Prediction of chronic kidney disease using urinary dielectric properties and support vector machine

In this study, we aim to classify the urinary dielectric properties of subjects with chronic kidney disease (CKD) and normal subjects, at microwave frequency between 1 GHz and 50 GHz using support vector machine (SVM). The dielectric properties of urine were measured at room temperature (25°C), 30°C...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of microwave power and electromagnetic energy Vol. 50; no. 3; pp. 201 - 213
Main Authors Mun, Peck Shen, Ting, Hua Nong, Mirhassani, Seyed Mostafa, Ong, Teng Aik, Wong, Chew Ming, Chong, Yip Boon
Format Journal Article
LanguageEnglish
Published Taylor & Francis 02.07.2016
Subjects
Online AccessGet full text
ISSN0832-7823
DOI10.1080/08327823.2016.1230927

Cover

Abstract In this study, we aim to classify the urinary dielectric properties of subjects with chronic kidney disease (CKD) and normal subjects, at microwave frequency between 1 GHz and 50 GHz using support vector machine (SVM). The dielectric properties of urine were measured at room temperature (25°C), 30°C and body temperature (37°C). Urinary dielectric behaviour differences were observed between respective diabetic kidney disease (DKD) and non-DKD compared to normal subjects. Two-group classifications obtained the highest accuracy of 75.91% and 70.02%, respectively, in differentiating DKD and non-DKD group from normal group. The highest classification accuracy was achieved at 63.94% for three-group classifications. The best classification accuracies were obtained at 30°C for two-group and three-group classifications.
AbstractList In this study, we aim to classify the urinary dielectric properties of subjects with chronic kidney disease (CKD) and normal subjects, at microwave frequency between 1 GHz and 50 GHz using support vector machine (SVM). The dielectric properties of urine were measured at room temperature (25°C), 30°C and body temperature (37°C). Urinary dielectric behaviour differences were observed between respective diabetic kidney disease (DKD) and non-DKD compared to normal subjects. Two-group classifications obtained the highest accuracy of 75.91% and 70.02%, respectively, in differentiating DKD and non-DKD group from normal group. The highest classification accuracy was achieved at 63.94% for three-group classifications. The best classification accuracies were obtained at 30°C for two-group and three-group classifications.
Author Mirhassani, Seyed Mostafa
Mun, Peck Shen
Ong, Teng Aik
Ting, Hua Nong
Wong, Chew Ming
Chong, Yip Boon
Author_xml – sequence: 1
  givenname: Peck Shen
  surname: Mun
  fullname: Mun, Peck Shen
  email: mun_ps@siswa.um.edu.my
  organization: Department of Biomedical Engineering, Faculty of Engineering, University of Malaya
– sequence: 2
  givenname: Hua Nong
  surname: Ting
  fullname: Ting, Hua Nong
  organization: Department of Biomedical Engineering, Faculty of Engineering, University of Malaya
– sequence: 3
  givenname: Seyed Mostafa
  orcidid: 0000-0002-0466-4512
  surname: Mirhassani
  fullname: Mirhassani, Seyed Mostafa
  organization: Department of Electrical Engineering, Faculty of Engineering, University of Shahrood
– sequence: 4
  givenname: Teng Aik
  surname: Ong
  fullname: Ong, Teng Aik
  organization: Department of Surgery, Faculty of Medicine, University of Malaya
– sequence: 5
  givenname: Chew Ming
  surname: Wong
  fullname: Wong, Chew Ming
  organization: Department of Medicine, Faculty of Medicine, University of Malaya
– sequence: 6
  givenname: Yip Boon
  surname: Chong
  fullname: Chong, Yip Boon
  organization: Damansara Specialist Hospital
BookMark eNqFkM1OwzAQhH0oEm3hEZD8Ail2LCeOuIAq_qRKcIBz5NprakjtaO2C-vYkarlwgNNqZ3ZGq29GJiEGIOSCswVnil0yJcpalWJRMl4teClYU9YTMh31YjROySyld8aY4k09JeYZwXqTfQw0Omo2GIM39MPbAHtqfQKdgO6SD290hz5oHFXowGQc7nqMPWD2kKgOlqZd30fM9HOwI9KtNhsf4IycON0lOD_OOXm9u31ZPhSrp_vH5c2qMEKxXHDd1Ny6Zq2YAqfWVgvphFCVgFpZcNypWlfrSqjGgJW8EbVwUkolQUI1LHMiD70GY0oIru3Rb4ePW87akU77Q6cd6bRHOkPu6lfO-KxHJBm17_5NXx_SPriIW_0VsbNt1vsuokMdjE-t-LviG48ghDY
CitedBy_id crossref_primary_10_1007_s00500_021_06013_8
crossref_primary_10_1109_MAP_2021_3129687
crossref_primary_10_1109_OJEMB_2023_3305838
crossref_primary_10_1109_TDEI_2024_3359590
crossref_primary_10_1515_bams_2020_0068
crossref_primary_10_1080_13682199_2023_2206272
Cites_doi 10.1088/0031-9155/38/7/007
10.1016/j.eswa.2011.05.018
10.1371/journal.pone.0063223
10.1049/iet-smt.2013.0087
10.1088/0031-9155/32/8/001
10.1038/ki.2011.30
10.1002/pmic.200800560
10.1371/journal.pone.0130011
10.1021/jp983327j
10.1016/j.bpj.2012.11.3802
10.1111/j.1523-1755.2005.00335.x
10.1021/ja01272a035
10.1088/0967-3334/32/9/002
10.1021/jp0008905
10.1186/1471-2156-11-26
10.2337/diacare.27.7.1761
10.1016/j.engappai.2006.05.010
10.1001/jama.295.14.1681
10.1002/mop.27672
10.1039/c2cp41496a
10.1093/nar/gkr064
10.1163/156939307783239429
10.1007/978-1-4757-2440-0
10.1371/journal.pone.0013421
10.1016/j.eswa.2008.02.064
10.1088/0957-0233/18/4/003
10.1063/1.3458908
10.1088/0967-3334/24/1/310
10.1088/0953-8984/24/32/325105
10.1007/s00125-007-0842-6
10.1080/09205071.2015.1072480
10.1109/TBME.2008.2003105
10.1109/TITB.2009.2039485
10.1038/ki.2009.93
10.1002/mop.20349
10.1016/j.eswa.2006.09.012
10.1021/ja01272a036
10.1080/08327823.2001.11688455
10.1021/j100859a004
ContentType Journal Article
Copyright 2016 International Microwave Power Institute 2016
Copyright_xml – notice: 2016 International Microwave Power Institute 2016
DBID AAYXX
CITATION
DOI 10.1080/08327823.2016.1230927
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 213
ExternalDocumentID 10_1080_08327823_2016_1230927
1230927
Genre Article
GrantInformation_xml – fundername: University of Malaya
  grantid: PG036-2013A
  funderid: 10.13039/501100004386
GroupedDBID ---
.4S
.DC
0BK
0R~
30N
53G
A8Z
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABLIJ
ABPAQ
ABXUL
ABXYU
ACGFS
ACTIO
ACUHS
ADCVX
ADGTB
AEISY
AENEX
AEYOC
AGDLA
AHDZW
AIJEM
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
ARCSS
AWYRJ
BLEHA
CCCUG
DGEBU
EBD
EBS
EDO
EJD
ESTFP
F5P
H13
I-F
KYCEM
L8X
M4Z
P2P
RNANH
ROSJB
RTWRZ
TBQAZ
TDBHL
TEN
TEX
TFL
TFT
TFW
TTHFI
TUROJ
TUS
ZGOLN
~KM
AAGDL
AAHIA
AAYXX
ABJNI
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
ID FETCH-LOGICAL-c380t-1a971df9b808ef8bda35f33863e78def1f87a6b6389ced519373f55585e5e6373
ISSN 0832-7823
IngestDate Tue Jul 01 04:27:17 EDT 2025
Thu Apr 24 22:56:34 EDT 2025
Wed Dec 25 09:05:41 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c380t-1a971df9b808ef8bda35f33863e78def1f87a6b6389ced519373f55585e5e6373
ORCID 0000-0002-0466-4512
PageCount 13
ParticipantIDs crossref_primary_10_1080_08327823_2016_1230927
crossref_citationtrail_10_1080_08327823_2016_1230927
informaworld_taylorfrancis_310_1080_08327823_2016_1230927
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-07-02
PublicationDateYYYYMMDD 2016-07-02
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-07-02
  day: 02
PublicationDecade 2010
PublicationTitle The Journal of microwave power and electromagnetic energy
PublicationYear 2016
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References cit0011
cit0033
cit0012
cit0034
cit0031
cit0010
cit0032
cit0030
cit0019
cit0017
Michie D (cit0029) 1994
cit0039
cit0015
cit0037
cit0016
cit0038
cit0013
cit0035
cit0014
cit0036
cit0022
cit0044
cit0001
cit0023
cit0020
cit0042
cit0021
Haykin S (cit0018) 2004
cit0040
cit0041
Wolf M (cit0043) 2012
cit0008
cit0006
cit0028
cit0007
cit0026
cit0005
cit0027
cit0002
cit0024
cit0003
cit0025
References_xml – ident: cit0002
  doi: 10.1088/0031-9155/38/7/007
– ident: cit0011
  doi: 10.1016/j.eswa.2011.05.018
– volume-title: Neural networks a comprehensive foundation
  year: 2004
  ident: cit0018
– ident: cit0013
  doi: 10.1371/journal.pone.0063223
– volume-title: Machine learning, neural and statistical classification
  year: 1994
  ident: cit0029
– ident: cit0015
  doi: 10.1049/iet-smt.2013.0087
– ident: cit0035
  doi: 10.1088/0031-9155/32/8/001
– ident: cit0016
  doi: 10.1038/ki.2011.30
– ident: cit0044
  doi: 10.1002/pmic.200800560
– ident: cit0032
  doi: 10.1371/journal.pone.0130011
– ident: cit0033
  doi: 10.1021/jp983327j
– ident: cit0007
  doi: 10.1016/j.bpj.2012.11.3802
– ident: cit0017
  doi: 10.1111/j.1523-1755.2005.00335.x
– ident: cit0034
  doi: 10.1021/ja01272a035
– ident: cit0039
  doi: 10.1088/0967-3334/32/9/002
– ident: cit0008
  doi: 10.1021/jp0008905
– ident: cit0005
  doi: 10.1186/1471-2156-11-26
– ident: cit0012
  doi: 10.2337/diacare.27.7.1761
– ident: cit0021
  doi: 10.1016/j.engappai.2006.05.010
– ident: cit0030
  doi: 10.1001/jama.295.14.1681
– ident: cit0040
  doi: 10.1002/mop.27672
– ident: cit0037
  doi: 10.1039/c2cp41496a
– ident: cit0038
  doi: 10.1093/nar/gkr064
– ident: cit0025
  doi: 10.1163/156939307783239429
– ident: cit0041
  doi: 10.1007/978-1-4757-2440-0
– ident: cit0003
  doi: 10.1371/journal.pone.0013421
– ident: cit0020
  doi: 10.1016/j.eswa.2008.02.064
– ident: cit0028
  doi: 10.1088/0957-0233/18/4/003
– ident: cit0001
  doi: 10.1063/1.3458908
– ident: cit0019
  doi: 10.1088/0967-3334/24/1/310
– ident: cit0027
  doi: 10.1088/0953-8984/24/32/325105
– ident: cit0042
  doi: 10.1007/s00125-007-0842-6
– ident: cit0031
  doi: 10.1080/09205071.2015.1072480
– ident: cit0023
  doi: 10.1109/TBME.2008.2003105
– ident: cit0006
  doi: 10.1109/TITB.2009.2039485
– ident: cit0022
  doi: 10.1038/ki.2009.93
– ident: cit0026
  doi: 10.1002/mop.20349
– ident: cit0036
  doi: 10.1016/j.eswa.2006.09.012
– ident: cit0010
  doi: 10.1021/ja01272a036
– start-page: 1
  year: 2012
  ident: cit0043
  publication-title: Proteins Proteomics
– ident: cit0024
  doi: 10.1080/08327823.2001.11688455
– ident: cit0014
  doi: 10.1021/j100859a004
SSID ssj0008197
Score 2.0958283
Snippet In this study, we aim to classify the urinary dielectric properties of subjects with chronic kidney disease (CKD) and normal subjects, at microwave frequency...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 201
SubjectTerms chronic kidney disease
classification
support vector machine
Urinary dielectric properties
Title Prediction of chronic kidney disease using urinary dielectric properties and support vector machine
URI https://www.tandfonline.com/doi/abs/10.1080/08327823.2016.1230927
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbK7gUOiKdYXvKBW5SqSZzYOa54qELaBYmuWHGJEj_YqjStSrIr-F_8P2ZsN0lRtbBcojaqp4_5bH8dz3xDyCug9cLwXMEUr6qQ5ZkKRWxUmHKTy0zEpbD1FSen2fSMvT9Pz0ejX4OspbapxvLn3rqS__Eq3AO_YpXsDTzbGYUb8Bj8C1fwMFz_yccfN3jMsuV80uncBou5qmGm-6OXoLXRAAyqY4KcmrvGN_C6NcbhNyioak8Qvrdr5OLBpY3jB0ubZbmTKNSXkVkCu8RcvivsXrTGVmvWiO-qsyy_1lgdGWhbWth7tXY5wXIRfLrQgxxgt-JM2zI4Xfm91BYqbi6A3Lu2U7Cs_QB2fLICPmu6zeSDGznTGN2ZL4ZBjCizCa_DuCYsLCGQlWS4MDtFWg_AZLjK-viH9mtusncv8MmTYBkNYxZfNoZ9epI7MYJd7e0_9sQuUzHaSqh6MwWaKbyZW-Qw5hyzAw6Pp2--fO4oANAsJzHrv9W2dAxF3fd9nh1StCOZOyA7s3vkrncyPXaQu09Gun5A7gy0Kx8S2YOPrgz14KMOfNSDj1rwUQ8-2oOP9uCjgBvqwUcd-KgH3yNy9u7t7PU09B07QpmISRNGZc4jZfJKTIQ2olJlkpokEVmiuVDaREbwMquQJUut8M8DTwwqzqU61Rk8eUwO6lWtnxDKmFYxq1gKhJnJjJdRXKpUlMzwSDKjjgjb_mSF9HL22FXlW3Gty47IuBu2dnoufxuQD_1RNDaQZlzXmyK5duzTm77ZM3K7nx3PyUGzafULIL1N9dJD7DcEJqhW
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWgHIADO6KsPnBNyOLEzhEhqgJtxaGVeoscLwgV0iqkSPD1eLJUKRJw4JhlIsfbPI-f3yB0aWA90zSSZogniUWiUFrM09IKqI5EyDzOivMV_UHYHZH7cTBunIUBWiWsoXUpFFHM1TC4IRhdU-KuDGzwjGfzgZkV2mbudSKPrqK1wGB36OW-M1jMxsbjlWqfvkGSxqY-xfPTZ5b805J6acPvdLaRqEtc0k0m9jxPbPH5Tczxf7-0g7YqWIqvy360i1ZUuoc2G2KF-0g8ZrCpAw2JpxqLUlUXT55lqj5wtdGDgUf_hCGEzzO4W6bZMe_NIOqfgXwrNqXEb_MZIH_8Xuwa4NeC06kO0KhzO7zpWlWKBkv4zMktl0fUlTpKmMOUZonkfqDNqjf0FWVSaVczysMEYJFQEtAi9TVIjAUqUKG5OEStdJqqI4QJUdIjCQkMQiIipNz1uAwYJ5q6gmjZRqRumFhU-uWQRuMldmuZ06oOY6jDuKrDNrIXZrNSwOMvg6jZ6nFeRE50meYk9n-1Pf6H7QVa7w77vbh3N3g4QRvwqKAFe6eolWdzdWbAT56cF737C5NW9hQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWgSAgO7Iiy-sA1pUkc2zkioCpb1QOVuEXxhlAhjdIUCb4eT5aqRQIOPWaZyPE2z57nNwidW1jPDQuVHeJCOCSkyuGeUU7ATCgp92JenK947NHugNw9BzWbcFzRKmENbUqhiGKuhsGdKlMz4i4savCsY_OBmEVbdupthx5bRivUwhNg9fnt3nQytg6vFPv0LZC0NvUhnt8-M-ee5sRLZ9xOZxOJusAl22TYmuSiJb9-aDku9EdbaKMCpfiy7EXbaEknO2h9RqpwF8l-BiEdaEY8MliWmrp4-KoS_YmrMA8GFv0Lhg38OIO7ZZId-14Ke_4ZiLdiW0g8nqSA-_FHETPA7wWjU--hQefm6arrVAkaHOnzdu64cchcZULB21wbLlTsB8aueamvGVfauIazmAoARVIrwIrMNyAwFuhAU3uxjxrJKNEHCBOilUcECSw-IpKy2PViFfCYGOZKYlQTkbpdIlmpl0MSjbfIrUVOqzqMoA6jqg6bqDU1S0v5jv8MwtlGj_Ji38SUSU4i_0_bwwVsz9Bq_7oTPdz27o_QGjwpOMHeMWrk2USfWOSTi9Oib38DimD0uA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+chronic+kidney+disease+using+urinary+dielectric+properties+and+support+vector+machine&rft.jtitle=The+Journal+of+microwave+power+and+electromagnetic+energy&rft.au=Mun%2C+Peck+Shen&rft.au=Ting%2C+Hua+Nong&rft.au=Mirhassani%2C+Seyed+Mostafa&rft.au=Ong%2C+Teng+Aik&rft.date=2016-07-02&rft.issn=0832-7823&rft.volume=50&rft.issue=3&rft.spage=201&rft.epage=213&rft_id=info:doi/10.1080%2F08327823.2016.1230927&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_08327823_2016_1230927
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0832-7823&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0832-7823&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0832-7823&client=summon