  ident: D1TA08413E/cit275/1
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.01.005
– volume: 30
  start-page: 101525
  year: 2020
  ident: D1TA08413E/cit16/1
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2020.101525
– volume: 155
  start-page: 553
  year: 2019
  ident: D1TA08413E/cit195/1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.09.027
– volume: 531
  start-page: 10
  year: 2020
  ident: D1TA08413E/cit270/1
  publication-title: Appl. Surf. Sci.
– volume: 38
  start-page: 2101001
  year: 2022
  ident: D1TA08413E/cit188/1
  publication-title: Acta Phys.-Chim. Sin.
– volume: 199
  start-page: 101
  year: 2017
  ident: D1TA08413E/cit166/1
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2017.04.069
– volume: 55
  start-page: 9944
  year: 2016
  ident: D1TA08413E/cit89/1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.6b02479
– volume: 13
  start-page: 4
  year: 2010
  ident: D1TA08413E/cit84/1
  publication-title: Adv. Eng. Mater.
– volume: 177
  start-page: 107400
  year: 2019
  ident: D1TA08413E/cit172/1
  publication-title: Composites, Part B
  doi: 10.1016/j.compositesb.2019.107400
– volume: 392
  start-page: 123734
  year: 2020
  ident: D1TA08413E/cit251/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123734
– volume: 546
  start-page: 231
  year: 2019
  ident: D1TA08413E/cit82/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.03.079
– volume: 21
  start-page: 632
  year: 2019
  ident: D1TA08413E/cit17/1
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2018.12.025
– volume: 42
  start-page: 3936
  year: 2013
  ident: D1TA08413E/cit99/1
  publication-title: Dalton Trans.
  doi: 10.1039/c2dt32161k
– volume: 30
  start-page: 13
  year: 2019
  ident: D1TA08413E/cit150/1
  publication-title: Nanotechnology
– volume: 43
  start-page: 6684
  year: 2014
  ident: D1TA08413E/cit100/1
  publication-title: Dalton Trans.
  doi: 10.1039/c4dt00023d
– volume: 14
  start-page: 1465
  year: 2021
  ident: D1TA08413E/cit271/1
  publication-title: Nano Res.
  doi: 10.1007/s12274-020-3203-0
– volume: 9
  start-page: 3729
  year: 2021
  ident: D1TA08413E/cit93/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA11014K
– volume: 43
  start-page: 103301
  year: 2021
  ident: D1TA08413E/cit136/1
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2021.103301
– volume: 368
  start-page: 10
  year: 2019
  ident: D1TA08413E/cit237/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.01.024
– volume: 14
  start-page: 3130
  year: 2021
  ident: D1TA08413E/cit165/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE00087J
– volume: 892
  start-page: 162191
  year: 2022
  ident: D1TA08413E/cit72/1
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2021.162191
– volume: 17
  start-page: 2007062
  year: 2021
  ident: D1TA08413E/cit10/1
  publication-title: Small
  doi: 10.1002/smll.202007062
– volume: 810
  start-page: 239
  year: 2018
  ident: D1TA08413E/cit148/1
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2018.01.012
– volume: 32
  start-page: 7941
  year: 2020
  ident: D1TA08413E/cit124/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.0c02782
– volume: 82
  start-page: 68
  year: 2017
  ident: D1TA08413E/cit88/1
  publication-title: Inorg. Chem. Commun.
  doi: 10.1016/j.inoche.2017.05.021
– volume: 17
  start-page: 1282
  year: 2015
  ident: D1TA08413E/cit112/1
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.201400565
– volume: 421
  start-page: 127813
  year: 2021
  ident: D1TA08413E/cit211/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.127813
– volume: 424
  start-page: 127347
  year: 2022
  ident: D1TA08413E/cit56/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.127347
– volume: 50
  start-page: 1813
  year: 2021
  ident: D1TA08413E/cit129/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00793E
– volume: 5
  start-page: 2649
  year: 2021
  ident: D1TA08413E/cit103/1
  publication-title: Mater. Chem. Front.
  doi: 10.1039/D0QM00878H
– volume: 188
  start-page: 109742
  year: 2020
  ident: D1TA08413E/cit46/1
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2020.109742
– volume: 57
  start-page: 378
  year: 2021
  ident: D1TA08413E/cit131/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.09.015
– volume: 43
  start-page: 3913
  year: 2019
  ident: D1TA08413E/cit295/1
  publication-title: New J. Chem.
  doi: 10.1039/C9NJ00417C
– volume: 10
  start-page: 34585
  year: 2018
  ident: D1TA08413E/cit74/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b11290
– volume: 121
  start-page: 1286
  year: 2021
  ident: D1TA08413E/cit35/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00487
– volume: 57
  start-page: 469
  year: 2021
  ident: D1TA08413E/cit38/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.03.024
– volume: 29
  start-page: 100796
  year: 2019
  ident: D1TA08413E/cit4/1
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2019.100796
– volume: 17
  start-page: 275
  year: 2021
  ident: D1TA08413E/cit143/1
  publication-title: Curr. Anal. Chem.
  doi: 10.2174/1573411016999200525003250
– volume: 546
  start-page: 128
  year: 2018
  ident: D1TA08413E/cit224/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2017.10.019
– volume: 984
  start-page: 42
  year: 2017
  ident: D1TA08413E/cit42/1
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2017.05.035
– volume: 64
  start-page: 442
  year: 2022
  ident: D1TA08413E/cit160/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2021.05.010
– volume: 531
  start-page: 147290
  year: 2020
  ident: D1TA08413E/cit184/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.147290
– volume: 5
  start-page: 23898
  year: 2017
  ident: D1TA08413E/cit57/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA08166A
– volume: 8
  start-page: 12398
  year: 2020
  ident: D1TA08413E/cit23/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA00537A
SSID ssj0000800699
Score 2.5581598
SecondaryResourceType review_article
Snippet In recent years, a great deal of investigation has been performed based on the study of metal-organic frameworks (MOFs) combined with other materials, in order...
In recent years, a great deal of investigation has been performed based on the study of metal–organic frameworks (MOFs) combined with other materials, in order...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1642
SubjectTerms chemistry
coordination polymers
Electrospinning
energy
Energy conservation
Energy storage
Environmental protection
Fabrication
Functional materials
Metal-organic frameworks
Nanofibers
natural resources conservation
Porous materials
Title Electrospun metal-organic framework based nanofibers for energy storage and environmental applications: current approaches and challenges
URI https://www.proquest.com/docview/2622602679
https://www.proquest.com/docview/2636442865
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa27QUOiFfF0oKM4IJWKU7szYPbChYV1HLaSqteVrbjsJWqbNXdHOg_6N_ilzFjJ45XtBJwiaLYeSjfl5nxZB6EvMsBVM2zKtJMqEjIMY-UxpL7IC9LOEOnNkns9Ht6fCa-zcfzweBXELXUbNSRvrkzr-R_UIVjgCtmyf4Dsv6icAD2AV_YAsKw_SuMp66HzfqqqbEVtLyMXJMmPaq6mKsRqqlyVMsa7qQwW9fW-HYZfxgZiTE76DwPMt6wfEDwXxudBrot49SVIDeutLPuWrGs7zFywR52LwKmtp3ljkYTlyTUjQQPZL34XUoXRu16h_-JjTqYA5l__PRcPF-uGsuR5qIyrQq2PwecADtfmvpm2ee6eef4KejrZXMRejwSDB2JXHa0E4wJGzOsgerktgmPue64XrIHBBaBlIYlYhJo_Dh1XWP-0CaMYzHWMt5IloOyN73O9JGM_eAO2UuyDEMF9ibT2dcT7-lDmzy1jUz9g3d1cnnxob_AtmXUL3d2rrteNNbmmT0mj1oc6cQx7wkZmPopeRiUsHxGbgMO0i0OUs9BajlIew5SgJw6yGnLQQrQ0y0O0pCDH2nLQNoz0J7SM_A5OfsynX06jtr2HpHmOdtEcZnoDLuXqiQdg2EJlqaslBKiEgWXFSiXtET7N8ljqViWmEzGhS6EynkJCwfB98luvarNC0L5uFKSJbrImRZMMVmBnpIpz6TQJjHlkLzvXu1Ct7XvsQXL5cLGYPBi8TmeTSwM0yF56-deuYovd8467BBatBJhvUhSWMxgS7diSN74Yfi48CecrM2qwTkcliCYDz4k-4Csv0dPhJf3DRyQB_33cEh2N9eNeQU28Ua9bkn3G_njwS4
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrospun+metal-organic+framework+based+nanofibers+for+energy+storage+and+environmental+applications%3A+current+approaches+and+challenges&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Li%2C+Xiangye&rft.au=Zhou%2C+Ruifeng&rft.au=Wang%2C+Zhenzhen&rft.au=Zhang%2C+Minghui&rft.date=2022-01-25&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=1&rft.issue=4&rft.spage=1642&rft.epage=1681&rft_id=info:doi/10.1039%2Fd1ta08413e&rft.externalDocID=d1ta08413e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon