Stability of electroless pore-plated Pd-membranes in acetic acid steam membrane-reformers for ultra-pure hydrogen production

Electroless Pore-Plated (ELP-PP) membranes were successfully incorporated for the first time into a membrane reactor to produce hydrogen by acetic acid steam reforming (AASR), exhibiting adequate resistance against harsh operating conditions. Membranes were prepared onto tubular PSS supports modifie...

Full description

Saved in:
Bibliographic Details
Published inFuel processing technology Vol. 212; p. 106619
Main Authors Adduci, G., Martinez-Diaz, D., Sanz-Villanueva, D., Caravella, A., Calles, J.A., Sanz, R., Alique, D.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.02.2021
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electroless Pore-Plated (ELP-PP) membranes were successfully incorporated for the first time into a membrane reactor to produce hydrogen by acetic acid steam reforming (AASR), exhibiting adequate resistance against harsh operating conditions. Membranes were prepared onto tubular PSS supports modified with Pd/CeO2 particles and scaled-up around four times in length with high reproducibility respect previous studies. H2 permeances from 4.49 to 5.67·10−4 mol m−2 s−1 Pa-0.5 were found for pure H2 at 350–450 °C, decreasing for mixtures due to concentration-polarization at higher pressures but also certain inhibition caused by CO2 at pressures below 50 Pa0.5. The combination of membranes with Ni/SBA-15 catalysts in packed-bed membrane reactors (PBMR) evidenced the simultaneous improvement of acetic acid conversion and hydrogen yield respect to analogous experiments in traditional packed-bed reactors (PBR). A very similar product distribution was obtained for both configurations, PBR and PBMR, when using fresh catalysts, although marked deviations were found in case of regenerating the catalysts. Then, higher selectivity towards coke reached for PBMR, which lead to around 30% for the most elevated pressure under investigation. However, even at these harsh conditions, the mechanical integrity of ELP-PP membranes was maintained. Thus, the benefits of combining catalysts and ELP-PP membranes in a PBMR for AASR were demonstrated. •Successful scale-up of an ELP-PP membrane with Pd/CeO2 barrier to 110 mm in length.•Pd thickness around 15 μm with no marked differences along the axial direction.•H2 permeances from 4.49 to 5.67·10−4 mol·m−2·s−1·Pa-0.5 for pure H2 at 350–450 °C.•Noticeably inhibition caused by CO2 was found in permeation tests with mixtures.•Mechanical integrity of ELP-PP membrane in PBMR and improvement of H2 production.
AbstractList Electroless Pore-Plated (ELP-PP) membranes were successfully incorporated for the first time into a membrane reactor to produce hydrogen by acetic acid steam reforming (AASR), exhibiting adequate resistance against harsh operating conditions. Membranes were prepared onto tubular PSS supports modified with Pd/CeO2 particles and scaled-up around four times in length with high reproducibility respect previous studies. H2 permeances from 4.49 to 5.67·10−4 mol m−2 s−1 Pa-0.5 were found for pure H2 at 350–450 °C, decreasing for mixtures due to concentration-polarization at higher pressures but also certain inhibition caused by CO2 at pressures below 50 Pa0.5. The combination of membranes with Ni/SBA-15 catalysts in packed-bed membrane reactors (PBMR) evidenced the simultaneous improvement of acetic acid conversion and hydrogen yield respect to analogous experiments in traditional packed-bed reactors (PBR). A very similar product distribution was obtained for both configurations, PBR and PBMR, when using fresh catalysts, although marked deviations were found in case of regenerating the catalysts. Then, higher selectivity towards coke reached for PBMR, which lead to around 30% for the most elevated pressure under investigation. However, even at these harsh conditions, the mechanical integrity of ELP-PP membranes was maintained. Thus, the benefits of combining catalysts and ELP-PP membranes in a PBMR for AASR were demonstrated. •Successful scale-up of an ELP-PP membrane with Pd/CeO2 barrier to 110 mm in length.•Pd thickness around 15 μm with no marked differences along the axial direction.•H2 permeances from 4.49 to 5.67·10−4 mol·m−2·s−1·Pa-0.5 for pure H2 at 350–450 °C.•Noticeably inhibition caused by CO2 was found in permeation tests with mixtures.•Mechanical integrity of ELP-PP membrane in PBMR and improvement of H2 production.
Electroless Pore-Plated (ELP-PP) membranes were successfully incorporated for the first time into a membrane reactor to produce hydrogen by acetic acid steam reforming (AASR), exhibiting adequate resistance against harsh operating conditions. Membranes were prepared onto tubular PSS supports modified with Pd/CeO2 particles and scaled-up around four times in length with high reproducibility respect previous studies. H2 permeances from 4.49 to 5.67·10−4 mol m−2 s−1 Pa-0.5 were found for pure H2 at 350–450 °C, decreasing for mixtures due to concentration-polarization at higher pressures but also certain inhibition caused by CO2 at pressures below 50 Pa0.5. The combination of membranes with Ni/SBA-15 catalysts in packed-bed membrane reactors (PBMR) evidenced the simultaneous improvement of acetic acid conversion and hydrogen yield respect to analogous experiments in traditional packed-bed reactors (PBR). A very similar product distribution was obtained for both configurations, PBR and PBMR, when using fresh catalysts, although marked deviations were found in case of regenerating the catalysts. Then, higher selectivity towards coke reached for PBMR, which lead to around 30% for the most elevated pressure under investigation. However, even at these harsh conditions, the mechanical integrity of ELP-PP membranes was maintained. Thus, the benefits of combining catalysts and ELP-PP membranes in a PBMR for AASR were demonstrated.
ArticleNumber 106619
Author Sanz, R.
Sanz-Villanueva, D.
Caravella, A.
Alique, D.
Adduci, G.
Martinez-Diaz, D.
Calles, J.A.
Author_xml – sequence: 1
  givenname: G.
  surname: Adduci
  fullname: Adduci, G.
  organization: Department of Computer Engineering, Modelling, Electronics and Systems Engineering (DIMES), University of Calabria, Via P. Bucci, Cubo 44A, Rende, CS 87036, Italy
– sequence: 2
  givenname: D.
  surname: Martinez-Diaz
  fullname: Martinez-Diaz, D.
  organization: Department of Chemical, Energy and Mechanical Technology, Rey Juan Carlos University, C/ Tulipán s/n, 28933 Móstoles, Spain
– sequence: 3
  givenname: D.
  surname: Sanz-Villanueva
  fullname: Sanz-Villanueva, D.
  organization: Department of Chemical, Energy and Mechanical Technology, Rey Juan Carlos University, C/ Tulipán s/n, 28933 Móstoles, Spain
– sequence: 4
  givenname: A.
  surname: Caravella
  fullname: Caravella, A.
  organization: Department of Computer Engineering, Modelling, Electronics and Systems Engineering (DIMES), University of Calabria, Via P. Bucci, Cubo 44A, Rende, CS 87036, Italy
– sequence: 5
  givenname: J.A.
  surname: Calles
  fullname: Calles, J.A.
  organization: Department of Chemical, Energy and Mechanical Technology, Rey Juan Carlos University, C/ Tulipán s/n, 28933 Móstoles, Spain
– sequence: 6
  givenname: R.
  surname: Sanz
  fullname: Sanz, R.
  organization: Department of Chemical and Environmental Technology, Rey Juan Carlos University, C/ Tulipán s/n, 28933 Móstoles, Spain
– sequence: 7
  givenname: D.
  surname: Alique
  fullname: Alique, D.
  email: david.alique@urjc.es
  organization: Department of Chemical, Energy and Mechanical Technology, Rey Juan Carlos University, C/ Tulipán s/n, 28933 Móstoles, Spain
BookMark eNp9kMtKBDEQRYMoOI7-gYuA64xJv5LeCCK-YEBBXYdMUtEM3Z02SQsDfrwZWreuLlTdulV1TtDh4AdA6JzRFaOsudyu7DQGr1cFLfalpmHtAVowwUvCmRCHaEFLLkgpCnqMTmLcUkrruuUL9P2S1MZ1Lu2wtxg60Cn4DmLEow9Axk4lMPjZkB76TVADROwGrDQkp7M4g2MC1eO_NglgfeghRJwVT10KioxTAPyxM8G_w4DzpWbSyfnhFB1Z1UU4-9Uleru7fb15IOun-8eb6zXRpaCJsE3FVcOpAGtNrUTLjBUtt4aXLa0E3fCiNqpmvG2FUcpqXZSiUiVjglnGoFyiizk3r_6cICa59VMY8kpZVFxkKkI02VXNLh18jPkPOQbXq7CTjMo9Z7mVM2e55yxnznnsah6D_MGXgyCjdjBoMC5kmtJ493_ADxd3jHU
CitedBy_id crossref_primary_10_1016_j_fuproc_2022_107229
crossref_primary_10_1016_j_ijhydene_2023_11_198
crossref_primary_10_1016_j_psep_2022_10_023
crossref_primary_10_1557_s43578_023_01212_5
crossref_primary_10_1016_j_fuproc_2021_106801
crossref_primary_10_1016_j_jece_2023_110677
Cites_doi 10.1016/j.fuel.2019.115714
10.1016/j.memsci.2015.11.027
10.1016/j.jcat.2004.07.002
10.1016/j.jechem.2019.08.023
10.1016/j.ijhydene.2013.10.168
10.1016/j.rser.2017.05.107
10.3390/catal7020055
10.1016/j.ijhydene.2018.05.156
10.1016/j.apcatb.2018.06.020
10.1016/j.memsci.2015.08.010
10.1016/j.cattod.2013.11.006
10.1016/j.ijhydene.2008.05.061
10.1016/j.jpowsour.2018.09.097
10.1051/matecconf/201819202020
10.1016/j.cattod.2014.01.014
10.1016/j.apcatb.2014.05.024
10.1016/j.seppur.2019.01.076
10.1016/j.applthermaleng.2013.12.035
10.1016/j.memsci.2007.11.033
10.1021/jp104767q
10.1016/j.powtec.2016.12.026
10.1016/j.renene.2017.10.050
10.3390/chemengineering2010001
10.3390/ijms20030512
10.1016/j.rser.2017.05.069
10.1016/j.ijhydene.2009.10.053
10.1016/j.ijhydene.2011.01.172
10.1016/j.cep.2018.10.007
10.1016/j.ces.2009.04.013
10.1016/j.molcata.2011.12.006
10.1016/j.ijhydene.2018.04.192
10.1016/j.ijhydene.2019.04.285
10.1016/j.renene.2010.08.029
10.1016/j.joei.2019.09.002
10.1016/j.ijhydene.2014.01.142
10.1016/j.memsci.2011.03.057
10.1016/j.cep.2017.07.021
10.1016/j.ijhydene.2019.03.136
10.1016/j.ijhydene.2019.12.059
10.1016/j.ijhydene.2009.12.120
10.1016/J.ENG.2017.03.004
10.1016/j.apcata.2006.04.024
10.1016/j.apenergy.2016.05.149
10.3390/catal9121013
10.1016/j.memsci.2013.05.058
10.1016/j.ijhydene.2013.01.091
10.1016/j.seppur.2009.01.008
10.1016/j.ijhydene.2019.10.140
10.1016/j.apcatb.2015.11.028
10.1016/j.cattod.2010.10.054
10.1016/j.seppur.2017.11.014
10.1016/j.ijhydene.2014.10.091
10.1016/j.apcata.2015.12.025
10.1016/j.fuproc.2016.02.020
10.1016/S0196-8904(00)00137-0
10.1016/j.ijhydene.2007.03.039
10.1016/j.cep.2018.04.023
10.1016/j.ijhydene.2013.11.089
10.1016/j.ijhydene.2016.09.086
10.1016/j.ijhydene.2014.08.056
10.1016/j.fuel.2019.01.156
10.1016/j.ijhydene.2012.12.141
10.1016/j.ijhydene.2008.08.054
10.1016/j.rser.2015.09.030
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier Science Ltd. Feb 2021
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Feb 2021
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
L7M
DOI 10.1016/j.fuproc.2020.106619
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7188
ExternalDocumentID 10_1016_j_fuproc_2020_106619
S0378382020309103
GroupedDBID --K
--M
.~1
0R~
0SF
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
8WZ
9JN
A6W
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SCB
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSK
SSR
SSZ
T5K
TWZ
UHS
WUQ
ZY4
~02
~G-
AAHBH
AAXKI
AAYXX
ADVLN
AFJKZ
AKRWK
CITATION
GROUPED_DOAJ
7TB
8FD
FR3
H8D
L7M
ID FETCH-LOGICAL-c380t-1b47a6708effd5a891df897fd7390480b725da517998daafcc2384a31181f11e3
IEDL.DBID .~1
ISSN 0378-3820
IngestDate Thu Oct 10 16:15:28 EDT 2024
Thu Sep 26 16:48:59 EDT 2024
Fri Feb 23 02:46:44 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Membrane
Steam reforming
Palladium
Acetic acid
Electroless plating
Hydrogen production
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c380t-1b47a6708effd5a891df897fd7390480b725da517998daafcc2384a31181f11e3
OpenAccessLink https://doi.org/10.1016/j.fuproc.2020.106619
PQID 2478820886
PQPubID 2047467
ParticipantIDs proquest_journals_2478820886
crossref_primary_10_1016_j_fuproc_2020_106619
elsevier_sciencedirect_doi_10_1016_j_fuproc_2020_106619
PublicationCentury 2000
PublicationDate February 2021
2021-02-00
20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: February 2021
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Fuel processing technology
PublicationYear 2021
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Plazaola, Tanaka, Annaland, Gallucci (bb0260) 2017; 22
Muraviev, Orekhova, Mironova, Yaroslavtsev, Ermilova (bb0095) 2014; 236
Caravella, Scura, Barbieri, Drioli (bb0345) 2010; 114
Martinez-Diaz, Sanz, Calles, Alique (bb0275) 2019; 216
Calles, Carrero, Vizcaíno, García-Moreno, Megía (bb0055) 2019; 20
Rahimpour, Samimi, Babapoor, Tohidian, Mohebi (bb0230) 2017; 121
Goicoechea, Kraleva, Sokolov, Schneider, Pohl, Kockmann, Ehrich (bb0140) 2016; 514
Hu, Yan, Zheng, Liu, Zhou (bb0130) 2013; 38
Martinez-Diaz, Alique, Calles, Sanz (bb0280) 2020; 45
Yu, Hu, Jia, Zhang, Dong, Hu, Hu, Wang, Xiang (bb0165) 2018; 237
Barreiro, Maroño, Sánchez (bb0330) 2015; 74
Bossola, Recchia, Dal Santo (bb0380) 2017; 07
Esteban-Díez, Gil, Pevida, Chen, Rubiera (bb0150) 2016; 177
Junior, Rabelo-Neto, Gomes, Noronha, Fréty, Brandão (bb0155) 2019; 254
Hanley, Deane, Gallachóir (bb0010) 2017
Wang, Cai, Zhang, Li, Zhang, Luo (bb0060) 2014; 39
Calles, Sanz, Alique, Furones, Marín, Ordoñez (bb0320) 2018; 194
Basagiannis, Verykios (bb0105) 2006; 308
Yun, Ted Oyama, Oyama (bb0295) 2011; 375
Takanabe, Aika, Seshan, Lefferts (bb0100) 2004; 227
Singh Yadav, R, Yadav (bb0040) 2018; 192
Li, Hu, Zhang, Lu (bb0125) 2012; 355
De Falco, Iaquaniello, Palo, Cucchiella, Palma, Ciambelli (bb0220) 2013
Bellini, Azzato, Caravella (bb0290) 2020
Brunetti, Zito, Giorno, Drioli, Barbieri (bb0235) 2017
Uyar, Be??ikci (bb0020) 2017; 42
Nekhamkina, Sheintuch (bb0365) 2016; 500
Iulianelli, Palma, Bagnato, Ruocco, Huang, Veziroğlu, Basile (bb0025) 2018; 119
Basile, Gallucci, Iulianelli, Borgognoni, Tosti (bb0240) 2008; 311
Megía, Pedro, Carrero, Calles, vizcaíno (bb0215) 2019; 9
DemirbaÅŸ (bb0050) 2001; 42
Vizcaíno, Carrero, Calles (bb0195) 2016; 146
Iwasa, Yamane, Takei, Ozaki, Arai (bb0110) 2010; 35
An, Dong, Yang, Zhang, He (bb0120) 2011; 36
Alique, Martinez-Diaz, Sanz, Calles (bb0255) 2018
Dawood, Anda, Shafiullah (bb0005) 2020
Soria, Barros, Madeira (bb0070) 2019; 244
Yu, Zhang, Zhang, Gao, Ye, Zhang, Liu, Hu, Hu (bb0175) 2020; 93
Li, Wang, Qiao, Liu, Cao, Li, Wang, Wang (bb0225) 2015; 495
Barreiro, Maroño, Sánchez (bb0325) 2014; 39
Zhang, Hu, Hu, Hu, Zhang, Liu, Hu, Xiang, Wang, Zhang (bb0075) 2018; 403
Caravella, Barbieri, Drioli (bb0360) 2009; 66
Ramachandran, Chompupun, Kanhari, Vatanatham, Limtrakul (bb0370) 2018; 134
Choi, Hwang, Lee, Lee (bb0185) 2019; 44
Alique, Sanz, Calles (bb0265) 2020
Vadrucci, Borgognoni, Moriani, Santucci, Tosti (bb0310) 2013; 38
Di Marcoberardino, Foresti, Binotti, Manzolini (bb0030) 2018; 129
Cornaglia, Múnera, Lombardo (bb0340) 2015; 40
Chen, Tao, Liu, Yan, Li, Li (bb0160) 2017; 79
Lindo, Vizcaíno, Calles, Carrero (bb0190) 2010; 35
Saidi (bb0085) 2018; 43
Kumar, Singh, Sinha (bb0180) 2019; 44
Zhang, Wang, Sun, Shao, Zhang, Zhang, Zhang, Liu, Chen, Hu (bb0170) 2020; 43
Xu, Jin, Cheng (bb0045) 2017; 3
Furones, Alique (bb0285) 2017; 2
Wassie, Cloete, Zaabout, Gallucci, van Sint Annaland, Amini (bb0375) 2017; 316
Sato, Suzuki, Aketa, Ishiyama, Mimura, Itoh (bb0080) 2010; 65
Gallucci, De Falco, Tosti, Marrelli, Basile (bb0300) 2007; 32
Coutanceau, Baranton, Audichon (bb0090) 2018
Iulianelli, Longo, Basile (bb0245) 2008; 33
Carrero, Calles, García-Moreno, Vizcaíno (bb0205) 2017; 7
Muradov, Veziroǧlu (bb0015) 2008; 33
Nogueira, Assaf, Carvalho, Assaf (bb0135) 2014; 160–161
Calles, Sanz, Alique, Furones (bb0355) 2014; 39
Kurokawa, Yakabe, Yasuda, Peters, Bredesen (bb0350) 2014; 39
Nabgan, Tuan Abdullah, Mat, Nabgan, Gambo, Ibrahim, Ahmad, Jalil, Triwahyono, Saeh (bb0065) 2017; 79
Tosto, Alique, Martinez-Diaz, Sanz, Calles, Caravella, Medrano, Gallucci (bb0270) 2020; 45
Alique (bb0315) 2018
Gil, Fermoso, Pevida, Chen, Rubiera (bb0145) 2016; 184
Ahmad, Zawawi, Kasim, Inayat, Khasri (bb0035) 2016; 53
Augustine, Ma, Kazantzis (bb0335) 2011; 36
Calles, Carrero, Vizcaíno, García-Moreno (bb0200) 2014; 227
Calles, Carrero, Vizcaíno, Megía (bb0210) 2019
Santucci, Borgognoni, Vadrucci, Tosti (bb0305) 2013; 444
(bb0250) 2015
Thaicharoensutcharittham, Meeyoo, Kitiyanan, Rangsunvigit, Rirksomboon (bb0115) 2011; 164
Santucci (10.1016/j.fuproc.2020.106619_bb0305) 2013; 444
Gil (10.1016/j.fuproc.2020.106619_bb0145) 2016; 184
Iulianelli (10.1016/j.fuproc.2020.106619_bb0245) 2008; 33
Alique (10.1016/j.fuproc.2020.106619_bb0265) 2020
Dawood (10.1016/j.fuproc.2020.106619_bb0005) 2020
Thaicharoensutcharittham (10.1016/j.fuproc.2020.106619_bb0115) 2011; 164
Alique (10.1016/j.fuproc.2020.106619_bb0255) 2018
Gallucci (10.1016/j.fuproc.2020.106619_bb0300) 2007; 32
Basagiannis (10.1016/j.fuproc.2020.106619_bb0105) 2006; 308
Nogueira (10.1016/j.fuproc.2020.106619_bb0135) 2014; 160–161
Yu (10.1016/j.fuproc.2020.106619_bb0165) 2018; 237
Ramachandran (10.1016/j.fuproc.2020.106619_bb0370) 2018; 134
Rahimpour (10.1016/j.fuproc.2020.106619_bb0230) 2017; 121
Muradov (10.1016/j.fuproc.2020.106619_bb0015) 2008; 33
Kurokawa (10.1016/j.fuproc.2020.106619_bb0350) 2014; 39
Calles (10.1016/j.fuproc.2020.106619_bb0200) 2014; 227
Bellini (10.1016/j.fuproc.2020.106619_bb0290) 2020
Calles (10.1016/j.fuproc.2020.106619_bb0210) 2019
Li (10.1016/j.fuproc.2020.106619_bb0225) 2015; 495
Iwasa (10.1016/j.fuproc.2020.106619_bb0110) 2010; 35
Caravella (10.1016/j.fuproc.2020.106619_bb0360) 2009; 66
Sato (10.1016/j.fuproc.2020.106619_bb0080) 2010; 65
(10.1016/j.fuproc.2020.106619_bb0250) 2015
Bossola (10.1016/j.fuproc.2020.106619_bb0380) 2017; 07
De Falco (10.1016/j.fuproc.2020.106619_bb0220) 2013
Iulianelli (10.1016/j.fuproc.2020.106619_bb0025) 2018; 119
Singh Yadav (10.1016/j.fuproc.2020.106619_bb0040) 2018; 192
Martinez-Diaz (10.1016/j.fuproc.2020.106619_bb0275) 2019; 216
Yun (10.1016/j.fuproc.2020.106619_bb0295) 2011; 375
Hanley (10.1016/j.fuproc.2020.106619_bb0010) 2017
Yu (10.1016/j.fuproc.2020.106619_bb0175) 2020; 93
Basile (10.1016/j.fuproc.2020.106619_bb0240) 2008; 311
Megía (10.1016/j.fuproc.2020.106619_bb0215) 2019; 9
Uyar (10.1016/j.fuproc.2020.106619_bb0020) 2017; 42
Brunetti (10.1016/j.fuproc.2020.106619_bb0235) 2017
Choi (10.1016/j.fuproc.2020.106619_bb0185) 2019; 44
Hu (10.1016/j.fuproc.2020.106619_bb0130) 2013; 38
Nabgan (10.1016/j.fuproc.2020.106619_bb0065) 2017; 79
Furones (10.1016/j.fuproc.2020.106619_bb0285) 2017; 2
Caravella (10.1016/j.fuproc.2020.106619_bb0345) 2010; 114
Esteban-Díez (10.1016/j.fuproc.2020.106619_bb0150) 2016; 177
Alique (10.1016/j.fuproc.2020.106619_bb0315) 2018
Chen (10.1016/j.fuproc.2020.106619_bb0160) 2017; 79
DemirbaÅŸ (10.1016/j.fuproc.2020.106619_bb0050) 2001; 42
Wang (10.1016/j.fuproc.2020.106619_bb0060) 2014; 39
Xu (10.1016/j.fuproc.2020.106619_bb0045) 2017; 3
Wassie (10.1016/j.fuproc.2020.106619_bb0375) 2017; 316
Soria (10.1016/j.fuproc.2020.106619_bb0070) 2019; 244
Carrero (10.1016/j.fuproc.2020.106619_bb0205) 2017; 7
Junior (10.1016/j.fuproc.2020.106619_bb0155) 2019; 254
Barreiro (10.1016/j.fuproc.2020.106619_bb0330) 2015; 74
Tosto (10.1016/j.fuproc.2020.106619_bb0270) 2020; 45
Zhang (10.1016/j.fuproc.2020.106619_bb0075) 2018; 403
Zhang (10.1016/j.fuproc.2020.106619_bb0170) 2020; 43
Di Marcoberardino (10.1016/j.fuproc.2020.106619_bb0030) 2018; 129
Cornaglia (10.1016/j.fuproc.2020.106619_bb0340) 2015; 40
Calles (10.1016/j.fuproc.2020.106619_bb0055) 2019; 20
Muraviev (10.1016/j.fuproc.2020.106619_bb0095) 2014; 236
Takanabe (10.1016/j.fuproc.2020.106619_bb0100) 2004; 227
Vizcaíno (10.1016/j.fuproc.2020.106619_bb0195) 2016; 146
Nekhamkina (10.1016/j.fuproc.2020.106619_bb0365) 2016; 500
Barreiro (10.1016/j.fuproc.2020.106619_bb0325) 2014; 39
An (10.1016/j.fuproc.2020.106619_bb0120) 2011; 36
Li (10.1016/j.fuproc.2020.106619_bb0125) 2012; 355
Ahmad (10.1016/j.fuproc.2020.106619_bb0035) 2016; 53
Vadrucci (10.1016/j.fuproc.2020.106619_bb0310) 2013; 38
Augustine (10.1016/j.fuproc.2020.106619_bb0335) 2011; 36
Goicoechea (10.1016/j.fuproc.2020.106619_bb0140) 2016; 514
Plazaola (10.1016/j.fuproc.2020.106619_bb0260) 2017; 22
Calles (10.1016/j.fuproc.2020.106619_bb0355) 2014; 39
Kumar (10.1016/j.fuproc.2020.106619_bb0180) 2019; 44
Calles (10.1016/j.fuproc.2020.106619_bb0320) 2018; 194
Lindo (10.1016/j.fuproc.2020.106619_bb0190) 2010; 35
Saidi (10.1016/j.fuproc.2020.106619_bb0085) 2018; 43
Coutanceau (10.1016/j.fuproc.2020.106619_bb0090) 2018
Martinez-Diaz (10.1016/j.fuproc.2020.106619_bb0280) 2020; 45
References_xml – volume: 33
  start-page: 6804
  year: 2008
  end-page: 6839
  ident: bb0015
  article-title: “Green” path from fossil-based to hydrogen economy: an overview of carbon-neutral technologies
  publication-title: Int. J. Hydrog. Energy
  contributor:
    fullname: Veziroǧlu
– volume: 254
  start-page: 115714
  year: 2019
  ident: bb0155
  article-title: Steam reforming of acetic acid over Ni-based catalysts derived from La1−xCaxNiO3 perovskite type oxides
  publication-title: Fuel.
  contributor:
    fullname: Brandão
– volume: 121
  start-page: 24
  year: 2017
  end-page: 49
  ident: bb0230
  article-title: Palladium membranes applications in reaction systems for hydrogen separation and purification: a review
  publication-title: Chem. Eng. Process. Process Intensif.
  contributor:
    fullname: Mohebi
– volume: 311
  start-page: 46
  year: 2008
  end-page: 52
  ident: bb0240
  article-title: Acetic acid steam reforming in a Pd-Ag membrane reactor: the effect of the catalytic bed pattern
  publication-title: J. Memb. Sci.
  contributor:
    fullname: Tosti
– volume: 216
  start-page: 16
  year: 2019
  end-page: 24
  ident: bb0275
  article-title: H2 permeation increase of electroless pore-plated Pd/PSS membranes with CeO2 intermediate barriers
  publication-title: Sep. Purif. Technol.
  contributor:
    fullname: Alique
– volume: 39
  start-page: 1398
  year: 2014
  end-page: 1409
  ident: bb0355
  article-title: Thermal stability and effect of typical water gas shift reactant composition on H2 permeability through a Pd-YSZ-PSS composite membrane
  publication-title: Int. J. Hydrog. Energy
  contributor:
    fullname: Furones
– volume: 236
  start-page: 64
  year: 2014
  end-page: 69
  ident: bb0095
  article-title: Production of high purity hydrogen by ethanol steam reforming in membrane reactor
  publication-title: Catal. Today
  contributor:
    fullname: Ermilova
– volume: 184
  start-page: 64
  year: 2016
  end-page: 76
  ident: bb0145
  article-title: Production of fuel-cell grade H2 by sorption enhanced steam reforming of acetic acid as a model compound of biomass-derived bio-oil
  publication-title: Appl. Catal. B Environ.
  contributor:
    fullname: Rubiera
– volume: 375
  start-page: 28
  year: 2011
  end-page: 45
  ident: bb0295
  article-title: Correlations in palladium membranes for hydrogen separation: a review
  publication-title: J. Memb. Sci.
  contributor:
    fullname: Oyama
– volume: 43
  start-page: 14834
  year: 2018
  end-page: 14847
  ident: bb0085
  article-title: Application of catalytic membrane reactor for pure hydrogen production by flare gas recovery as a novel approach
  publication-title: Int. J. Hydrog. Energy
  contributor:
    fullname: Saidi
– volume: 45
  start-page: 7278
  year: 2020
  end-page: 7289
  ident: bb0280
  article-title: Pd-thickness reduction in electroless pore-plated membranes by using doped-ceria as interlayer
  publication-title: Int. J. Hydrog. Energy
  contributor:
    fullname: Sanz
– volume: 134
  start-page: 124
  year: 2018
  end-page: 140
  ident: bb0370
  article-title: Experiments, modeling and scaling-up of membrane reactors for hydrogen production via steam methane reforming
  publication-title: Chem. Eng. Process. - Process Intensif.
  contributor:
    fullname: Limtrakul
– volume: 119
  start-page: 834
  year: 2018
  end-page: 843
  ident: bb0025
  article-title: From bioethanol exploitation to high grade hydrogen generation: Steam reforming promoted by a Co-Pt catalyst in a Pd-based membrane reactor
  publication-title: Renew. Energy
  contributor:
    fullname: Basile
– volume: 32
  start-page: 4052
  year: 2007
  end-page: 4058
  ident: bb0300
  article-title: The effect of the hydrogen flux pressure and temperature dependence factors on the membrane reactor performances
  publication-title: Int. J. Hydrogen Energy
  contributor:
    fullname: Basile
– volume: 192
  start-page: 02020
  year: 2018
  ident: bb0040
  article-title: Bio-hydrogen production from waste materials: a review
  publication-title: MATEC Web Conf.
  contributor:
    fullname: Yadav
– volume: 35
  start-page: 5895
  year: 2010
  end-page: 5901
  ident: bb0190
  article-title: Ethanol steam reforming on Ni/Al-SBA-15 catalysts: effect of the aluminium content
  publication-title: Int. J. Hydrog. Energy
  contributor:
    fullname: Carrero
– volume: 7
  year: 2017
  ident: bb0205
  article-title: Production of renewable hydrogen from glycerol steam reforming over bimetallic Ni-(Cu,Co,Cr) catalysts supported on SBA-15 silica
  publication-title: Catalysts
  contributor:
    fullname: Vizcaíno
– volume: 3
  start-page: 416
  year: 2017
  end-page: 422
  ident: bb0045
  article-title: Thermodynamic Analysis of the Gasification of Municipal Solid Waste-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
  publication-title: Engineering.
  contributor:
    fullname: Cheng
– volume: 44
  start-page: 180
  year: 2019
  end-page: 190
  ident: bb0185
  article-title: Catalytic steam reforming of biomass-derived acetic acid over modified Ni/Γ-Al2O3 for sustainable hydrogen production
  publication-title: Int. J. Hydrog. Energy
  contributor:
    fullname: Lee
– volume: 2
  start-page: 1
  year: 2017
  ident: bb0285
  article-title: Interlayer properties of in-situ oxidized porous stainless steel for preparation of composite Pd membranes
  publication-title: ChemEngineering.
  contributor:
    fullname: Alique
– volume: 53
  start-page: 1333
  year: 2016
  end-page: 1347
  ident: bb0035
  article-title: Assessing the gasification performance of biomass: a review on biomass gasification process conditions, optimization and economic evaluation
  publication-title: Renew. Sust. Energ. Rev.
  contributor:
    fullname: Khasri
– volume: 44
  start-page: 12983
  year: 2019
  end-page: 13010
  ident: bb0180
  article-title: Catalyst modification strategies to enhance the catalyst activity and stability during steam reforming of acetic acid for hydrogen production
  publication-title: Int. J. Hydrog. Energy
  contributor:
    fullname: Sinha
– volume: 495
  start-page: 130
  year: 2015
  end-page: 168
  ident: bb0225
  article-title: Recent developments in membranes for efficient hydrogen purification
  publication-title: J. Memb. Sci.
  contributor:
    fullname: Wang
– volume: 42
  start-page: 2453
  year: 2017
  end-page: 2456
  ident: bb0020
  article-title: Integration of hydrogen energy systems into renewable energy systems for better design of 100% renewable energy communities
  publication-title: Int. J. Hydrogen Energy
  contributor:
    fullname: Be??ikci
– volume: 36
  start-page: 930
  year: 2011
  end-page: 935
  ident: bb0120
  article-title: The influence of Ni loading on coke formation in steam reforming of acetic acid
  publication-title: Renew. Energy
  contributor:
    fullname: He
– volume: 45
  start-page: 7374
  year: 2020
  end-page: 7385
  ident: bb0270
  article-title: Stability of pore-plated membranes for hydrogen production in fluidized-bed membrane reactors
  publication-title: Int. J. Hydrog. Energy
  contributor:
    fullname: Gallucci
– volume: 444
  start-page: 378
  year: 2013
  end-page: 383
  ident: bb0305
  article-title: Testing of dense Pd–Ag tubes: effect of pressure and membrane thickness on the hydrogen permeability
  publication-title: J. Memb. Sci.
  contributor:
    fullname: Tosti
– start-page: 456
  year: 2013
  end-page: 486
  ident: bb0220
  article-title: 11 - Palladium-based membranes for hydrogen separation: preparation, economic analysis and coupling with a water gas shift reactor
  publication-title: Handb. Membr. React
  contributor:
    fullname: Ciambelli
– volume: 129
  start-page: 131
  year: 2018
  end-page: 141
  ident: bb0030
  article-title: Potentiality of a biogas membrane reformer for decentralized hydrogen production
  publication-title: Chem. Eng. Process. - Process Intensif.
  contributor:
    fullname: Manzolini
– volume: 39
  start-page: 17201
  year: 2014
  end-page: 17209
  ident: bb0350
  article-title: Inhibition effect of CO on hydrogen permeability of Pd-Ag membrane applied in a microchannel module configuration
  publication-title: Int. J. Hydrog. Energy
  contributor:
    fullname: Bredesen
– volume: 38
  start-page: 6033
  year: 2013
  end-page: 6038
  ident: bb0130
  article-title: Carbon deposition on Ni/ZrO2-CeO2 catalyst during steam reforming of acetic acid
  publication-title: Int. J. Hydrog. Energy
  contributor:
    fullname: Zhou
– volume: 33
  start-page: 4091
  year: 2008
  end-page: 4096
  ident: bb0245
  article-title: CO-free hydrogen production by steam reforming of acetic acid carried out in a Pd-Ag membrane reactor: the effect of co-current and counter-current mode
  publication-title: Int. J. Hydrog. Energy
  contributor:
    fullname: Basile
– volume: 66
  start-page: 613
  year: 2009
  end-page: 624
  ident: bb0360
  article-title: Concentration polarization analysis in self-supported Pd-based membranes
  publication-title: Sep. Purif. Technol.
  contributor:
    fullname: Drioli
– volume: 500
  start-page: 136
  year: 2016
  end-page: 150
  ident: bb0365
  article-title: Approximate models of concentration-polarization in Pd-membrane separators. Fast numerical analysis
  publication-title: J. Memb. Sci.
  contributor:
    fullname: Sheintuch
– volume: 43
  start-page: 208
  year: 2020
  end-page: 219
  ident: bb0170
  article-title: Steam reforming of acetic acid over Ni–Ba/Al2O3 catalysts: impacts of barium addition on coking behaviors and formation of reaction intermediates
  publication-title: J. Energy Chem.
  contributor:
    fullname: Hu
– volume: 79
  start-page: 1091
  year: 2017
  end-page: 1098
  ident: bb0160
  article-title: Hydrogen production via acetic acid steam reforming: a critical review on catalysts
  publication-title: Renew. Sust. Energ. Rev.
  contributor:
    fullname: Li
– volume: 114
  start-page: 12264
  year: 2010
  end-page: 12276
  ident: bb0345
  article-title: Inhibition by CO and polarization in Pd-based membranes: a novel permeation reduction coefficient
  publication-title: J. Phys. Chem. B
  contributor:
    fullname: Drioli
– volume: 39
  start-page: 4710
  year: 2014
  end-page: 4716
  ident: bb0325
  article-title: Hydrogen permeation through a Pd-based membrane and RWGS conversion in H2/CO2, H2/N2/CO2and H2/H2O/CO2mixtures
  publication-title: Int. J. Hydrog. Energy
  contributor:
    fullname: Sánchez
– volume: 22
  start-page: 1
  year: 2017
  end-page: 53
  ident: bb0260
  article-title: Recent advances in pd-based membranes for membrane reactors
  publication-title: Molecules.
  contributor:
    fullname: Gallucci
– year: 2020
  ident: bb0005
  article-title: Hydrogen production for energy: an overview
  publication-title: Int. J. Hydrog. Energy
  contributor:
    fullname: Shafiullah
– volume: 227
  start-page: 101
  year: 2004
  end-page: 108
  ident: bb0100
  article-title: Sustainable hydrogen from bio-oil - Steam reforming of acetic acid as a model oxygenate
  publication-title: J. Catal.
  contributor:
    fullname: Lefferts
– volume: 244
  start-page: 184
  year: 2019
  end-page: 195
  ident: bb0070
  article-title: Hydrogen production through steam reforming of bio-oils derived from biomass pyrolysis: thermodynamic analysis including in situ CO2 and/or H2 separation
  publication-title: Fuel.
  contributor:
    fullname: Madeira
– volume: 164
  start-page: 257
  year: 2011
  end-page: 261
  ident: bb0115
  article-title: Hydrogen production by steam reforming of acetic acid over Ni-based catalysts
  publication-title: Catal. Today
  contributor:
    fullname: Rirksomboon
– year: 2018
  ident: bb0255
  article-title: Review of Supported Pd-based Membranes Preparation by Electroless Plating for Ultra-pure Hydrogen Production
  contributor:
    fullname: Calles
– volume: 65
  start-page: 451
  year: 2010
  end-page: 457
  ident: bb0080
  article-title: Steam reforming of biogas mixtures with a palladium membrane reactor system
  publication-title: Chem. Eng. Sci.
  contributor:
    fullname: Itoh
– volume: 160–161
  start-page: 188
  year: 2014
  end-page: 199
  ident: bb0135
  article-title: Catalytic steam reforming of acetic acid as a model compound of bio-oil
  publication-title: Appl. Catal. B Environ.
  contributor:
    fullname: Assaf
– volume: 07
  year: 2017
  ident: bb0380
  article-title: Catalytic steam reforming of acetic acid: latest advances in catalysts development and mechanism elucidation
  publication-title: Curr. Catal.
  contributor:
    fullname: Dal Santo
– volume: 316
  year: 2017
  ident: bb0375
  article-title: Experimental investigation on the generic effects of gas permeation through flat vertical membranes
  publication-title: Powder Technol.
  contributor:
    fullname: Amini
– volume: 355
  start-page: 123
  year: 2012
  end-page: 133
  ident: bb0125
  article-title: Renewable hydrogen production by a mild-temperature steam reforming of the model compound acetic acid derived from bio-oil
  publication-title: J. Mol. Catal. A Chem.
  contributor:
    fullname: Lu
– volume: 42
  start-page: 1357
  year: 2001
  end-page: 1378
  ident: bb0050
  article-title: Biomass resource facilities and biomass conversion processing for fuels and chemicals
  publication-title: Energy Convers. Manag.
  contributor:
    fullname: DemirbaÅŸ
– volume: 39
  start-page: 18675
  year: 2014
  end-page: 18687
  ident: bb0060
  article-title: Hydrogen production via catalytic reforming of the bio-oil model compounds: Acetic acid, phenol and hydroxyacetone
  publication-title: Int. J. Hydrog. Energy
  contributor:
    fullname: Luo
– volume: 146
  start-page: 99
  year: 2016
  end-page: 109
  ident: bb0195
  article-title: Comparison of ethanol steam reforming using Co and Ni catalysts supported on SBA-15 modified by Ca and Mg
  publication-title: Fuel Process. Technol.
  contributor:
    fullname: Calles
– start-page: 63
  year: 2020
  end-page: 90
  ident: bb0290
  article-title: Mass transport in hydrogen permeation through Pd-based membranes
  publication-title: Curr. Trends Futur. Dev. Membr.
  contributor:
    fullname: Caravella
– volume: 194
  start-page: 10
  year: 2018
  end-page: 18
  ident: bb0320
  article-title: Influence of the selective layer morphology on the permeation properties for Pd-PSS composite membranes prepared by electroless pore-plating: Experimental and modeling study
  publication-title: Sep. Purif. Technol.
  contributor:
    fullname: Ordoñez
– year: 2017
  ident: bb0235
  article-title: Membrane Reactors for Low Temperature Applications: An Overview
  contributor:
    fullname: Barbieri
– volume: 38
  start-page: 4144
  year: 2013
  end-page: 4152
  ident: bb0310
  article-title: Hydrogen permeation through Pd–Ag membranes: Surface effects and Sieverts' law
  publication-title: Int. J. Hydrog. Energy
  contributor:
    fullname: Tosti
– start-page: 31
  year: 2020
  end-page: 62
  ident: bb0265
  article-title: Pd membranes by electroless pore-plating: synthesis and permeation behavior
  publication-title: Curr. Trends Futur. Dev. Membr.
  contributor:
    fullname: Calles
– volume: 36
  start-page: 5350
  year: 2011
  end-page: 5360
  ident: bb0335
  article-title: High pressure palladium membrane reactor for the high temperature water-gas shift reaction
  publication-title: Int. J. Hydrog. Energy
  contributor:
    fullname: Kazantzis
– year: 2018
  ident: bb0315
  article-title: Processing and characterization of coating and thin film materials
  publication-title: Adv. Ceram. Met. Coat. Thin Film Mater. Energy Environ
  contributor:
    fullname: Alique
– volume: 9
  start-page: 1013
  year: 2019
  end-page: 1032
  ident: bb0215
  article-title: Hydrogen production from steam reforming of acetic acid as a model compound of the aqueous fraction of microalgae HTL using Co-M/SBA-15 (M: Cu, Ag, Ce, Cr) catalysts
  publication-title: Catalysts
  contributor:
    fullname: vizcaíno
– volume: 40
  start-page: 3423
  year: 2015
  end-page: 3437
  ident: bb0340
  article-title: Recent advances in catalysts, palladium alloys and high temperature {WGS} membrane reactors: a review
  publication-title: Int. J. Hydrogen Energy
  contributor:
    fullname: Lombardo
– volume: 93
  start-page: 1000
  year: 2020
  end-page: 1019
  ident: bb0175
  article-title: Steam reforming of acetic acid over nickel catalysts: Impacts of fourteen additives on the catalytic behaviors
  publication-title: J. Energy Inst.
  contributor:
    fullname: Hu
– volume: 177
  start-page: 579
  year: 2016
  end-page: 590
  ident: bb0150
  article-title: Effect of operating conditions on the sorption enhanced steam reforming of blends of acetic acid and acetone as bio-oil model compounds
  publication-title: Appl. Energy
  contributor:
    fullname: Rubiera
– start-page: 7
  year: 2018
  end-page: 15
  ident: bb0090
  article-title: Chapter 2 - Hydrogen Production From Thermal Reforming BT - Hydrogen Electrochemical Production, in: Hydrog
  contributor:
    fullname: Audichon
– start-page: 249
  year: 2015
  end-page: 266
  ident: bb0250
  article-title: 8 - Membrane reactors for steam reforming of glycerol and acetic acid to produce hydrogen
  publication-title: Woodhead Publ
– volume: 79
  start-page: 347
  year: 2017
  end-page: 357
  ident: bb0065
  article-title: Renewable hydrogen production from bio-oil derivative via catalytic steam reforming: an overview
  publication-title: Renew. Sust. Energ. Rev.
  contributor:
    fullname: Saeh
– volume: 237
  start-page: 538
  year: 2018
  end-page: 553
  ident: bb0165
  article-title: Steam reforming of acetic acid over nickel-based catalysts: the intrinsic effects of nickel precursors on behaviors of nickel catalysts
  publication-title: Appl. Catal. B Environ.
  contributor:
    fullname: Xiang
– volume: 403
  start-page: 137
  year: 2018
  end-page: 156
  ident: bb0075
  article-title: Progress in the reforming of bio-oil derived carboxylic acids for hydrogen generation
  publication-title: J. Power Sources
  contributor:
    fullname: Zhang
– volume: 308
  start-page: 182
  year: 2006
  end-page: 193
  ident: bb0105
  article-title: Reforming reactions of acetic acid on nickel catalysts over a wide temperature range
  publication-title: Appl. Catal. A Gen.
  contributor:
    fullname: Verykios
– volume: 227
  start-page: 198
  year: 2014
  end-page: 206
  ident: bb0200
  article-title: Hydrogen production by glycerol steam reforming over SBA-15-supported nickel catalysts: effect of alkaline earth promoters on activity and stability
  publication-title: Catal. Today
  contributor:
    fullname: García-Moreno
– volume: 20
  year: 2019
  ident: bb0055
  article-title: Steam reforming of model bio-oil aqueous fraction using Ni-(Cu, Co, Cr)/SBA-15 catalysts
  publication-title: Int. J. Mol. Sci.
  contributor:
    fullname: Megía
– start-page: 1
  year: 2019
  end-page: 10
  ident: bb0210
  article-title: Agglomerated Co–Cr/SBA-15 catalysts for hydrogen production through acetic acid steam reforming
  publication-title: Int. J. Hydrog. Energy
  contributor:
    fullname: Megía
– year: 2017
  ident: bb0010
  article-title: The Role of Hydrogen in Low Carbon Energy Futures–a Review of Existing Perspectives
  contributor:
    fullname: Gallachóir
– volume: 35
  start-page: 110
  year: 2010
  end-page: 117
  ident: bb0110
  article-title: Hydrogen production by steam reforming of acetic acid: comparison of conventional supported metal catalysts and metal-incorporated mesoporous smectite-like catalysts
  publication-title: Int. J. Hydrogen Energy
  contributor:
    fullname: Arai
– volume: 514
  start-page: 182
  year: 2016
  end-page: 191
  ident: bb0140
  article-title: Support effect on structure and performance of Co and Ni catalysts for steam reforming of acetic acid
  publication-title: Appl. Catal. A Gen.
  contributor:
    fullname: Ehrich
– volume: 74
  start-page: 186
  year: 2015
  end-page: 193
  ident: bb0330
  article-title: Hydrogen separation studies in a membrane reactor system: influence of feed gas flow rate, temperature and concentration of the feed gases on hydrogen permeation
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Sánchez
– volume: 254
  start-page: 115714
  year: 2019
  ident: 10.1016/j.fuproc.2020.106619_bb0155
  article-title: Steam reforming of acetic acid over Ni-based catalysts derived from La1−xCaxNiO3 perovskite type oxides
  publication-title: Fuel.
  doi: 10.1016/j.fuel.2019.115714
  contributor:
    fullname: Junior
– year: 2018
  ident: 10.1016/j.fuproc.2020.106619_bb0315
  article-title: Processing and characterization of coating and thin film materials
  contributor:
    fullname: Alique
– volume: 07
  year: 2017
  ident: 10.1016/j.fuproc.2020.106619_bb0380
  article-title: Catalytic steam reforming of acetic acid: latest advances in catalysts development and mechanism elucidation
  publication-title: Curr. Catal.
  contributor:
    fullname: Bossola
– volume: 500
  start-page: 136
  year: 2016
  ident: 10.1016/j.fuproc.2020.106619_bb0365
  article-title: Approximate models of concentration-polarization in Pd-membrane separators. Fast numerical analysis
  publication-title: J. Memb. Sci.
  doi: 10.1016/j.memsci.2015.11.027
  contributor:
    fullname: Nekhamkina
– volume: 227
  start-page: 101
  year: 2004
  ident: 10.1016/j.fuproc.2020.106619_bb0100
  article-title: Sustainable hydrogen from bio-oil - Steam reforming of acetic acid as a model oxygenate
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2004.07.002
  contributor:
    fullname: Takanabe
– volume: 43
  start-page: 208
  year: 2020
  ident: 10.1016/j.fuproc.2020.106619_bb0170
  article-title: Steam reforming of acetic acid over Ni–Ba/Al2O3 catalysts: impacts of barium addition on coking behaviors and formation of reaction intermediates
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2019.08.023
  contributor:
    fullname: Zhang
– start-page: 31
  year: 2020
  ident: 10.1016/j.fuproc.2020.106619_bb0265
  article-title: Pd membranes by electroless pore-plating: synthesis and permeation behavior
  publication-title: Curr. Trends Futur. Dev. Membr.
  contributor:
    fullname: Alique
– volume: 39
  start-page: 1398
  year: 2014
  ident: 10.1016/j.fuproc.2020.106619_bb0355
  article-title: Thermal stability and effect of typical water gas shift reactant composition on H2 permeability through a Pd-YSZ-PSS composite membrane
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2013.10.168
  contributor:
    fullname: Calles
– year: 2017
  ident: 10.1016/j.fuproc.2020.106619_bb0010
  contributor:
    fullname: Hanley
– start-page: 456
  year: 2013
  ident: 10.1016/j.fuproc.2020.106619_bb0220
  article-title: 11 - Palladium-based membranes for hydrogen separation: preparation, economic analysis and coupling with a water gas shift reactor
  contributor:
    fullname: De Falco
– year: 2017
  ident: 10.1016/j.fuproc.2020.106619_bb0235
  contributor:
    fullname: Brunetti
– volume: 79
  start-page: 1091
  year: 2017
  ident: 10.1016/j.fuproc.2020.106619_bb0160
  article-title: Hydrogen production via acetic acid steam reforming: a critical review on catalysts
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2017.05.107
  contributor:
    fullname: Chen
– volume: 7
  year: 2017
  ident: 10.1016/j.fuproc.2020.106619_bb0205
  article-title: Production of renewable hydrogen from glycerol steam reforming over bimetallic Ni-(Cu,Co,Cr) catalysts supported on SBA-15 silica
  publication-title: Catalysts
  doi: 10.3390/catal7020055
  contributor:
    fullname: Carrero
– volume: 43
  start-page: 14834
  year: 2018
  ident: 10.1016/j.fuproc.2020.106619_bb0085
  article-title: Application of catalytic membrane reactor for pure hydrogen production by flare gas recovery as a novel approach
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2018.05.156
  contributor:
    fullname: Saidi
– volume: 237
  start-page: 538
  year: 2018
  ident: 10.1016/j.fuproc.2020.106619_bb0165
  article-title: Steam reforming of acetic acid over nickel-based catalysts: the intrinsic effects of nickel precursors on behaviors of nickel catalysts
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2018.06.020
  contributor:
    fullname: Yu
– volume: 495
  start-page: 130
  year: 2015
  ident: 10.1016/j.fuproc.2020.106619_bb0225
  article-title: Recent developments in membranes for efficient hydrogen purification
  publication-title: J. Memb. Sci.
  doi: 10.1016/j.memsci.2015.08.010
  contributor:
    fullname: Li
– volume: 227
  start-page: 198
  year: 2014
  ident: 10.1016/j.fuproc.2020.106619_bb0200
  article-title: Hydrogen production by glycerol steam reforming over SBA-15-supported nickel catalysts: effect of alkaline earth promoters on activity and stability
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2013.11.006
  contributor:
    fullname: Calles
– volume: 33
  start-page: 4091
  year: 2008
  ident: 10.1016/j.fuproc.2020.106619_bb0245
  article-title: CO-free hydrogen production by steam reforming of acetic acid carried out in a Pd-Ag membrane reactor: the effect of co-current and counter-current mode
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2008.05.061
  contributor:
    fullname: Iulianelli
– volume: 403
  start-page: 137
  year: 2018
  ident: 10.1016/j.fuproc.2020.106619_bb0075
  article-title: Progress in the reforming of bio-oil derived carboxylic acids for hydrogen generation
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.09.097
  contributor:
    fullname: Zhang
– volume: 192
  start-page: 02020
  year: 2018
  ident: 10.1016/j.fuproc.2020.106619_bb0040
  article-title: Bio-hydrogen production from waste materials: a review
  publication-title: MATEC Web Conf.
  doi: 10.1051/matecconf/201819202020
  contributor:
    fullname: Singh Yadav
– volume: 236
  start-page: 64
  year: 2014
  ident: 10.1016/j.fuproc.2020.106619_bb0095
  article-title: Production of high purity hydrogen by ethanol steam reforming in membrane reactor
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2014.01.014
  contributor:
    fullname: Muraviev
– volume: 160–161
  start-page: 188
  year: 2014
  ident: 10.1016/j.fuproc.2020.106619_bb0135
  article-title: Catalytic steam reforming of acetic acid as a model compound of bio-oil
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2014.05.024
  contributor:
    fullname: Nogueira
– volume: 216
  start-page: 16
  year: 2019
  ident: 10.1016/j.fuproc.2020.106619_bb0275
  article-title: H2 permeation increase of electroless pore-plated Pd/PSS membranes with CeO2 intermediate barriers
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2019.01.076
  contributor:
    fullname: Martinez-Diaz
– volume: 74
  start-page: 186
  year: 2015
  ident: 10.1016/j.fuproc.2020.106619_bb0330
  article-title: Hydrogen separation studies in a membrane reactor system: influence of feed gas flow rate, temperature and concentration of the feed gases on hydrogen permeation
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2013.12.035
  contributor:
    fullname: Barreiro
– volume: 311
  start-page: 46
  year: 2008
  ident: 10.1016/j.fuproc.2020.106619_bb0240
  article-title: Acetic acid steam reforming in a Pd-Ag membrane reactor: the effect of the catalytic bed pattern
  publication-title: J. Memb. Sci.
  doi: 10.1016/j.memsci.2007.11.033
  contributor:
    fullname: Basile
– volume: 114
  start-page: 12264
  year: 2010
  ident: 10.1016/j.fuproc.2020.106619_bb0345
  article-title: Inhibition by CO and polarization in Pd-based membranes: a novel permeation reduction coefficient
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp104767q
  contributor:
    fullname: Caravella
– volume: 316
  year: 2017
  ident: 10.1016/j.fuproc.2020.106619_bb0375
  article-title: Experimental investigation on the generic effects of gas permeation through flat vertical membranes
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2016.12.026
  contributor:
    fullname: Wassie
– volume: 119
  start-page: 834
  year: 2018
  ident: 10.1016/j.fuproc.2020.106619_bb0025
  article-title: From bioethanol exploitation to high grade hydrogen generation: Steam reforming promoted by a Co-Pt catalyst in a Pd-based membrane reactor
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2017.10.050
  contributor:
    fullname: Iulianelli
– volume: 2
  start-page: 1
  year: 2017
  ident: 10.1016/j.fuproc.2020.106619_bb0285
  article-title: Interlayer properties of in-situ oxidized porous stainless steel for preparation of composite Pd membranes
  publication-title: ChemEngineering.
  doi: 10.3390/chemengineering2010001
  contributor:
    fullname: Furones
– volume: 20
  year: 2019
  ident: 10.1016/j.fuproc.2020.106619_bb0055
  article-title: Steam reforming of model bio-oil aqueous fraction using Ni-(Cu, Co, Cr)/SBA-15 catalysts
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20030512
  contributor:
    fullname: Calles
– volume: 79
  start-page: 347
  year: 2017
  ident: 10.1016/j.fuproc.2020.106619_bb0065
  article-title: Renewable hydrogen production from bio-oil derivative via catalytic steam reforming: an overview
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2017.05.069
  contributor:
    fullname: Nabgan
– volume: 35
  start-page: 110
  year: 2010
  ident: 10.1016/j.fuproc.2020.106619_bb0110
  article-title: Hydrogen production by steam reforming of acetic acid: comparison of conventional supported metal catalysts and metal-incorporated mesoporous smectite-like catalysts
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.10.053
  contributor:
    fullname: Iwasa
– volume: 36
  start-page: 5350
  year: 2011
  ident: 10.1016/j.fuproc.2020.106619_bb0335
  article-title: High pressure palladium membrane reactor for the high temperature water-gas shift reaction
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2011.01.172
  contributor:
    fullname: Augustine
– volume: 134
  start-page: 124
  year: 2018
  ident: 10.1016/j.fuproc.2020.106619_bb0370
  article-title: Experiments, modeling and scaling-up of membrane reactors for hydrogen production via steam methane reforming
  publication-title: Chem. Eng. Process. - Process Intensif.
  doi: 10.1016/j.cep.2018.10.007
  contributor:
    fullname: Ramachandran
– volume: 65
  start-page: 451
  year: 2010
  ident: 10.1016/j.fuproc.2020.106619_bb0080
  article-title: Steam reforming of biogas mixtures with a palladium membrane reactor system
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2009.04.013
  contributor:
    fullname: Sato
– volume: 355
  start-page: 123
  year: 2012
  ident: 10.1016/j.fuproc.2020.106619_bb0125
  article-title: Renewable hydrogen production by a mild-temperature steam reforming of the model compound acetic acid derived from bio-oil
  publication-title: J. Mol. Catal. A Chem.
  doi: 10.1016/j.molcata.2011.12.006
  contributor:
    fullname: Li
– volume: 44
  start-page: 180
  year: 2019
  ident: 10.1016/j.fuproc.2020.106619_bb0185
  article-title: Catalytic steam reforming of biomass-derived acetic acid over modified Ni/Γ-Al2O3 for sustainable hydrogen production
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2018.04.192
  contributor:
    fullname: Choi
– volume: 45
  start-page: 7374
  year: 2020
  ident: 10.1016/j.fuproc.2020.106619_bb0270
  article-title: Stability of pore-plated membranes for hydrogen production in fluidized-bed membrane reactors
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2019.04.285
  contributor:
    fullname: Tosto
– volume: 36
  start-page: 930
  year: 2011
  ident: 10.1016/j.fuproc.2020.106619_bb0120
  article-title: The influence of Ni loading on coke formation in steam reforming of acetic acid
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2010.08.029
  contributor:
    fullname: An
– volume: 93
  start-page: 1000
  year: 2020
  ident: 10.1016/j.fuproc.2020.106619_bb0175
  article-title: Steam reforming of acetic acid over nickel catalysts: Impacts of fourteen additives on the catalytic behaviors
  publication-title: J. Energy Inst.
  doi: 10.1016/j.joei.2019.09.002
  contributor:
    fullname: Yu
– volume: 39
  start-page: 18675
  year: 2014
  ident: 10.1016/j.fuproc.2020.106619_bb0060
  article-title: Hydrogen production via catalytic reforming of the bio-oil model compounds: Acetic acid, phenol and hydroxyacetone
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2014.01.142
  contributor:
    fullname: Wang
– volume: 375
  start-page: 28
  year: 2011
  ident: 10.1016/j.fuproc.2020.106619_bb0295
  article-title: Correlations in palladium membranes for hydrogen separation: a review
  publication-title: J. Memb. Sci.
  doi: 10.1016/j.memsci.2011.03.057
  contributor:
    fullname: Yun
– volume: 121
  start-page: 24
  year: 2017
  ident: 10.1016/j.fuproc.2020.106619_bb0230
  article-title: Palladium membranes applications in reaction systems for hydrogen separation and purification: a review
  publication-title: Chem. Eng. Process. Process Intensif.
  doi: 10.1016/j.cep.2017.07.021
  contributor:
    fullname: Rahimpour
– volume: 44
  start-page: 12983
  year: 2019
  ident: 10.1016/j.fuproc.2020.106619_bb0180
  article-title: Catalyst modification strategies to enhance the catalyst activity and stability during steam reforming of acetic acid for hydrogen production
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2019.03.136
  contributor:
    fullname: Kumar
– year: 2020
  ident: 10.1016/j.fuproc.2020.106619_bb0005
  article-title: Hydrogen production for energy: an overview
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2019.12.059
  contributor:
    fullname: Dawood
– volume: 35
  start-page: 5895
  year: 2010
  ident: 10.1016/j.fuproc.2020.106619_bb0190
  article-title: Ethanol steam reforming on Ni/Al-SBA-15 catalysts: effect of the aluminium content
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2009.12.120
  contributor:
    fullname: Lindo
– volume: 22
  start-page: 1
  year: 2017
  ident: 10.1016/j.fuproc.2020.106619_bb0260
  article-title: Recent advances in pd-based membranes for membrane reactors
  publication-title: Molecules.
  contributor:
    fullname: Plazaola
– volume: 3
  start-page: 416
  year: 2017
  ident: 10.1016/j.fuproc.2020.106619_bb0045
  article-title: Thermodynamic Analysis of the Gasification of Municipal Solid Waste-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
  publication-title: Engineering.
  doi: 10.1016/J.ENG.2017.03.004
  contributor:
    fullname: Xu
– volume: 308
  start-page: 182
  year: 2006
  ident: 10.1016/j.fuproc.2020.106619_bb0105
  article-title: Reforming reactions of acetic acid on nickel catalysts over a wide temperature range
  publication-title: Appl. Catal. A Gen.
  doi: 10.1016/j.apcata.2006.04.024
  contributor:
    fullname: Basagiannis
– volume: 177
  start-page: 579
  year: 2016
  ident: 10.1016/j.fuproc.2020.106619_bb0150
  article-title: Effect of operating conditions on the sorption enhanced steam reforming of blends of acetic acid and acetone as bio-oil model compounds
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.05.149
  contributor:
    fullname: Esteban-Díez
– volume: 9
  start-page: 1013
  year: 2019
  ident: 10.1016/j.fuproc.2020.106619_bb0215
  article-title: Hydrogen production from steam reforming of acetic acid as a model compound of the aqueous fraction of microalgae HTL using Co-M/SBA-15 (M: Cu, Ag, Ce, Cr) catalysts
  publication-title: Catalysts
  doi: 10.3390/catal9121013
  contributor:
    fullname: Megía
– start-page: 63
  year: 2020
  ident: 10.1016/j.fuproc.2020.106619_bb0290
  article-title: Mass transport in hydrogen permeation through Pd-based membranes
  publication-title: Curr. Trends Futur. Dev. Membr.
  contributor:
    fullname: Bellini
– volume: 444
  start-page: 378
  year: 2013
  ident: 10.1016/j.fuproc.2020.106619_bb0305
  article-title: Testing of dense Pd–Ag tubes: effect of pressure and membrane thickness on the hydrogen permeability
  publication-title: J. Memb. Sci.
  doi: 10.1016/j.memsci.2013.05.058
  contributor:
    fullname: Santucci
– volume: 38
  start-page: 4144
  issue: 10
  year: 2013
  ident: 10.1016/j.fuproc.2020.106619_bb0310
  article-title: Hydrogen permeation through Pd–Ag membranes: Surface effects and Sieverts' law
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2013.01.091
  contributor:
    fullname: Vadrucci
– volume: 66
  start-page: 613
  year: 2009
  ident: 10.1016/j.fuproc.2020.106619_bb0360
  article-title: Concentration polarization analysis in self-supported Pd-based membranes
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2009.01.008
  contributor:
    fullname: Caravella
– volume: 45
  start-page: 7278
  year: 2020
  ident: 10.1016/j.fuproc.2020.106619_bb0280
  article-title: Pd-thickness reduction in electroless pore-plated membranes by using doped-ceria as interlayer
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2019.10.140
  contributor:
    fullname: Martinez-Diaz
– start-page: 7
  year: 2018
  ident: 10.1016/j.fuproc.2020.106619_bb0090
  contributor:
    fullname: Coutanceau
– volume: 184
  start-page: 64
  year: 2016
  ident: 10.1016/j.fuproc.2020.106619_bb0145
  article-title: Production of fuel-cell grade H2 by sorption enhanced steam reforming of acetic acid as a model compound of biomass-derived bio-oil
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2015.11.028
  contributor:
    fullname: Gil
– volume: 164
  start-page: 257
  year: 2011
  ident: 10.1016/j.fuproc.2020.106619_bb0115
  article-title: Hydrogen production by steam reforming of acetic acid over Ni-based catalysts
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2010.10.054
  contributor:
    fullname: Thaicharoensutcharittham
– year: 2018
  ident: 10.1016/j.fuproc.2020.106619_bb0255
  contributor:
    fullname: Alique
– volume: 194
  start-page: 10
  year: 2018
  ident: 10.1016/j.fuproc.2020.106619_bb0320
  article-title: Influence of the selective layer morphology on the permeation properties for Pd-PSS composite membranes prepared by electroless pore-plating: Experimental and modeling study
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2017.11.014
  contributor:
    fullname: Calles
– volume: 40
  start-page: 3423
  year: 2015
  ident: 10.1016/j.fuproc.2020.106619_bb0340
  article-title: Recent advances in catalysts, palladium alloys and high temperature {WGS} membrane reactors: a review
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.10.091
  contributor:
    fullname: Cornaglia
– volume: 514
  start-page: 182
  year: 2016
  ident: 10.1016/j.fuproc.2020.106619_bb0140
  article-title: Support effect on structure and performance of Co and Ni catalysts for steam reforming of acetic acid
  publication-title: Appl. Catal. A Gen.
  doi: 10.1016/j.apcata.2015.12.025
  contributor:
    fullname: Goicoechea
– volume: 146
  start-page: 99
  year: 2016
  ident: 10.1016/j.fuproc.2020.106619_bb0195
  article-title: Comparison of ethanol steam reforming using Co and Ni catalysts supported on SBA-15 modified by Ca and Mg
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2016.02.020
  contributor:
    fullname: Vizcaíno
– volume: 42
  start-page: 1357
  year: 2001
  ident: 10.1016/j.fuproc.2020.106619_bb0050
  article-title: Biomass resource facilities and biomass conversion processing for fuels and chemicals
  publication-title: Energy Convers. Manag.
  doi: 10.1016/S0196-8904(00)00137-0
  contributor:
    fullname: DemirbaÅŸ
– start-page: 1
  year: 2019
  ident: 10.1016/j.fuproc.2020.106619_bb0210
  article-title: Agglomerated Co–Cr/SBA-15 catalysts for hydrogen production through acetic acid steam reforming
  publication-title: Int. J. Hydrog. Energy
  contributor:
    fullname: Calles
– volume: 32
  start-page: 4052
  year: 2007
  ident: 10.1016/j.fuproc.2020.106619_bb0300
  article-title: The effect of the hydrogen flux pressure and temperature dependence factors on the membrane reactor performances
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2007.03.039
  contributor:
    fullname: Gallucci
– volume: 129
  start-page: 131
  year: 2018
  ident: 10.1016/j.fuproc.2020.106619_bb0030
  article-title: Potentiality of a biogas membrane reformer for decentralized hydrogen production
  publication-title: Chem. Eng. Process. - Process Intensif.
  doi: 10.1016/j.cep.2018.04.023
  contributor:
    fullname: Di Marcoberardino
– volume: 39
  start-page: 4710
  year: 2014
  ident: 10.1016/j.fuproc.2020.106619_bb0325
  article-title: Hydrogen permeation through a Pd-based membrane and RWGS conversion in H2/CO2, H2/N2/CO2and H2/H2O/CO2mixtures
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2013.11.089
  contributor:
    fullname: Barreiro
– volume: 42
  start-page: 2453
  year: 2017
  ident: 10.1016/j.fuproc.2020.106619_bb0020
  article-title: Integration of hydrogen energy systems into renewable energy systems for better design of 100% renewable energy communities
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.09.086
  contributor:
    fullname: Uyar
– volume: 39
  start-page: 17201
  year: 2014
  ident: 10.1016/j.fuproc.2020.106619_bb0350
  article-title: Inhibition effect of CO on hydrogen permeability of Pd-Ag membrane applied in a microchannel module configuration
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2014.08.056
  contributor:
    fullname: Kurokawa
– volume: 244
  start-page: 184
  year: 2019
  ident: 10.1016/j.fuproc.2020.106619_bb0070
  article-title: Hydrogen production through steam reforming of bio-oils derived from biomass pyrolysis: thermodynamic analysis including in situ CO2 and/or H2 separation
  publication-title: Fuel.
  doi: 10.1016/j.fuel.2019.01.156
  contributor:
    fullname: Soria
– volume: 38
  start-page: 6033
  year: 2013
  ident: 10.1016/j.fuproc.2020.106619_bb0130
  article-title: Carbon deposition on Ni/ZrO2-CeO2 catalyst during steam reforming of acetic acid
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2012.12.141
  contributor:
    fullname: Hu
– volume: 33
  start-page: 6804
  year: 2008
  ident: 10.1016/j.fuproc.2020.106619_bb0015
  article-title: “Green” path from fossil-based to hydrogen economy: an overview of carbon-neutral technologies
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2008.08.054
  contributor:
    fullname: Muradov
– start-page: 249
  year: 2015
  ident: 10.1016/j.fuproc.2020.106619_bb0250
  article-title: 8 - Membrane reactors for steam reforming of glycerol and acetic acid to produce hydrogen
– volume: 53
  start-page: 1333
  year: 2016
  ident: 10.1016/j.fuproc.2020.106619_bb0035
  article-title: Assessing the gasification performance of biomass: a review on biomass gasification process conditions, optimization and economic evaluation
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2015.09.030
  contributor:
    fullname: Ahmad
SSID ssj0005597
Score 2.4256487
Snippet Electroless Pore-Plated (ELP-PP) membranes were successfully incorporated for the first time into a membrane reactor to produce hydrogen by acetic acid steam...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 106619
SubjectTerms Acetic acid
Catalysts
Cerium oxides
Electroless plating
Hydrogen production
Membrane
Membrane reactors
Membranes
Palladium
Reactors
Reforming
Selectivity
Steam reforming
Title Stability of electroless pore-plated Pd-membranes in acetic acid steam membrane-reformers for ultra-pure hydrogen production
URI https://dx.doi.org/10.1016/j.fuproc.2020.106619
https://www.proquest.com/docview/2478820886
Volume 212
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FL3oQn_gsOXhN293NbrLHUixVsQha6C0kmwQrfSy1PQjib3dmH1AFETwtZLMhZCbfN7v7zYSQa2NFaoEpUalmGdewpbR0hnGeujhxQguP3zsehslgxO_G8bhBenUuDMoqK-wvMb1A66qlXa1mO59M2k-dSMgICCzEvwRBUfGTA_2BT7c-N2QecXHACnZm2LtOnys0Xn6NNNHCMaAJqCr9jZ5-AHXBPv19sleFjbRbzuyANNz8kOxuFBM8Ih8QNxZK13e68LQ63mYKQEYhxHYsn0JUaemjZTM3g1dkgDg6mVOdYRYjXCaWosFntL7NYHIQ0EJ4SOFK19PVUrN8vXT05d0uF-B4NC_LxYJpj8mof_PcG7DqbAWWRbKzYoHhQieiI533NtYyDayXqfBWRCmmmRsRxlZj_a5UWq19lgG3gykxT9UHgYtOyNZ8MXenhEbGQYNJJDecO5_p2Bjc105Ghmc2OyOsXlKVlyU0VK0te1WlCRSaQJUmOCOiXnf1zRUUoPwfT17WZlLVVnxTIR4QEAKYJuf_HviC7ISoZSnU2pdka7VcuysIRlamWXhbk2x3b-8Hwy840OG7
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yHtSD-MTVVXPwmt1tmzbpURaX9YmggreQNAmu7KOsu4cF8bc70weoIIKnQpqGkJl887X9ZkLImbEitRApUalmGdewpbR0hnGeujhxQguP3ztu75LBE796jp9XSK_OhUFZZYX9JaYXaF21dKrV7OTDYeehGwkZQQAL8S9BgBU_VznyY3Dq9scXnUdcnLCCvRl2r_PnCpGXX2CcaOMg0ASxKv0tPv1A6iL89LfIZsUb6Xk5tW2y4iY7ZONLNcFd8g7EsZC6LunU0-p8mxEgGQWO7Vg-Alpp6b1lYzeGd2TAODqcUJ1hGiNchpaixce0vs1gcsBogR9SuNLFaD7TLF_MHH1Z2tkUPI_mZb1YsO0eeepfPPYGrDpcgWWR7M5ZYLjQiehK572NtUwD62UqvBVRinnmRoSx1VjAK5VWa59lENzBlpio6oPARfukMZlO3AGhkXHQYBLJDefOZzo2Bje2k5Hhmc2ahNVLqvKyhoaqxWWvqjSBQhOo0gRNIup1V998QQHM__FkqzaTqvbimwrxhIAQ0DQ5_PfAp2Rt8Hh7o24u766PyHqIwpZCut0ijfls4Y6BmczNSeF5n5KS41Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+of+electroless+pore-plated+Pd-membranes+in+acetic+acid+steam+membrane-reformers+for+ultra-pure+hydrogen+production&rft.jtitle=Fuel+processing+technology&rft.au=Adduci%2C+G.&rft.au=Martinez-Diaz%2C+D.&rft.au=Sanz-Villanueva%2C+D.&rft.au=Caravella%2C+A.&rft.date=2021-02-01&rft.issn=0378-3820&rft.volume=212&rft.spage=106619&rft_id=info:doi/10.1016%2Fj.fuproc.2020.106619&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_fuproc_2020_106619
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3820&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3820&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3820&client=summon