Initial Mass Function Variation in Two Elliptical Galaxies Using Near-infrared Tracers
Using integral field spectroscopy, we demonstrate that gravity-sensitive absorption features in the zJ band (0.9-1.35 m) can constrain the low-mass stellar initial mass function (IMF) in the cores of two elliptical galaxies, M85 and M87. Compared to the visible bands, the near-infrared (NIR) is more...
Saved in:
Published in | The Astrophysical journal Vol. 875; no. 2; pp. 151 - 165 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
The American Astronomical Society
20.04.2019
IOP Publishing |
Subjects | |
Online Access | Get full text |
ISSN | 0004-637X 1538-4357 |
DOI | 10.3847/1538-4357/ab11d2 |
Cover
Loading…
Abstract | Using integral field spectroscopy, we demonstrate that gravity-sensitive absorption features in the zJ band (0.9-1.35 m) can constrain the low-mass stellar initial mass function (IMF) in the cores of two elliptical galaxies, M85 and M87. Compared to the visible bands, the near-infrared (NIR) is more sensitive to light from low-mass dwarf stars, whose relative importance is the primary subject of the debate over IMF variations in nearby galaxies. Our analysis compares the observed spectra to the latest stellar population synthesis models by employing two different methods: equivalent widths and spectral fitting. We find that the IMF slopes in M85 are similar to the canonical Milky Way IMF with a median IMF-mismatch parameter K = 1.26. In contrast, we find that the IMF in M87 is steeper than a Salpeter IMF with K = 2.77. The derived stellar population parameters, including the IMF slopes, are consistent with those from recent results in the visible bands based on spectroscopic and kinematic techniques. Certain elemental abundances, e.g., Na and Fe, have dramatic effects on the IMF-sensitive features and therefore the derived IMF slopes. We show evidence for a high [Na/H] ∼ 0.65 dex in the core of M85 from two independent Na i absorption features. The high Na abundance may be the result of a recent galactic merger involving M85. This suggests that including [Na/H] in the stellar population model parameters is critical for constraining the IMF slopes in M85. These results confirm the viability of using NIR absorption features to investigate IMF variation in nearby galaxies. |
---|---|
AbstractList | Using integral field spectroscopy, we demonstrate that gravity-sensitive absorption features in the zJ band (0.9-1.35 m) can constrain the low-mass stellar initial mass function (IMF) in the cores of two elliptical galaxies, M85 and M87. Compared to the visible bands, the near-infrared (NIR) is more sensitive to light from low-mass dwarf stars, whose relative importance is the primary subject of the debate over IMF variations in nearby galaxies. Our analysis compares the observed spectra to the latest stellar population synthesis models by employing two different methods: equivalent widths and spectral fitting. We find that the IMF slopes in M85 are similar to the canonical Milky Way IMF with a median IMF-mismatch parameter K = 1.26. In contrast, we find that the IMF in M87 is steeper than a Salpeter IMF with K = 2.77. The derived stellar population parameters, including the IMF slopes, are consistent with those from recent results in the visible bands based on spectroscopic and kinematic techniques. Certain elemental abundances, e.g., Na and Fe, have dramatic effects on the IMF-sensitive features and therefore the derived IMF slopes. We show evidence for a high [Na/H] ∼ 0.65 dex in the core of M85 from two independent Na i absorption features. The high Na abundance may be the result of a recent galactic merger involving M85. This suggests that including [Na/H] in the stellar population model parameters is critical for constraining the IMF slopes in M85. These results confirm the viability of using NIR absorption features to investigate IMF variation in nearby galaxies. Using integral field spectroscopy, we demonstrate that gravity-sensitive absorption features in the zJ band (0.9–1.35 μm) can constrain the low-mass stellar initial mass function (IMF) in the cores of two elliptical galaxies, M85 and M87. Compared to the visible bands, the near-infrared (NIR) is more sensitive to light from low-mass dwarf stars, whose relative importance is the primary subject of the debate over IMF variations in nearby galaxies. Our analysis compares the observed spectra to the latest stellar population synthesis models by employing two different methods: equivalent widths and spectral fitting. We find that the IMF slopes in M85 are similar to the canonical Milky Way IMF with a median IMF-mismatch parameter α K = 1.26. In contrast, we find that the IMF in M87 is steeper than a Salpeter IMF with α K = 2.77. The derived stellar population parameters, including the IMF slopes, are consistent with those from recent results in the visible bands based on spectroscopic and kinematic techniques. Certain elemental abundances, e.g., Na and Fe, have dramatic effects on the IMF-sensitive features and therefore the derived IMF slopes. We show evidence for a high [Na/H] ∼ 0.65 dex in the core of M85 from two independent Na i absorption features. The high Na abundance may be the result of a recent galactic merger involving M85. This suggests that including [Na/H] in the stellar population model parameters is critical for constraining the IMF slopes in M85. These results confirm the viability of using NIR absorption features to investigate IMF variation in nearby galaxies. Using integral field spectroscopy, we demonstrate that gravity-sensitive absorption features in the zJ band (0.9–1.35 μ m) can constrain the low-mass stellar initial mass function (IMF) in the cores of two elliptical galaxies, M85 and M87. Compared to the visible bands, the near-infrared (NIR) is more sensitive to light from low-mass dwarf stars, whose relative importance is the primary subject of the debate over IMF variations in nearby galaxies. Our analysis compares the observed spectra to the latest stellar population synthesis models by employing two different methods: equivalent widths and spectral fitting. We find that the IMF slopes in M85 are similar to the canonical Milky Way IMF with a median IMF-mismatch parameter α K = 1.26. In contrast, we find that the IMF in M87 is steeper than a Salpeter IMF with α K = 2.77. The derived stellar population parameters, including the IMF slopes, are consistent with those from recent results in the visible bands based on spectroscopic and kinematic techniques. Certain elemental abundances, e.g., Na and Fe, have dramatic effects on the IMF-sensitive features and therefore the derived IMF slopes. We show evidence for a high [Na/H] ∼ 0.65 dex in the core of M85 from two independent Na i absorption features. The high Na abundance may be the result of a recent galactic merger involving M85. This suggests that including [Na/H] in the stellar population model parameters is critical for constraining the IMF slopes in M85. These results confirm the viability of using NIR absorption features to investigate IMF variation in nearby galaxies. |
Author | Meyer, R. Elliot Moon, Dae-Sik Sivanandam, Suresh |
Author_xml | – sequence: 1 givenname: R. Elliot orcidid: 0000-0002-2083-9941 surname: Meyer fullname: Meyer, R. Elliot email: meyer@astro.utoronto.ca organization: University of Toronto Department of Astronomy & Astrophysics, 50 St. George Street, Toronto, ON, M5S 3H4, Canada – sequence: 2 givenname: Suresh orcidid: 0000-0002-0767-8135 surname: Sivanandam fullname: Sivanandam, Suresh organization: University of Toronto Dunlap Institute for Astronomy & Astrophysics, 50 St. George Street, Toronto, ON, M5S 3H4, Canada – sequence: 3 givenname: Dae-Sik orcidid: 0000-0003-4200-5064 surname: Moon fullname: Moon, Dae-Sik organization: University of Toronto Department of Astronomy & Astrophysics, 50 St. George Street, Toronto, ON, M5S 3H4, Canada |
BookMark | eNp9kE1LAzEQhoNUsK3ePS6IN9cmm-xHjlLaWqh6aYu3MJsPSVmza7JF_fduW1EQ9ZRJeJ6ZzDtAPVc7jdA5wde0YPmIpLSIGU3zEZSEqOQI9b-eeqiPMWZxRvPHEzQIYbO7Jpz30XrubGuhiu4ghGi6dbK1tYvW4C3sK-ui5WsdTarKNq2VHTmDCt6sDtEqWPcU3WvwsXXGg9cqWnqQ2odTdGygCvrs8xyi1XSyHN_Gi4fZfHyziCUtcBsTSFVujJElVsABMMul4obwkhSZUmVSAqeaJRkzTOlEQ6oziTlPKOUSZ4QO0cWhb-Prl60OrdjUW--6kSKhWVowlmPcUdmBkr4OwWsjpG3367UebCUIFrsMxS4wsQtMHDLsRPxDbLx9Bv_-n3J5UGzdfH8Gmo0o8lQknUBEo0zHXf3C_dn2AyftkWA |
CitedBy_id | crossref_primary_10_3847_1538_3881_ab7eae crossref_primary_10_1051_0004_6361_202039809 crossref_primary_10_1146_annurev_astro_032620_020217 crossref_primary_10_1093_mnras_staa3419 |
Cites_doi | 10.1093/mnras/stx2969 10.1109/MCSE.2007.55 10.1111/j.1365-2966.2004.07948.x 10.1146/annurev-astro-082708-101642 10.1111/j.1365-2966.2010.18174.x 10.1088/0004-637X/760/1/70 10.1046/j.1365-8711.2002.05073.x 10.1038/nature09578 10.1117/12.459448 10.3847/1538-4357/aac0fc 10.1093/mnrasl/slu082 10.1088/0004-637X/709/2/1195 10.1093/mnras/stt943 10.1093/mnras/sts315 10.1086/145971 10.1086/313099 10.1086/670067 10.1088/2041-8205/753/2/L32 10.1051/0004-6361:20066036 10.3847/1538-4357/aa7135 10.1051/0004-6361/201321591 10.1093/mnras/sty1188 10.1093/mnras/stt444 10.1093/mnras/stv105 10.1093/mnras/stt644 10.3847/0004-637X/821/1/39 10.1093/mnras/sts262 10.1093/mnrasl/slv132 10.1093/mnrasl/slv029 10.1093/mnras/stx464 10.1093/mnras/stx2502 10.1051/0004-6361/201321346 10.1046/j.1365-8711.2001.04022.x 10.1038/nature10972 10.1086/508914 10.1088/0004-637X/798/1/7 10.1093/mnras/sty1434 10.1046/j.1365-8711.2000.03251.x 10.1093/mnras/stw2712 10.1093/mnras/stv2996 10.1093/mnras/stt1141 10.3847/1538-4357/aa8563 10.1002/asna.200310184 10.1086/376392 10.1093/mnras/stv518 10.3847/0004-637X/823/2/102 10.1051/0004-6361/201117353 10.1093/mnras/sty1092 10.1088/0004-637X/747/1/69 10.1088/2041-8205/806/2/L31 10.1088/0004-637X/760/1/71 10.1117/12.2231260 10.3847/1538-4357/aaab49 10.3847/2041-8213/aa970f 10.3847/1538-4357/aa662a 10.1093/mnras/stu2480 10.1117/12.2312223 10.1109/MCSE.2011.37 10.1088/0004-637X/796/2/75 10.1093/mnras/sty785 10.1086/346193 10.1051/0004-6361/201322068 10.1111/j.1365-2966.2012.21922.x |
ContentType | Journal Article |
Copyright | 2019. The American Astronomical Society. All rights reserved. Copyright IOP Publishing Apr 20, 2019 |
Copyright_xml | – notice: 2019. The American Astronomical Society. All rights reserved. – notice: Copyright IOP Publishing Apr 20, 2019 |
DBID | AAYXX CITATION 7TG 8FD H8D KL. L7M |
DOI | 10.3847/1538-4357/ab11d2 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
DocumentTitleAlternate | Initial Mass Function Variation in Two Elliptical Galaxies Using Near-infrared Tracers |
EISSN | 1538-4357 |
ExternalDocumentID | 10_3847_1538_4357_ab11d2 apjab11d2 |
GrantInformation_xml | – fundername: Natural Sciences and Engineering Council of Canada grantid: RGPIN-2014-05075 – fundername: Canadian Foundation for Innovation grantid: 30951 |
GroupedDBID | -DZ -~X 123 1JI 23N 2FS 2WC 4.4 6J9 85S AAFWJ AAGCD AAJIO ABHWH ACBEA ACGFS ACHIP ACNCT ADACN AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS EJD F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 WH7 XSW AAYXX CITATION 7TG 8FD AEINN H8D KL. L7M |
ID | FETCH-LOGICAL-c380t-1a5d7fffcb0da9aa047cd9f19b186ddb2ba93e4264f4de2ea5e6c0992339c0613 |
IEDL.DBID | O3W |
ISSN | 0004-637X |
IngestDate | Wed Aug 13 04:40:47 EDT 2025 Tue Jul 01 04:09:48 EDT 2025 Thu Apr 24 23:03:23 EDT 2025 Thu Jan 07 13:49:51 EST 2021 Wed Aug 21 03:33:03 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c380t-1a5d7fffcb0da9aa047cd9f19b186ddb2ba93e4264f4de2ea5e6c0992339c0613 |
Notes | Galaxies and Cosmology AAS15598 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0767-8135 0000-0002-2083-9941 0000-0003-4200-5064 |
OpenAccessLink | https://iopscience.iop.org/article/10.3847/1538-4357/ab11d2/pdf |
PQID | 2365844700 |
PQPubID | 4562441 |
PageCount | 15 |
ParticipantIDs | crossref_citationtrail_10_3847_1538_4357_ab11d2 proquest_journals_2365844700 crossref_primary_10_3847_1538_4357_ab11d2 iop_journals_10_3847_1538_4357_ab11d2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-20 |
PublicationDateYYYYMMDD | 2019-04-20 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | The Astrophysical journal |
PublicationTitleAbbrev | APJ |
PublicationTitleAlternate | Astrophys. J |
PublicationYear | 2019 |
Publisher | The American Astronomical Society IOP Publishing |
Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing |
References | Vacca (apjab11d2bib55) 2003; 115 Lecureur (apjab11d2bib28) 2007; 465 Martín-Navarro (apjab11d2bib30) 2015; 447 Smith (apjab11d2bib46) 2015; 454 Cappellari (apjab11d2bib7) 2012; 484 Ventura (apjab11d2bib61) 2013; 431 Villaume (apjab11d2bib62) 2017; 850 Bundy (apjab11d2bib5) 2015; 798 Chabrier (apjab11d2bib10) 2014; 796 Lagattuta (apjab11d2bib64) 2017; 846 Terlevich (apjab11d2bib52) 2002; 330 McDermid (apjab11d2bib34) 2015; 448 Cappellari (apjab11d2bib6) 2011; 413 Hunter (apjab11d2bib19) 2007; 9 van Dokkum (apjab11d2bib58) 2012; 760 McConnell (apjab11d2bib32) 2016; 821 Cappellari (apjab11d2bib8) 2013; 432 Conroy (apjab11d2bib15) 2018; 854 Alton (apjab11d2bib1) 2017; 468 Smith (apjab11d2bib47) 2013; 434 McDermid (apjab11d2bib33) 2004; 325 Conroy (apjab11d2bib13) 2012a; 747 van Dokkum (apjab11d2bib57) 2010; 468 La Barbera (apjab11d2bib25) 2013; 433 Salpeter (apjab11d2bib41) 1955; 121 Chabrier (apjab11d2bib9) 2003; 115 Foreman-Mackey (apjab11d2bib18) 2013; 125 Smith (apjab11d2bib50) 2000; 313 Smith (apjab11d2bib49) 2015; 449 Spiniello (apjab11d2bib51) 2012; 753 Sánchez (apjab11d2bib42) 2012; 538 La Barbera (apjab11d2bib26) 2015; 449 Bastian (apjab11d2bib4) 2010; 48 Dutton (apjab11d2bib16) 2013; 428 Choi (apjab11d2bib11) 2016; 823 Conroy (apjab11d2bib14) 2012b; 760 Jones (apjab11d2bib20) 2001 Smith (apjab11d2bib48) 2012; 426 McGregor (apjab11d2bib35) 2003; 4841 Smith (apjab11d2bib45) 2014; 443 Sarzi (apjab11d2bib43) 2017; 478 Ko (apjab11d2bib21) 2018; 859 Baldwin (apjab11d2bib3) 2018; 473 Vaughan (apjab11d2bib60) 2018; 479 Kobayashi (apjab11d2bib22) 2006; 653 Li (apjab11d2bib29) 2018; 838 Van Der Walt (apjab11d2bib56) 2011; 13 Zieleniewski (apjab11d2bib63) 2016; 465 Meyer (apjab11d2bib36) 2016; 9908 Sivanandam (apjab11d2bib44) 2018; 10702 Parikh (apjab11d2bib38) 2018; 477 Treu (apjab11d2bib54) 2010; 709 Rajpurohit (apjab11d2bib40) 2013; 2013 Martín-Navarro (apjab11d2bib31) 2015; 806 Astropy Collaboration (apjab11d2bib2) 2013; 558 Emsellem (apjab11d2bib17) 2004; 352 Kroupa (apjab11d2bib24) 2001; 322 La Barbera (apjab11d2bib27) 2016; 457 Planck Collaboration (apjab11d2bib39) 2014; 571 van Dokkum (apjab11d2bib59) 2016; 841 Collier (apjab11d2bib12) 2018; 478 Oldham (apjab11d2bib37) 2018; 474 Trager (apjab11d2bib53) 1998; 116 Krajnović (apjab11d2bib23) 2013; 432 |
References_xml | – volume: 474 start-page: 4169 year: 2018 ident: apjab11d2bib37 publication-title: MNRAS doi: 10.1093/mnras/stx2969 – volume: 9 start-page: 90 year: 2007 ident: apjab11d2bib19 publication-title: CSE doi: 10.1109/MCSE.2007.55 – volume: 352 start-page: 721 year: 2004 ident: apjab11d2bib17 publication-title: MNRAS doi: 10.1111/j.1365-2966.2004.07948.x – volume: 48 start-page: 339 year: 2010 ident: apjab11d2bib4 publication-title: ARA&A doi: 10.1146/annurev-astro-082708-101642 – volume: 413 start-page: 813 year: 2011 ident: apjab11d2bib6 publication-title: MNRAS doi: 10.1111/j.1365-2966.2010.18174.x – volume: 760 start-page: 70 year: 2012 ident: apjab11d2bib58 publication-title: ApJ doi: 10.1088/0004-637X/760/1/70 – volume: 330 start-page: 547 year: 2002 ident: apjab11d2bib52 publication-title: MNRAS doi: 10.1046/j.1365-8711.2002.05073.x – volume: 468 start-page: 940 year: 2010 ident: apjab11d2bib57 publication-title: Natur doi: 10.1038/nature09578 – volume: 4841 start-page: 1581 year: 2003 ident: apjab11d2bib35 publication-title: Proc. SPIE doi: 10.1117/12.459448 – volume: 859 start-page: 108 year: 2018 ident: apjab11d2bib21 publication-title: ApJ doi: 10.3847/1538-4357/aac0fc – volume: 443 start-page: L69 year: 2014 ident: apjab11d2bib45 publication-title: MNRAS doi: 10.1093/mnrasl/slu082 – volume: 709 start-page: 1195 year: 2010 ident: apjab11d2bib54 publication-title: ApJ doi: 10.1088/0004-637X/709/2/1195 – volume: 433 start-page: 3017 year: 2013 ident: apjab11d2bib25 publication-title: MNRAS doi: 10.1093/mnras/stt943 – volume: 432 start-page: 1768 year: 2013 ident: apjab11d2bib23 publication-title: MNRAS doi: 10.1093/mnras/sts315 – volume: 121 start-page: 161 year: 1955 ident: apjab11d2bib41 publication-title: ApJ doi: 10.1086/145971 – volume: 116 start-page: 1 year: 1998 ident: apjab11d2bib53 publication-title: ApJS doi: 10.1086/313099 – volume: 125 start-page: 306 year: 2013 ident: apjab11d2bib18 publication-title: PASP doi: 10.1086/670067 – volume: 753 start-page: L32 year: 2012 ident: apjab11d2bib51 publication-title: ApJL doi: 10.1088/2041-8205/753/2/L32 – volume: 465 start-page: 799 year: 2007 ident: apjab11d2bib28 publication-title: A&A doi: 10.1051/0004-6361:20066036 – volume: 841 start-page: 68 year: 2016 ident: apjab11d2bib59 publication-title: ApJ doi: 10.3847/1538-4357/aa7135 – volume: 571 start-page: A16 year: 2014 ident: apjab11d2bib39 publication-title: A&A doi: 10.1051/0004-6361/201321591 – volume: 478 start-page: 1595 year: 2018 ident: apjab11d2bib12 publication-title: MNRAS doi: 10.1093/mnras/sty1188 – volume: 431 start-page: 3642 year: 2013 ident: apjab11d2bib61 publication-title: MNRAS doi: 10.1093/mnras/stt444 – volume: 448 start-page: 3484 year: 2015 ident: apjab11d2bib34 publication-title: MNRAS doi: 10.1093/mnras/stv105 – volume: 432 start-page: 1862 year: 2013 ident: apjab11d2bib8 publication-title: MNRAS doi: 10.1093/mnras/stt644 – volume: 821 start-page: 39 year: 2016 ident: apjab11d2bib32 publication-title: ApJ doi: 10.3847/0004-637X/821/1/39 – volume: 428 start-page: 3183 year: 2013 ident: apjab11d2bib16 publication-title: MNRAS doi: 10.1093/mnras/sts262 – volume: 454 start-page: L71 year: 2015 ident: apjab11d2bib46 publication-title: MNRAS doi: 10.1093/mnrasl/slv132 – volume: 449 start-page: L137 year: 2015 ident: apjab11d2bib26 publication-title: MNRAS doi: 10.1093/mnrasl/slv029 – volume: 468 start-page: 1594 year: 2017 ident: apjab11d2bib1 publication-title: MNRAS doi: 10.1093/mnras/stx464 – volume: 473 start-page: 4698 year: 2018 ident: apjab11d2bib3 publication-title: MNRAS doi: 10.1093/mnras/stx2502 – volume: 2013 start-page: A15 year: 2013 ident: apjab11d2bib40 publication-title: A&A doi: 10.1051/0004-6361/201321346 – volume: 322 start-page: 231 year: 2001 ident: apjab11d2bib24 publication-title: MNRAS doi: 10.1046/j.1365-8711.2001.04022.x – volume: 484 start-page: 485 year: 2012 ident: apjab11d2bib7 publication-title: Natur doi: 10.1038/nature10972 – volume: 653 start-page: 1145 year: 2006 ident: apjab11d2bib22 publication-title: ApJ doi: 10.1086/508914 – volume: 798 start-page: 7 year: 2015 ident: apjab11d2bib5 publication-title: ApJ doi: 10.1088/0004-637X/798/1/7 – volume: 479 start-page: 2443 year: 2018 ident: apjab11d2bib60 publication-title: MNRAS doi: 10.1093/mnras/sty1434 – volume: 313 start-page: 469 year: 2000 ident: apjab11d2bib50 publication-title: MNRAS doi: 10.1046/j.1365-8711.2000.03251.x – volume: 465 start-page: 192 year: 2016 ident: apjab11d2bib63 publication-title: MNRAS doi: 10.1093/mnras/stw2712 – volume: 457 start-page: 1468 year: 2016 ident: apjab11d2bib27 publication-title: MNRAS doi: 10.1093/mnras/stv2996 – volume: 434 start-page: 1964 year: 2013 ident: apjab11d2bib47 publication-title: MNRAS doi: 10.1093/mnras/stt1141 – volume: 846 start-page: 116 year: 2017 ident: apjab11d2bib64 publication-title: ApJ doi: 10.3847/1538-4357/aa8563 – volume: 325 start-page: 100 year: 2004 ident: apjab11d2bib33 publication-title: AN doi: 10.1002/asna.200310184 – volume: 115 start-page: 763 year: 2003 ident: apjab11d2bib9 publication-title: PASP doi: 10.1086/376392 – volume: 449 start-page: 3441 year: 2015 ident: apjab11d2bib49 publication-title: MNRAS doi: 10.1093/mnras/stv518 – volume: 823 start-page: 102 year: 2016 ident: apjab11d2bib11 publication-title: ApJ doi: 10.3847/0004-637X/823/2/102 – volume: 538 start-page: A8 year: 2012 ident: apjab11d2bib42 publication-title: A&A doi: 10.1051/0004-6361/201117353 – volume: 478 start-page: 4084 year: 2017 ident: apjab11d2bib43 publication-title: MNRAS doi: 10.1093/mnras/sty1092 – volume: 747 start-page: 69 year: 2012a ident: apjab11d2bib13 publication-title: ApJ doi: 10.1088/0004-637X/747/1/69 – volume: 806 start-page: L31 year: 2015 ident: apjab11d2bib31 publication-title: ApJL doi: 10.1088/2041-8205/806/2/L31 – volume: 760 start-page: 71 year: 2012b ident: apjab11d2bib14 publication-title: ApJ doi: 10.1088/0004-637X/760/1/71 – volume: 9908 start-page: 99083Q year: 2016 ident: apjab11d2bib36 publication-title: Proc. SPIE doi: 10.1117/12.2231260 – year: 2001 ident: apjab11d2bib20 publication-title: SciPy: Open Source Scientific Tools for Python – volume: 854 start-page: 139 year: 2018 ident: apjab11d2bib15 publication-title: ApJ doi: 10.3847/1538-4357/aaab49 – volume: 850 start-page: L14 year: 2017 ident: apjab11d2bib62 publication-title: ApJL doi: 10.3847/2041-8213/aa970f – volume: 838 start-page: 77 year: 2018 ident: apjab11d2bib29 publication-title: ApJ doi: 10.3847/1538-4357/aa662a – volume: 447 start-page: 1033 year: 2015 ident: apjab11d2bib30 publication-title: MNRAS doi: 10.1093/mnras/stu2480 – volume: 10702 year: 2018 ident: apjab11d2bib44 publication-title: Proc. SPIE doi: 10.1117/12.2312223 – volume: 13 start-page: 22 year: 2011 ident: apjab11d2bib56 publication-title: CSE doi: 10.1109/MCSE.2011.37 – volume: 796 start-page: 75 year: 2014 ident: apjab11d2bib10 publication-title: ApJ doi: 10.1088/0004-637X/796/2/75 – volume: 477 start-page: 3954 year: 2018 ident: apjab11d2bib38 publication-title: MNRAS doi: 10.1093/mnras/sty785 – volume: 115 start-page: 389 year: 2003 ident: apjab11d2bib55 publication-title: PASP doi: 10.1086/346193 – volume: 558 start-page: A33 year: 2013 ident: apjab11d2bib2 publication-title: A&A doi: 10.1051/0004-6361/201322068 – volume: 426 start-page: 2994 year: 2012 ident: apjab11d2bib48 publication-title: MNRAS doi: 10.1111/j.1365-2966.2012.21922.x |
SSID | ssj0004299 |
Score | 2.333924 |
Snippet | Using integral field spectroscopy, we demonstrate that gravity-sensitive absorption features in the zJ band (0.9-1.35 m) can constrain the low-mass stellar... Using integral field spectroscopy, we demonstrate that gravity-sensitive absorption features in the zJ band (0.9–1.35 μ m) can constrain the low-mass stellar... Using integral field spectroscopy, we demonstrate that gravity-sensitive absorption features in the zJ band (0.9–1.35 μm) can constrain the low-mass stellar... |
SourceID | proquest crossref iop |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 151 |
SubjectTerms | Absorption Abundance Astronomical models Astrophysics Dwarf stars Elliptical galaxies Galaxies galaxies: abundances galaxies: elliptical and lenticular, cD galaxies: evolution galaxies: stellar content Galaxy mergers & collisions Initial mass function Integral field spectroscopy Milky Way Parameters Slopes Space telescopes Spectroscopy Spectrum analysis Stars & galaxies stars: luminosity function, mass function Stellar models Tracers Viability |
Title | Initial Mass Function Variation in Two Elliptical Galaxies Using Near-infrared Tracers |
URI | https://iopscience.iop.org/article/10.3847/1538-4357/ab11d2 https://www.proquest.com/docview/2365844700 |
Volume | 875 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFH5oRfAirliXkoMKHsZOlk5m8FTEuoDLwaW3kG1Aqe1gK-q_92VmVEQRbzm8TIYvyXvfl7wkANs8kZ47QyMmHAoUj4LV5FYjkUstsl1jJQ2nkc8vkpMbcdbv9Kfg4PMszKioXf8-FquLgisIw_zm6Evb5RzFKC_b2lDq0P_O8DRJg_K65HdfhyJZVnNfESVc9qs9yl-_8C0mTWO7PxxzGW16CzBf00TSrX5qEab8cAnWuuOwcD16fCO7pCxX6xLjJZi9qkrLcHsa0oGw7jnSYtLDsBWgJ7eoictOIPdDcv0yIiFZoygXssmxHuhXVMykzB8gFzj4Ixx4TyE3nWAws0gRV-Cmd3R9eBLVjydElqfxJKK642Se59bETmdax0Jal-U0MzRNnDPM6Iz7wIdy4TzzuuMTi3SRcZ7ZEORXoTEcDf0aEEk9Z9TF0uRapMLr1BvJhXRhE0fHugntD_iUrW8WDw9cDBQqjAC4CoCrALiqAG_C3meNorpV4w_bHewRVU-t8R92rW92unhQKMYUQ0uqCpc3YfOjU7-sGA8UTMg4Xv9nOxswh6Sp3FFi8SY0Jk_PfguJycS0YPr08qpVDsN3HUfcTQ |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB5BEKiXCmhRUgL4AJU4LFk_st49orbhHTjwyM3yayUqmqxIUOHfd-xdilArxM2H8Xr1jcfzjT32AGzzTHruDE2YcBigeAxYTWk1ErncIts1VtJwG_lsmB1eieNRf9TUOY13YSZVs_TvYbN-KLiGMNg3x7W0F20UvbzsaUOpY73KlfOw0OdZFmo3nPObl4uRrGj4r0gyLkf1OeV_v_LKL83j2P8sztHjDJbhY0MVyX79Yysw58er0N6fhs3rya8n8pXEdr03MV2FxYu69Qmuj0JKEPY9Q2pMBui6AvzkGuPiqAhyOyaXvyckJGxUcTObHOg7_YhRM4k5BGSIBpDg5LsP-ekEHZpFmvgZrgY_Lr8dJk0BhcTyPJ0lVPedLMvSmtTpQutUSOuKkhaG5plzhhldcB84USmcZ173fWaRMjLOCxsc_Rq0xpOxbwOR1HNGXSpNqUUuvM69kVxIFw5ydKo70HuGT9nmdfFQ5OJOYZQRAFcBcBUAVzXgHdj926OqX9Z4Q3YHNaIa85q-Ibf5Sk5XPxUGZIqhJFU4TzrQfVbqixTjgYYJmaZf3jnOFixdfB-o06PhyTp8QA4VD5hY2oXW7P7BbyBPmZnNOBf_AJOP3zM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Initial+Mass+Function+Variation+in+Two+Elliptical+Galaxies+Using+Near-infrared+Tracers&rft.jtitle=The+Astrophysical+journal&rft.au=Meyer%2C+R.+Elliot&rft.au=Sivanandam%2C+Suresh&rft.au=Moon%2C+Dae-Sik&rft.date=2019-04-20&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=875&rft.issue=2&rft.spage=151&rft_id=info:doi/10.3847%2F1538-4357%2Fab11d2&rft.externalDBID=n%2Fa&rft.externalDocID=10_3847_1538_4357_ab11d2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |