Electrospun metal-organic framework based nanofibers for energy storage and environmental applications: current approaches and challenges
In recent years, a great deal of investigation has been performed based on the study of metal-organic frameworks (MOFs) combined with other materials, in order to overcome the tremendous challenge encountered by single MOFs in practical applications. Among them are MOF based composite nanofibers pre...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 1; no. 4; pp. 1642 - 1681 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
25.01.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2050-7488 2050-7496 2050-7496 |
DOI | 10.1039/d1ta08413e |
Cover
Abstract | In recent years, a great deal of investigation has been performed based on the study of metal-organic frameworks (MOFs) combined with other materials, in order to overcome the tremendous challenge encountered by single MOFs in practical applications. Among them are MOF based composite nanofibers prepared
via
electrospinning with the advantages of inorganic porous materials and polymeric nanofibers, which have witnessed intensive development and extensive applications in energy storage and environment conservation fields. Beyond that, preparing MOF based composite nanofibers is also considered to be an effective route to broaden the practical application of MOFs. Herein, a comprehensive review of the recent developments of MOF based composite nanofibers prepared
via
the electrospinning process, serving as functional materials, is provided. From the perspective of fabrication, the major routes reported so far for fabricating MOF based composite nanofibers are first systematically discussed. Furthermore, the fundamental applications of MOF based composite nanofibers in energy storage and environmental protection are introduced in detail. Finally, a series of critical challenges in the above research area, and some directions for future research are put forward.
Schematic illustration of the morphology, structure and preparation route of MOF based nanofiber composites and their applications (LLA stands for layer-by-layer assembly; ALD stands for atomic layer deposition). |
---|---|
AbstractList | In recent years, a great deal of investigation has been performed based on the study of metal-organic frameworks (MOFs) combined with other materials, in order to overcome the tremendous challenge encountered by single MOFs in practical applications. Among them are MOF based composite nanofibers prepared
via
electrospinning with the advantages of inorganic porous materials and polymeric nanofibers, which have witnessed intensive development and extensive applications in energy storage and environment conservation fields. Beyond that, preparing MOF based composite nanofibers is also considered to be an effective route to broaden the practical application of MOFs. Herein, a comprehensive review of the recent developments of MOF based composite nanofibers prepared
via
the electrospinning process, serving as functional materials, is provided. From the perspective of fabrication, the major routes reported so far for fabricating MOF based composite nanofibers are first systematically discussed. Furthermore, the fundamental applications of MOF based composite nanofibers in energy storage and environmental protection are introduced in detail. Finally, a series of critical challenges in the above research area, and some directions for future research are put forward.
Schematic illustration of the morphology, structure and preparation route of MOF based nanofiber composites and their applications (LLA stands for layer-by-layer assembly; ALD stands for atomic layer deposition). In recent years, a great deal of investigation has been performed based on the study of metal–organic frameworks (MOFs) combined with other materials, in order to overcome the tremendous challenge encountered by single MOFs in practical applications. Among them are MOF based composite nanofibers prepared via electrospinning with the advantages of inorganic porous materials and polymeric nanofibers, which have witnessed intensive development and extensive applications in energy storage and environment conservation fields. Beyond that, preparing MOF based composite nanofibers is also considered to be an effective route to broaden the practical application of MOFs. Herein, a comprehensive review of the recent developments of MOF based composite nanofibers prepared via the electrospinning process, serving as functional materials, is provided. From the perspective of fabrication, the major routes reported so far for fabricating MOF based composite nanofibers are first systematically discussed. Furthermore, the fundamental applications of MOF based composite nanofibers in energy storage and environmental protection are introduced in detail. Finally, a series of critical challenges in the above research area, and some directions for future research are put forward. In recent years, a great deal of investigation has been performed based on the study of metal–organic frameworks (MOFs) combined with other materials, in order to overcome the tremendous challenge encountered by single MOFs in practical applications. Among them are MOF based composite nanofibers prepared via electrospinning with the advantages of inorganic porous materials and polymeric nanofibers, which have witnessed intensive development and extensive applications in energy storage and environment conservation fields. Beyond that, preparing MOF based composite nanofibers is also considered to be an effective route to broaden the practical application of MOFs. Herein, a comprehensive review of the recent developments of MOF based composite nanofibers prepared via the electrospinning process, serving as functional materials, is provided. From the perspective of fabrication, the major routes reported so far for fabricating MOF based composite nanofibers are first systematically discussed. Furthermore, the fundamental applications of MOF based composite nanofibers in energy storage and environmental protection are introduced in detail. Finally, a series of critical challenges in the above research area, and some directions for future research are put forward. |
Author | Wang, Zhenzhen He, Tieshi Li, Xiangye Zhou, Ruifeng Zhang, Minghui |
AuthorAffiliation | Bohai University Liaoning Engineering Technology Center of Supercapacitor Lanzhou University of Technology College of Chemistry & Materials Engineering School of Material Science and Engineering |
AuthorAffiliation_xml | – name: College of Chemistry & Materials Engineering – name: Bohai University – name: School of Material Science and Engineering – name: Liaoning Engineering Technology Center of Supercapacitor – name: Lanzhou University of Technology |
Author_xml | – sequence: 1 givenname: Xiangye surname: Li fullname: Li, Xiangye – sequence: 2 givenname: Ruifeng surname: Zhou fullname: Zhou, Ruifeng – sequence: 3 givenname: Zhenzhen surname: Wang fullname: Wang, Zhenzhen – sequence: 4 givenname: Minghui surname: Zhang fullname: Zhang, Minghui – sequence: 5 givenname: Tieshi surname: He fullname: He, Tieshi |
BookMark | eNptkU9rFTEUxYNUsNZu3AsBNyKMzb83k7gr9dkKhW7a9XAnc-c1NZM8k0ylH8FvbfqeVCjNJuHwO4ebe96SgxADEvKesy-cSXMy8gJMKy7xFTkUbMWaTpn24Omt9RtynPMdq0cz1hpzSP6sPdqSYt4ugc5YwDcxbSA4S6cEM_6O6ScdIONIA4Q4uQFTplNMFAOmzQPNJSbYIIUwVunepRhmDDWHwnbrnYXiYshfqV1SqvqjmiLYW8w7i70F7zFsML8jryfwGY__3Ufk5vv6-uyiubw6_3F2etlYqVlp-Chsp402g2hXQjEuFEzDoNSkjIRJ1X-NHWdCaA4D6wR2wI01atByZFoqeUQ-7XPrHL8WzKWfXbboPQSMS-5FK1ulhG5XFf34DL2LSwp1ukoJ0TLRdqZSn_eUrWvMCad-m9wM6aHnrH8spv_Gr093xawrzJ7B1pXdjkoC51-2fNhbUrZP0f-7ln8Bik2dag |
CitedBy_id | crossref_primary_10_2139_ssrn_4087096 crossref_primary_10_2174_0115734110280476240105074537 crossref_primary_10_1016_j_polymer_2022_124945 crossref_primary_10_1016_j_jpowsour_2025_236488 crossref_primary_10_1016_j_jpowsour_2025_236720 crossref_primary_10_1002_anie_202420001 crossref_primary_10_1016_j_jallcom_2024_173519 crossref_primary_10_1002_ange_202318822 crossref_primary_10_1021_acs_energyfuels_4c00249 crossref_primary_10_1016_j_apsusc_2022_156192 crossref_primary_10_1016_j_ccr_2023_215464 crossref_primary_10_1016_j_est_2024_113686 crossref_primary_10_1002_pat_6026 crossref_primary_10_1016_j_ensm_2023_01_034 crossref_primary_10_1007_s42765_023_00360_x crossref_primary_10_1016_j_seppur_2022_121716 crossref_primary_10_1021_acsami_4c03655 crossref_primary_10_1021_acs_inorgchem_3c00764 crossref_primary_10_1039_D2RA01778D crossref_primary_10_1177_23977914241232161 crossref_primary_10_1002_smll_202306353 crossref_primary_10_1039_D3SD00214D crossref_primary_10_1016_j_jece_2024_112845 crossref_primary_10_1007_s42765_022_00214_y crossref_primary_10_1016_j_diamond_2023_109803 crossref_primary_10_1021_acs_langmuir_3c03724 crossref_primary_10_1016_j_jece_2024_114819 crossref_primary_10_1016_j_pmatsci_2023_101159 crossref_primary_10_1016_j_jallcom_2025_178867 crossref_primary_10_1016_j_seppur_2024_129948 crossref_primary_10_1016_j_seppur_2022_121942 crossref_primary_10_1016_j_cej_2023_145840 crossref_primary_10_1039_D3NR04984A crossref_primary_10_1039_D2TA08984J crossref_primary_10_1016_j_ica_2022_121088 crossref_primary_10_1002_adtp_202400144 crossref_primary_10_1016_j_seppur_2023_126260 crossref_primary_10_1016_j_nanoen_2023_108858 crossref_primary_10_1021_acs_energyfuels_4c00471 crossref_primary_10_1016_j_matchemphys_2022_127289 crossref_primary_10_57634_RCR5055 crossref_primary_10_1039_D4CC03116D crossref_primary_10_1016_j_est_2024_112826 crossref_primary_10_1002_ange_202420001 crossref_primary_10_1002_anie_202318822 crossref_primary_10_1016_j_cej_2024_154352 crossref_primary_10_1016_j_colsurfa_2024_133681 crossref_primary_10_1007_s10853_022_07525_w crossref_primary_10_1016_j_ccr_2024_216360 crossref_primary_10_1016_j_scib_2022_09_014 crossref_primary_10_1016_j_jcis_2025_01_176 crossref_primary_10_1016_j_mtchem_2022_100974 |
Cites_doi | 10.1016/j.ceramint.2021.05.261 10.1039/c2jm32570e 10.1039/C8CP05610B 10.1039/C9NJ05822B 10.1016/j.ensm.2017.12.027 10.1007/s00604-020-4112-3 10.1039/D1DT01336J 10.1016/j.nanoen.2017.09.055 10.1016/j.jallcom.2021.159348 10.1039/C6CS00426A 10.1007/s12221-014-0200-5 10.1039/D1NJ01302E 10.1021/acs.chemmater.0c03796 10.1039/C7EE00488E 10.1021/acsami.8b22415 10.1016/j.jechem.2021.04.060 10.1016/j.jpowsour.2016.10.053 10.1016/j.mtcomm.2017.08.001 10.1002/adma.201703614 10.1039/D0TA05100D 10.1016/j.carbpol.2020.116955 10.1016/j.matlet.2012.07.076 10.1039/c2jm35401b 10.1016/j.chemosphere.2018.03.047 10.1016/S1872-5805(21)60022-7 10.1021/acsomega.8b00792 10.1039/C9TA05239A 10.1002/adfm.202107136 10.1039/C8TA09394F 10.1016/j.jelechem.2019.113615 10.1016/j.jpowsour.2020.228856 10.1016/j.desal.2021.115338 10.1016/S1872-2067(21)63841-X 10.1016/j.ensm.2020.12.011 10.1016/j.jcis.2019.02.084 10.1016/j.ces.2018.07.025 10.1039/C9NR05795A 10.1021/acsaem.0c02379 10.1021/acsami.7b09209 10.1021/acsami.1c12751 10.1016/j.jcis.2020.05.113 10.1002/smll.202102349 10.1016/j.cej.2019.122150 10.1021/acsami.7b01621 10.1016/j.chroma.2021.462484 10.1039/C4CC08796H 10.1155/2019/6130152 10.1021/acsami.8b08167 10.1016/j.carbon.2020.10.033 10.1016/j.catcom.2018.02.027 10.1007/s10965-019-1806-5 10.1016/j.nanoen.2019.01.064 10.1016/j.memsci.2019.03.075 10.1021/acsnano.9b04670 10.1016/j.ensm.2019.05.022 10.1016/j.snb.2020.128768 10.1021/jacs.5b08752 10.1002/adma.201808338 10.1002/sscp.201800030 10.1016/j.est.2020.102032 10.1016/j.polymer.2021.124038 10.1016/j.nanoen.2019.04.045 10.1039/C8TA12246F 10.1016/j.jallcom.2020.157271 10.1021/acsami.0c10290 10.1007/s10853-020-05066-8 10.1039/C8TA10541C 10.1039/C9TA09928J 10.1016/j.jelechem.2020.114804 10.1016/j.cej.2017.07.156 10.1016/j.cej.2021.130913 10.1021/acssuschemeng.8b06447 10.1016/j.est.2019.100898 10.1016/j.compositesb.2019.107400 10.1016/j.cej.2020.124241 10.1016/j.est.2021.103263 10.1021/acsami.0c20404 10.1016/j.talanta.2021.122542 10.1016/j.jechem.2019.10.028 10.1039/D0DT03844J 10.1016/j.snb.2018.05.161 10.1016/j.cej.2019.122548 10.1016/j.biortech.2021.125358 10.1039/C7CS00505A 10.1016/j.jallcom.2021.160445 10.1021/acsami.8b14197 10.1016/j.mtcomm.2019.100862 10.1016/j.micromeso.2020.110006 10.1039/D0NR03549A 10.1016/j.est.2021.102611 10.1016/j.est.2020.102179 10.1016/j.jechem.2021.05.001 10.1021/acsami.8b07826 10.1016/j.nanoen.2021.105928 10.1002/smll.201704435 10.1016/j.cej.2019.04.065 10.1039/C5RA23147G 10.1021/acsami.0c08276 10.1039/C7TA08210J 10.1039/C4NR06640E 10.1007/s40843-020-1575-2 10.1039/C7NJ00525C 10.3390/catal10020195 10.1016/j.micromeso.2020.110257 10.1002/app.50431 10.1016/j.carbon.2018.10.064 10.1016/j.ensm.2021.06.010 10.1016/j.talanta.2020.121010 10.1039/C9TA04664J 10.1016/j.ccr.2021.214011 10.1016/j.electacta.2019.135103 10.1021/jacs.6b02553 10.1002/adfm.202006771 10.1016/j.seppur.2019.116360 10.1039/C9TA11701F 10.1016/j.cej.2021.129112 10.1016/j.memsci.2021.120045 10.1016/j.cej.2021.130184 10.1016/j.nanoen.2018.10.029 10.1016/j.ijhydene.2021.03.033 10.1016/j.jcat.2018.01.018 10.1021/ja00146a033 10.1039/C0CC02271C 10.1016/j.jpowsour.2018.10.038 10.1016/j.carbpol.2020.116731 10.1016/j.carbon.2018.04.075 10.1016/j.seppur.2020.116759 10.1016/j.micromeso.2021.111000 10.1039/C6CC09832K 10.1039/C8TA01861H 10.1039/D1TA02169A 10.1002/adem.201000246 10.1016/j.est.2021.103304 10.1039/C8TA02820F 10.1016/j.chemosphere.2020.127010 10.1016/j.carbon.2018.10.040 10.1016/j.cej.2021.129748 10.1002/adfm.201603607 10.1016/j.est.2020.102125 10.1016/j.apsusc.2019.01.064 10.1039/C7CS00283A 10.1021/acs.accounts.1c00333 10.1016/j.carbon.2016.12.016 10.1021/acs.energyfuels.1c01722 10.1016/j.pmatsci.2019.100579 10.1016/j.chemosphere.2020.127369 10.1002/anie.201606656 10.1021/acsami.6b05746 10.1016/j.jechem.2021.03.002 10.1016/j.jpowsour.2019.227262 10.1016/j.jhazmat.2014.09.046 10.1021/acsami.7b15315 10.1021/acsami.9b16420 10.1016/j.ensm.2019.12.019 10.1021/acsami.8b10110 10.1002/smll.201702049 10.1016/j.molliq.2021.115593 10.1016/j.electacta.2018.06.002 10.1039/C9QI00390H 10.1016/j.jpowsour.2018.10.080 10.1016/j.cej.2021.129200 10.1016/j.est.2021.102659 10.1016/j.est.2020.102195 10.1007/s11356-020-10746-8 10.1002/smll.202102893 10.1016/j.cej.2015.03.127 10.1016/j.micromeso.2018.05.004 10.1039/C8RA01260A 10.1016/j.micromeso.2021.111233 10.1039/D1TA01736E 10.1016/j.ijhydene.2015.05.088 10.1021/acs.jpcc.7b08239 10.1039/C5TA06472D 10.1016/j.jcis.2021.06.027 10.1039/D0TA08976A 10.1016/j.electacta.2020.137344 10.1002/advs.201901129 10.1002/cnma.201900110 10.1016/j.est.2021.102999 10.1016/j.jpowsour.2020.228794 10.1039/C8NR09454C 10.1016/j.jenvman.2021.113908 10.1039/D1TA01407B 10.1039/C9TA11390H 10.1016/j.jpowsour.2016.10.067 10.1016/j.memsci.2021.119742 10.1039/C6QI00042H 10.1002/ppsc.201700438 10.1016/S1872-5805(21)60009-4 10.1007/s12221-019-1196-7 10.1002/smtd.201800049 10.1002/smll.201900015 10.1021/acs.iecr.7b04202 10.1002/admt.201800135 10.1021/acsnano.7b06061 10.1002/eem2.12051 10.1039/C7TA06924C 10.1039/C8TA01286E 10.1016/j.jpowsour.2016.10.063 10.1016/j.snb.2021.129520 10.1039/D1TA03362J 10.1007/s12598-020-01694-w 10.15541/jim20200266 10.1007/s10965-020-2035-7 10.1016/j.ccr.2020.213438 10.1016/j.ces.2020.115650 10.1021/acsami.5b10078 10.1039/C8TA04539A 10.1016/j.electacta.2021.138346 10.1007/s10570-018-1696-4 10.1016/j.jallcom.2019.151961 10.1002/adfm.201804629 10.1021/acsami.8b01454 10.1039/C8TA08562E 10.1007/s12598-021-01735-y 10.1039/C8TA05400B 10.1016/j.apsusc.2018.08.110 10.1016/j.jpowsour.2018.12.014 10.1016/j.jechem.2021.04.043 10.1016/j.gee.2018.03.001 10.1016/j.talanta.2016.09.065 10.1007/s10853-021-05939-6 10.1016/j.carbon.2021.01.124 10.1088/1361-6528/aaf520 10.1039/C8TA07220E 10.1021/acsnano.7b02796 10.1002/admi.201901651 10.1016/j.jhazmat.2021.126101 10.14504/ajr.7.3.4 10.1039/C6TA09193H 10.1002/app.46462 10.1016/j.jelechem.2018.01.012 10.1016/j.chempr.2017.01.005 10.1016/j.est.2020.101525 10.1016/j.carbon.2019.09.027 10.1016/j.matlet.2017.04.069 10.1021/acs.iecr.6b02479 10.1016/j.cej.2019.123734 10.1016/j.jcis.2019.03.079 10.1016/j.est.2018.12.025 10.1039/c2dt32161k 10.1039/c4dt00023d 10.1007/s12274-020-3203-0 10.1039/D0TA11014K 10.1016/j.est.2021.103301 10.1016/j.jhazmat.2019.01.024 10.1039/D1EE00087J 10.1016/j.jallcom.2021.162191 10.1002/smll.202007062 10.1021/acs.chemmater.0c02782 10.1016/j.inoche.2017.05.021 10.1002/adem.201400565 10.1016/j.cej.2020.127813 10.1016/j.jhazmat.2021.127347 10.1039/D0CS00793E 10.1039/D0QM00878H 10.1016/j.envres.2020.109742 10.1016/j.jechem.2020.09.015 10.1039/C9NJ00417C 10.1021/acsami.8b11290 10.1021/acs.chemrev.0c00487 10.1016/j.jechem.2020.03.024 10.1016/j.nantod.2019.100796 10.2174/1573411016999200525003250 10.1016/j.memsci.2017.10.019 10.1016/j.aca.2017.05.035 10.1016/j.jechem.2021.05.010 10.1016/j.apsusc.2020.147290 10.1039/C7TA08166A 10.1039/D0TA00537A |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2022 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2022 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
DOI | 10.1039/d1ta08413e |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 2050-7496 |
EndPage | 1681 |
ExternalDocumentID | 10_1039_D1TA08413E d1ta08413e |
GroupedDBID | 0-7 0R 705 AAEMU AAGNR AAIWI AANOJ ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFRAH AFVBQ AGSTE ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV BLAPV BSQNT C6K CKLOX EBS ECGLT EE0 EF- GNO HZ H~N J3I JG O-G O9- R7C RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH UCJ 0R~ AAJAE AAWGC AAXHV AAYXX ABASK ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKMSF ALUYA ANUXI APEMP CITATION GGIMP H13 HZ~ RAOCF 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c380t-1d2c78989b265240124afbb44f493af4006d7102281ab072e7a19c94b83d08343 |
ISSN | 2050-7488 2050-7496 |
IngestDate | Fri Jul 11 06:26:01 EDT 2025 Mon Jun 30 11:56:07 EDT 2025 Thu Apr 24 23:04:33 EDT 2025 Tue Jul 01 01:13:20 EDT 2025 Thu Jan 27 01:42:10 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c380t-1d2c78989b265240124afbb44f493af4006d7102281ab072e7a19c94b83d08343 |
Notes | Minghui Zhang received her B.S. degrees from Bohai University. She is presently pursuing her master's degree at the School of Chemistry & Materials Engineering, Bohai University, China. Her research interests focus mainly on the design, fabrication, and application of organic metal frameworks for supercapacitors. Ruifeng Zhou is now a post-graduate student majoring at the School of Chemistry and Materials Engineering, Bohai University, China. His scientific research directions are the preparation and application of environment-friendly materials. Tieshi He received his Ph.D. degree in materials science from Hefei University of Technology, China in 2009. Since then, he has been working as an associate professor (2009-2019) and a professor (2019-) at the School of Chemical & Materials Engineering, Bohai University, China. His research interests involve advanced functional materials and devices for energy storage and conversion. Zhenzhen Wang received her B.S. degrees from Anyang Normal University. She is currently studying for an M.Sc. degree at the School of Chemistry & Materials Engineering, Bohai University, China. Her research focuses on the design, optimization, and application of new energy storage materials. Xiangye Li received his M.Sc. degree from Bohai University. He is currently pursuing his Ph.D. degree at the School of Materials Science and Engineering, Lanzhou University of Technology, China. His research interests focus mainly on the design and fabrication of new kinds of energy storage materials and the related mechanisms. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6885-2459 |
PQID | 2622602679 |
PQPubID | 2047523 |
PageCount | 4 |
ParticipantIDs | proquest_journals_2622602679 crossref_primary_10_1039_D1TA08413E crossref_citationtrail_10_1039_D1TA08413E rsc_primary_d1ta08413e proquest_miscellaneous_2636442865 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-25 |
PublicationDateYYYYMMDD | 2022-01-25 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2022 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Mirzaei (D1TA08413E/cit227/1) 2021; 50 Weng (D1TA08413E/cit104/1) 2021; 36 Hou (D1TA08413E/cit239/1) 2020; 247 Tian (D1TA08413E/cit152/1) 2020; 12 Ren (D1TA08413E/cit194/1) 2016; 336 Gao (D1TA08413E/cit26/1) 2021; 35 Zhou (D1TA08413E/cit203/1) 2021; 40 Tian (D1TA08413E/cit23/1) 2020; 8 Rasheed (D1TA08413E/cit214/1) 2020; 259 Ismail (D1TA08413E/cit114/1) 2017; 12 Peng (D1TA08413E/cit165/1) 2021; 14 Yao (D1TA08413E/cit150/1) 2019; 30 Wu (D1TA08413E/cit187/1) 2022; 64 Shangguan (D1TA08413E/cit294/1) 2018; 8 Keller (D1TA08413E/cit129/1) 2021; 50 Zhang (D1TA08413E/cit273/1) 2019; 31 Ren (D1TA08413E/cit279/1) 2015; 40 Li (D1TA08413E/cit28/1) 2019; 810 Wu (D1TA08413E/cit162/1) 2016; 336 Pothu (D1TA08413E/cit143/1) 2021; 17 Mi (D1TA08413E/cit262/1) 2020; 47 Zhang (D1TA08413E/cit171/1) 2020; 380 Hao (D1TA08413E/cit30/1) 2021; 42 Dou (D1TA08413E/cit228/1) 2021; 64 Jin (D1TA08413E/cit291/1) 2019; 20 Aslam (D1TA08413E/cit6/1) 2019; 855 Li (D1TA08413E/cit184/1) 2020; 531 Bai (D1TA08413E/cit25/1) 2019; 31 Samuel (D1TA08413E/cit153/1) 2019; 371 Wang (D1TA08413E/cit289/1) 2017; 330 Ji (D1TA08413E/cit57/1) 2017; 5 Xue (D1TA08413E/cit266/1) 2021; 9 Sankar (D1TA08413E/cit18/1) 2021; 9 Armstrong (D1TA08413E/cit69/1) 2018; 270 Mirhosseini (D1TA08413E/cit282/1) 2021; 28 Kumar (D1TA08413E/cit142/1) 2021; 33 Zhang (D1TA08413E/cit188/1) 2022; 38 Jing (D1TA08413E/cit58/1) 2020; 879 Chen (D1TA08413E/cit257/1) 2017; 10 Huang (D1TA08413E/cit181/1) 2019; 7 Chen (D1TA08413E/cit275/1) 2017; 2 Li (D1TA08413E/cit238/1) 2020; 237 Lim (D1TA08413E/cit205/1) 2021; 31 Ali (D1TA08413E/cit204/1) 2021; 172 Makhanya (D1TA08413E/cit13/1) 2021; 34 Lu (D1TA08413E/cit243/1) 2017; 9 Xu (D1TA08413E/cit174/1) 2018; 408 Gaikwad (D1TA08413E/cit226/1) 2021; 323 Chen (D1TA08413E/cit64/1) 2021; 423 McCarthy (D1TA08413E/cit241/1) 2017; 41 Wang (D1TA08413E/cit19/1) 2021; 9 Yang (D1TA08413E/cit186/1) 2019; 15 El Hankari (D1TA08413E/cit31/1) 2019; 106 Peng (D1TA08413E/cit40/1) 2021; 417 Zhao (D1TA08413E/cit280/1) 2015; 137 He (D1TA08413E/cit207/1) 2020; 32 Zhang (D1TA08413E/cit251/1) 2020; 392 Jiang (D1TA08413E/cit164/1) 2021; 17 Liu (D1TA08413E/cit290/1) 2020; 255 Chang (D1TA08413E/cit115/1) 2019; 30 An (D1TA08413E/cit176/1) 2020; 480 Ji (D1TA08413E/cit127/1) 2019; 142 Zhang (D1TA08413E/cit183/1) 2019; 61 Sridhar (D1TA08413E/cit168/1) 2020; 44 Balach (D1TA08413E/cit189/1) 2018; 6 Piri-Moghadam (D1TA08413E/cit42/1) 2017; 984 Zhu (D1TA08413E/cit283/1) 2019; 581 Wang (D1TA08413E/cit170/1) 2021; 17 Li (D1TA08413E/cit88/1) 2017; 82 Zhan (D1TA08413E/cit109/1) 2019; 26 Hung (D1TA08413E/cit1/1) 2021; 639 Senthil (D1TA08413E/cit159/1) 2022; 64 Joshi (D1TA08413E/cit148/1) 2018; 810 Chen (D1TA08413E/cit210/1) 2021; 416 Ma (D1TA08413E/cit5/1) 2021; 602 Li (D1TA08413E/cit12/1) 2021; 40 Yue (D1TA08413E/cit172/1) 2019; 177 Yaghi (D1TA08413E/cit24/1) 1995; 117 Fan (D1TA08413E/cit111/1) 2012; 22 Efome (D1TA08413E/cit55/1) 2018; 10 Lei (D1TA08413E/cit123/1) 2019; 25 Shao (D1TA08413E/cit167/1) 2018; 10 Mai (D1TA08413E/cit63/1) 2022; 643 Zhu (D1TA08413E/cit4/1) 2019; 29 Jang (D1TA08413E/cit105/1) 2020; 10 Lv (D1TA08413E/cit2/1) 2021; 446 Yue (D1TA08413E/cit269/1) 2019; 177 Singh (D1TA08413E/cit136/1) 2021; 43 Li (D1TA08413E/cit138/1) 2018; 14 Li (D1TA08413E/cit278/1) 2017; 11 Bechelany (D1TA08413E/cit117/1) 2015; 7 Li (D1TA08413E/cit182/1) 2019; 443 Lee (D1TA08413E/cit72/1) 2022; 892 Dai (D1TA08413E/cit120/1) 2020; 8 Yan (D1TA08413E/cit37/1) 2021; 50 Zhang (D1TA08413E/cit107/1) 2018; 10 Lu (D1TA08413E/cit98/1) 2017; 56 Wang (D1TA08413E/cit94/1) 2018; 10 Zhou (D1TA08413E/cit133/1) 2017; 46 Chen (D1TA08413E/cit271/1) 2021; 14 Amini (D1TA08413E/cit76/1) 2020; 187 Wei (D1TA08413E/cit10/1) 2021; 17 Chen (D1TA08413E/cit16/1) 2020; 30 Zhao (D1TA08413E/cit151/1) 2019; 6 Li (D1TA08413E/cit230/1) 2015; 274 Razzaq (D1TA08413E/cit200/1) 2020; 8 Li (D1TA08413E/cit256/1) 2018; 136 Yahyapour (D1TA08413E/cit296/1) 2021; 32 Olivieri (D1TA08413E/cit224/1) 2018; 546 Zhou (D1TA08413E/cit113/1) 2015; 51 Dubal (D1TA08413E/cit137/1) 2018; 47 Liang (D1TA08413E/cit300/1) 2020; 8 Zeng (D1TA08413E/cit253/1) 2016; 8 Yang (D1TA08413E/cit47/1) 2021; 138 Yao (D1TA08413E/cit122/1) 2019; 30 Khajavian (D1TA08413E/cit288/1) 2020; 241 Gao (D1TA08413E/cit97/1) 2016; 6 Jin (D1TA08413E/cit48/1) 2020; 7 Moghadam (D1TA08413E/cit21/1) 2016; 4 Armstrong (D1TA08413E/cit89/1) 2016; 55 Liang (D1TA08413E/cit178/1) 2021; 878 Xie (D1TA08413E/cit130/1) 2021; 36 Yang (D1TA08413E/cit169/1) 2019; 58 Zhang (D1TA08413E/cit246/1) 2021; 13 Xu (D1TA08413E/cit293/1) 2012; 87 Zhou (D1TA08413E/cit193/1) 2021; 31 Zhao (D1TA08413E/cit175/1) 2018; 462 Guo (D1TA08413E/cit247/1) 2018; 272 Ubaidullah (D1TA08413E/cit15/1) 2021; 33 Xiao (D1TA08413E/cit190/1) 2018; 6 Wang (D1TA08413E/cit245/1) 2020; 217 Dou (D1TA08413E/cit281/1) 2021; 64 Zeng (D1TA08413E/cit220/1) 2018; 192 Cherusseri (D1TA08413E/cit144/1) 2020; 12 Zhang (D1TA08413E/cit85/1) 2016; 138 Li (D1TA08413E/cit102/1) 2019; 476 Salunkhe (D1TA08413E/cit132/1) 2017; 11 Mehrafza (D1TA08413E/cit249/1) 2018; 1 Guan (D1TA08413E/cit201/1) 2017; 29 Liao (D1TA08413E/cit265/1) 2021; 868 Zhang (D1TA08413E/cit250/1) 2019; 55 Senthil (D1TA08413E/cit9/1) 2021; 44 Suh (D1TA08413E/cit80/1) 2017; 121 Wang (D1TA08413E/cit286/1) 2018; 5 Zhao (D1TA08413E/cit87/1) 2021; 13 Bian (D1TA08413E/cit95/1) 2018; 6 Xu (D1TA08413E/cit20/1) 2021; 9 Sanchez-Gonzalez (D1TA08413E/cit22/1) 2018; 6 Khan (D1TA08413E/cit135/1) 2021; 41 Zhang (D1TA08413E/cit43/1) 2021; 421 Zhang (D1TA08413E/cit131/1) 2021; 57 Zhang (D1TA08413E/cit268/1) 2020; 380 Li (D1TA08413E/cit82/1) 2019; 546 Wang (D1TA08413E/cit218/1) 2019; 11 Zhang (D1TA08413E/cit242/1) 2021; 13 Zhao (D1TA08413E/cit96/1) 2019; 7 Tan (D1TA08413E/cit116/1) 2019; 31 Dai (D1TA08413E/cit7/1) 2019; 328 Hao (D1TA08413E/cit86/1) 2019; 11 Liu (D1TA08413E/cit50/1) 2017; 5 Li (D1TA08413E/cit101/1) 2018; 6 Zhou (D1TA08413E/cit100/1) 2014; 43 Jin (D1TA08413E/cit99/1) 2013; 42 Zhang (D1TA08413E/cit45/1) 2020; 55 Zhong (D1TA08413E/cit206/1) 2019; 142 Adhikari (D1TA08413E/cit60/1) 2018; 20 Tao (D1TA08413E/cit68/1) 2017; 41 Xu (D1TA08413E/cit173/1) 2018; 6 Awadallah-F (D1TA08413E/cit221/1) 2019; 2019 Laurila (D1TA08413E/cit112/1) 2015; 17 Dai (D1TA08413E/cit44/1) 2020; 3 Liang (D1TA08413E/cit70/1) 2018; 6 Wu (D1TA08413E/cit32/1) 2019; 2 Dwyer (D1TA08413E/cit74/1) 2018; 10 Su (D1TA08413E/cit284/1) 2018; 25 Yuan (D1TA08413E/cit301/1) 2021; 84 Zhao (D1TA08413E/cit197/1) 2021; 39 Wen (D1TA08413E/cit215/1) 2018; 201 Wang (D1TA08413E/cit285/1) 2019; 11 Gong (D1TA08413E/cit149/1) 2019; 11 Wu (D1TA08413E/cit233/1) 2018; 6 Yang (D1TA08413E/cit272/1) 2021; 382 Seo (D1TA08413E/cit240/1) 2020; 12 Amirzehni (D1TA08413E/cit61/1) 2020; 325 Wu (D1TA08413E/cit199/1) 2021; 317 Khodayari (D1TA08413E/cit39/1) 2021; 1655 Topuz (D1TA08413E/cit56/1) 2022; 424 Ye (D1TA08413E/cit75/1) 2020; 23 Bai (D1TA08413E/cit255/1) 2020; 31 Chen (D1TA08413E/cit235/1) 2020; 12 Li (D1TA08413E/cit38/1) 2021; 57 Nguyen (D1TA08413E/cit8/1) 2019; 378 Li (D1TA08413E/cit49/1) 2021; 56 Lu (D1TA08413E/cit79/1) 2018; 110 Wei (D1TA08413E/cit198/1) 2021; 47 Liu (D1TA08413E/cit211/1) 2021; 421 Feng (D1TA08413E/cit276/1) 2021; 365 Yang (D1TA08413E/cit11/1) 2020; 8 Dai (D1TA08413E/cit185/1) 2020; 3 Leus (D1TA08413E/cit252/1) 2018; 360 Zhang (D1TA08413E/cit53/1) 2019; 61 Zhao (D1TA08413E/cit258/1) 2019; 6 Chen (D1TA08413E/cit287/1) 2021; 416 Li (D1TA08413E/cit270/1) 2020; 531 Yilmaz (D1TA08413E/cit33/1) 2019; 6 Martinez (D1TA08413E/cit62/1) 2020; 32 Ibrahim (D1TA08413E/cit213/1) 2021; 333 Zhao (D1TA08413E/cit125/1) 2020; 303 Di (D1TA08413E/cit90/1) 2019; 7 Zhang (D1TA08413E/cit27/1) 2021; 36 Rose (D1TA08413E/cit78/1) 2011; 13 Zhou (D1TA08413E/cit157/1) 2018; 28 Lee (D1TA08413E/cit110/1) 2021; 332 Jiamjirangkul (D1TA08413E/cit223/1) 2020; 221 Zhang (D1TA08413E/cit222/1) 2019; 7 Tian (D1TA08413E/cit145/1) 2019; 413 Liu (D1TA08413E/cit155/1) 2018; 6 Ostermann (D1TA08413E/cit83/1) 2011; 47 Niu (D1TA08413E/cit196/1) 2021; 40 Niu (D1TA08413E/cit41/1) 2017; 114 Zhou (D1TA08413E/cit146/1) 2019; 13 Zhu (D1TA08413E/cit260/1) 2018; 13 Lai (D1TA08413E/cit126/1) 2016; 26 Guo (D1TA08413E/cit166/1) 2017; 199 Hasan (D1TA08413E/cit212/1) 2015; 283 Liu (D1TA08413E/cit139/1) 2020; 26 Dai (D1TA08413E/cit292/1) 2018; 3 Du (D1TA08413E/cit274/1) 2018; 14 Schulze (D1TA08413E/cit29/1) 2019; 5 Nie (D1TA08413E/cit59/1) 2020; 250 Chen (D1TA08413E/cit73/1) 2020; 27 Dwyer (D1TA08413E/cit119/1) 2018; 10 Kosasang (D1TA08413E/cit195/1) 2019; 155 Liu (D1TA08413E/cit248/1) 2017; 162 Joshi (D1TA08413E/cit259/1) 2018; 810 Rose (D1TA08413E/cit84/1) 2010; 13 Wang (D1TA08413E/cit121/1) 2018; 281 Li (D1TA08413E/cit51/1) 2021; 36 Cao (D1TA08413E/cit141/1) 2017; 46 Deng (D1TA08413E/cit52/1) 2020; 388 Wang (D1TA08413E/cit128/1) 2017; 53 Mohamed (D1TA08413E/cit14/1) 2021; 34 Mehtab (D1TA08413E/cit17/1) 2019; 21 Zhang (D1TA08413E/cit106/1) 2016; 3 Dai (D1TA08413E/cit254/1) 2018; 3 Choi (D1TA08413E/cit225/1) 2020; 296 Lu (D1TA08413E/cit261/1) 2021; 853 Sun (D1TA08413E/cit160/1) 2022; 64 Chen (D1TA08413E/cit154/1) 2017; 10 Bai (D1TA08413E/cit209/1) 2018; 2 Xu (D1TA08413E/cit232/1) 2018; 135 Peng (D1TA08413E/cit46/1) 2020; 188 Zhao (D1TA08413E/cit93/1) 2021; 9 Lee (D1TA08413E/cit192/1) 2021; 54 Keum (D1TA08413E/cit124/1) 2020; 32 Ge (D1TA08413E/cit180/1) 2020; 7 Zhao (D1TA08413E/cit118/1) 2016; 55 Ding (D1TA08413E/cit231/1) 2018; 3 Sui (D1TA08413E/cit67/1) 2017; 9 Liu (D1TA08413E/cit71/1) 2016; 8 Guo (D1TA08413E/cit65/1) 2021; 233 Lee (D1TA08413E/cit217/1) 2020; 578 Lange (D1TA08413E/cit297/1) 2014; 15 Zhang (D1TA08413E/cit229/1) 2018; 10 Mallakpour (D1TA08413E/cit92/1) 2021; 45 Song (D1TA08413E/cit54/1) 2022; 427 Wang (D1TA08413E/cit264/1) 2021; 17 Wu (D1TA08413E/cit36/1) 2021; 176 Zhu (D1TA08413E/cit267/1) 2021; 32 Zhu (D1TA08413E/cit34/1) 2019; 23 Chang (D1TA08413E/cit77/1) 2019; 30 Guo (D1TA08413E/cit66/1) 2017; 13 Senthilkumar (D1TA08413E/cit177/1) 2020; 480 Wang (D1TA08413E/cit179/1) 2021; 230 Zhou (D1TA08413E/cit3/1) 2021; 62 Hou (D1TA08413E/cit236/1) 2018; 35 Hadjiivanov (D1TA08413E/cit35/1) 2021; 121 Guo (D1TA08413E/cit81/1) 2019; 544 Liu (D1TA08413E/cit219/1) 2018; 6 Zhou (D1TA08413E/cit244/1) 2018; 6 Ibrahim (D1TA08413E/cit134/1) 2021; 43 Meng (D1TA08413E/cit103/1) 2021; 5 Aguesse (D1TA08413E/cit161/1) 2016; 336 An (D1TA08413E/cit191/1) 2021; 41 Jiang (D1TA08413E/ci |
References_xml | – volume: 47 start-page: 25387 year: 2021 ident: D1TA08413E/cit198/1 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2021.05.261 – volume: 22 start-page: 16971 year: 2012 ident: D1TA08413E/cit108/1 publication-title: J. Mater. Chem. doi: 10.1039/c2jm32570e – volume: 20 start-page: 29001 year: 2018 ident: D1TA08413E/cit60/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP05610B – volume: 44 start-page: 5666 year: 2020 ident: D1TA08413E/cit168/1 publication-title: New J. Chem. doi: 10.1039/C9NJ05822B – volume: 13 start-page: 72 year: 2018 ident: D1TA08413E/cit260/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2017.12.027 – volume: 187 start-page: 152 year: 2020 ident: D1TA08413E/cit76/1 publication-title: Microchim. Acta doi: 10.1007/s00604-020-4112-3 – volume: 50 start-page: 10567 year: 2021 ident: D1TA08413E/cit227/1 publication-title: Dalton Trans. doi: 10.1039/D1DT01336J – volume: 41 start-page: 417 year: 2017 ident: D1TA08413E/cit68/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.09.055 – volume: 869 start-page: 159348 year: 2021 ident: D1TA08413E/cit163/1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2021.159348 – volume: 46 start-page: 2660 year: 2017 ident: D1TA08413E/cit141/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00426A – volume: 15 start-page: 200 year: 2014 ident: D1TA08413E/cit297/1 publication-title: Fibers Polym. doi: 10.1007/s12221-014-0200-5 – volume: 45 start-page: 8409 year: 2021 ident: D1TA08413E/cit92/1 publication-title: New J. Chem. doi: 10.1039/D1NJ01302E – volume: 32 start-page: 10628 year: 2020 ident: D1TA08413E/cit62/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.0c03796 – volume: 380 start-page: 8 year: 2020 ident: D1TA08413E/cit268/1 publication-title: Chem. Eng. J. – volume: 10 start-page: 1777 year: 2017 ident: D1TA08413E/cit257/1 publication-title: Energy Environ. Sci. doi: 10.1039/C7EE00488E – volume: 11 start-page: 11904 year: 2019 ident: D1TA08413E/cit86/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b22415 – volume: 64 start-page: 286 year: 2022 ident: D1TA08413E/cit159/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2021.04.060 – volume: 336 start-page: 35 year: 2016 ident: D1TA08413E/cit162/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.10.053 – volume: 12 start-page: 119 year: 2017 ident: D1TA08413E/cit114/1 publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2017.08.001 – volume: 29 start-page: 1703614 year: 2017 ident: D1TA08413E/cit201/1 publication-title: Adv. Mater. doi: 10.1002/adma.201703614 – volume: 8 start-page: 16747 year: 2020 ident: D1TA08413E/cit300/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA05100D – volume: 250 start-page: 116955 year: 2020 ident: D1TA08413E/cit59/1 publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2020.116955 – volume: 87 start-page: 20 year: 2012 ident: D1TA08413E/cit293/1 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2012.07.076 – volume: 22 start-page: 25272 year: 2012 ident: D1TA08413E/cit111/1 publication-title: J. Mater. Chem. doi: 10.1039/c2jm35401b – volume: 201 start-page: 627 year: 2018 ident: D1TA08413E/cit215/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.03.047 – volume: 36 start-page: 322 year: 2021 ident: D1TA08413E/cit27/1 publication-title: N. Carbon Mater. doi: 10.1016/S1872-5805(21)60022-7 – volume: 3 start-page: 6860 year: 2018 ident: D1TA08413E/cit254/1 publication-title: ACS Omega doi: 10.1021/acsomega.8b00792 – volume: 7 start-page: 23280 year: 2019 ident: D1TA08413E/cit181/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA05239A – volume: 31 start-page: 2107136 year: 2021 ident: D1TA08413E/cit193/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202107136 – volume: 6 start-page: 24756 year: 2018 ident: D1TA08413E/cit173/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA09394F – volume: 32 start-page: 3180 year: 2021 ident: D1TA08413E/cit296/1 publication-title: J. Mater. Sci.: Mater. Electron. – volume: 855 start-page: 113615 year: 2019 ident: D1TA08413E/cit6/1 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2019.113615 – volume: 480 start-page: 228856 year: 2020 ident: D1TA08413E/cit176/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228856 – volume: 520 start-page: 115338 year: 2021 ident: D1TA08413E/cit234/1 publication-title: Desalination doi: 10.1016/j.desal.2021.115338 – volume: 42 start-page: 1903 year: 2021 ident: D1TA08413E/cit30/1 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(21)63841-X – volume: 36 start-page: 56 year: 2021 ident: D1TA08413E/cit130/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.12.011 – volume: 544 start-page: 112 year: 2019 ident: D1TA08413E/cit81/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.02.084 – volume: 192 start-page: 94 year: 2018 ident: D1TA08413E/cit220/1 publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2018.07.025 – volume: 11 start-page: 17782 year: 2019 ident: D1TA08413E/cit285/1 publication-title: Nanoscale doi: 10.1039/C9NR05795A – volume: 3 start-page: 12378 year: 2020 ident: D1TA08413E/cit44/1 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c02379 – volume: 9 start-page: 32248 year: 2017 ident: D1TA08413E/cit298/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b09209 – volume: 13 start-page: 39976 year: 2021 ident: D1TA08413E/cit242/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c12751 – volume: 578 start-page: 155 year: 2020 ident: D1TA08413E/cit217/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.05.113 – volume: 17 start-page: 2102349 year: 2021 ident: D1TA08413E/cit170/1 publication-title: Small doi: 10.1002/smll.202102349 – volume: 378 start-page: 122150 year: 2019 ident: D1TA08413E/cit8/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122150 – volume: 9 start-page: 13632 year: 2017 ident: D1TA08413E/cit243/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b01621 – volume: 1655 start-page: 462484 year: 2021 ident: D1TA08413E/cit39/1 publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2021.462484 – volume: 51 start-page: 2706 year: 2015 ident: D1TA08413E/cit113/1 publication-title: Chem. Commun. doi: 10.1039/C4CC08796H – volume: 2019 start-page: 6130152 year: 2019 ident: D1TA08413E/cit221/1 publication-title: J. Nanomater. doi: 10.1155/2019/6130152 – volume: 30 start-page: 1009 year: 2019 ident: D1TA08413E/cit115/1 publication-title: J. Mater. Sci.: Mater. Electron. – volume: 10 start-page: 25794 year: 2018 ident: D1TA08413E/cit119/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b08167 – volume: 172 start-page: 283 year: 2021 ident: D1TA08413E/cit204/1 publication-title: Carbon doi: 10.1016/j.carbon.2020.10.033 – volume: 110 start-page: 23 year: 2018 ident: D1TA08413E/cit79/1 publication-title: Catal. Commun. doi: 10.1016/j.catcom.2018.02.027 – volume: 26 start-page: 145 year: 2019 ident: D1TA08413E/cit109/1 publication-title: J. Polym. Res. doi: 10.1007/s10965-019-1806-5 – volume: 58 start-page: 392 year: 2019 ident: D1TA08413E/cit169/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.01.064 – volume: 581 start-page: 252 year: 2019 ident: D1TA08413E/cit283/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2019.03.075 – volume: 13 start-page: 9578 year: 2019 ident: D1TA08413E/cit146/1 publication-title: ACS Nano doi: 10.1021/acsnano.9b04670 – volume: 23 start-page: 757 year: 2019 ident: D1TA08413E/cit34/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.05.022 – volume: 325 start-page: 128768 year: 2020 ident: D1TA08413E/cit61/1 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2020.128768 – volume: 137 start-page: 13756 year: 2015 ident: D1TA08413E/cit280/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b08752 – volume: 31 start-page: 1808338 year: 2019 ident: D1TA08413E/cit273/1 publication-title: Adv. Mater. doi: 10.1002/adma.201808338 – volume: 1 start-page: 7 year: 2018 ident: D1TA08413E/cit249/1 publication-title: Sep. Sci. plus doi: 10.1002/sscp.201800030 – volume: 33 start-page: 102032 year: 2021 ident: D1TA08413E/cit142/1 publication-title: J. Energy Storage doi: 10.1016/j.est.2020.102032 – volume: 230 start-page: 124038 year: 2021 ident: D1TA08413E/cit179/1 publication-title: Polymer doi: 10.1016/j.polymer.2021.124038 – volume: 61 start-page: 104 year: 2019 ident: D1TA08413E/cit53/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.04.045 – volume: 7 start-page: 9040 year: 2019 ident: D1TA08413E/cit147/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA12246F – volume: 853 start-page: 7 year: 2021 ident: D1TA08413E/cit261/1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.157271 – volume: 12 start-page: 39227 year: 2020 ident: D1TA08413E/cit235/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c10290 – volume: 55 start-page: 15275 year: 2020 ident: D1TA08413E/cit45/1 publication-title: J. Mater. Sci. doi: 10.1007/s10853-020-05066-8 – volume: 17 start-page: 2102349 year: 2021 ident: D1TA08413E/cit264/1 publication-title: Small doi: 10.1002/smll.202102349 – volume: 6 start-page: 24949 year: 2018 ident: D1TA08413E/cit219/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA10541C – volume: 7 start-page: 27560 year: 2019 ident: D1TA08413E/cit222/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA09928J – volume: 3 start-page: 12378 year: 2020 ident: D1TA08413E/cit185/1 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c02379 – volume: 879 start-page: 114804 year: 2020 ident: D1TA08413E/cit58/1 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2020.114804 – volume: 330 start-page: 262 year: 2017 ident: D1TA08413E/cit289/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.07.156 – volume: 427 start-page: 130913 year: 2022 ident: D1TA08413E/cit54/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.130913 – volume: 7 start-page: 7716 year: 2019 ident: D1TA08413E/cit90/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.8b06447 – volume: 25 start-page: 100898 year: 2019 ident: D1TA08413E/cit123/1 publication-title: J. Energy Storage doi: 10.1016/j.est.2019.100898 – volume: 177 start-page: 9 year: 2019 ident: D1TA08413E/cit269/1 publication-title: Composites, Part B doi: 10.1016/j.compositesb.2019.107400 – volume: 388 start-page: 124241 year: 2020 ident: D1TA08413E/cit52/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124241 – volume: 44 start-page: 103263 year: 2021 ident: D1TA08413E/cit9/1 publication-title: J. Energy Storage doi: 10.1016/j.est.2021.103263 – volume: 32 start-page: 10 year: 2021 ident: D1TA08413E/cit267/1 publication-title: Nanotechnology – volume: 13 start-page: 755 year: 2021 ident: D1TA08413E/cit87/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c20404 – volume: 233 start-page: 122542 year: 2021 ident: D1TA08413E/cit65/1 publication-title: Talanta doi: 10.1016/j.talanta.2021.122542 – volume: 47 start-page: 221 year: 2020 ident: D1TA08413E/cit262/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2019.10.028 – volume: 50 start-page: 2342 year: 2021 ident: D1TA08413E/cit37/1 publication-title: Dalton Trans. doi: 10.1039/D0DT03844J – volume: 272 start-page: 185 year: 2018 ident: D1TA08413E/cit247/1 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2018.05.161 – volume: 380 start-page: 122548 year: 2020 ident: D1TA08413E/cit171/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122548 – volume: 5 start-page: 6 year: 2018 ident: D1TA08413E/cit286/1 publication-title: Mater. Res. Express – volume: 337 start-page: 125358 year: 2021 ident: D1TA08413E/cit208/1 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.125358 – volume: 47 start-page: 2065 year: 2018 ident: D1TA08413E/cit137/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00505A – volume: 878 start-page: 160445 year: 2021 ident: D1TA08413E/cit178/1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2021.160445 – volume: 30 start-page: 1009 year: 2019 ident: D1TA08413E/cit77/1 publication-title: J. Mater. Sci.: Mater. Electron. – volume: 10 start-page: 34802 year: 2018 ident: D1TA08413E/cit107/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b14197 – volume: 23 start-page: 100862 year: 2020 ident: D1TA08413E/cit75/1 publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2019.100862 – volume: 296 start-page: 110006 year: 2020 ident: D1TA08413E/cit225/1 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2020.110006 – volume: 12 start-page: 17649 year: 2020 ident: D1TA08413E/cit144/1 publication-title: Nanoscale doi: 10.1039/D0NR03549A – volume: 39 start-page: 102611 year: 2021 ident: D1TA08413E/cit197/1 publication-title: J. Energy Storage doi: 10.1016/j.est.2021.102611 – volume: 34 start-page: 102179 year: 2021 ident: D1TA08413E/cit13/1 publication-title: J. Energy Storage doi: 10.1016/j.est.2020.102179 – volume: 64 start-page: 372 year: 2022 ident: D1TA08413E/cit187/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2021.05.001 – volume: 10 start-page: 24164 year: 2018 ident: D1TA08413E/cit94/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b07826 – volume: 84 start-page: 105928 year: 2021 ident: D1TA08413E/cit301/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.105928 – volume: 61 start-page: 104 year: 2019 ident: D1TA08413E/cit183/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.04.045 – volume: 14 start-page: 1704435 year: 2018 ident: D1TA08413E/cit138/1 publication-title: Small doi: 10.1002/smll.201704435 – volume: 371 start-page: 657 year: 2019 ident: D1TA08413E/cit153/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.04.065 – volume: 6 start-page: 7078 year: 2016 ident: D1TA08413E/cit97/1 publication-title: RSC Adv. doi: 10.1039/C5RA23147G – volume: 12 start-page: 32778 year: 2020 ident: D1TA08413E/cit240/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c08276 – volume: 6 start-page: 334 year: 2018 ident: D1TA08413E/cit70/1 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA08210J – volume: 7 start-page: 5794 year: 2015 ident: D1TA08413E/cit117/1 publication-title: Nanoscale doi: 10.1039/C4NR06640E – volume: 64 start-page: 1742 year: 2021 ident: D1TA08413E/cit281/1 publication-title: Sci. China Mater. doi: 10.1007/s40843-020-1575-2 – volume: 41 start-page: 8748 year: 2017 ident: D1TA08413E/cit241/1 publication-title: New J. Chem. doi: 10.1039/C7NJ00525C – volume: 10 start-page: 195 year: 2020 ident: D1TA08413E/cit105/1 publication-title: Catalysts doi: 10.3390/catal10020195 – volume: 303 start-page: 110257 year: 2020 ident: D1TA08413E/cit125/1 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2020.110257 – volume: 138 start-page: 50431 year: 2021 ident: D1TA08413E/cit47/1 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.50431 – volume: 142 start-page: 379 year: 2019 ident: D1TA08413E/cit127/1 publication-title: Carbon doi: 10.1016/j.carbon.2018.10.064 – volume: 41 start-page: 354 year: 2021 ident: D1TA08413E/cit191/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2021.06.010 – volume: 31 start-page: 191 year: 2019 ident: D1TA08413E/cit25/1 publication-title: Prog. Chem. – volume: 217 start-page: 121010 year: 2020 ident: D1TA08413E/cit245/1 publication-title: Talanta doi: 10.1016/j.talanta.2020.121010 – volume: 7 start-page: 22559 year: 2019 ident: D1TA08413E/cit96/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA04664J – volume: 897 start-page: 8 year: 2021 ident: D1TA08413E/cit277/1 publication-title: J. Electroanal. Chem. – volume: 446 start-page: 214011 year: 2021 ident: D1TA08413E/cit2/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2021.214011 – volume: 328 start-page: 135103 year: 2019 ident: D1TA08413E/cit7/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.135103 – volume: 138 start-page: 5785 year: 2016 ident: D1TA08413E/cit85/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b02553 – volume: 31 start-page: 2006771 year: 2021 ident: D1TA08413E/cit205/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202006771 – volume: 237 start-page: 116360 year: 2020 ident: D1TA08413E/cit238/1 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2019.116360 – volume: 8 start-page: 3803 year: 2020 ident: D1TA08413E/cit120/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA11701F – volume: 416 start-page: 129112 year: 2021 ident: D1TA08413E/cit210/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.129112 – volume: 643 start-page: 120045 year: 2022 ident: D1TA08413E/cit63/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2021.120045 – volume: 423 start-page: 130184 year: 2021 ident: D1TA08413E/cit64/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.130184 – volume: 55 start-page: 226 year: 2019 ident: D1TA08413E/cit250/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.10.029 – volume: 46 start-page: 19106 year: 2021 ident: D1TA08413E/cit299/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2021.03.033 – volume: 360 start-page: 81 year: 2018 ident: D1TA08413E/cit252/1 publication-title: J. Catal. doi: 10.1016/j.jcat.2018.01.018 – volume: 117 start-page: 10401 year: 1995 ident: D1TA08413E/cit24/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00146a033 – volume: 47 start-page: 442 year: 2011 ident: D1TA08413E/cit83/1 publication-title: Chem. Commun. doi: 10.1039/C0CC02271C – volume: 408 start-page: 28 year: 2018 ident: D1TA08413E/cit174/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.10.038 – volume: 247 start-page: 116731 year: 2020 ident: D1TA08413E/cit239/1 publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2020.116731 – volume: 136 start-page: 176 year: 2018 ident: D1TA08413E/cit256/1 publication-title: Carbon doi: 10.1016/j.carbon.2018.04.075 – volume: 241 start-page: 116759 year: 2020 ident: D1TA08413E/cit288/1 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2020.116759 – volume: 317 start-page: 111000 year: 2021 ident: D1TA08413E/cit199/1 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2021.111000 – volume: 53 start-page: 1751 year: 2017 ident: D1TA08413E/cit128/1 publication-title: Chem. Commun. doi: 10.1039/C6CC09832K – volume: 6 start-page: 18543 year: 2018 ident: D1TA08413E/cit233/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA01861H – volume: 9 start-page: 14868 year: 2021 ident: D1TA08413E/cit19/1 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA02169A – volume: 13 start-page: 356 year: 2011 ident: D1TA08413E/cit78/1 publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201000246 – volume: 43 start-page: 103304 year: 2021 ident: D1TA08413E/cit134/1 publication-title: J. Energy Storage doi: 10.1016/j.est.2021.103304 – volume: 6 start-page: 21676 year: 2018 ident: D1TA08413E/cit190/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA02820F – volume: 255 start-page: 127010 year: 2020 ident: D1TA08413E/cit290/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.127010 – volume: 142 start-page: 115 year: 2019 ident: D1TA08413E/cit206/1 publication-title: Carbon doi: 10.1016/j.carbon.2018.10.040 – volume: 32 start-page: 14 year: 2020 ident: D1TA08413E/cit207/1 publication-title: Adv. Mater. – volume: 421 start-page: 129748 year: 2021 ident: D1TA08413E/cit43/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.129748 – volume: 26 start-page: 8334 year: 2016 ident: D1TA08413E/cit126/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201603607 – volume: 11 start-page: 17782 year: 2019 ident: D1TA08413E/cit218/1 publication-title: Nanoscale doi: 10.1039/C9NR05795A – volume: 33 start-page: 102125 year: 2021 ident: D1TA08413E/cit15/1 publication-title: J. Energy Storage doi: 10.1016/j.est.2020.102125 – volume: 476 start-page: 61 year: 2019 ident: D1TA08413E/cit102/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.01.064 – volume: 46 start-page: 6927 year: 2017 ident: D1TA08413E/cit133/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00283A – volume: 54 start-page: 3390 year: 2021 ident: D1TA08413E/cit192/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.1c00333 – volume: 114 start-page: 250 year: 2017 ident: D1TA08413E/cit41/1 publication-title: Carbon doi: 10.1016/j.carbon.2016.12.016 – volume: 14 start-page: 8 year: 2018 ident: D1TA08413E/cit274/1 publication-title: Small – volume: 868 start-page: 11 year: 2021 ident: D1TA08413E/cit265/1 publication-title: J. Alloys Compd. – volume: 35 start-page: 12884 year: 2021 ident: D1TA08413E/cit26/1 publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.1c01722 – volume: 106 start-page: 100579 year: 2019 ident: D1TA08413E/cit31/1 publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2019.100579 – volume: 259 start-page: 217369 year: 2020 ident: D1TA08413E/cit214/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.127369 – volume: 55 start-page: 13224 year: 2016 ident: D1TA08413E/cit118/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201606656 – volume: 64 start-page: 1742 year: 2021 ident: D1TA08413E/cit228/1 publication-title: Sci. China Mater. doi: 10.1007/s40843-020-1575-2 – volume: 8 start-page: 20274 year: 2016 ident: D1TA08413E/cit253/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b05746 – volume: 62 start-page: 27 year: 2021 ident: D1TA08413E/cit3/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2021.03.002 – volume: 443 start-page: 227262 year: 2019 ident: D1TA08413E/cit182/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.227262 – volume: 283 start-page: 329 year: 2015 ident: D1TA08413E/cit212/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2014.09.046 – volume: 9 start-page: 43171 year: 2017 ident: D1TA08413E/cit67/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b15315 – volume: 10 start-page: 1777 year: 2017 ident: D1TA08413E/cit154/1 publication-title: Energy Environ. Sci. doi: 10.1039/C7EE00488E – volume: 12 start-page: 1280 year: 2020 ident: D1TA08413E/cit152/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b16420 – volume: 26 start-page: 1 year: 2020 ident: D1TA08413E/cit139/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.12.019 – volume: 10 start-page: 33097 year: 2018 ident: D1TA08413E/cit167/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b10110 – volume: 13 start-page: 1702049 year: 2017 ident: D1TA08413E/cit66/1 publication-title: Small doi: 10.1002/smll.201702049 – volume: 333 start-page: 115593 year: 2021 ident: D1TA08413E/cit213/1 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2021.115593 – volume: 281 start-page: 582 year: 2018 ident: D1TA08413E/cit121/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.06.002 – volume: 6 start-page: 1824 year: 2019 ident: D1TA08413E/cit151/1 publication-title: Inorg. Chem. Front. doi: 10.1039/C9QI00390H – volume: 408 start-page: 82 year: 2018 ident: D1TA08413E/cit156/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.10.080 – volume: 417 start-page: 129200 year: 2021 ident: D1TA08413E/cit40/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.129200 – volume: 40 start-page: 102659 year: 2021 ident: D1TA08413E/cit196/1 publication-title: J. Energy Storage doi: 10.1016/j.est.2021.102659 – volume: 34 start-page: 102195 year: 2021 ident: D1TA08413E/cit14/1 publication-title: J. Energy Storage doi: 10.1016/j.est.2020.102195 – volume: 28 start-page: 4317 year: 2021 ident: D1TA08413E/cit282/1 publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-020-10746-8 – volume: 9 start-page: 11 year: 2021 ident: D1TA08413E/cit266/1 publication-title: Front. Chem. – volume: 17 start-page: 2102893 year: 2021 ident: D1TA08413E/cit164/1 publication-title: Small doi: 10.1002/smll.202102893 – volume: 274 start-page: 238 year: 2015 ident: D1TA08413E/cit230/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.03.127 – volume: 270 start-page: 34 year: 2018 ident: D1TA08413E/cit69/1 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2018.05.004 – volume: 8 start-page: 10509 year: 2018 ident: D1TA08413E/cit294/1 publication-title: RSC Adv. doi: 10.1039/C8RA01260A – volume: 323 start-page: 12 year: 2021 ident: D1TA08413E/cit226/1 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2021.111233 – volume: 9 start-page: 11853 year: 2021 ident: D1TA08413E/cit20/1 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA01736E – volume: 40 start-page: 9382 year: 2015 ident: D1TA08413E/cit279/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2015.05.088 – volume: 121 start-page: 24444 year: 2017 ident: D1TA08413E/cit80/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b08239 – volume: 4 start-page: 529 year: 2016 ident: D1TA08413E/cit21/1 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA06472D – volume: 31 start-page: 980 year: 2019 ident: D1TA08413E/cit116/1 publication-title: Prog. Chem. – volume: 31 start-page: 9 year: 2020 ident: D1TA08413E/cit255/1 publication-title: Nanotechnology – volume: 602 start-page: 627 year: 2021 ident: D1TA08413E/cit5/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.06.027 – volume: 8 start-page: 25316 year: 2020 ident: D1TA08413E/cit11/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA08976A – volume: 365 start-page: 8 year: 2021 ident: D1TA08413E/cit276/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.137344 – volume: 6 start-page: 1901129 year: 2019 ident: D1TA08413E/cit33/1 publication-title: Adv. Sci. doi: 10.1002/advs.201901129 – volume: 5 start-page: 1159 year: 2019 ident: D1TA08413E/cit29/1 publication-title: Chemnanomat doi: 10.1002/cnma.201900110 – volume: 41 start-page: 102999 year: 2021 ident: D1TA08413E/cit135/1 publication-title: J. Energy Storage doi: 10.1016/j.est.2021.102999 – volume: 480 start-page: 228794 year: 2020 ident: D1TA08413E/cit177/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228794 – volume: 11 start-page: 2492 year: 2019 ident: D1TA08413E/cit149/1 publication-title: Nanoscale doi: 10.1039/C8NR09454C – volume: 301 start-page: 113908 year: 2022 ident: D1TA08413E/cit91/1 publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2021.113908 – volume: 9 start-page: 11961 year: 2021 ident: D1TA08413E/cit18/1 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA01407B – volume: 8 start-page: 1298 year: 2020 ident: D1TA08413E/cit200/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA11390H – volume: 336 start-page: 186 year: 2016 ident: D1TA08413E/cit161/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.10.067 – volume: 639 start-page: 119742 year: 2021 ident: D1TA08413E/cit1/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2021.119742 – volume: 3 start-page: 896 year: 2016 ident: D1TA08413E/cit106/1 publication-title: Inorg. Chem. Front. doi: 10.1039/C6QI00042H – volume: 35 start-page: 1700438 year: 2018 ident: D1TA08413E/cit236/1 publication-title: Part. Part. Syst. Charact. doi: 10.1002/ppsc.201700438 – volume: 36 start-page: 117 year: 2021 ident: D1TA08413E/cit104/1 publication-title: N. Carbon Mater. doi: 10.1016/S1872-5805(21)60009-4 – volume: 20 start-page: 2070 year: 2019 ident: D1TA08413E/cit291/1 publication-title: Fibers Polym. doi: 10.1007/s12221-019-1196-7 – volume: 2 start-page: 1800049 year: 2018 ident: D1TA08413E/cit209/1 publication-title: Small Methods doi: 10.1002/smtd.201800049 – volume: 13 start-page: 39976 year: 2021 ident: D1TA08413E/cit246/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c12751 – volume: 15 start-page: 1900015 year: 2019 ident: D1TA08413E/cit186/1 publication-title: Small doi: 10.1002/smll.201900015 – volume: 56 start-page: 14502 year: 2017 ident: D1TA08413E/cit98/1 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.7b04202 – volume: 3 start-page: 1800135 year: 2018 ident: D1TA08413E/cit231/1 publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201800135 – volume: 11 start-page: 11417 year: 2017 ident: D1TA08413E/cit278/1 publication-title: ACS Nano doi: 10.1021/acsnano.7b06061 – volume: 2 start-page: 251 year: 2019 ident: D1TA08413E/cit32/1 publication-title: Energy Environ. Mater. doi: 10.1002/eem2.12051 – volume: 6 start-page: 3402 year: 2018 ident: D1TA08413E/cit101/1 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA06924C – volume: 6 start-page: 12298 year: 2018 ident: D1TA08413E/cit244/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA01286E – volume: 6 start-page: 1824 year: 2019 ident: D1TA08413E/cit258/1 publication-title: Inorg. Chem. Front. doi: 10.1039/C9QI00390H – volume: 336 start-page: 115 year: 2016 ident: D1TA08413E/cit194/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.10.063 – volume: 332 start-page: 8 year: 2021 ident: D1TA08413E/cit110/1 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2021.129520 – volume: 9 start-page: 15586 year: 2021 ident: D1TA08413E/cit202/1 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA03362J – volume: 40 start-page: 2657 year: 2021 ident: D1TA08413E/cit12/1 publication-title: Rare Met. doi: 10.1007/s12598-020-01694-w – volume: 36 start-page: 592 year: 2021 ident: D1TA08413E/cit51/1 publication-title: J. Inorg. Mater. doi: 10.15541/jim20200266 – volume: 27 start-page: 69 year: 2020 ident: D1TA08413E/cit73/1 publication-title: J. Polym. Res. doi: 10.1007/s10965-020-2035-7 – volume: 420 start-page: 213438 year: 2020 ident: D1TA08413E/cit140/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2020.213438 – volume: 221 start-page: 115650 year: 2020 ident: D1TA08413E/cit223/1 publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2020.115650 – volume: 3 start-page: 6860 year: 2018 ident: D1TA08413E/cit292/1 publication-title: ACS Omega doi: 10.1021/acsomega.8b00792 – volume: 8 start-page: 2552 year: 2016 ident: D1TA08413E/cit71/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b10078 – volume: 6 start-page: 15807 year: 2018 ident: D1TA08413E/cit95/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA04539A – volume: 382 start-page: 11 year: 2021 ident: D1TA08413E/cit272/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2021.138346 – volume: 25 start-page: 1997 year: 2018 ident: D1TA08413E/cit284/1 publication-title: Cellulose doi: 10.1007/s10570-018-1696-4 – volume: 10 start-page: 34802 year: 2018 ident: D1TA08413E/cit229/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b14197 – volume: 810 start-page: 151961 year: 2019 ident: D1TA08413E/cit28/1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.151961 – volume: 890 start-page: 9 year: 2022 ident: D1TA08413E/cit263/1 publication-title: J. Alloys Compd. – volume: 28 start-page: 1804629 year: 2018 ident: D1TA08413E/cit157/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201804629 – volume: 10 start-page: 18619 year: 2018 ident: D1TA08413E/cit55/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b01454 – volume: 6 start-page: 24702 year: 2018 ident: D1TA08413E/cit155/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA08562E – volume: 40 start-page: 3375 year: 2021 ident: D1TA08413E/cit203/1 publication-title: Rare Met. doi: 10.1007/s12598-021-01735-y – volume: 6 start-page: 1690016909 year: 2018 ident: D1TA08413E/cit22/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA05400B – volume: 462 start-page: 337 year: 2018 ident: D1TA08413E/cit175/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.08.110 – volume: 413 start-page: 50 year: 2019 ident: D1TA08413E/cit145/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.12.014 – volume: 64 start-page: 463 year: 2022 ident: D1TA08413E/cit158/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2021.04.043 – volume: 3 start-page: 191 year: 2018 ident: D1TA08413E/cit216/1 publication-title: Green Energy Environ. doi: 10.1016/j.gee.2018.03.001 – volume: 162 start-page: 261 year: 2017 ident: D1TA08413E/cit248/1 publication-title: Talanta doi: 10.1016/j.talanta.2016.09.065 – volume: 56 start-page: 10745 year: 2021 ident: D1TA08413E/cit49/1 publication-title: J. Mater. Sci. doi: 10.1007/s10853-021-05939-6 – volume: 176 start-page: 88 year: 2021 ident: D1TA08413E/cit36/1 publication-title: Carbon doi: 10.1016/j.carbon.2021.01.124 – volume: 30 start-page: 085404 year: 2019 ident: D1TA08413E/cit122/1 publication-title: Nanotechnology doi: 10.1088/1361-6528/aaf520 – volume: 6 start-page: 23127 year: 2018 ident: D1TA08413E/cit189/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA07220E – volume: 11 start-page: 5293 year: 2017 ident: D1TA08413E/cit132/1 publication-title: ACS Nano doi: 10.1021/acsnano.7b02796 – volume: 7 start-page: 1901651 year: 2020 ident: D1TA08413E/cit180/1 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201901651 – volume: 416 start-page: 126101 year: 2021 ident: D1TA08413E/cit287/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.126101 – volume: 7 start-page: 20 year: 2020 ident: D1TA08413E/cit48/1 publication-title: AATCC J. Res. doi: 10.14504/ajr.7.3.4 – volume: 5 start-page: 1211 year: 2017 ident: D1TA08413E/cit50/1 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA09193H – volume: 135 start-page: 46462 year: 2018 ident: D1TA08413E/cit232/1 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.46462 – volume: 810 start-page: 239 year: 2018 ident: D1TA08413E/cit259/1 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2018.01.012 – volume: 2 start-page: 299 year: 2017 ident: D1TA08413E/cit275/1 publication-title: Chem doi: 10.1016/j.chempr.2017.01.005 – volume: 30 start-page: 101525 year: 2020 ident: D1TA08413E/cit16/1 publication-title: J. Energy Storage doi: 10.1016/j.est.2020.101525 – volume: 155 start-page: 553 year: 2019 ident: D1TA08413E/cit195/1 publication-title: Carbon doi: 10.1016/j.carbon.2019.09.027 – volume: 531 start-page: 10 year: 2020 ident: D1TA08413E/cit270/1 publication-title: Appl. Surf. Sci. – volume: 38 start-page: 2101001 year: 2022 ident: D1TA08413E/cit188/1 publication-title: Acta Phys.-Chim. Sin. – volume: 199 start-page: 101 year: 2017 ident: D1TA08413E/cit166/1 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2017.04.069 – volume: 55 start-page: 9944 year: 2016 ident: D1TA08413E/cit89/1 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.6b02479 – volume: 13 start-page: 4 year: 2010 ident: D1TA08413E/cit84/1 publication-title: Adv. Eng. Mater. – volume: 177 start-page: 107400 year: 2019 ident: D1TA08413E/cit172/1 publication-title: Composites, Part B doi: 10.1016/j.compositesb.2019.107400 – volume: 392 start-page: 123734 year: 2020 ident: D1TA08413E/cit251/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123734 – volume: 546 start-page: 231 year: 2019 ident: D1TA08413E/cit82/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.03.079 – volume: 21 start-page: 632 year: 2019 ident: D1TA08413E/cit17/1 publication-title: J. Energy Storage doi: 10.1016/j.est.2018.12.025 – volume: 42 start-page: 3936 year: 2013 ident: D1TA08413E/cit99/1 publication-title: Dalton Trans. doi: 10.1039/c2dt32161k – volume: 30 start-page: 13 year: 2019 ident: D1TA08413E/cit150/1 publication-title: Nanotechnology – volume: 43 start-page: 6684 year: 2014 ident: D1TA08413E/cit100/1 publication-title: Dalton Trans. doi: 10.1039/c4dt00023d – volume: 14 start-page: 1465 year: 2021 ident: D1TA08413E/cit271/1 publication-title: Nano Res. doi: 10.1007/s12274-020-3203-0 – volume: 9 start-page: 3729 year: 2021 ident: D1TA08413E/cit93/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA11014K – volume: 43 start-page: 103301 year: 2021 ident: D1TA08413E/cit136/1 publication-title: J. Energy Storage doi: 10.1016/j.est.2021.103301 – volume: 368 start-page: 10 year: 2019 ident: D1TA08413E/cit237/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.01.024 – volume: 14 start-page: 3130 year: 2021 ident: D1TA08413E/cit165/1 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE00087J – volume: 892 start-page: 162191 year: 2022 ident: D1TA08413E/cit72/1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2021.162191 – volume: 17 start-page: 2007062 year: 2021 ident: D1TA08413E/cit10/1 publication-title: Small doi: 10.1002/smll.202007062 – volume: 810 start-page: 239 year: 2018 ident: D1TA08413E/cit148/1 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2018.01.012 – volume: 32 start-page: 7941 year: 2020 ident: D1TA08413E/cit124/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.0c02782 – volume: 82 start-page: 68 year: 2017 ident: D1TA08413E/cit88/1 publication-title: Inorg. Chem. Commun. doi: 10.1016/j.inoche.2017.05.021 – volume: 17 start-page: 1282 year: 2015 ident: D1TA08413E/cit112/1 publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201400565 – volume: 421 start-page: 127813 year: 2021 ident: D1TA08413E/cit211/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127813 – volume: 424 start-page: 127347 year: 2022 ident: D1TA08413E/cit56/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.127347 – volume: 50 start-page: 1813 year: 2021 ident: D1TA08413E/cit129/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00793E – volume: 5 start-page: 2649 year: 2021 ident: D1TA08413E/cit103/1 publication-title: Mater. Chem. Front. doi: 10.1039/D0QM00878H – volume: 188 start-page: 109742 year: 2020 ident: D1TA08413E/cit46/1 publication-title: Environ. Res. doi: 10.1016/j.envres.2020.109742 – volume: 57 start-page: 378 year: 2021 ident: D1TA08413E/cit131/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.09.015 – volume: 43 start-page: 3913 year: 2019 ident: D1TA08413E/cit295/1 publication-title: New J. Chem. doi: 10.1039/C9NJ00417C – volume: 10 start-page: 34585 year: 2018 ident: D1TA08413E/cit74/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b11290 – volume: 121 start-page: 1286 year: 2021 ident: D1TA08413E/cit35/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00487 – volume: 57 start-page: 469 year: 2021 ident: D1TA08413E/cit38/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.03.024 – volume: 29 start-page: 100796 year: 2019 ident: D1TA08413E/cit4/1 publication-title: Nano Today doi: 10.1016/j.nantod.2019.100796 – volume: 17 start-page: 275 year: 2021 ident: D1TA08413E/cit143/1 publication-title: Curr. Anal. Chem. doi: 10.2174/1573411016999200525003250 – volume: 546 start-page: 128 year: 2018 ident: D1TA08413E/cit224/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2017.10.019 – volume: 984 start-page: 42 year: 2017 ident: D1TA08413E/cit42/1 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2017.05.035 – volume: 64 start-page: 442 year: 2022 ident: D1TA08413E/cit160/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2021.05.010 – volume: 531 start-page: 147290 year: 2020 ident: D1TA08413E/cit184/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.147290 – volume: 5 start-page: 23898 year: 2017 ident: D1TA08413E/cit57/1 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA08166A – volume: 8 start-page: 12398 year: 2020 ident: D1TA08413E/cit23/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA00537A |
SSID | ssj0000800699 |
Score | 2.5581598 |
SecondaryResourceType | review_article |
Snippet | In recent years, a great deal of investigation has been performed based on the study of metal-organic frameworks (MOFs) combined with other materials, in order... In recent years, a great deal of investigation has been performed based on the study of metal–organic frameworks (MOFs) combined with other materials, in order... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1642 |
SubjectTerms | chemistry coordination polymers Electrospinning energy Energy conservation Energy storage Environmental protection Fabrication Functional materials Metal-organic frameworks Nanofibers natural resources conservation Porous materials |
Title | Electrospun metal-organic framework based nanofibers for energy storage and environmental applications: current approaches and challenges |
URI | https://www.proquest.com/docview/2622602679 https://www.proquest.com/docview/2636442865 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa27QUOiFfF0oKM4IJWKU7szYPbChYV1HLaSqteVrbjsJWqbNXdHOg_6N_ilzFjJ45XtBJwiaLYeSjfl5nxZB6EvMsBVM2zKtJMqEjIMY-UxpL7IC9LOEOnNkns9Ht6fCa-zcfzweBXELXUbNSRvrkzr-R_UIVjgCtmyf4Dsv6icAD2AV_YAsKw_SuMp66HzfqqqbEVtLyMXJMmPaq6mKsRqqlyVMsa7qQwW9fW-HYZfxgZiTE76DwPMt6wfEDwXxudBrot49SVIDeutLPuWrGs7zFywR52LwKmtp3ljkYTlyTUjQQPZL34XUoXRu16h_-JjTqYA5l__PRcPF-uGsuR5qIyrQq2PwecADtfmvpm2ee6eef4KejrZXMRejwSDB2JXHa0E4wJGzOsgerktgmPue64XrIHBBaBlIYlYhJo_Dh1XWP-0CaMYzHWMt5IloOyN73O9JGM_eAO2UuyDEMF9ibT2dcT7-lDmzy1jUz9g3d1cnnxob_AtmXUL3d2rrteNNbmmT0mj1oc6cQx7wkZmPopeRiUsHxGbgMO0i0OUs9BajlIew5SgJw6yGnLQQrQ0y0O0pCDH2nLQNoz0J7SM_A5OfsynX06jtr2HpHmOdtEcZnoDLuXqiQdg2EJlqaslBKiEgWXFSiXtET7N8ljqViWmEzGhS6EynkJCwfB98luvarNC0L5uFKSJbrImRZMMVmBnpIpz6TQJjHlkLzvXu1Ct7XvsQXL5cLGYPBi8TmeTSwM0yF56-deuYovd8467BBatBJhvUhSWMxgS7diSN74Yfi48CecrM2qwTkcliCYDz4k-4Csv0dPhJf3DRyQB_33cEh2N9eNeQU28Ua9bkn3G_njwS4 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrospun+metal-organic+framework+based+nanofibers+for+energy+storage+and+environmental+applications%3A+current+approaches+and+challenges&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Li%2C+Xiangye&rft.au=Zhou%2C+Ruifeng&rft.au=Wang%2C+Zhenzhen&rft.au=Zhang%2C+Minghui&rft.date=2022-01-25&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=1&rft.issue=4&rft.spage=1642&rft.epage=1681&rft_id=info:doi/10.1039%2Fd1ta08413e&rft.externalDocID=d1ta08413e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |