Stability of electroless pore-plated Pd-membranes in acetic acid steam membrane-reformers for ultra-pure hydrogen production
Electroless Pore-Plated (ELP-PP) membranes were successfully incorporated for the first time into a membrane reactor to produce hydrogen by acetic acid steam reforming (AASR), exhibiting adequate resistance against harsh operating conditions. Membranes were prepared onto tubular PSS supports modifie...
Saved in:
Published in | Fuel processing technology Vol. 212; p. 106619 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.02.2021
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electroless Pore-Plated (ELP-PP) membranes were successfully incorporated for the first time into a membrane reactor to produce hydrogen by acetic acid steam reforming (AASR), exhibiting adequate resistance against harsh operating conditions. Membranes were prepared onto tubular PSS supports modified with Pd/CeO2 particles and scaled-up around four times in length with high reproducibility respect previous studies. H2 permeances from 4.49 to 5.67·10−4 mol m−2 s−1 Pa-0.5 were found for pure H2 at 350–450 °C, decreasing for mixtures due to concentration-polarization at higher pressures but also certain inhibition caused by CO2 at pressures below 50 Pa0.5. The combination of membranes with Ni/SBA-15 catalysts in packed-bed membrane reactors (PBMR) evidenced the simultaneous improvement of acetic acid conversion and hydrogen yield respect to analogous experiments in traditional packed-bed reactors (PBR). A very similar product distribution was obtained for both configurations, PBR and PBMR, when using fresh catalysts, although marked deviations were found in case of regenerating the catalysts. Then, higher selectivity towards coke reached for PBMR, which lead to around 30% for the most elevated pressure under investigation. However, even at these harsh conditions, the mechanical integrity of ELP-PP membranes was maintained. Thus, the benefits of combining catalysts and ELP-PP membranes in a PBMR for AASR were demonstrated.
•Successful scale-up of an ELP-PP membrane with Pd/CeO2 barrier to 110 mm in length.•Pd thickness around 15 μm with no marked differences along the axial direction.•H2 permeances from 4.49 to 5.67·10−4 mol·m−2·s−1·Pa-0.5 for pure H2 at 350–450 °C.•Noticeably inhibition caused by CO2 was found in permeation tests with mixtures.•Mechanical integrity of ELP-PP membrane in PBMR and improvement of H2 production. |
---|---|
AbstractList | Electroless Pore-Plated (ELP-PP) membranes were successfully incorporated for the first time into a membrane reactor to produce hydrogen by acetic acid steam reforming (AASR), exhibiting adequate resistance against harsh operating conditions. Membranes were prepared onto tubular PSS supports modified with Pd/CeO2 particles and scaled-up around four times in length with high reproducibility respect previous studies. H2 permeances from 4.49 to 5.67·10−4 mol m−2 s−1 Pa-0.5 were found for pure H2 at 350–450 °C, decreasing for mixtures due to concentration-polarization at higher pressures but also certain inhibition caused by CO2 at pressures below 50 Pa0.5. The combination of membranes with Ni/SBA-15 catalysts in packed-bed membrane reactors (PBMR) evidenced the simultaneous improvement of acetic acid conversion and hydrogen yield respect to analogous experiments in traditional packed-bed reactors (PBR). A very similar product distribution was obtained for both configurations, PBR and PBMR, when using fresh catalysts, although marked deviations were found in case of regenerating the catalysts. Then, higher selectivity towards coke reached for PBMR, which lead to around 30% for the most elevated pressure under investigation. However, even at these harsh conditions, the mechanical integrity of ELP-PP membranes was maintained. Thus, the benefits of combining catalysts and ELP-PP membranes in a PBMR for AASR were demonstrated.
•Successful scale-up of an ELP-PP membrane with Pd/CeO2 barrier to 110 mm in length.•Pd thickness around 15 μm with no marked differences along the axial direction.•H2 permeances from 4.49 to 5.67·10−4 mol·m−2·s−1·Pa-0.5 for pure H2 at 350–450 °C.•Noticeably inhibition caused by CO2 was found in permeation tests with mixtures.•Mechanical integrity of ELP-PP membrane in PBMR and improvement of H2 production. Electroless Pore-Plated (ELP-PP) membranes were successfully incorporated for the first time into a membrane reactor to produce hydrogen by acetic acid steam reforming (AASR), exhibiting adequate resistance against harsh operating conditions. Membranes were prepared onto tubular PSS supports modified with Pd/CeO2 particles and scaled-up around four times in length with high reproducibility respect previous studies. H2 permeances from 4.49 to 5.67·10−4 mol m−2 s−1 Pa-0.5 were found for pure H2 at 350–450 °C, decreasing for mixtures due to concentration-polarization at higher pressures but also certain inhibition caused by CO2 at pressures below 50 Pa0.5. The combination of membranes with Ni/SBA-15 catalysts in packed-bed membrane reactors (PBMR) evidenced the simultaneous improvement of acetic acid conversion and hydrogen yield respect to analogous experiments in traditional packed-bed reactors (PBR). A very similar product distribution was obtained for both configurations, PBR and PBMR, when using fresh catalysts, although marked deviations were found in case of regenerating the catalysts. Then, higher selectivity towards coke reached for PBMR, which lead to around 30% for the most elevated pressure under investigation. However, even at these harsh conditions, the mechanical integrity of ELP-PP membranes was maintained. Thus, the benefits of combining catalysts and ELP-PP membranes in a PBMR for AASR were demonstrated. |
ArticleNumber | 106619 |
Author | Sanz, R. Sanz-Villanueva, D. Caravella, A. Alique, D. Adduci, G. Martinez-Diaz, D. Calles, J.A. |
Author_xml | – sequence: 1 givenname: G. surname: Adduci fullname: Adduci, G. organization: Department of Computer Engineering, Modelling, Electronics and Systems Engineering (DIMES), University of Calabria, Via P. Bucci, Cubo 44A, Rende, CS 87036, Italy – sequence: 2 givenname: D. surname: Martinez-Diaz fullname: Martinez-Diaz, D. organization: Department of Chemical, Energy and Mechanical Technology, Rey Juan Carlos University, C/ Tulipán s/n, 28933 Móstoles, Spain – sequence: 3 givenname: D. surname: Sanz-Villanueva fullname: Sanz-Villanueva, D. organization: Department of Chemical, Energy and Mechanical Technology, Rey Juan Carlos University, C/ Tulipán s/n, 28933 Móstoles, Spain – sequence: 4 givenname: A. surname: Caravella fullname: Caravella, A. organization: Department of Computer Engineering, Modelling, Electronics and Systems Engineering (DIMES), University of Calabria, Via P. Bucci, Cubo 44A, Rende, CS 87036, Italy – sequence: 5 givenname: J.A. surname: Calles fullname: Calles, J.A. organization: Department of Chemical, Energy and Mechanical Technology, Rey Juan Carlos University, C/ Tulipán s/n, 28933 Móstoles, Spain – sequence: 6 givenname: R. surname: Sanz fullname: Sanz, R. organization: Department of Chemical and Environmental Technology, Rey Juan Carlos University, C/ Tulipán s/n, 28933 Móstoles, Spain – sequence: 7 givenname: D. surname: Alique fullname: Alique, D. email: david.alique@urjc.es organization: Department of Chemical, Energy and Mechanical Technology, Rey Juan Carlos University, C/ Tulipán s/n, 28933 Móstoles, Spain |
BookMark | eNp9kMtKBDEQRYMoOI7-gYuA64xJv5LeCCK-YEBBXYdMUtEM3Z02SQsDfrwZWreuLlTdulV1TtDh4AdA6JzRFaOsudyu7DQGr1cFLfalpmHtAVowwUvCmRCHaEFLLkgpCnqMTmLcUkrruuUL9P2S1MZ1Lu2wtxg60Cn4DmLEow9Axk4lMPjZkB76TVADROwGrDQkp7M4g2MC1eO_NglgfeghRJwVT10KioxTAPyxM8G_w4DzpWbSyfnhFB1Z1UU4-9Uleru7fb15IOun-8eb6zXRpaCJsE3FVcOpAGtNrUTLjBUtt4aXLa0E3fCiNqpmvG2FUcpqXZSiUiVjglnGoFyiizk3r_6cICa59VMY8kpZVFxkKkI02VXNLh18jPkPOQbXq7CTjMo9Z7mVM2e55yxnznnsah6D_MGXgyCjdjBoMC5kmtJ493_ADxd3jHU |
CitedBy_id | crossref_primary_10_1016_j_fuproc_2022_107229 crossref_primary_10_1016_j_ijhydene_2023_11_198 crossref_primary_10_1016_j_psep_2022_10_023 crossref_primary_10_1557_s43578_023_01212_5 crossref_primary_10_1016_j_fuproc_2021_106801 crossref_primary_10_1016_j_jece_2023_110677 |
Cites_doi | 10.1016/j.fuel.2019.115714 10.1016/j.memsci.2015.11.027 10.1016/j.jcat.2004.07.002 10.1016/j.jechem.2019.08.023 10.1016/j.ijhydene.2013.10.168 10.1016/j.rser.2017.05.107 10.3390/catal7020055 10.1016/j.ijhydene.2018.05.156 10.1016/j.apcatb.2018.06.020 10.1016/j.memsci.2015.08.010 10.1016/j.cattod.2013.11.006 10.1016/j.ijhydene.2008.05.061 10.1016/j.jpowsour.2018.09.097 10.1051/matecconf/201819202020 10.1016/j.cattod.2014.01.014 10.1016/j.apcatb.2014.05.024 10.1016/j.seppur.2019.01.076 10.1016/j.applthermaleng.2013.12.035 10.1016/j.memsci.2007.11.033 10.1021/jp104767q 10.1016/j.powtec.2016.12.026 10.1016/j.renene.2017.10.050 10.3390/chemengineering2010001 10.3390/ijms20030512 10.1016/j.rser.2017.05.069 10.1016/j.ijhydene.2009.10.053 10.1016/j.ijhydene.2011.01.172 10.1016/j.cep.2018.10.007 10.1016/j.ces.2009.04.013 10.1016/j.molcata.2011.12.006 10.1016/j.ijhydene.2018.04.192 10.1016/j.ijhydene.2019.04.285 10.1016/j.renene.2010.08.029 10.1016/j.joei.2019.09.002 10.1016/j.ijhydene.2014.01.142 10.1016/j.memsci.2011.03.057 10.1016/j.cep.2017.07.021 10.1016/j.ijhydene.2019.03.136 10.1016/j.ijhydene.2019.12.059 10.1016/j.ijhydene.2009.12.120 10.1016/J.ENG.2017.03.004 10.1016/j.apcata.2006.04.024 10.1016/j.apenergy.2016.05.149 10.3390/catal9121013 10.1016/j.memsci.2013.05.058 10.1016/j.ijhydene.2013.01.091 10.1016/j.seppur.2009.01.008 10.1016/j.ijhydene.2019.10.140 10.1016/j.apcatb.2015.11.028 10.1016/j.cattod.2010.10.054 10.1016/j.seppur.2017.11.014 10.1016/j.ijhydene.2014.10.091 10.1016/j.apcata.2015.12.025 10.1016/j.fuproc.2016.02.020 10.1016/S0196-8904(00)00137-0 10.1016/j.ijhydene.2007.03.039 10.1016/j.cep.2018.04.023 10.1016/j.ijhydene.2013.11.089 10.1016/j.ijhydene.2016.09.086 10.1016/j.ijhydene.2014.08.056 10.1016/j.fuel.2019.01.156 10.1016/j.ijhydene.2012.12.141 10.1016/j.ijhydene.2008.08.054 10.1016/j.rser.2015.09.030 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright Elsevier Science Ltd. Feb 2021 |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Feb 2021 |
DBID | AAYXX CITATION 7TB 8FD FR3 H8D L7M |
DOI | 10.1016/j.fuproc.2020.106619 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-7188 |
ExternalDocumentID | 10_1016_j_fuproc_2020_106619 S0378382020309103 |
GroupedDBID | --K --M .~1 0R~ 0SF 1B1 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 8WZ 9JN A6W AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AARLI AAXUO ABFNM ABJNI ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SCB SDF SDG SES SEW SPC SPCBC SSG SSK SSR SSZ T5K TWZ UHS WUQ ZY4 ~02 ~G- AAHBH AAXKI AAYXX ADVLN AFJKZ AKRWK CITATION GROUPED_DOAJ 7TB 8FD FR3 H8D L7M |
ID | FETCH-LOGICAL-c380t-1b47a6708effd5a891df897fd7390480b725da517998daafcc2384a31181f11e3 |
IEDL.DBID | .~1 |
ISSN | 0378-3820 |
IngestDate | Thu Oct 10 16:15:28 EDT 2024 Thu Sep 26 16:48:59 EDT 2024 Fri Feb 23 02:46:44 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Membrane Steam reforming Palladium Acetic acid Electroless plating Hydrogen production |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c380t-1b47a6708effd5a891df897fd7390480b725da517998daafcc2384a31181f11e3 |
OpenAccessLink | https://doi.org/10.1016/j.fuproc.2020.106619 |
PQID | 2478820886 |
PQPubID | 2047467 |
ParticipantIDs | proquest_journals_2478820886 crossref_primary_10_1016_j_fuproc_2020_106619 elsevier_sciencedirect_doi_10_1016_j_fuproc_2020_106619 |
PublicationCentury | 2000 |
PublicationDate | February 2021 2021-02-00 20210201 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: February 2021 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Fuel processing technology |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier Science Ltd |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
References | Plazaola, Tanaka, Annaland, Gallucci (bb0260) 2017; 22 Muraviev, Orekhova, Mironova, Yaroslavtsev, Ermilova (bb0095) 2014; 236 Caravella, Scura, Barbieri, Drioli (bb0345) 2010; 114 Martinez-Diaz, Sanz, Calles, Alique (bb0275) 2019; 216 Calles, Carrero, Vizcaíno, García-Moreno, Megía (bb0055) 2019; 20 Rahimpour, Samimi, Babapoor, Tohidian, Mohebi (bb0230) 2017; 121 Goicoechea, Kraleva, Sokolov, Schneider, Pohl, Kockmann, Ehrich (bb0140) 2016; 514 Hu, Yan, Zheng, Liu, Zhou (bb0130) 2013; 38 Martinez-Diaz, Alique, Calles, Sanz (bb0280) 2020; 45 Yu, Hu, Jia, Zhang, Dong, Hu, Hu, Wang, Xiang (bb0165) 2018; 237 Barreiro, Maroño, Sánchez (bb0330) 2015; 74 Bossola, Recchia, Dal Santo (bb0380) 2017; 07 Esteban-Díez, Gil, Pevida, Chen, Rubiera (bb0150) 2016; 177 Junior, Rabelo-Neto, Gomes, Noronha, Fréty, Brandão (bb0155) 2019; 254 Hanley, Deane, Gallachóir (bb0010) 2017 Wang, Cai, Zhang, Li, Zhang, Luo (bb0060) 2014; 39 Calles, Sanz, Alique, Furones, Marín, Ordoñez (bb0320) 2018; 194 Basagiannis, Verykios (bb0105) 2006; 308 Yun, Ted Oyama, Oyama (bb0295) 2011; 375 Takanabe, Aika, Seshan, Lefferts (bb0100) 2004; 227 Singh Yadav, R, Yadav (bb0040) 2018; 192 Li, Hu, Zhang, Lu (bb0125) 2012; 355 De Falco, Iaquaniello, Palo, Cucchiella, Palma, Ciambelli (bb0220) 2013 Bellini, Azzato, Caravella (bb0290) 2020 Brunetti, Zito, Giorno, Drioli, Barbieri (bb0235) 2017 Uyar, Be??ikci (bb0020) 2017; 42 Nekhamkina, Sheintuch (bb0365) 2016; 500 Iulianelli, Palma, Bagnato, Ruocco, Huang, Veziroğlu, Basile (bb0025) 2018; 119 Basile, Gallucci, Iulianelli, Borgognoni, Tosti (bb0240) 2008; 311 Megía, Pedro, Carrero, Calles, vizcaíno (bb0215) 2019; 9 DemirbaÅŸ (bb0050) 2001; 42 Vizcaíno, Carrero, Calles (bb0195) 2016; 146 Iwasa, Yamane, Takei, Ozaki, Arai (bb0110) 2010; 35 An, Dong, Yang, Zhang, He (bb0120) 2011; 36 Alique, Martinez-Diaz, Sanz, Calles (bb0255) 2018 Dawood, Anda, Shafiullah (bb0005) 2020 Soria, Barros, Madeira (bb0070) 2019; 244 Yu, Zhang, Zhang, Gao, Ye, Zhang, Liu, Hu, Hu (bb0175) 2020; 93 Li, Wang, Qiao, Liu, Cao, Li, Wang, Wang (bb0225) 2015; 495 Barreiro, Maroño, Sánchez (bb0325) 2014; 39 Zhang, Hu, Hu, Hu, Zhang, Liu, Hu, Xiang, Wang, Zhang (bb0075) 2018; 403 Caravella, Barbieri, Drioli (bb0360) 2009; 66 Ramachandran, Chompupun, Kanhari, Vatanatham, Limtrakul (bb0370) 2018; 134 Choi, Hwang, Lee, Lee (bb0185) 2019; 44 Alique, Sanz, Calles (bb0265) 2020 Vadrucci, Borgognoni, Moriani, Santucci, Tosti (bb0310) 2013; 38 Di Marcoberardino, Foresti, Binotti, Manzolini (bb0030) 2018; 129 Cornaglia, Múnera, Lombardo (bb0340) 2015; 40 Chen, Tao, Liu, Yan, Li, Li (bb0160) 2017; 79 Lindo, Vizcaíno, Calles, Carrero (bb0190) 2010; 35 Saidi (bb0085) 2018; 43 Kumar, Singh, Sinha (bb0180) 2019; 44 Zhang, Wang, Sun, Shao, Zhang, Zhang, Zhang, Liu, Chen, Hu (bb0170) 2020; 43 Xu, Jin, Cheng (bb0045) 2017; 3 Furones, Alique (bb0285) 2017; 2 Wassie, Cloete, Zaabout, Gallucci, van Sint Annaland, Amini (bb0375) 2017; 316 Sato, Suzuki, Aketa, Ishiyama, Mimura, Itoh (bb0080) 2010; 65 Gallucci, De Falco, Tosti, Marrelli, Basile (bb0300) 2007; 32 Coutanceau, Baranton, Audichon (bb0090) 2018 Iulianelli, Longo, Basile (bb0245) 2008; 33 Carrero, Calles, García-Moreno, Vizcaíno (bb0205) 2017; 7 Muradov, Veziroǧlu (bb0015) 2008; 33 Nogueira, Assaf, Carvalho, Assaf (bb0135) 2014; 160–161 Calles, Sanz, Alique, Furones (bb0355) 2014; 39 Kurokawa, Yakabe, Yasuda, Peters, Bredesen (bb0350) 2014; 39 Nabgan, Tuan Abdullah, Mat, Nabgan, Gambo, Ibrahim, Ahmad, Jalil, Triwahyono, Saeh (bb0065) 2017; 79 Tosto, Alique, Martinez-Diaz, Sanz, Calles, Caravella, Medrano, Gallucci (bb0270) 2020; 45 Alique (bb0315) 2018 Gil, Fermoso, Pevida, Chen, Rubiera (bb0145) 2016; 184 Ahmad, Zawawi, Kasim, Inayat, Khasri (bb0035) 2016; 53 Augustine, Ma, Kazantzis (bb0335) 2011; 36 Calles, Carrero, Vizcaíno, García-Moreno (bb0200) 2014; 227 Calles, Carrero, Vizcaíno, Megía (bb0210) 2019 Santucci, Borgognoni, Vadrucci, Tosti (bb0305) 2013; 444 (bb0250) 2015 Thaicharoensutcharittham, Meeyoo, Kitiyanan, Rangsunvigit, Rirksomboon (bb0115) 2011; 164 Santucci (10.1016/j.fuproc.2020.106619_bb0305) 2013; 444 Gil (10.1016/j.fuproc.2020.106619_bb0145) 2016; 184 Iulianelli (10.1016/j.fuproc.2020.106619_bb0245) 2008; 33 Alique (10.1016/j.fuproc.2020.106619_bb0265) 2020 Dawood (10.1016/j.fuproc.2020.106619_bb0005) 2020 Thaicharoensutcharittham (10.1016/j.fuproc.2020.106619_bb0115) 2011; 164 Alique (10.1016/j.fuproc.2020.106619_bb0255) 2018 Gallucci (10.1016/j.fuproc.2020.106619_bb0300) 2007; 32 Basagiannis (10.1016/j.fuproc.2020.106619_bb0105) 2006; 308 Nogueira (10.1016/j.fuproc.2020.106619_bb0135) 2014; 160–161 Yu (10.1016/j.fuproc.2020.106619_bb0165) 2018; 237 Ramachandran (10.1016/j.fuproc.2020.106619_bb0370) 2018; 134 Rahimpour (10.1016/j.fuproc.2020.106619_bb0230) 2017; 121 Muradov (10.1016/j.fuproc.2020.106619_bb0015) 2008; 33 Kurokawa (10.1016/j.fuproc.2020.106619_bb0350) 2014; 39 Calles (10.1016/j.fuproc.2020.106619_bb0200) 2014; 227 Bellini (10.1016/j.fuproc.2020.106619_bb0290) 2020 Calles (10.1016/j.fuproc.2020.106619_bb0210) 2019 Li (10.1016/j.fuproc.2020.106619_bb0225) 2015; 495 Iwasa (10.1016/j.fuproc.2020.106619_bb0110) 2010; 35 Caravella (10.1016/j.fuproc.2020.106619_bb0360) 2009; 66 Sato (10.1016/j.fuproc.2020.106619_bb0080) 2010; 65 (10.1016/j.fuproc.2020.106619_bb0250) 2015 Bossola (10.1016/j.fuproc.2020.106619_bb0380) 2017; 07 De Falco (10.1016/j.fuproc.2020.106619_bb0220) 2013 Iulianelli (10.1016/j.fuproc.2020.106619_bb0025) 2018; 119 Singh Yadav (10.1016/j.fuproc.2020.106619_bb0040) 2018; 192 Martinez-Diaz (10.1016/j.fuproc.2020.106619_bb0275) 2019; 216 Yun (10.1016/j.fuproc.2020.106619_bb0295) 2011; 375 Hanley (10.1016/j.fuproc.2020.106619_bb0010) 2017 Yu (10.1016/j.fuproc.2020.106619_bb0175) 2020; 93 Basile (10.1016/j.fuproc.2020.106619_bb0240) 2008; 311 Megía (10.1016/j.fuproc.2020.106619_bb0215) 2019; 9 Uyar (10.1016/j.fuproc.2020.106619_bb0020) 2017; 42 Brunetti (10.1016/j.fuproc.2020.106619_bb0235) 2017 Choi (10.1016/j.fuproc.2020.106619_bb0185) 2019; 44 Hu (10.1016/j.fuproc.2020.106619_bb0130) 2013; 38 Nabgan (10.1016/j.fuproc.2020.106619_bb0065) 2017; 79 Furones (10.1016/j.fuproc.2020.106619_bb0285) 2017; 2 Caravella (10.1016/j.fuproc.2020.106619_bb0345) 2010; 114 Esteban-Díez (10.1016/j.fuproc.2020.106619_bb0150) 2016; 177 Alique (10.1016/j.fuproc.2020.106619_bb0315) 2018 Chen (10.1016/j.fuproc.2020.106619_bb0160) 2017; 79 DemirbaÅŸ (10.1016/j.fuproc.2020.106619_bb0050) 2001; 42 Wang (10.1016/j.fuproc.2020.106619_bb0060) 2014; 39 Xu (10.1016/j.fuproc.2020.106619_bb0045) 2017; 3 Wassie (10.1016/j.fuproc.2020.106619_bb0375) 2017; 316 Soria (10.1016/j.fuproc.2020.106619_bb0070) 2019; 244 Carrero (10.1016/j.fuproc.2020.106619_bb0205) 2017; 7 Junior (10.1016/j.fuproc.2020.106619_bb0155) 2019; 254 Barreiro (10.1016/j.fuproc.2020.106619_bb0330) 2015; 74 Tosto (10.1016/j.fuproc.2020.106619_bb0270) 2020; 45 Zhang (10.1016/j.fuproc.2020.106619_bb0075) 2018; 403 Zhang (10.1016/j.fuproc.2020.106619_bb0170) 2020; 43 Di Marcoberardino (10.1016/j.fuproc.2020.106619_bb0030) 2018; 129 Cornaglia (10.1016/j.fuproc.2020.106619_bb0340) 2015; 40 Calles (10.1016/j.fuproc.2020.106619_bb0055) 2019; 20 Muraviev (10.1016/j.fuproc.2020.106619_bb0095) 2014; 236 Takanabe (10.1016/j.fuproc.2020.106619_bb0100) 2004; 227 Vizcaíno (10.1016/j.fuproc.2020.106619_bb0195) 2016; 146 Nekhamkina (10.1016/j.fuproc.2020.106619_bb0365) 2016; 500 Barreiro (10.1016/j.fuproc.2020.106619_bb0325) 2014; 39 An (10.1016/j.fuproc.2020.106619_bb0120) 2011; 36 Li (10.1016/j.fuproc.2020.106619_bb0125) 2012; 355 Ahmad (10.1016/j.fuproc.2020.106619_bb0035) 2016; 53 Vadrucci (10.1016/j.fuproc.2020.106619_bb0310) 2013; 38 Augustine (10.1016/j.fuproc.2020.106619_bb0335) 2011; 36 Goicoechea (10.1016/j.fuproc.2020.106619_bb0140) 2016; 514 Plazaola (10.1016/j.fuproc.2020.106619_bb0260) 2017; 22 Calles (10.1016/j.fuproc.2020.106619_bb0355) 2014; 39 Kumar (10.1016/j.fuproc.2020.106619_bb0180) 2019; 44 Calles (10.1016/j.fuproc.2020.106619_bb0320) 2018; 194 Lindo (10.1016/j.fuproc.2020.106619_bb0190) 2010; 35 Saidi (10.1016/j.fuproc.2020.106619_bb0085) 2018; 43 Coutanceau (10.1016/j.fuproc.2020.106619_bb0090) 2018 Martinez-Diaz (10.1016/j.fuproc.2020.106619_bb0280) 2020; 45 |
References_xml | – volume: 33 start-page: 6804 year: 2008 end-page: 6839 ident: bb0015 article-title: “Green” path from fossil-based to hydrogen economy: an overview of carbon-neutral technologies publication-title: Int. J. Hydrog. Energy contributor: fullname: Veziroǧlu – volume: 254 start-page: 115714 year: 2019 ident: bb0155 article-title: Steam reforming of acetic acid over Ni-based catalysts derived from La1−xCaxNiO3 perovskite type oxides publication-title: Fuel. contributor: fullname: Brandão – volume: 121 start-page: 24 year: 2017 end-page: 49 ident: bb0230 article-title: Palladium membranes applications in reaction systems for hydrogen separation and purification: a review publication-title: Chem. Eng. Process. Process Intensif. contributor: fullname: Mohebi – volume: 311 start-page: 46 year: 2008 end-page: 52 ident: bb0240 article-title: Acetic acid steam reforming in a Pd-Ag membrane reactor: the effect of the catalytic bed pattern publication-title: J. Memb. Sci. contributor: fullname: Tosti – volume: 216 start-page: 16 year: 2019 end-page: 24 ident: bb0275 article-title: H2 permeation increase of electroless pore-plated Pd/PSS membranes with CeO2 intermediate barriers publication-title: Sep. Purif. Technol. contributor: fullname: Alique – volume: 39 start-page: 1398 year: 2014 end-page: 1409 ident: bb0355 article-title: Thermal stability and effect of typical water gas shift reactant composition on H2 permeability through a Pd-YSZ-PSS composite membrane publication-title: Int. J. Hydrog. Energy contributor: fullname: Furones – volume: 236 start-page: 64 year: 2014 end-page: 69 ident: bb0095 article-title: Production of high purity hydrogen by ethanol steam reforming in membrane reactor publication-title: Catal. Today contributor: fullname: Ermilova – volume: 184 start-page: 64 year: 2016 end-page: 76 ident: bb0145 article-title: Production of fuel-cell grade H2 by sorption enhanced steam reforming of acetic acid as a model compound of biomass-derived bio-oil publication-title: Appl. Catal. B Environ. contributor: fullname: Rubiera – volume: 375 start-page: 28 year: 2011 end-page: 45 ident: bb0295 article-title: Correlations in palladium membranes for hydrogen separation: a review publication-title: J. Memb. Sci. contributor: fullname: Oyama – volume: 43 start-page: 14834 year: 2018 end-page: 14847 ident: bb0085 article-title: Application of catalytic membrane reactor for pure hydrogen production by flare gas recovery as a novel approach publication-title: Int. J. Hydrog. Energy contributor: fullname: Saidi – volume: 45 start-page: 7278 year: 2020 end-page: 7289 ident: bb0280 article-title: Pd-thickness reduction in electroless pore-plated membranes by using doped-ceria as interlayer publication-title: Int. J. Hydrog. Energy contributor: fullname: Sanz – volume: 134 start-page: 124 year: 2018 end-page: 140 ident: bb0370 article-title: Experiments, modeling and scaling-up of membrane reactors for hydrogen production via steam methane reforming publication-title: Chem. Eng. Process. - Process Intensif. contributor: fullname: Limtrakul – volume: 119 start-page: 834 year: 2018 end-page: 843 ident: bb0025 article-title: From bioethanol exploitation to high grade hydrogen generation: Steam reforming promoted by a Co-Pt catalyst in a Pd-based membrane reactor publication-title: Renew. Energy contributor: fullname: Basile – volume: 32 start-page: 4052 year: 2007 end-page: 4058 ident: bb0300 article-title: The effect of the hydrogen flux pressure and temperature dependence factors on the membrane reactor performances publication-title: Int. J. Hydrogen Energy contributor: fullname: Basile – volume: 192 start-page: 02020 year: 2018 ident: bb0040 article-title: Bio-hydrogen production from waste materials: a review publication-title: MATEC Web Conf. contributor: fullname: Yadav – volume: 35 start-page: 5895 year: 2010 end-page: 5901 ident: bb0190 article-title: Ethanol steam reforming on Ni/Al-SBA-15 catalysts: effect of the aluminium content publication-title: Int. J. Hydrog. Energy contributor: fullname: Carrero – volume: 7 year: 2017 ident: bb0205 article-title: Production of renewable hydrogen from glycerol steam reforming over bimetallic Ni-(Cu,Co,Cr) catalysts supported on SBA-15 silica publication-title: Catalysts contributor: fullname: Vizcaíno – volume: 3 start-page: 416 year: 2017 end-page: 422 ident: bb0045 article-title: Thermodynamic Analysis of the Gasification of Municipal Solid Waste-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) publication-title: Engineering. contributor: fullname: Cheng – volume: 44 start-page: 180 year: 2019 end-page: 190 ident: bb0185 article-title: Catalytic steam reforming of biomass-derived acetic acid over modified Ni/Γ-Al2O3 for sustainable hydrogen production publication-title: Int. J. Hydrog. Energy contributor: fullname: Lee – volume: 2 start-page: 1 year: 2017 ident: bb0285 article-title: Interlayer properties of in-situ oxidized porous stainless steel for preparation of composite Pd membranes publication-title: ChemEngineering. contributor: fullname: Alique – volume: 53 start-page: 1333 year: 2016 end-page: 1347 ident: bb0035 article-title: Assessing the gasification performance of biomass: a review on biomass gasification process conditions, optimization and economic evaluation publication-title: Renew. Sust. Energ. Rev. contributor: fullname: Khasri – volume: 44 start-page: 12983 year: 2019 end-page: 13010 ident: bb0180 article-title: Catalyst modification strategies to enhance the catalyst activity and stability during steam reforming of acetic acid for hydrogen production publication-title: Int. J. Hydrog. Energy contributor: fullname: Sinha – volume: 495 start-page: 130 year: 2015 end-page: 168 ident: bb0225 article-title: Recent developments in membranes for efficient hydrogen purification publication-title: J. Memb. Sci. contributor: fullname: Wang – volume: 42 start-page: 2453 year: 2017 end-page: 2456 ident: bb0020 article-title: Integration of hydrogen energy systems into renewable energy systems for better design of 100% renewable energy communities publication-title: Int. J. Hydrogen Energy contributor: fullname: Be??ikci – volume: 36 start-page: 930 year: 2011 end-page: 935 ident: bb0120 article-title: The influence of Ni loading on coke formation in steam reforming of acetic acid publication-title: Renew. Energy contributor: fullname: He – volume: 45 start-page: 7374 year: 2020 end-page: 7385 ident: bb0270 article-title: Stability of pore-plated membranes for hydrogen production in fluidized-bed membrane reactors publication-title: Int. J. Hydrog. Energy contributor: fullname: Gallucci – volume: 444 start-page: 378 year: 2013 end-page: 383 ident: bb0305 article-title: Testing of dense Pd–Ag tubes: effect of pressure and membrane thickness on the hydrogen permeability publication-title: J. Memb. Sci. contributor: fullname: Tosti – start-page: 456 year: 2013 end-page: 486 ident: bb0220 article-title: 11 - Palladium-based membranes for hydrogen separation: preparation, economic analysis and coupling with a water gas shift reactor publication-title: Handb. Membr. React contributor: fullname: Ciambelli – volume: 129 start-page: 131 year: 2018 end-page: 141 ident: bb0030 article-title: Potentiality of a biogas membrane reformer for decentralized hydrogen production publication-title: Chem. Eng. Process. - Process Intensif. contributor: fullname: Manzolini – volume: 39 start-page: 17201 year: 2014 end-page: 17209 ident: bb0350 article-title: Inhibition effect of CO on hydrogen permeability of Pd-Ag membrane applied in a microchannel module configuration publication-title: Int. J. Hydrog. Energy contributor: fullname: Bredesen – volume: 38 start-page: 6033 year: 2013 end-page: 6038 ident: bb0130 article-title: Carbon deposition on Ni/ZrO2-CeO2 catalyst during steam reforming of acetic acid publication-title: Int. J. Hydrog. Energy contributor: fullname: Zhou – volume: 33 start-page: 4091 year: 2008 end-page: 4096 ident: bb0245 article-title: CO-free hydrogen production by steam reforming of acetic acid carried out in a Pd-Ag membrane reactor: the effect of co-current and counter-current mode publication-title: Int. J. Hydrog. Energy contributor: fullname: Basile – volume: 66 start-page: 613 year: 2009 end-page: 624 ident: bb0360 article-title: Concentration polarization analysis in self-supported Pd-based membranes publication-title: Sep. Purif. Technol. contributor: fullname: Drioli – volume: 500 start-page: 136 year: 2016 end-page: 150 ident: bb0365 article-title: Approximate models of concentration-polarization in Pd-membrane separators. Fast numerical analysis publication-title: J. Memb. Sci. contributor: fullname: Sheintuch – volume: 43 start-page: 208 year: 2020 end-page: 219 ident: bb0170 article-title: Steam reforming of acetic acid over Ni–Ba/Al2O3 catalysts: impacts of barium addition on coking behaviors and formation of reaction intermediates publication-title: J. Energy Chem. contributor: fullname: Hu – volume: 79 start-page: 1091 year: 2017 end-page: 1098 ident: bb0160 article-title: Hydrogen production via acetic acid steam reforming: a critical review on catalysts publication-title: Renew. Sust. Energ. Rev. contributor: fullname: Li – volume: 114 start-page: 12264 year: 2010 end-page: 12276 ident: bb0345 article-title: Inhibition by CO and polarization in Pd-based membranes: a novel permeation reduction coefficient publication-title: J. Phys. Chem. B contributor: fullname: Drioli – volume: 39 start-page: 4710 year: 2014 end-page: 4716 ident: bb0325 article-title: Hydrogen permeation through a Pd-based membrane and RWGS conversion in H2/CO2, H2/N2/CO2and H2/H2O/CO2mixtures publication-title: Int. J. Hydrog. Energy contributor: fullname: Sánchez – volume: 22 start-page: 1 year: 2017 end-page: 53 ident: bb0260 article-title: Recent advances in pd-based membranes for membrane reactors publication-title: Molecules. contributor: fullname: Gallucci – year: 2020 ident: bb0005 article-title: Hydrogen production for energy: an overview publication-title: Int. J. Hydrog. Energy contributor: fullname: Shafiullah – volume: 227 start-page: 101 year: 2004 end-page: 108 ident: bb0100 article-title: Sustainable hydrogen from bio-oil - Steam reforming of acetic acid as a model oxygenate publication-title: J. Catal. contributor: fullname: Lefferts – volume: 244 start-page: 184 year: 2019 end-page: 195 ident: bb0070 article-title: Hydrogen production through steam reforming of bio-oils derived from biomass pyrolysis: thermodynamic analysis including in situ CO2 and/or H2 separation publication-title: Fuel. contributor: fullname: Madeira – volume: 164 start-page: 257 year: 2011 end-page: 261 ident: bb0115 article-title: Hydrogen production by steam reforming of acetic acid over Ni-based catalysts publication-title: Catal. Today contributor: fullname: Rirksomboon – year: 2018 ident: bb0255 article-title: Review of Supported Pd-based Membranes Preparation by Electroless Plating for Ultra-pure Hydrogen Production contributor: fullname: Calles – volume: 65 start-page: 451 year: 2010 end-page: 457 ident: bb0080 article-title: Steam reforming of biogas mixtures with a palladium membrane reactor system publication-title: Chem. Eng. Sci. contributor: fullname: Itoh – volume: 160–161 start-page: 188 year: 2014 end-page: 199 ident: bb0135 article-title: Catalytic steam reforming of acetic acid as a model compound of bio-oil publication-title: Appl. Catal. B Environ. contributor: fullname: Assaf – volume: 07 year: 2017 ident: bb0380 article-title: Catalytic steam reforming of acetic acid: latest advances in catalysts development and mechanism elucidation publication-title: Curr. Catal. contributor: fullname: Dal Santo – volume: 316 year: 2017 ident: bb0375 article-title: Experimental investigation on the generic effects of gas permeation through flat vertical membranes publication-title: Powder Technol. contributor: fullname: Amini – volume: 355 start-page: 123 year: 2012 end-page: 133 ident: bb0125 article-title: Renewable hydrogen production by a mild-temperature steam reforming of the model compound acetic acid derived from bio-oil publication-title: J. Mol. Catal. A Chem. contributor: fullname: Lu – volume: 42 start-page: 1357 year: 2001 end-page: 1378 ident: bb0050 article-title: Biomass resource facilities and biomass conversion processing for fuels and chemicals publication-title: Energy Convers. Manag. contributor: fullname: DemirbaÅŸ – volume: 39 start-page: 18675 year: 2014 end-page: 18687 ident: bb0060 article-title: Hydrogen production via catalytic reforming of the bio-oil model compounds: Acetic acid, phenol and hydroxyacetone publication-title: Int. J. Hydrog. Energy contributor: fullname: Luo – volume: 146 start-page: 99 year: 2016 end-page: 109 ident: bb0195 article-title: Comparison of ethanol steam reforming using Co and Ni catalysts supported on SBA-15 modified by Ca and Mg publication-title: Fuel Process. Technol. contributor: fullname: Calles – start-page: 63 year: 2020 end-page: 90 ident: bb0290 article-title: Mass transport in hydrogen permeation through Pd-based membranes publication-title: Curr. Trends Futur. Dev. Membr. contributor: fullname: Caravella – volume: 194 start-page: 10 year: 2018 end-page: 18 ident: bb0320 article-title: Influence of the selective layer morphology on the permeation properties for Pd-PSS composite membranes prepared by electroless pore-plating: Experimental and modeling study publication-title: Sep. Purif. Technol. contributor: fullname: Ordoñez – year: 2017 ident: bb0235 article-title: Membrane Reactors for Low Temperature Applications: An Overview contributor: fullname: Barbieri – volume: 38 start-page: 4144 year: 2013 end-page: 4152 ident: bb0310 article-title: Hydrogen permeation through Pd–Ag membranes: Surface effects and Sieverts' law publication-title: Int. J. Hydrog. Energy contributor: fullname: Tosti – start-page: 31 year: 2020 end-page: 62 ident: bb0265 article-title: Pd membranes by electroless pore-plating: synthesis and permeation behavior publication-title: Curr. Trends Futur. Dev. Membr. contributor: fullname: Calles – volume: 36 start-page: 5350 year: 2011 end-page: 5360 ident: bb0335 article-title: High pressure palladium membrane reactor for the high temperature water-gas shift reaction publication-title: Int. J. Hydrog. Energy contributor: fullname: Kazantzis – year: 2018 ident: bb0315 article-title: Processing and characterization of coating and thin film materials publication-title: Adv. Ceram. Met. Coat. Thin Film Mater. Energy Environ contributor: fullname: Alique – volume: 9 start-page: 1013 year: 2019 end-page: 1032 ident: bb0215 article-title: Hydrogen production from steam reforming of acetic acid as a model compound of the aqueous fraction of microalgae HTL using Co-M/SBA-15 (M: Cu, Ag, Ce, Cr) catalysts publication-title: Catalysts contributor: fullname: vizcaíno – volume: 40 start-page: 3423 year: 2015 end-page: 3437 ident: bb0340 article-title: Recent advances in catalysts, palladium alloys and high temperature {WGS} membrane reactors: a review publication-title: Int. J. Hydrogen Energy contributor: fullname: Lombardo – volume: 93 start-page: 1000 year: 2020 end-page: 1019 ident: bb0175 article-title: Steam reforming of acetic acid over nickel catalysts: Impacts of fourteen additives on the catalytic behaviors publication-title: J. Energy Inst. contributor: fullname: Hu – volume: 177 start-page: 579 year: 2016 end-page: 590 ident: bb0150 article-title: Effect of operating conditions on the sorption enhanced steam reforming of blends of acetic acid and acetone as bio-oil model compounds publication-title: Appl. Energy contributor: fullname: Rubiera – start-page: 7 year: 2018 end-page: 15 ident: bb0090 article-title: Chapter 2 - Hydrogen Production From Thermal Reforming BT - Hydrogen Electrochemical Production, in: Hydrog contributor: fullname: Audichon – start-page: 249 year: 2015 end-page: 266 ident: bb0250 article-title: 8 - Membrane reactors for steam reforming of glycerol and acetic acid to produce hydrogen publication-title: Woodhead Publ – volume: 79 start-page: 347 year: 2017 end-page: 357 ident: bb0065 article-title: Renewable hydrogen production from bio-oil derivative via catalytic steam reforming: an overview publication-title: Renew. Sust. Energ. Rev. contributor: fullname: Saeh – volume: 237 start-page: 538 year: 2018 end-page: 553 ident: bb0165 article-title: Steam reforming of acetic acid over nickel-based catalysts: the intrinsic effects of nickel precursors on behaviors of nickel catalysts publication-title: Appl. Catal. B Environ. contributor: fullname: Xiang – volume: 403 start-page: 137 year: 2018 end-page: 156 ident: bb0075 article-title: Progress in the reforming of bio-oil derived carboxylic acids for hydrogen generation publication-title: J. Power Sources contributor: fullname: Zhang – volume: 308 start-page: 182 year: 2006 end-page: 193 ident: bb0105 article-title: Reforming reactions of acetic acid on nickel catalysts over a wide temperature range publication-title: Appl. Catal. A Gen. contributor: fullname: Verykios – volume: 227 start-page: 198 year: 2014 end-page: 206 ident: bb0200 article-title: Hydrogen production by glycerol steam reforming over SBA-15-supported nickel catalysts: effect of alkaline earth promoters on activity and stability publication-title: Catal. Today contributor: fullname: García-Moreno – volume: 20 year: 2019 ident: bb0055 article-title: Steam reforming of model bio-oil aqueous fraction using Ni-(Cu, Co, Cr)/SBA-15 catalysts publication-title: Int. J. Mol. Sci. contributor: fullname: Megía – start-page: 1 year: 2019 end-page: 10 ident: bb0210 article-title: Agglomerated Co–Cr/SBA-15 catalysts for hydrogen production through acetic acid steam reforming publication-title: Int. J. Hydrog. Energy contributor: fullname: Megía – year: 2017 ident: bb0010 article-title: The Role of Hydrogen in Low Carbon Energy Futures–a Review of Existing Perspectives contributor: fullname: Gallachóir – volume: 35 start-page: 110 year: 2010 end-page: 117 ident: bb0110 article-title: Hydrogen production by steam reforming of acetic acid: comparison of conventional supported metal catalysts and metal-incorporated mesoporous smectite-like catalysts publication-title: Int. J. Hydrogen Energy contributor: fullname: Arai – volume: 514 start-page: 182 year: 2016 end-page: 191 ident: bb0140 article-title: Support effect on structure and performance of Co and Ni catalysts for steam reforming of acetic acid publication-title: Appl. Catal. A Gen. contributor: fullname: Ehrich – volume: 74 start-page: 186 year: 2015 end-page: 193 ident: bb0330 article-title: Hydrogen separation studies in a membrane reactor system: influence of feed gas flow rate, temperature and concentration of the feed gases on hydrogen permeation publication-title: Appl. Therm. Eng. contributor: fullname: Sánchez – volume: 254 start-page: 115714 year: 2019 ident: 10.1016/j.fuproc.2020.106619_bb0155 article-title: Steam reforming of acetic acid over Ni-based catalysts derived from La1−xCaxNiO3 perovskite type oxides publication-title: Fuel. doi: 10.1016/j.fuel.2019.115714 contributor: fullname: Junior – year: 2018 ident: 10.1016/j.fuproc.2020.106619_bb0315 article-title: Processing and characterization of coating and thin film materials contributor: fullname: Alique – volume: 07 year: 2017 ident: 10.1016/j.fuproc.2020.106619_bb0380 article-title: Catalytic steam reforming of acetic acid: latest advances in catalysts development and mechanism elucidation publication-title: Curr. Catal. contributor: fullname: Bossola – volume: 500 start-page: 136 year: 2016 ident: 10.1016/j.fuproc.2020.106619_bb0365 article-title: Approximate models of concentration-polarization in Pd-membrane separators. Fast numerical analysis publication-title: J. Memb. Sci. doi: 10.1016/j.memsci.2015.11.027 contributor: fullname: Nekhamkina – volume: 227 start-page: 101 year: 2004 ident: 10.1016/j.fuproc.2020.106619_bb0100 article-title: Sustainable hydrogen from bio-oil - Steam reforming of acetic acid as a model oxygenate publication-title: J. Catal. doi: 10.1016/j.jcat.2004.07.002 contributor: fullname: Takanabe – volume: 43 start-page: 208 year: 2020 ident: 10.1016/j.fuproc.2020.106619_bb0170 article-title: Steam reforming of acetic acid over Ni–Ba/Al2O3 catalysts: impacts of barium addition on coking behaviors and formation of reaction intermediates publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2019.08.023 contributor: fullname: Zhang – start-page: 31 year: 2020 ident: 10.1016/j.fuproc.2020.106619_bb0265 article-title: Pd membranes by electroless pore-plating: synthesis and permeation behavior publication-title: Curr. Trends Futur. Dev. Membr. contributor: fullname: Alique – volume: 39 start-page: 1398 year: 2014 ident: 10.1016/j.fuproc.2020.106619_bb0355 article-title: Thermal stability and effect of typical water gas shift reactant composition on H2 permeability through a Pd-YSZ-PSS composite membrane publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2013.10.168 contributor: fullname: Calles – year: 2017 ident: 10.1016/j.fuproc.2020.106619_bb0010 contributor: fullname: Hanley – start-page: 456 year: 2013 ident: 10.1016/j.fuproc.2020.106619_bb0220 article-title: 11 - Palladium-based membranes for hydrogen separation: preparation, economic analysis and coupling with a water gas shift reactor contributor: fullname: De Falco – year: 2017 ident: 10.1016/j.fuproc.2020.106619_bb0235 contributor: fullname: Brunetti – volume: 79 start-page: 1091 year: 2017 ident: 10.1016/j.fuproc.2020.106619_bb0160 article-title: Hydrogen production via acetic acid steam reforming: a critical review on catalysts publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2017.05.107 contributor: fullname: Chen – volume: 7 year: 2017 ident: 10.1016/j.fuproc.2020.106619_bb0205 article-title: Production of renewable hydrogen from glycerol steam reforming over bimetallic Ni-(Cu,Co,Cr) catalysts supported on SBA-15 silica publication-title: Catalysts doi: 10.3390/catal7020055 contributor: fullname: Carrero – volume: 43 start-page: 14834 year: 2018 ident: 10.1016/j.fuproc.2020.106619_bb0085 article-title: Application of catalytic membrane reactor for pure hydrogen production by flare gas recovery as a novel approach publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2018.05.156 contributor: fullname: Saidi – volume: 237 start-page: 538 year: 2018 ident: 10.1016/j.fuproc.2020.106619_bb0165 article-title: Steam reforming of acetic acid over nickel-based catalysts: the intrinsic effects of nickel precursors on behaviors of nickel catalysts publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2018.06.020 contributor: fullname: Yu – volume: 495 start-page: 130 year: 2015 ident: 10.1016/j.fuproc.2020.106619_bb0225 article-title: Recent developments in membranes for efficient hydrogen purification publication-title: J. Memb. Sci. doi: 10.1016/j.memsci.2015.08.010 contributor: fullname: Li – volume: 227 start-page: 198 year: 2014 ident: 10.1016/j.fuproc.2020.106619_bb0200 article-title: Hydrogen production by glycerol steam reforming over SBA-15-supported nickel catalysts: effect of alkaline earth promoters on activity and stability publication-title: Catal. Today doi: 10.1016/j.cattod.2013.11.006 contributor: fullname: Calles – volume: 33 start-page: 4091 year: 2008 ident: 10.1016/j.fuproc.2020.106619_bb0245 article-title: CO-free hydrogen production by steam reforming of acetic acid carried out in a Pd-Ag membrane reactor: the effect of co-current and counter-current mode publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2008.05.061 contributor: fullname: Iulianelli – volume: 403 start-page: 137 year: 2018 ident: 10.1016/j.fuproc.2020.106619_bb0075 article-title: Progress in the reforming of bio-oil derived carboxylic acids for hydrogen generation publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.09.097 contributor: fullname: Zhang – volume: 192 start-page: 02020 year: 2018 ident: 10.1016/j.fuproc.2020.106619_bb0040 article-title: Bio-hydrogen production from waste materials: a review publication-title: MATEC Web Conf. doi: 10.1051/matecconf/201819202020 contributor: fullname: Singh Yadav – volume: 236 start-page: 64 year: 2014 ident: 10.1016/j.fuproc.2020.106619_bb0095 article-title: Production of high purity hydrogen by ethanol steam reforming in membrane reactor publication-title: Catal. Today doi: 10.1016/j.cattod.2014.01.014 contributor: fullname: Muraviev – volume: 160–161 start-page: 188 year: 2014 ident: 10.1016/j.fuproc.2020.106619_bb0135 article-title: Catalytic steam reforming of acetic acid as a model compound of bio-oil publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2014.05.024 contributor: fullname: Nogueira – volume: 216 start-page: 16 year: 2019 ident: 10.1016/j.fuproc.2020.106619_bb0275 article-title: H2 permeation increase of electroless pore-plated Pd/PSS membranes with CeO2 intermediate barriers publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2019.01.076 contributor: fullname: Martinez-Diaz – volume: 74 start-page: 186 year: 2015 ident: 10.1016/j.fuproc.2020.106619_bb0330 article-title: Hydrogen separation studies in a membrane reactor system: influence of feed gas flow rate, temperature and concentration of the feed gases on hydrogen permeation publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2013.12.035 contributor: fullname: Barreiro – volume: 311 start-page: 46 year: 2008 ident: 10.1016/j.fuproc.2020.106619_bb0240 article-title: Acetic acid steam reforming in a Pd-Ag membrane reactor: the effect of the catalytic bed pattern publication-title: J. Memb. Sci. doi: 10.1016/j.memsci.2007.11.033 contributor: fullname: Basile – volume: 114 start-page: 12264 year: 2010 ident: 10.1016/j.fuproc.2020.106619_bb0345 article-title: Inhibition by CO and polarization in Pd-based membranes: a novel permeation reduction coefficient publication-title: J. Phys. Chem. B doi: 10.1021/jp104767q contributor: fullname: Caravella – volume: 316 year: 2017 ident: 10.1016/j.fuproc.2020.106619_bb0375 article-title: Experimental investigation on the generic effects of gas permeation through flat vertical membranes publication-title: Powder Technol. doi: 10.1016/j.powtec.2016.12.026 contributor: fullname: Wassie – volume: 119 start-page: 834 year: 2018 ident: 10.1016/j.fuproc.2020.106619_bb0025 article-title: From bioethanol exploitation to high grade hydrogen generation: Steam reforming promoted by a Co-Pt catalyst in a Pd-based membrane reactor publication-title: Renew. Energy doi: 10.1016/j.renene.2017.10.050 contributor: fullname: Iulianelli – volume: 2 start-page: 1 year: 2017 ident: 10.1016/j.fuproc.2020.106619_bb0285 article-title: Interlayer properties of in-situ oxidized porous stainless steel for preparation of composite Pd membranes publication-title: ChemEngineering. doi: 10.3390/chemengineering2010001 contributor: fullname: Furones – volume: 20 year: 2019 ident: 10.1016/j.fuproc.2020.106619_bb0055 article-title: Steam reforming of model bio-oil aqueous fraction using Ni-(Cu, Co, Cr)/SBA-15 catalysts publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20030512 contributor: fullname: Calles – volume: 79 start-page: 347 year: 2017 ident: 10.1016/j.fuproc.2020.106619_bb0065 article-title: Renewable hydrogen production from bio-oil derivative via catalytic steam reforming: an overview publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2017.05.069 contributor: fullname: Nabgan – volume: 35 start-page: 110 year: 2010 ident: 10.1016/j.fuproc.2020.106619_bb0110 article-title: Hydrogen production by steam reforming of acetic acid: comparison of conventional supported metal catalysts and metal-incorporated mesoporous smectite-like catalysts publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2009.10.053 contributor: fullname: Iwasa – volume: 36 start-page: 5350 year: 2011 ident: 10.1016/j.fuproc.2020.106619_bb0335 article-title: High pressure palladium membrane reactor for the high temperature water-gas shift reaction publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2011.01.172 contributor: fullname: Augustine – volume: 134 start-page: 124 year: 2018 ident: 10.1016/j.fuproc.2020.106619_bb0370 article-title: Experiments, modeling and scaling-up of membrane reactors for hydrogen production via steam methane reforming publication-title: Chem. Eng. Process. - Process Intensif. doi: 10.1016/j.cep.2018.10.007 contributor: fullname: Ramachandran – volume: 65 start-page: 451 year: 2010 ident: 10.1016/j.fuproc.2020.106619_bb0080 article-title: Steam reforming of biogas mixtures with a palladium membrane reactor system publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2009.04.013 contributor: fullname: Sato – volume: 355 start-page: 123 year: 2012 ident: 10.1016/j.fuproc.2020.106619_bb0125 article-title: Renewable hydrogen production by a mild-temperature steam reforming of the model compound acetic acid derived from bio-oil publication-title: J. Mol. Catal. A Chem. doi: 10.1016/j.molcata.2011.12.006 contributor: fullname: Li – volume: 44 start-page: 180 year: 2019 ident: 10.1016/j.fuproc.2020.106619_bb0185 article-title: Catalytic steam reforming of biomass-derived acetic acid over modified Ni/Γ-Al2O3 for sustainable hydrogen production publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2018.04.192 contributor: fullname: Choi – volume: 45 start-page: 7374 year: 2020 ident: 10.1016/j.fuproc.2020.106619_bb0270 article-title: Stability of pore-plated membranes for hydrogen production in fluidized-bed membrane reactors publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2019.04.285 contributor: fullname: Tosto – volume: 36 start-page: 930 year: 2011 ident: 10.1016/j.fuproc.2020.106619_bb0120 article-title: The influence of Ni loading on coke formation in steam reforming of acetic acid publication-title: Renew. Energy doi: 10.1016/j.renene.2010.08.029 contributor: fullname: An – volume: 93 start-page: 1000 year: 2020 ident: 10.1016/j.fuproc.2020.106619_bb0175 article-title: Steam reforming of acetic acid over nickel catalysts: Impacts of fourteen additives on the catalytic behaviors publication-title: J. Energy Inst. doi: 10.1016/j.joei.2019.09.002 contributor: fullname: Yu – volume: 39 start-page: 18675 year: 2014 ident: 10.1016/j.fuproc.2020.106619_bb0060 article-title: Hydrogen production via catalytic reforming of the bio-oil model compounds: Acetic acid, phenol and hydroxyacetone publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2014.01.142 contributor: fullname: Wang – volume: 375 start-page: 28 year: 2011 ident: 10.1016/j.fuproc.2020.106619_bb0295 article-title: Correlations in palladium membranes for hydrogen separation: a review publication-title: J. Memb. Sci. doi: 10.1016/j.memsci.2011.03.057 contributor: fullname: Yun – volume: 121 start-page: 24 year: 2017 ident: 10.1016/j.fuproc.2020.106619_bb0230 article-title: Palladium membranes applications in reaction systems for hydrogen separation and purification: a review publication-title: Chem. Eng. Process. Process Intensif. doi: 10.1016/j.cep.2017.07.021 contributor: fullname: Rahimpour – volume: 44 start-page: 12983 year: 2019 ident: 10.1016/j.fuproc.2020.106619_bb0180 article-title: Catalyst modification strategies to enhance the catalyst activity and stability during steam reforming of acetic acid for hydrogen production publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2019.03.136 contributor: fullname: Kumar – year: 2020 ident: 10.1016/j.fuproc.2020.106619_bb0005 article-title: Hydrogen production for energy: an overview publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2019.12.059 contributor: fullname: Dawood – volume: 35 start-page: 5895 year: 2010 ident: 10.1016/j.fuproc.2020.106619_bb0190 article-title: Ethanol steam reforming on Ni/Al-SBA-15 catalysts: effect of the aluminium content publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2009.12.120 contributor: fullname: Lindo – volume: 22 start-page: 1 year: 2017 ident: 10.1016/j.fuproc.2020.106619_bb0260 article-title: Recent advances in pd-based membranes for membrane reactors publication-title: Molecules. contributor: fullname: Plazaola – volume: 3 start-page: 416 year: 2017 ident: 10.1016/j.fuproc.2020.106619_bb0045 article-title: Thermodynamic Analysis of the Gasification of Municipal Solid Waste-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) publication-title: Engineering. doi: 10.1016/J.ENG.2017.03.004 contributor: fullname: Xu – volume: 308 start-page: 182 year: 2006 ident: 10.1016/j.fuproc.2020.106619_bb0105 article-title: Reforming reactions of acetic acid on nickel catalysts over a wide temperature range publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2006.04.024 contributor: fullname: Basagiannis – volume: 177 start-page: 579 year: 2016 ident: 10.1016/j.fuproc.2020.106619_bb0150 article-title: Effect of operating conditions on the sorption enhanced steam reforming of blends of acetic acid and acetone as bio-oil model compounds publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.05.149 contributor: fullname: Esteban-Díez – volume: 9 start-page: 1013 year: 2019 ident: 10.1016/j.fuproc.2020.106619_bb0215 article-title: Hydrogen production from steam reforming of acetic acid as a model compound of the aqueous fraction of microalgae HTL using Co-M/SBA-15 (M: Cu, Ag, Ce, Cr) catalysts publication-title: Catalysts doi: 10.3390/catal9121013 contributor: fullname: Megía – start-page: 63 year: 2020 ident: 10.1016/j.fuproc.2020.106619_bb0290 article-title: Mass transport in hydrogen permeation through Pd-based membranes publication-title: Curr. Trends Futur. Dev. Membr. contributor: fullname: Bellini – volume: 444 start-page: 378 year: 2013 ident: 10.1016/j.fuproc.2020.106619_bb0305 article-title: Testing of dense Pd–Ag tubes: effect of pressure and membrane thickness on the hydrogen permeability publication-title: J. Memb. Sci. doi: 10.1016/j.memsci.2013.05.058 contributor: fullname: Santucci – volume: 38 start-page: 4144 issue: 10 year: 2013 ident: 10.1016/j.fuproc.2020.106619_bb0310 article-title: Hydrogen permeation through Pd–Ag membranes: Surface effects and Sieverts' law publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2013.01.091 contributor: fullname: Vadrucci – volume: 66 start-page: 613 year: 2009 ident: 10.1016/j.fuproc.2020.106619_bb0360 article-title: Concentration polarization analysis in self-supported Pd-based membranes publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2009.01.008 contributor: fullname: Caravella – volume: 45 start-page: 7278 year: 2020 ident: 10.1016/j.fuproc.2020.106619_bb0280 article-title: Pd-thickness reduction in electroless pore-plated membranes by using doped-ceria as interlayer publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2019.10.140 contributor: fullname: Martinez-Diaz – start-page: 7 year: 2018 ident: 10.1016/j.fuproc.2020.106619_bb0090 contributor: fullname: Coutanceau – volume: 184 start-page: 64 year: 2016 ident: 10.1016/j.fuproc.2020.106619_bb0145 article-title: Production of fuel-cell grade H2 by sorption enhanced steam reforming of acetic acid as a model compound of biomass-derived bio-oil publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2015.11.028 contributor: fullname: Gil – volume: 164 start-page: 257 year: 2011 ident: 10.1016/j.fuproc.2020.106619_bb0115 article-title: Hydrogen production by steam reforming of acetic acid over Ni-based catalysts publication-title: Catal. Today doi: 10.1016/j.cattod.2010.10.054 contributor: fullname: Thaicharoensutcharittham – year: 2018 ident: 10.1016/j.fuproc.2020.106619_bb0255 contributor: fullname: Alique – volume: 194 start-page: 10 year: 2018 ident: 10.1016/j.fuproc.2020.106619_bb0320 article-title: Influence of the selective layer morphology on the permeation properties for Pd-PSS composite membranes prepared by electroless pore-plating: Experimental and modeling study publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2017.11.014 contributor: fullname: Calles – volume: 40 start-page: 3423 year: 2015 ident: 10.1016/j.fuproc.2020.106619_bb0340 article-title: Recent advances in catalysts, palladium alloys and high temperature {WGS} membrane reactors: a review publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2014.10.091 contributor: fullname: Cornaglia – volume: 514 start-page: 182 year: 2016 ident: 10.1016/j.fuproc.2020.106619_bb0140 article-title: Support effect on structure and performance of Co and Ni catalysts for steam reforming of acetic acid publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2015.12.025 contributor: fullname: Goicoechea – volume: 146 start-page: 99 year: 2016 ident: 10.1016/j.fuproc.2020.106619_bb0195 article-title: Comparison of ethanol steam reforming using Co and Ni catalysts supported on SBA-15 modified by Ca and Mg publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2016.02.020 contributor: fullname: Vizcaíno – volume: 42 start-page: 1357 year: 2001 ident: 10.1016/j.fuproc.2020.106619_bb0050 article-title: Biomass resource facilities and biomass conversion processing for fuels and chemicals publication-title: Energy Convers. Manag. doi: 10.1016/S0196-8904(00)00137-0 contributor: fullname: DemirbaÅŸ – start-page: 1 year: 2019 ident: 10.1016/j.fuproc.2020.106619_bb0210 article-title: Agglomerated Co–Cr/SBA-15 catalysts for hydrogen production through acetic acid steam reforming publication-title: Int. J. Hydrog. Energy contributor: fullname: Calles – volume: 32 start-page: 4052 year: 2007 ident: 10.1016/j.fuproc.2020.106619_bb0300 article-title: The effect of the hydrogen flux pressure and temperature dependence factors on the membrane reactor performances publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2007.03.039 contributor: fullname: Gallucci – volume: 129 start-page: 131 year: 2018 ident: 10.1016/j.fuproc.2020.106619_bb0030 article-title: Potentiality of a biogas membrane reformer for decentralized hydrogen production publication-title: Chem. Eng. Process. - Process Intensif. doi: 10.1016/j.cep.2018.04.023 contributor: fullname: Di Marcoberardino – volume: 39 start-page: 4710 year: 2014 ident: 10.1016/j.fuproc.2020.106619_bb0325 article-title: Hydrogen permeation through a Pd-based membrane and RWGS conversion in H2/CO2, H2/N2/CO2and H2/H2O/CO2mixtures publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2013.11.089 contributor: fullname: Barreiro – volume: 42 start-page: 2453 year: 2017 ident: 10.1016/j.fuproc.2020.106619_bb0020 article-title: Integration of hydrogen energy systems into renewable energy systems for better design of 100% renewable energy communities publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.09.086 contributor: fullname: Uyar – volume: 39 start-page: 17201 year: 2014 ident: 10.1016/j.fuproc.2020.106619_bb0350 article-title: Inhibition effect of CO on hydrogen permeability of Pd-Ag membrane applied in a microchannel module configuration publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2014.08.056 contributor: fullname: Kurokawa – volume: 244 start-page: 184 year: 2019 ident: 10.1016/j.fuproc.2020.106619_bb0070 article-title: Hydrogen production through steam reforming of bio-oils derived from biomass pyrolysis: thermodynamic analysis including in situ CO2 and/or H2 separation publication-title: Fuel. doi: 10.1016/j.fuel.2019.01.156 contributor: fullname: Soria – volume: 38 start-page: 6033 year: 2013 ident: 10.1016/j.fuproc.2020.106619_bb0130 article-title: Carbon deposition on Ni/ZrO2-CeO2 catalyst during steam reforming of acetic acid publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2012.12.141 contributor: fullname: Hu – volume: 33 start-page: 6804 year: 2008 ident: 10.1016/j.fuproc.2020.106619_bb0015 article-title: “Green” path from fossil-based to hydrogen economy: an overview of carbon-neutral technologies publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2008.08.054 contributor: fullname: Muradov – start-page: 249 year: 2015 ident: 10.1016/j.fuproc.2020.106619_bb0250 article-title: 8 - Membrane reactors for steam reforming of glycerol and acetic acid to produce hydrogen – volume: 53 start-page: 1333 year: 2016 ident: 10.1016/j.fuproc.2020.106619_bb0035 article-title: Assessing the gasification performance of biomass: a review on biomass gasification process conditions, optimization and economic evaluation publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2015.09.030 contributor: fullname: Ahmad |
SSID | ssj0005597 |
Score | 2.4256487 |
Snippet | Electroless Pore-Plated (ELP-PP) membranes were successfully incorporated for the first time into a membrane reactor to produce hydrogen by acetic acid steam... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 106619 |
SubjectTerms | Acetic acid Catalysts Cerium oxides Electroless plating Hydrogen production Membrane Membrane reactors Membranes Palladium Reactors Reforming Selectivity Steam reforming |
Title | Stability of electroless pore-plated Pd-membranes in acetic acid steam membrane-reformers for ultra-pure hydrogen production |
URI | https://dx.doi.org/10.1016/j.fuproc.2020.106619 https://www.proquest.com/docview/2478820886 |
Volume | 212 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FL3oQn_gsOXhN293NbrLHUixVsQha6C0kmwQrfSy1PQjib3dmH1AFETwtZLMhZCbfN7v7zYSQa2NFaoEpUalmGdewpbR0hnGeujhxQguP3zsehslgxO_G8bhBenUuDMoqK-wvMb1A66qlXa1mO59M2k-dSMgICCzEvwRBUfGTA_2BT7c-N2QecXHACnZm2LtOnys0Xn6NNNHCMaAJqCr9jZ5-AHXBPv19sleFjbRbzuyANNz8kOxuFBM8Ih8QNxZK13e68LQ63mYKQEYhxHYsn0JUaemjZTM3g1dkgDg6mVOdYRYjXCaWosFntL7NYHIQ0EJ4SOFK19PVUrN8vXT05d0uF-B4NC_LxYJpj8mof_PcG7DqbAWWRbKzYoHhQieiI533NtYyDayXqfBWRCmmmRsRxlZj_a5UWq19lgG3gykxT9UHgYtOyNZ8MXenhEbGQYNJJDecO5_p2Bjc105Ghmc2OyOsXlKVlyU0VK0te1WlCRSaQJUmOCOiXnf1zRUUoPwfT17WZlLVVnxTIR4QEAKYJuf_HviC7ISoZSnU2pdka7VcuysIRlamWXhbk2x3b-8Hwy840OG7 |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yHtSD-MTVVXPwmt1tmzbpURaX9YmggreQNAmu7KOsu4cF8bc70weoIIKnQpqGkJl887X9ZkLImbEitRApUalmGdewpbR0hnGeujhxQguP3ztu75LBE796jp9XSK_OhUFZZYX9JaYXaF21dKrV7OTDYeehGwkZQQAL8S9BgBU_VznyY3Dq9scXnUdcnLCCvRl2r_PnCpGXX2CcaOMg0ASxKv0tPv1A6iL89LfIZsUb6Xk5tW2y4iY7ZONLNcFd8g7EsZC6LunU0-p8mxEgGQWO7Vg-Alpp6b1lYzeGd2TAODqcUJ1hGiNchpaixce0vs1gcsBogR9SuNLFaD7TLF_MHH1Z2tkUPI_mZb1YsO0eeepfPPYGrDpcgWWR7M5ZYLjQiehK572NtUwD62UqvBVRinnmRoSx1VjAK5VWa59lENzBlpio6oPARfukMZlO3AGhkXHQYBLJDefOZzo2Bje2k5Hhmc2ahNVLqvKyhoaqxWWvqjSBQhOo0gRNIup1V998QQHM__FkqzaTqvbimwrxhIAQ0DQ5_PfAp2Rt8Hh7o24u766PyHqIwpZCut0ijfls4Y6BmczNSeF5n5KS41Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+of+electroless+pore-plated+Pd-membranes+in+acetic+acid+steam+membrane-reformers+for+ultra-pure+hydrogen+production&rft.jtitle=Fuel+processing+technology&rft.au=Adduci%2C+G.&rft.au=Martinez-Diaz%2C+D.&rft.au=Sanz-Villanueva%2C+D.&rft.au=Caravella%2C+A.&rft.date=2021-02-01&rft.issn=0378-3820&rft.volume=212&rft.spage=106619&rft_id=info:doi/10.1016%2Fj.fuproc.2020.106619&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_fuproc_2020_106619 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3820&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3820&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3820&client=summon |