Initial Mass Function Variation in Two Elliptical Galaxies Using Near-infrared Tracers

Using integral field spectroscopy, we demonstrate that gravity-sensitive absorption features in the zJ band (0.9-1.35 m) can constrain the low-mass stellar initial mass function (IMF) in the cores of two elliptical galaxies, M85 and M87. Compared to the visible bands, the near-infrared (NIR) is more...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 875; no. 2; pp. 151 - 165
Main Authors Meyer, R. Elliot, Sivanandam, Suresh, Moon, Dae-Sik
Format Journal Article
LanguageEnglish
Published Philadelphia The American Astronomical Society 20.04.2019
IOP Publishing
Subjects
Online AccessGet full text
ISSN0004-637X
1538-4357
DOI10.3847/1538-4357/ab11d2

Cover

Loading…
Abstract Using integral field spectroscopy, we demonstrate that gravity-sensitive absorption features in the zJ band (0.9-1.35 m) can constrain the low-mass stellar initial mass function (IMF) in the cores of two elliptical galaxies, M85 and M87. Compared to the visible bands, the near-infrared (NIR) is more sensitive to light from low-mass dwarf stars, whose relative importance is the primary subject of the debate over IMF variations in nearby galaxies. Our analysis compares the observed spectra to the latest stellar population synthesis models by employing two different methods: equivalent widths and spectral fitting. We find that the IMF slopes in M85 are similar to the canonical Milky Way IMF with a median IMF-mismatch parameter K = 1.26. In contrast, we find that the IMF in M87 is steeper than a Salpeter IMF with K = 2.77. The derived stellar population parameters, including the IMF slopes, are consistent with those from recent results in the visible bands based on spectroscopic and kinematic techniques. Certain elemental abundances, e.g., Na and Fe, have dramatic effects on the IMF-sensitive features and therefore the derived IMF slopes. We show evidence for a high [Na/H] ∼ 0.65 dex in the core of M85 from two independent Na i absorption features. The high Na abundance may be the result of a recent galactic merger involving M85. This suggests that including [Na/H] in the stellar population model parameters is critical for constraining the IMF slopes in M85. These results confirm the viability of using NIR absorption features to investigate IMF variation in nearby galaxies.
AbstractList Using integral field spectroscopy, we demonstrate that gravity-sensitive absorption features in the zJ band (0.9-1.35 m) can constrain the low-mass stellar initial mass function (IMF) in the cores of two elliptical galaxies, M85 and M87. Compared to the visible bands, the near-infrared (NIR) is more sensitive to light from low-mass dwarf stars, whose relative importance is the primary subject of the debate over IMF variations in nearby galaxies. Our analysis compares the observed spectra to the latest stellar population synthesis models by employing two different methods: equivalent widths and spectral fitting. We find that the IMF slopes in M85 are similar to the canonical Milky Way IMF with a median IMF-mismatch parameter K = 1.26. In contrast, we find that the IMF in M87 is steeper than a Salpeter IMF with K = 2.77. The derived stellar population parameters, including the IMF slopes, are consistent with those from recent results in the visible bands based on spectroscopic and kinematic techniques. Certain elemental abundances, e.g., Na and Fe, have dramatic effects on the IMF-sensitive features and therefore the derived IMF slopes. We show evidence for a high [Na/H] ∼ 0.65 dex in the core of M85 from two independent Na i absorption features. The high Na abundance may be the result of a recent galactic merger involving M85. This suggests that including [Na/H] in the stellar population model parameters is critical for constraining the IMF slopes in M85. These results confirm the viability of using NIR absorption features to investigate IMF variation in nearby galaxies.
Using integral field spectroscopy, we demonstrate that gravity-sensitive absorption features in the zJ band (0.9–1.35 μm) can constrain the low-mass stellar initial mass function (IMF) in the cores of two elliptical galaxies, M85 and M87. Compared to the visible bands, the near-infrared (NIR) is more sensitive to light from low-mass dwarf stars, whose relative importance is the primary subject of the debate over IMF variations in nearby galaxies. Our analysis compares the observed spectra to the latest stellar population synthesis models by employing two different methods: equivalent widths and spectral fitting. We find that the IMF slopes in M85 are similar to the canonical Milky Way IMF with a median IMF-mismatch parameter α K = 1.26. In contrast, we find that the IMF in M87 is steeper than a Salpeter IMF with α K = 2.77. The derived stellar population parameters, including the IMF slopes, are consistent with those from recent results in the visible bands based on spectroscopic and kinematic techniques. Certain elemental abundances, e.g., Na and Fe, have dramatic effects on the IMF-sensitive features and therefore the derived IMF slopes. We show evidence for a high [Na/H] ∼ 0.65 dex in the core of M85 from two independent Na i absorption features. The high Na abundance may be the result of a recent galactic merger involving M85. This suggests that including [Na/H] in the stellar population model parameters is critical for constraining the IMF slopes in M85. These results confirm the viability of using NIR absorption features to investigate IMF variation in nearby galaxies.
Using integral field spectroscopy, we demonstrate that gravity-sensitive absorption features in the zJ band (0.9–1.35 μ m) can constrain the low-mass stellar initial mass function (IMF) in the cores of two elliptical galaxies, M85 and M87. Compared to the visible bands, the near-infrared (NIR) is more sensitive to light from low-mass dwarf stars, whose relative importance is the primary subject of the debate over IMF variations in nearby galaxies. Our analysis compares the observed spectra to the latest stellar population synthesis models by employing two different methods: equivalent widths and spectral fitting. We find that the IMF slopes in M85 are similar to the canonical Milky Way IMF with a median IMF-mismatch parameter α K  = 1.26. In contrast, we find that the IMF in M87 is steeper than a Salpeter IMF with α K  = 2.77. The derived stellar population parameters, including the IMF slopes, are consistent with those from recent results in the visible bands based on spectroscopic and kinematic techniques. Certain elemental abundances, e.g., Na and Fe, have dramatic effects on the IMF-sensitive features and therefore the derived IMF slopes. We show evidence for a high [Na/H] ∼ 0.65 dex in the core of M85 from two independent Na i absorption features. The high Na abundance may be the result of a recent galactic merger involving M85. This suggests that including [Na/H] in the stellar population model parameters is critical for constraining the IMF slopes in M85. These results confirm the viability of using NIR absorption features to investigate IMF variation in nearby galaxies.
Author Meyer, R. Elliot
Moon, Dae-Sik
Sivanandam, Suresh
Author_xml – sequence: 1
  givenname: R. Elliot
  orcidid: 0000-0002-2083-9941
  surname: Meyer
  fullname: Meyer, R. Elliot
  email: meyer@astro.utoronto.ca
  organization: University of Toronto Department of Astronomy & Astrophysics, 50 St. George Street, Toronto, ON, M5S 3H4, Canada
– sequence: 2
  givenname: Suresh
  orcidid: 0000-0002-0767-8135
  surname: Sivanandam
  fullname: Sivanandam, Suresh
  organization: University of Toronto Dunlap Institute for Astronomy & Astrophysics, 50 St. George Street, Toronto, ON, M5S 3H4, Canada
– sequence: 3
  givenname: Dae-Sik
  orcidid: 0000-0003-4200-5064
  surname: Moon
  fullname: Moon, Dae-Sik
  organization: University of Toronto Department of Astronomy & Astrophysics, 50 St. George Street, Toronto, ON, M5S 3H4, Canada
BookMark eNp9kE1LAzEQhoNUsK3ePS6IN9cmm-xHjlLaWqh6aYu3MJsPSVmza7JF_fduW1EQ9ZRJeJ6ZzDtAPVc7jdA5wde0YPmIpLSIGU3zEZSEqOQI9b-eeqiPMWZxRvPHEzQIYbO7Jpz30XrubGuhiu4ghGi6dbK1tYvW4C3sK-ui5WsdTarKNq2VHTmDCt6sDtEqWPcU3WvwsXXGg9cqWnqQ2odTdGygCvrs8xyi1XSyHN_Gi4fZfHyziCUtcBsTSFVujJElVsABMMul4obwkhSZUmVSAqeaJRkzTOlEQ6oziTlPKOUSZ4QO0cWhb-Prl60OrdjUW--6kSKhWVowlmPcUdmBkr4OwWsjpG3367UebCUIFrsMxS4wsQtMHDLsRPxDbLx9Bv_-n3J5UGzdfH8Gmo0o8lQknUBEo0zHXf3C_dn2AyftkWA
CitedBy_id crossref_primary_10_3847_1538_3881_ab7eae
crossref_primary_10_1051_0004_6361_202039809
crossref_primary_10_1146_annurev_astro_032620_020217
crossref_primary_10_1093_mnras_staa3419
Cites_doi 10.1093/mnras/stx2969
10.1109/MCSE.2007.55
10.1111/j.1365-2966.2004.07948.x
10.1146/annurev-astro-082708-101642
10.1111/j.1365-2966.2010.18174.x
10.1088/0004-637X/760/1/70
10.1046/j.1365-8711.2002.05073.x
10.1038/nature09578
10.1117/12.459448
10.3847/1538-4357/aac0fc
10.1093/mnrasl/slu082
10.1088/0004-637X/709/2/1195
10.1093/mnras/stt943
10.1093/mnras/sts315
10.1086/145971
10.1086/313099
10.1086/670067
10.1088/2041-8205/753/2/L32
10.1051/0004-6361:20066036
10.3847/1538-4357/aa7135
10.1051/0004-6361/201321591
10.1093/mnras/sty1188
10.1093/mnras/stt444
10.1093/mnras/stv105
10.1093/mnras/stt644
10.3847/0004-637X/821/1/39
10.1093/mnras/sts262
10.1093/mnrasl/slv132
10.1093/mnrasl/slv029
10.1093/mnras/stx464
10.1093/mnras/stx2502
10.1051/0004-6361/201321346
10.1046/j.1365-8711.2001.04022.x
10.1038/nature10972
10.1086/508914
10.1088/0004-637X/798/1/7
10.1093/mnras/sty1434
10.1046/j.1365-8711.2000.03251.x
10.1093/mnras/stw2712
10.1093/mnras/stv2996
10.1093/mnras/stt1141
10.3847/1538-4357/aa8563
10.1002/asna.200310184
10.1086/376392
10.1093/mnras/stv518
10.3847/0004-637X/823/2/102
10.1051/0004-6361/201117353
10.1093/mnras/sty1092
10.1088/0004-637X/747/1/69
10.1088/2041-8205/806/2/L31
10.1088/0004-637X/760/1/71
10.1117/12.2231260
10.3847/1538-4357/aaab49
10.3847/2041-8213/aa970f
10.3847/1538-4357/aa662a
10.1093/mnras/stu2480
10.1117/12.2312223
10.1109/MCSE.2011.37
10.1088/0004-637X/796/2/75
10.1093/mnras/sty785
10.1086/346193
10.1051/0004-6361/201322068
10.1111/j.1365-2966.2012.21922.x
ContentType Journal Article
Copyright 2019. The American Astronomical Society. All rights reserved.
Copyright IOP Publishing Apr 20, 2019
Copyright_xml – notice: 2019. The American Astronomical Society. All rights reserved.
– notice: Copyright IOP Publishing Apr 20, 2019
DBID AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
DOI 10.3847/1538-4357/ab11d2
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
Aerospace Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
DocumentTitleAlternate Initial Mass Function Variation in Two Elliptical Galaxies Using Near-infrared Tracers
EISSN 1538-4357
ExternalDocumentID 10_3847_1538_4357_ab11d2
apjab11d2
GrantInformation_xml – fundername: Natural Sciences and Engineering Council of Canada
  grantid: RGPIN-2014-05075
– fundername: Canadian Foundation for Innovation
  grantid: 30951
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
2WC
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
EJD
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
WH7
XSW
AAYXX
CITATION
7TG
8FD
AEINN
H8D
KL.
L7M
ID FETCH-LOGICAL-c380t-1a5d7fffcb0da9aa047cd9f19b186ddb2ba93e4264f4de2ea5e6c0992339c0613
IEDL.DBID O3W
ISSN 0004-637X
IngestDate Wed Aug 13 04:40:47 EDT 2025
Tue Jul 01 04:09:48 EDT 2025
Thu Apr 24 23:03:23 EDT 2025
Thu Jan 07 13:49:51 EST 2021
Wed Aug 21 03:33:03 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c380t-1a5d7fffcb0da9aa047cd9f19b186ddb2ba93e4264f4de2ea5e6c0992339c0613
Notes Galaxies and Cosmology
AAS15598
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0767-8135
0000-0002-2083-9941
0000-0003-4200-5064
OpenAccessLink https://iopscience.iop.org/article/10.3847/1538-4357/ab11d2/pdf
PQID 2365844700
PQPubID 4562441
PageCount 15
ParticipantIDs crossref_citationtrail_10_3847_1538_4357_ab11d2
proquest_journals_2365844700
crossref_primary_10_3847_1538_4357_ab11d2
iop_journals_10_3847_1538_4357_ab11d2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-20
PublicationDateYYYYMMDD 2019-04-20
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-20
  day: 20
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle The Astrophysical journal
PublicationTitleAbbrev APJ
PublicationTitleAlternate Astrophys. J
PublicationYear 2019
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
References Vacca (apjab11d2bib55) 2003; 115
Lecureur (apjab11d2bib28) 2007; 465
Martín-Navarro (apjab11d2bib30) 2015; 447
Smith (apjab11d2bib46) 2015; 454
Cappellari (apjab11d2bib7) 2012; 484
Ventura (apjab11d2bib61) 2013; 431
Villaume (apjab11d2bib62) 2017; 850
Bundy (apjab11d2bib5) 2015; 798
Chabrier (apjab11d2bib10) 2014; 796
Lagattuta (apjab11d2bib64) 2017; 846
Terlevich (apjab11d2bib52) 2002; 330
McDermid (apjab11d2bib34) 2015; 448
Cappellari (apjab11d2bib6) 2011; 413
Hunter (apjab11d2bib19) 2007; 9
van Dokkum (apjab11d2bib58) 2012; 760
McConnell (apjab11d2bib32) 2016; 821
Cappellari (apjab11d2bib8) 2013; 432
Conroy (apjab11d2bib15) 2018; 854
Alton (apjab11d2bib1) 2017; 468
Smith (apjab11d2bib47) 2013; 434
McDermid (apjab11d2bib33) 2004; 325
Conroy (apjab11d2bib13) 2012a; 747
van Dokkum (apjab11d2bib57) 2010; 468
La Barbera (apjab11d2bib25) 2013; 433
Salpeter (apjab11d2bib41) 1955; 121
Chabrier (apjab11d2bib9) 2003; 115
Foreman-Mackey (apjab11d2bib18) 2013; 125
Smith (apjab11d2bib50) 2000; 313
Smith (apjab11d2bib49) 2015; 449
Spiniello (apjab11d2bib51) 2012; 753
Sánchez (apjab11d2bib42) 2012; 538
La Barbera (apjab11d2bib26) 2015; 449
Bastian (apjab11d2bib4) 2010; 48
Dutton (apjab11d2bib16) 2013; 428
Choi (apjab11d2bib11) 2016; 823
Conroy (apjab11d2bib14) 2012b; 760
Jones (apjab11d2bib20) 2001
Smith (apjab11d2bib48) 2012; 426
McGregor (apjab11d2bib35) 2003; 4841
Smith (apjab11d2bib45) 2014; 443
Sarzi (apjab11d2bib43) 2017; 478
Ko (apjab11d2bib21) 2018; 859
Baldwin (apjab11d2bib3) 2018; 473
Vaughan (apjab11d2bib60) 2018; 479
Kobayashi (apjab11d2bib22) 2006; 653
Li (apjab11d2bib29) 2018; 838
Van Der Walt (apjab11d2bib56) 2011; 13
Zieleniewski (apjab11d2bib63) 2016; 465
Meyer (apjab11d2bib36) 2016; 9908
Sivanandam (apjab11d2bib44) 2018; 10702
Parikh (apjab11d2bib38) 2018; 477
Treu (apjab11d2bib54) 2010; 709
Rajpurohit (apjab11d2bib40) 2013; 2013
Martín-Navarro (apjab11d2bib31) 2015; 806
Astropy Collaboration (apjab11d2bib2) 2013; 558
Emsellem (apjab11d2bib17) 2004; 352
Kroupa (apjab11d2bib24) 2001; 322
La Barbera (apjab11d2bib27) 2016; 457
Planck Collaboration (apjab11d2bib39) 2014; 571
van Dokkum (apjab11d2bib59) 2016; 841
Collier (apjab11d2bib12) 2018; 478
Oldham (apjab11d2bib37) 2018; 474
Trager (apjab11d2bib53) 1998; 116
Krajnović (apjab11d2bib23) 2013; 432
References_xml – volume: 474
  start-page: 4169
  year: 2018
  ident: apjab11d2bib37
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2969
– volume: 9
  start-page: 90
  year: 2007
  ident: apjab11d2bib19
  publication-title: CSE
  doi: 10.1109/MCSE.2007.55
– volume: 352
  start-page: 721
  year: 2004
  ident: apjab11d2bib17
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2004.07948.x
– volume: 48
  start-page: 339
  year: 2010
  ident: apjab11d2bib4
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-082708-101642
– volume: 413
  start-page: 813
  year: 2011
  ident: apjab11d2bib6
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2010.18174.x
– volume: 760
  start-page: 70
  year: 2012
  ident: apjab11d2bib58
  publication-title: ApJ
  doi: 10.1088/0004-637X/760/1/70
– volume: 330
  start-page: 547
  year: 2002
  ident: apjab11d2bib52
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2002.05073.x
– volume: 468
  start-page: 940
  year: 2010
  ident: apjab11d2bib57
  publication-title: Natur
  doi: 10.1038/nature09578
– volume: 4841
  start-page: 1581
  year: 2003
  ident: apjab11d2bib35
  publication-title: Proc. SPIE
  doi: 10.1117/12.459448
– volume: 859
  start-page: 108
  year: 2018
  ident: apjab11d2bib21
  publication-title: ApJ
  doi: 10.3847/1538-4357/aac0fc
– volume: 443
  start-page: L69
  year: 2014
  ident: apjab11d2bib45
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slu082
– volume: 709
  start-page: 1195
  year: 2010
  ident: apjab11d2bib54
  publication-title: ApJ
  doi: 10.1088/0004-637X/709/2/1195
– volume: 433
  start-page: 3017
  year: 2013
  ident: apjab11d2bib25
  publication-title: MNRAS
  doi: 10.1093/mnras/stt943
– volume: 432
  start-page: 1768
  year: 2013
  ident: apjab11d2bib23
  publication-title: MNRAS
  doi: 10.1093/mnras/sts315
– volume: 121
  start-page: 161
  year: 1955
  ident: apjab11d2bib41
  publication-title: ApJ
  doi: 10.1086/145971
– volume: 116
  start-page: 1
  year: 1998
  ident: apjab11d2bib53
  publication-title: ApJS
  doi: 10.1086/313099
– volume: 125
  start-page: 306
  year: 2013
  ident: apjab11d2bib18
  publication-title: PASP
  doi: 10.1086/670067
– volume: 753
  start-page: L32
  year: 2012
  ident: apjab11d2bib51
  publication-title: ApJL
  doi: 10.1088/2041-8205/753/2/L32
– volume: 465
  start-page: 799
  year: 2007
  ident: apjab11d2bib28
  publication-title: A&A
  doi: 10.1051/0004-6361:20066036
– volume: 841
  start-page: 68
  year: 2016
  ident: apjab11d2bib59
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa7135
– volume: 571
  start-page: A16
  year: 2014
  ident: apjab11d2bib39
  publication-title: A&A
  doi: 10.1051/0004-6361/201321591
– volume: 478
  start-page: 1595
  year: 2018
  ident: apjab11d2bib12
  publication-title: MNRAS
  doi: 10.1093/mnras/sty1188
– volume: 431
  start-page: 3642
  year: 2013
  ident: apjab11d2bib61
  publication-title: MNRAS
  doi: 10.1093/mnras/stt444
– volume: 448
  start-page: 3484
  year: 2015
  ident: apjab11d2bib34
  publication-title: MNRAS
  doi: 10.1093/mnras/stv105
– volume: 432
  start-page: 1862
  year: 2013
  ident: apjab11d2bib8
  publication-title: MNRAS
  doi: 10.1093/mnras/stt644
– volume: 821
  start-page: 39
  year: 2016
  ident: apjab11d2bib32
  publication-title: ApJ
  doi: 10.3847/0004-637X/821/1/39
– volume: 428
  start-page: 3183
  year: 2013
  ident: apjab11d2bib16
  publication-title: MNRAS
  doi: 10.1093/mnras/sts262
– volume: 454
  start-page: L71
  year: 2015
  ident: apjab11d2bib46
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slv132
– volume: 449
  start-page: L137
  year: 2015
  ident: apjab11d2bib26
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slv029
– volume: 468
  start-page: 1594
  year: 2017
  ident: apjab11d2bib1
  publication-title: MNRAS
  doi: 10.1093/mnras/stx464
– volume: 473
  start-page: 4698
  year: 2018
  ident: apjab11d2bib3
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2502
– volume: 2013
  start-page: A15
  year: 2013
  ident: apjab11d2bib40
  publication-title: A&A
  doi: 10.1051/0004-6361/201321346
– volume: 322
  start-page: 231
  year: 2001
  ident: apjab11d2bib24
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2001.04022.x
– volume: 484
  start-page: 485
  year: 2012
  ident: apjab11d2bib7
  publication-title: Natur
  doi: 10.1038/nature10972
– volume: 653
  start-page: 1145
  year: 2006
  ident: apjab11d2bib22
  publication-title: ApJ
  doi: 10.1086/508914
– volume: 798
  start-page: 7
  year: 2015
  ident: apjab11d2bib5
  publication-title: ApJ
  doi: 10.1088/0004-637X/798/1/7
– volume: 479
  start-page: 2443
  year: 2018
  ident: apjab11d2bib60
  publication-title: MNRAS
  doi: 10.1093/mnras/sty1434
– volume: 313
  start-page: 469
  year: 2000
  ident: apjab11d2bib50
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2000.03251.x
– volume: 465
  start-page: 192
  year: 2016
  ident: apjab11d2bib63
  publication-title: MNRAS
  doi: 10.1093/mnras/stw2712
– volume: 457
  start-page: 1468
  year: 2016
  ident: apjab11d2bib27
  publication-title: MNRAS
  doi: 10.1093/mnras/stv2996
– volume: 434
  start-page: 1964
  year: 2013
  ident: apjab11d2bib47
  publication-title: MNRAS
  doi: 10.1093/mnras/stt1141
– volume: 846
  start-page: 116
  year: 2017
  ident: apjab11d2bib64
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa8563
– volume: 325
  start-page: 100
  year: 2004
  ident: apjab11d2bib33
  publication-title: AN
  doi: 10.1002/asna.200310184
– volume: 115
  start-page: 763
  year: 2003
  ident: apjab11d2bib9
  publication-title: PASP
  doi: 10.1086/376392
– volume: 449
  start-page: 3441
  year: 2015
  ident: apjab11d2bib49
  publication-title: MNRAS
  doi: 10.1093/mnras/stv518
– volume: 823
  start-page: 102
  year: 2016
  ident: apjab11d2bib11
  publication-title: ApJ
  doi: 10.3847/0004-637X/823/2/102
– volume: 538
  start-page: A8
  year: 2012
  ident: apjab11d2bib42
  publication-title: A&A
  doi: 10.1051/0004-6361/201117353
– volume: 478
  start-page: 4084
  year: 2017
  ident: apjab11d2bib43
  publication-title: MNRAS
  doi: 10.1093/mnras/sty1092
– volume: 747
  start-page: 69
  year: 2012a
  ident: apjab11d2bib13
  publication-title: ApJ
  doi: 10.1088/0004-637X/747/1/69
– volume: 806
  start-page: L31
  year: 2015
  ident: apjab11d2bib31
  publication-title: ApJL
  doi: 10.1088/2041-8205/806/2/L31
– volume: 760
  start-page: 71
  year: 2012b
  ident: apjab11d2bib14
  publication-title: ApJ
  doi: 10.1088/0004-637X/760/1/71
– volume: 9908
  start-page: 99083Q
  year: 2016
  ident: apjab11d2bib36
  publication-title: Proc. SPIE
  doi: 10.1117/12.2231260
– year: 2001
  ident: apjab11d2bib20
  publication-title: SciPy: Open Source Scientific Tools for Python
– volume: 854
  start-page: 139
  year: 2018
  ident: apjab11d2bib15
  publication-title: ApJ
  doi: 10.3847/1538-4357/aaab49
– volume: 850
  start-page: L14
  year: 2017
  ident: apjab11d2bib62
  publication-title: ApJL
  doi: 10.3847/2041-8213/aa970f
– volume: 838
  start-page: 77
  year: 2018
  ident: apjab11d2bib29
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa662a
– volume: 447
  start-page: 1033
  year: 2015
  ident: apjab11d2bib30
  publication-title: MNRAS
  doi: 10.1093/mnras/stu2480
– volume: 10702
  year: 2018
  ident: apjab11d2bib44
  publication-title: Proc. SPIE
  doi: 10.1117/12.2312223
– volume: 13
  start-page: 22
  year: 2011
  ident: apjab11d2bib56
  publication-title: CSE
  doi: 10.1109/MCSE.2011.37
– volume: 796
  start-page: 75
  year: 2014
  ident: apjab11d2bib10
  publication-title: ApJ
  doi: 10.1088/0004-637X/796/2/75
– volume: 477
  start-page: 3954
  year: 2018
  ident: apjab11d2bib38
  publication-title: MNRAS
  doi: 10.1093/mnras/sty785
– volume: 115
  start-page: 389
  year: 2003
  ident: apjab11d2bib55
  publication-title: PASP
  doi: 10.1086/346193
– volume: 558
  start-page: A33
  year: 2013
  ident: apjab11d2bib2
  publication-title: A&A
  doi: 10.1051/0004-6361/201322068
– volume: 426
  start-page: 2994
  year: 2012
  ident: apjab11d2bib48
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.21922.x
SSID ssj0004299
Score 2.333924
Snippet Using integral field spectroscopy, we demonstrate that gravity-sensitive absorption features in the zJ band (0.9-1.35 m) can constrain the low-mass stellar...
Using integral field spectroscopy, we demonstrate that gravity-sensitive absorption features in the zJ band (0.9–1.35 μ m) can constrain the low-mass stellar...
Using integral field spectroscopy, we demonstrate that gravity-sensitive absorption features in the zJ band (0.9–1.35 μm) can constrain the low-mass stellar...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 151
SubjectTerms Absorption
Abundance
Astronomical models
Astrophysics
Dwarf stars
Elliptical galaxies
Galaxies
galaxies: abundances
galaxies: elliptical and lenticular, cD
galaxies: evolution
galaxies: stellar content
Galaxy mergers & collisions
Initial mass function
Integral field spectroscopy
Milky Way
Parameters
Slopes
Space telescopes
Spectroscopy
Spectrum analysis
Stars & galaxies
stars: luminosity function, mass function
Stellar models
Tracers
Viability
Title Initial Mass Function Variation in Two Elliptical Galaxies Using Near-infrared Tracers
URI https://iopscience.iop.org/article/10.3847/1538-4357/ab11d2
https://www.proquest.com/docview/2365844700
Volume 875
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFH5oRfAirliXkoMKHsZOlk5m8FTEuoDLwaW3kG1Aqe1gK-q_92VmVEQRbzm8TIYvyXvfl7wkANs8kZ47QyMmHAoUj4LV5FYjkUstsl1jJQ2nkc8vkpMbcdbv9Kfg4PMszKioXf8-FquLgisIw_zm6Evb5RzFKC_b2lDq0P_O8DRJg_K65HdfhyJZVnNfESVc9qs9yl-_8C0mTWO7PxxzGW16CzBf00TSrX5qEab8cAnWuuOwcD16fCO7pCxX6xLjJZi9qkrLcHsa0oGw7jnSYtLDsBWgJ7eoictOIPdDcv0yIiFZoygXssmxHuhXVMykzB8gFzj4Ixx4TyE3nWAws0gRV-Cmd3R9eBLVjydElqfxJKK642Se59bETmdax0Jal-U0MzRNnDPM6Iz7wIdy4TzzuuMTi3SRcZ7ZEORXoTEcDf0aEEk9Z9TF0uRapMLr1BvJhXRhE0fHugntD_iUrW8WDw9cDBQqjAC4CoCrALiqAG_C3meNorpV4w_bHewRVU-t8R92rW92unhQKMYUQ0uqCpc3YfOjU7-sGA8UTMg4Xv9nOxswh6Sp3FFi8SY0Jk_PfguJycS0YPr08qpVDsN3HUfcTQ
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB5BEKiXCmhRUgL4AJU4LFk_st49orbhHTjwyM3yayUqmqxIUOHfd-xdilArxM2H8Xr1jcfzjT32AGzzTHruDE2YcBigeAxYTWk1ErncIts1VtJwG_lsmB1eieNRf9TUOY13YSZVs_TvYbN-KLiGMNg3x7W0F20UvbzsaUOpY73KlfOw0OdZFmo3nPObl4uRrGj4r0gyLkf1OeV_v_LKL83j2P8sztHjDJbhY0MVyX79Yysw58er0N6fhs3rya8n8pXEdr03MV2FxYu69Qmuj0JKEPY9Q2pMBui6AvzkGuPiqAhyOyaXvyckJGxUcTObHOg7_YhRM4k5BGSIBpDg5LsP-ekEHZpFmvgZrgY_Lr8dJk0BhcTyPJ0lVPedLMvSmtTpQutUSOuKkhaG5plzhhldcB84USmcZ173fWaRMjLOCxsc_Rq0xpOxbwOR1HNGXSpNqUUuvM69kVxIFw5ydKo70HuGT9nmdfFQ5OJOYZQRAFcBcBUAVzXgHdj926OqX9Z4Q3YHNaIa85q-Ibf5Sk5XPxUGZIqhJFU4TzrQfVbqixTjgYYJmaZf3jnOFixdfB-o06PhyTp8QA4VD5hY2oXW7P7BbyBPmZnNOBf_AJOP3zM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Initial+Mass+Function+Variation+in+Two+Elliptical+Galaxies+Using+Near-infrared+Tracers&rft.jtitle=The+Astrophysical+journal&rft.au=Meyer%2C+R.+Elliot&rft.au=Sivanandam%2C+Suresh&rft.au=Moon%2C+Dae-Sik&rft.date=2019-04-20&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=875&rft.issue=2&rft.spage=151&rft_id=info:doi/10.3847%2F1538-4357%2Fab11d2&rft.externalDBID=n%2Fa&rft.externalDocID=10_3847_1538_4357_ab11d2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon