Prediction of chronic kidney disease using urinary dielectric properties and support vector machine
In this study, we aim to classify the urinary dielectric properties of subjects with chronic kidney disease (CKD) and normal subjects, at microwave frequency between 1 GHz and 50 GHz using support vector machine (SVM). The dielectric properties of urine were measured at room temperature (25°C), 30°C...
Saved in:
Published in | The Journal of microwave power and electromagnetic energy Vol. 50; no. 3; pp. 201 - 213 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis
02.07.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0832-7823 |
DOI | 10.1080/08327823.2016.1230927 |
Cover
Abstract | In this study, we aim to classify the urinary dielectric properties of subjects with chronic kidney disease (CKD) and normal subjects, at microwave frequency between 1 GHz and 50 GHz using support vector machine (SVM). The dielectric properties of urine were measured at room temperature (25°C), 30°C and body temperature (37°C). Urinary dielectric behaviour differences were observed between respective diabetic kidney disease (DKD) and non-DKD compared to normal subjects. Two-group classifications obtained the highest accuracy of 75.91% and 70.02%, respectively, in differentiating DKD and non-DKD group from normal group. The highest classification accuracy was achieved at 63.94% for three-group classifications. The best classification accuracies were obtained at 30°C for two-group and three-group classifications. |
---|---|
AbstractList | In this study, we aim to classify the urinary dielectric properties of subjects with chronic kidney disease (CKD) and normal subjects, at microwave frequency between 1 GHz and 50 GHz using support vector machine (SVM). The dielectric properties of urine were measured at room temperature (25°C), 30°C and body temperature (37°C). Urinary dielectric behaviour differences were observed between respective diabetic kidney disease (DKD) and non-DKD compared to normal subjects. Two-group classifications obtained the highest accuracy of 75.91% and 70.02%, respectively, in differentiating DKD and non-DKD group from normal group. The highest classification accuracy was achieved at 63.94% for three-group classifications. The best classification accuracies were obtained at 30°C for two-group and three-group classifications. |
Author | Mirhassani, Seyed Mostafa Mun, Peck Shen Ong, Teng Aik Ting, Hua Nong Wong, Chew Ming Chong, Yip Boon |
Author_xml | – sequence: 1 givenname: Peck Shen surname: Mun fullname: Mun, Peck Shen email: mun_ps@siswa.um.edu.my organization: Department of Biomedical Engineering, Faculty of Engineering, University of Malaya – sequence: 2 givenname: Hua Nong surname: Ting fullname: Ting, Hua Nong organization: Department of Biomedical Engineering, Faculty of Engineering, University of Malaya – sequence: 3 givenname: Seyed Mostafa orcidid: 0000-0002-0466-4512 surname: Mirhassani fullname: Mirhassani, Seyed Mostafa organization: Department of Electrical Engineering, Faculty of Engineering, University of Shahrood – sequence: 4 givenname: Teng Aik surname: Ong fullname: Ong, Teng Aik organization: Department of Surgery, Faculty of Medicine, University of Malaya – sequence: 5 givenname: Chew Ming surname: Wong fullname: Wong, Chew Ming organization: Department of Medicine, Faculty of Medicine, University of Malaya – sequence: 6 givenname: Yip Boon surname: Chong fullname: Chong, Yip Boon organization: Damansara Specialist Hospital |
BookMark | eNqFkM1OwzAQhH0oEm3hEZD8Ail2LCeOuIAq_qRKcIBz5NprakjtaO2C-vYkarlwgNNqZ3ZGq29GJiEGIOSCswVnil0yJcpalWJRMl4teClYU9YTMh31YjROySyld8aY4k09JeYZwXqTfQw0Omo2GIM39MPbAHtqfQKdgO6SD290hz5oHFXowGQc7nqMPWD2kKgOlqZd30fM9HOwI9KtNhsf4IycON0lOD_OOXm9u31ZPhSrp_vH5c2qMEKxXHDd1Ny6Zq2YAqfWVgvphFCVgFpZcNypWlfrSqjGgJW8EbVwUkolQUI1LHMiD70GY0oIru3Rb4ePW87akU77Q6cd6bRHOkPu6lfO-KxHJBm17_5NXx_SPriIW_0VsbNt1vsuokMdjE-t-LviG48ghDY |
CitedBy_id | crossref_primary_10_1007_s00500_021_06013_8 crossref_primary_10_1109_MAP_2021_3129687 crossref_primary_10_1109_OJEMB_2023_3305838 crossref_primary_10_1109_TDEI_2024_3359590 crossref_primary_10_1515_bams_2020_0068 crossref_primary_10_1080_13682199_2023_2206272 |
Cites_doi | 10.1088/0031-9155/38/7/007 10.1016/j.eswa.2011.05.018 10.1371/journal.pone.0063223 10.1049/iet-smt.2013.0087 10.1088/0031-9155/32/8/001 10.1038/ki.2011.30 10.1002/pmic.200800560 10.1371/journal.pone.0130011 10.1021/jp983327j 10.1016/j.bpj.2012.11.3802 10.1111/j.1523-1755.2005.00335.x 10.1021/ja01272a035 10.1088/0967-3334/32/9/002 10.1021/jp0008905 10.1186/1471-2156-11-26 10.2337/diacare.27.7.1761 10.1016/j.engappai.2006.05.010 10.1001/jama.295.14.1681 10.1002/mop.27672 10.1039/c2cp41496a 10.1093/nar/gkr064 10.1163/156939307783239429 10.1007/978-1-4757-2440-0 10.1371/journal.pone.0013421 10.1016/j.eswa.2008.02.064 10.1088/0957-0233/18/4/003 10.1063/1.3458908 10.1088/0967-3334/24/1/310 10.1088/0953-8984/24/32/325105 10.1007/s00125-007-0842-6 10.1080/09205071.2015.1072480 10.1109/TBME.2008.2003105 10.1109/TITB.2009.2039485 10.1038/ki.2009.93 10.1002/mop.20349 10.1016/j.eswa.2006.09.012 10.1021/ja01272a036 10.1080/08327823.2001.11688455 10.1021/j100859a004 |
ContentType | Journal Article |
Copyright | 2016 International Microwave Power Institute 2016 |
Copyright_xml | – notice: 2016 International Microwave Power Institute 2016 |
DBID | AAYXX CITATION |
DOI | 10.1080/08327823.2016.1230927 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 213 |
ExternalDocumentID | 10_1080_08327823_2016_1230927 1230927 |
Genre | Article |
GrantInformation_xml | – fundername: University of Malaya grantid: PG036-2013A funderid: 10.13039/501100004386 |
GroupedDBID | --- .4S .DC 0BK 0R~ 30N 53G A8Z AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABLIJ ABPAQ ABXUL ABXYU ACGFS ACTIO ACUHS ADCVX ADGTB AEISY AENEX AEYOC AGDLA AHDZW AIJEM AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH ARCSS AWYRJ BLEHA CCCUG DGEBU EBD EBS EDO EJD ESTFP F5P H13 I-F KYCEM L8X M4Z P2P RNANH ROSJB RTWRZ TBQAZ TDBHL TEN TEX TFL TFT TFW TTHFI TUROJ TUS ZGOLN ~KM AAGDL AAHIA AAYXX ABJNI ADYSH AFRVT AIYEW AMPGV CITATION |
ID | FETCH-LOGICAL-c380t-1a971df9b808ef8bda35f33863e78def1f87a6b6389ced519373f55585e5e6373 |
ISSN | 0832-7823 |
IngestDate | Tue Jul 01 04:27:17 EDT 2025 Thu Apr 24 22:56:34 EDT 2025 Wed Dec 25 09:05:41 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c380t-1a971df9b808ef8bda35f33863e78def1f87a6b6389ced519373f55585e5e6373 |
ORCID | 0000-0002-0466-4512 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1080_08327823_2016_1230927 crossref_citationtrail_10_1080_08327823_2016_1230927 informaworld_taylorfrancis_310_1080_08327823_2016_1230927 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-07-02 |
PublicationDateYYYYMMDD | 2016-07-02 |
PublicationDate_xml | – month: 07 year: 2016 text: 2016-07-02 day: 02 |
PublicationDecade | 2010 |
PublicationTitle | The Journal of microwave power and electromagnetic energy |
PublicationYear | 2016 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
References | cit0011 cit0033 cit0012 cit0034 cit0031 cit0010 cit0032 cit0030 cit0019 cit0017 Michie D (cit0029) 1994 cit0039 cit0015 cit0037 cit0016 cit0038 cit0013 cit0035 cit0014 cit0036 cit0022 cit0044 cit0001 cit0023 cit0020 cit0042 cit0021 Haykin S (cit0018) 2004 cit0040 cit0041 Wolf M (cit0043) 2012 cit0008 cit0006 cit0028 cit0007 cit0026 cit0005 cit0027 cit0002 cit0024 cit0003 cit0025 |
References_xml | – ident: cit0002 doi: 10.1088/0031-9155/38/7/007 – ident: cit0011 doi: 10.1016/j.eswa.2011.05.018 – volume-title: Neural networks a comprehensive foundation year: 2004 ident: cit0018 – ident: cit0013 doi: 10.1371/journal.pone.0063223 – volume-title: Machine learning, neural and statistical classification year: 1994 ident: cit0029 – ident: cit0015 doi: 10.1049/iet-smt.2013.0087 – ident: cit0035 doi: 10.1088/0031-9155/32/8/001 – ident: cit0016 doi: 10.1038/ki.2011.30 – ident: cit0044 doi: 10.1002/pmic.200800560 – ident: cit0032 doi: 10.1371/journal.pone.0130011 – ident: cit0033 doi: 10.1021/jp983327j – ident: cit0007 doi: 10.1016/j.bpj.2012.11.3802 – ident: cit0017 doi: 10.1111/j.1523-1755.2005.00335.x – ident: cit0034 doi: 10.1021/ja01272a035 – ident: cit0039 doi: 10.1088/0967-3334/32/9/002 – ident: cit0008 doi: 10.1021/jp0008905 – ident: cit0005 doi: 10.1186/1471-2156-11-26 – ident: cit0012 doi: 10.2337/diacare.27.7.1761 – ident: cit0021 doi: 10.1016/j.engappai.2006.05.010 – ident: cit0030 doi: 10.1001/jama.295.14.1681 – ident: cit0040 doi: 10.1002/mop.27672 – ident: cit0037 doi: 10.1039/c2cp41496a – ident: cit0038 doi: 10.1093/nar/gkr064 – ident: cit0025 doi: 10.1163/156939307783239429 – ident: cit0041 doi: 10.1007/978-1-4757-2440-0 – ident: cit0003 doi: 10.1371/journal.pone.0013421 – ident: cit0020 doi: 10.1016/j.eswa.2008.02.064 – ident: cit0028 doi: 10.1088/0957-0233/18/4/003 – ident: cit0001 doi: 10.1063/1.3458908 – ident: cit0019 doi: 10.1088/0967-3334/24/1/310 – ident: cit0027 doi: 10.1088/0953-8984/24/32/325105 – ident: cit0042 doi: 10.1007/s00125-007-0842-6 – ident: cit0031 doi: 10.1080/09205071.2015.1072480 – ident: cit0023 doi: 10.1109/TBME.2008.2003105 – ident: cit0006 doi: 10.1109/TITB.2009.2039485 – ident: cit0022 doi: 10.1038/ki.2009.93 – ident: cit0026 doi: 10.1002/mop.20349 – ident: cit0036 doi: 10.1016/j.eswa.2006.09.012 – ident: cit0010 doi: 10.1021/ja01272a036 – start-page: 1 year: 2012 ident: cit0043 publication-title: Proteins Proteomics – ident: cit0024 doi: 10.1080/08327823.2001.11688455 – ident: cit0014 doi: 10.1021/j100859a004 |
SSID | ssj0008197 |
Score | 2.0958283 |
Snippet | In this study, we aim to classify the urinary dielectric properties of subjects with chronic kidney disease (CKD) and normal subjects, at microwave frequency... |
SourceID | crossref informaworld |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 201 |
SubjectTerms | chronic kidney disease classification support vector machine Urinary dielectric properties |
Title | Prediction of chronic kidney disease using urinary dielectric properties and support vector machine |
URI | https://www.tandfonline.com/doi/abs/10.1080/08327823.2016.1230927 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbK7gUOiKdYXvKBW5SqSZzYOa54qELaBYmuWHGJEj_YqjStSrIr-F_8P2ZsN0lRtbBcojaqp4_5bH8dz3xDyCug9cLwXMEUr6qQ5ZkKRWxUmHKTy0zEpbD1FSen2fSMvT9Pz0ejX4OspbapxvLn3rqS__Eq3AO_YpXsDTzbGYUb8Bj8C1fwMFz_yccfN3jMsuV80uncBou5qmGm-6OXoLXRAAyqY4KcmrvGN_C6NcbhNyioak8Qvrdr5OLBpY3jB0ubZbmTKNSXkVkCu8RcvivsXrTGVmvWiO-qsyy_1lgdGWhbWth7tXY5wXIRfLrQgxxgt-JM2zI4Xfm91BYqbi6A3Lu2U7Cs_QB2fLICPmu6zeSDGznTGN2ZL4ZBjCizCa_DuCYsLCGQlWS4MDtFWg_AZLjK-viH9mtusncv8MmTYBkNYxZfNoZ9epI7MYJd7e0_9sQuUzHaSqh6MwWaKbyZW-Qw5hyzAw6Pp2--fO4oANAsJzHrv9W2dAxF3fd9nh1StCOZOyA7s3vkrncyPXaQu09Gun5A7gy0Kx8S2YOPrgz14KMOfNSDj1rwUQ8-2oOP9uCjgBvqwUcd-KgH3yNy9u7t7PU09B07QpmISRNGZc4jZfJKTIQ2olJlkpokEVmiuVDaREbwMquQJUut8M8DTwwqzqU61Rk8eUwO6lWtnxDKmFYxq1gKhJnJjJdRXKpUlMzwSDKjjgjb_mSF9HL22FXlW3Gty47IuBu2dnoufxuQD_1RNDaQZlzXmyK5duzTm77ZM3K7nx3PyUGzafULIL1N9dJD7DcEJqhW |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWgHIADO6KsPnBNyOLEzhEhqgJtxaGVeoscLwgV0iqkSPD1eLJUKRJw4JhlIsfbPI-f3yB0aWA90zSSZogniUWiUFrM09IKqI5EyDzOivMV_UHYHZH7cTBunIUBWiWsoXUpFFHM1TC4IRhdU-KuDGzwjGfzgZkV2mbudSKPrqK1wGB36OW-M1jMxsbjlWqfvkGSxqY-xfPTZ5b805J6acPvdLaRqEtc0k0m9jxPbPH5Tczxf7-0g7YqWIqvy360i1ZUuoc2G2KF-0g8ZrCpAw2JpxqLUlUXT55lqj5wtdGDgUf_hCGEzzO4W6bZMe_NIOqfgXwrNqXEb_MZIH_8Xuwa4NeC06kO0KhzO7zpWlWKBkv4zMktl0fUlTpKmMOUZonkfqDNqjf0FWVSaVczysMEYJFQEtAi9TVIjAUqUKG5OEStdJqqI4QJUdIjCQkMQiIipNz1uAwYJ5q6gmjZRqRumFhU-uWQRuMldmuZ06oOY6jDuKrDNrIXZrNSwOMvg6jZ6nFeRE50meYk9n-1Pf6H7QVa7w77vbh3N3g4QRvwqKAFe6eolWdzdWbAT56cF737C5NW9hQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWgSAgO7Iiy-sA1pUkc2zkioCpb1QOVuEXxhlAhjdIUCb4eT5aqRQIOPWaZyPE2z57nNwidW1jPDQuVHeJCOCSkyuGeUU7ATCgp92JenK947NHugNw9BzWbcFzRKmENbUqhiGKuhsGdKlMz4i4savCsY_OBmEVbdupthx5bRivUwhNg9fnt3nQytg6vFPv0LZC0NvUhnt8-M-ee5sRLZ9xOZxOJusAl22TYmuSiJb9-aDku9EdbaKMCpfiy7EXbaEknO2h9RqpwF8l-BiEdaEY8MliWmrp4-KoS_YmrMA8GFv0Lhg38OIO7ZZId-14Ke_4ZiLdiW0g8nqSA-_FHETPA7wWjU--hQefm6arrVAkaHOnzdu64cchcZULB21wbLlTsB8aueamvGVfauIazmAoARVIrwIrMNyAwFuhAU3uxjxrJKNEHCBOilUcECSw-IpKy2PViFfCYGOZKYlQTkbpdIlmpl0MSjbfIrUVOqzqMoA6jqg6bqDU1S0v5jv8MwtlGj_Ji38SUSU4i_0_bwwVsz9Bq_7oTPdz27o_QGjwpOMHeMWrk2USfWOSTi9Oib38DimD0uA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+chronic+kidney+disease+using+urinary+dielectric+properties+and+support+vector+machine&rft.jtitle=The+Journal+of+microwave+power+and+electromagnetic+energy&rft.au=Mun%2C+Peck+Shen&rft.au=Ting%2C+Hua+Nong&rft.au=Mirhassani%2C+Seyed+Mostafa&rft.au=Ong%2C+Teng+Aik&rft.date=2016-07-02&rft.issn=0832-7823&rft.volume=50&rft.issue=3&rft.spage=201&rft.epage=213&rft_id=info:doi/10.1080%2F08327823.2016.1230927&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_08327823_2016_1230927 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0832-7823&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0832-7823&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0832-7823&client=summon |