High-performance lead-free bulk ceramics for electrical energy storage applications: design strategies and challenges

Compared with fuel cells and electrochemical capacitors, dielectric capacitors are regarded as promising devices to store electrical energy for pulsed power systems due to their fast charge/discharge rates and ultrahigh power density. Dielectric materials are core components of dielectric capacitors...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 9; no. 34; pp. 1826 - 1885
Main Authors Yang, Zetian, Du, Hongliang, Jin, Li, Poelman, Dirk
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 31.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Compared with fuel cells and electrochemical capacitors, dielectric capacitors are regarded as promising devices to store electrical energy for pulsed power systems due to their fast charge/discharge rates and ultrahigh power density. Dielectric materials are core components of dielectric capacitors and directly determine their performance. Over the past decade, extensive efforts have been devoted to develop high-performance dielectric materials for electrical energy storage applications and great progress has been achieved. Here, we present an overview on the current state-of-the-art lead-free bulk ceramics for electrical energy storage applications, including SrTiO 3 , CaTiO 3 , BaTiO 3 , (Bi 0.5 Na 0.5 )TiO 3 , (K 0.5 Na 0.5 )NbO 3 , BiFeO 3 , AgNbO 3 and NaNbO 3 -based ceramics. This review starts with a brief introduction of the research background, the development history and the basic fundamentals of dielectric materials for energy storage applications as well as the universal strategies to optimize their energy storage performance. Emphases are placed on the design strategies for each type of dielectric ceramic based on their special physical properties with a summary of their respective advantages and disadvantages. Challenges along with future prospects are presented at the end of this review. This review will not only accelerate the exploration of higher performance lead-free dielectric materials, but also provides a deeper understanding of the relationship among chemical composition, physical properties and energy storage performance. This review summarizes the development history of lead-free bulk ceramics for electrical energy storage applications and stress the design strategies for each type of dielectric ceramic based on their special physical properties.
AbstractList Compared with fuel cells and electrochemical capacitors, dielectric capacitors are regarded as promising devices to store electrical energy for pulsed power systems due to their fast charge/discharge rates and ultrahigh power density. Dielectric materials are core components of dielectric capacitors and directly determine their performance. Over the past decade, extensive efforts have been devoted to develop high-performance dielectric materials for electrical energy storage applications and great progress has been achieved. Here, we present an overview on the current state-of-the-art lead-free bulk ceramics for electrical energy storage applications, including SrTiO 3 , CaTiO 3 , BaTiO 3 , (Bi 0.5 Na 0.5 )TiO 3 , (K 0.5 Na 0.5 )NbO 3 , BiFeO 3 , AgNbO 3 and NaNbO 3 -based ceramics. This review starts with a brief introduction of the research background, the development history and the basic fundamentals of dielectric materials for energy storage applications as well as the universal strategies to optimize their energy storage performance. Emphases are placed on the design strategies for each type of dielectric ceramic based on their special physical properties with a summary of their respective advantages and disadvantages. Challenges along with future prospects are presented at the end of this review. This review will not only accelerate the exploration of higher performance lead-free dielectric materials, but also provides a deeper understanding of the relationship among chemical composition, physical properties and energy storage performance. This review summarizes the development history of lead-free bulk ceramics for electrical energy storage applications and stress the design strategies for each type of dielectric ceramic based on their special physical properties.
Compared with fuel cells and electrochemical capacitors, dielectric capacitors are regarded as promising devices to store electrical energy for pulsed power systems due to their fast charge/discharge rates and ultrahigh power density. Dielectric materials are core components of dielectric capacitors and directly determine their performance. Over the past decade, extensive efforts have been devoted to develop high-performance dielectric materials for electrical energy storage applications and great progress has been achieved. Here, we present an overview on the current state-of-the-art lead-free bulk ceramics for electrical energy storage applications, including SrTiO 3 , CaTiO 3 , BaTiO 3 , (Bi 0.5 Na 0.5 )TiO 3 , (K 0.5 Na 0.5 )NbO 3 , BiFeO 3 , AgNbO 3 and NaNbO 3 -based ceramics. This review starts with a brief introduction of the research background, the development history and the basic fundamentals of dielectric materials for energy storage applications as well as the universal strategies to optimize their energy storage performance. Emphases are placed on the design strategies for each type of dielectric ceramic based on their special physical properties with a summary of their respective advantages and disadvantages. Challenges along with future prospects are presented at the end of this review. This review will not only accelerate the exploration of higher performance lead-free dielectric materials, but also provides a deeper understanding of the relationship among chemical composition, physical properties and energy storage performance.
Compared with fuel cells and electrochemical capacitors, dielectric capacitors are regarded as promising devices to store electrical energy for pulsed power systems due to their fast charge/discharge rates and ultrahigh power density. Dielectric materials are core components of dielectric capacitors and directly determine their performance. Over the past decade, extensive efforts have been devoted to develop high-performance dielectric materials for electrical energy storage applications and great progress has been achieved. Here, we present an overview on the current state-of-the-art lead-free bulk ceramics for electrical energy storage applications, including SrTiO3, CaTiO3, BaTiO3, (Bi0.5Na0.5)TiO3, (K0.5Na0.5)NbO3, BiFeO3, AgNbO3 and NaNbO3-based ceramics. This review starts with a brief introduction of the research background, the development history and the basic fundamentals of dielectric materials for energy storage applications as well as the universal strategies to optimize their energy storage performance. Emphases are placed on the design strategies for each type of dielectric ceramic based on their special physical properties with a summary of their respective advantages and disadvantages. Challenges along with future prospects are presented at the end of this review. This review will not only accelerate the exploration of higher performance lead-free dielectric materials, but also provides a deeper understanding of the relationship among chemical composition, physical properties and energy storage performance.
Compared with fuel cells and electrochemical capacitors, dielectric capacitors are regarded as promising devices to store electrical energy for pulsed power systems due to their fast charge/discharge rates and ultrahigh power density. Dielectric materials are core components of dielectric capacitors and directly determine their performance. Over the past decade, extensive efforts have been devoted to develop high-performance dielectric materials for electrical energy storage applications and great progress has been achieved. Here, we present an overview on the current state-of-the-art lead-free bulk ceramics for electrical energy storage applications, including SrTiO₃, CaTiO₃, BaTiO₃, (Bi₀.₅Na₀.₅)TiO₃, (K₀.₅Na₀.₅)NbO₃, BiFeO₃, AgNbO₃ and NaNbO₃-based ceramics. This review starts with a brief introduction of the research background, the development history and the basic fundamentals of dielectric materials for energy storage applications as well as the universal strategies to optimize their energy storage performance. Emphases are placed on the design strategies for each type of dielectric ceramic based on their special physical properties with a summary of their respective advantages and disadvantages. Challenges along with future prospects are presented at the end of this review. This review will not only accelerate the exploration of higher performance lead-free dielectric materials, but also provides a deeper understanding of the relationship among chemical composition, physical properties and energy storage performance.
Author Du, Hongliang
Yang, Zetian
Jin, Li
Poelman, Dirk
AuthorAffiliation Ghent University
College of Engineering
Key Laboratory of the Ministry of Education
LumiLab
School of Electronic Science and Engineering
International Center for Dielectric Research
Electronic Materials Research Laboratory
Xi'an Jiaotong University
Xi'an International University
Department of Solid State Sciences
AuthorAffiliation_xml – name: Ghent University
– name: Xi'an International University
– name: Key Laboratory of the Ministry of Education
– name: Xi'an Jiaotong University
– name: LumiLab
– name: College of Engineering
– name: Electronic Materials Research Laboratory
– name: International Center for Dielectric Research
– name: Department of Solid State Sciences
– name: School of Electronic Science and Engineering
Author_xml – sequence: 1
  givenname: Zetian
  surname: Yang
  fullname: Yang, Zetian
– sequence: 2
  givenname: Hongliang
  surname: Du
  fullname: Du, Hongliang
– sequence: 3
  givenname: Li
  surname: Jin
  fullname: Jin, Li
– sequence: 4
  givenname: Dirk
  surname: Poelman
  fullname: Poelman, Dirk
BookMark eNptkU1r3DAQhkVJIdskl9wLgl5KwI2sL8u9hXw0IYFekrMZy2NHiVZ2Jfuw_77KbthC6FxmmHnmZZj3CzkIY0BCTkv2o2SiPu_KGZhUTL5-IivOFCsqWeuDfW3MITlJ6YXlMIzpul6R5dYNz8WEsR_jGoJF6hG6oo-ItF38K7UYYe1sohmg6NHO0VnwFAPGYUPTPEYYkMI0-dyf3RjST9phckPIwwgzDg4ThdBR-wzeYxgwHZPPPfiEJ-_5iDzdXD9e3hYPv3_dXV48FFYYNhel4UJxrWsrLLYKlcJW9lqgKE3HZFVLDi1w0fasV5Xo69JAxasWK2ilzNgR-b7TneL4Z8E0N2uXLHoPAcclNVwLLaWqjc7otw_oy7jEkK9ruNKam6rSPFNnO8rGMaWIfTNFt4a4aUrWvJnQXJWPF1sT7jPMPsDWzdsX5b84__-Vr7uVmOxe-p-v4i_3upYR
CitedBy_id crossref_primary_10_1016_j_jeurceramsoc_2023_01_027
crossref_primary_10_1002_smll_202309796
crossref_primary_10_1016_j_nanoen_2023_108275
crossref_primary_10_1002_advs_202409814
crossref_primary_10_1016_j_cej_2023_144973
crossref_primary_10_1016_j_ceramint_2023_06_303
crossref_primary_10_1016_j_cej_2023_145705
crossref_primary_10_1007_s40820_023_01290_4
crossref_primary_10_1016_j_jeurceramsoc_2023_08_017
crossref_primary_10_1063_5_0217327
crossref_primary_10_1111_jace_19611
crossref_primary_10_1007_s10853_022_07350_1
crossref_primary_10_1016_j_measen_2024_101286
crossref_primary_10_1016_j_ceramint_2024_02_368
crossref_primary_10_1063_5_0198962
crossref_primary_10_3390_ma15175881
crossref_primary_10_1063_5_0134282
crossref_primary_10_7498_aps_72_20230685
crossref_primary_10_1002_smll_202206662
crossref_primary_10_1016_j_jeurceramsoc_2023_01_036
crossref_primary_10_1111_jace_18539
crossref_primary_10_1007_s10854_023_10692_4
crossref_primary_10_1016_j_jeurceramsoc_2023_01_005
crossref_primary_10_1039_D4TA00921E
crossref_primary_10_1016_j_ceramint_2023_06_208
crossref_primary_10_1111_ijac_14536
crossref_primary_10_3390_cryst15030287
crossref_primary_10_3390_cryst14060488
crossref_primary_10_1016_j_jpowsour_2024_235846
crossref_primary_10_1016_j_ceramint_2023_07_004
crossref_primary_10_1016_j_ceramint_2024_04_199
crossref_primary_10_1016_j_cej_2022_134678
crossref_primary_10_1016_j_est_2024_114992
crossref_primary_10_1021_acsaelm_4c00878
crossref_primary_10_1002_adma_202406219
crossref_primary_10_7498_aps_74_20240833
crossref_primary_10_1016_j_jmat_2023_10_002
crossref_primary_10_1021_acs_chemmater_2c01241
crossref_primary_10_1002_smll_202401229
crossref_primary_10_1007_s10854_025_14467_x
crossref_primary_10_1007_s10853_024_10078_9
crossref_primary_10_1111_jace_19600
crossref_primary_10_1016_j_ceramint_2022_07_299
crossref_primary_10_1016_j_jeurceramsoc_2023_09_053
crossref_primary_10_1039_D2TA02534E
crossref_primary_10_1016_j_ceramint_2023_07_114
crossref_primary_10_1016_j_jeurceramsoc_2023_02_045
crossref_primary_10_1016_j_cej_2023_147097
crossref_primary_10_1039_D2TA02094G
crossref_primary_10_3390_molecules29133187
crossref_primary_10_1111_jace_18849
crossref_primary_10_1142_S2010135X2350008X
crossref_primary_10_1002_aelm_202300590
crossref_primary_10_1016_j_physb_2024_416385
crossref_primary_10_1002_pssa_202400306
crossref_primary_10_1039_D3TC03815G
crossref_primary_10_1016_j_jallcom_2024_176519
crossref_primary_10_1016_j_cej_2022_135789
crossref_primary_10_1021_acsami_2c11691
crossref_primary_10_1016_j_cej_2025_160500
crossref_primary_10_1039_D3TA03946C
crossref_primary_10_1016_j_scriptamat_2023_115295
crossref_primary_10_1016_j_jallcom_2023_171908
crossref_primary_10_1016_j_ceramint_2022_12_104
crossref_primary_10_1016_j_cej_2023_142862
crossref_primary_10_1039_D3TA03294A
crossref_primary_10_1016_j_jeurceramsoc_2024_02_040
crossref_primary_10_1002_anie_202500516
crossref_primary_10_1111_jace_18615
crossref_primary_10_1111_jace_18977
crossref_primary_10_1016_j_cej_2025_161727
crossref_primary_10_1007_s10854_024_12233_z
crossref_primary_10_3390_ma15124360
crossref_primary_10_3390_ma17092118
crossref_primary_10_1016_j_ceramint_2021_12_295
crossref_primary_10_1016_j_jeurceramsoc_2022_07_029
crossref_primary_10_26599_JAC_2024_9220904
crossref_primary_10_3390_batteries9080409
crossref_primary_10_1016_j_ceramint_2024_01_349
crossref_primary_10_1111_jace_19919
crossref_primary_10_1016_j_scriptamat_2023_115387
crossref_primary_10_1039_D4TC02297A
crossref_primary_10_1016_j_chemphys_2024_112203
crossref_primary_10_1021_acsami_3c03296
crossref_primary_10_1016_j_ceramint_2024_10_427
crossref_primary_10_1016_j_est_2024_110597
crossref_primary_10_1016_j_jeurceramsoc_2024_02_011
crossref_primary_10_1016_j_cej_2022_136538
crossref_primary_10_1016_j_tsf_2024_140480
crossref_primary_10_1016_j_cej_2022_139921
crossref_primary_10_1016_j_ceramint_2022_07_129
crossref_primary_10_1021_acsami_2c11599
crossref_primary_10_26599_JAC_2024_9220937
crossref_primary_10_1016_j_jmat_2023_09_004
crossref_primary_10_1016_j_actamat_2025_120759
crossref_primary_10_1111_jace_19927
crossref_primary_10_1016_j_ceramint_2025_03_129
crossref_primary_10_1016_j_jpcs_2024_112462
crossref_primary_10_1016_j_ceramint_2022_07_015
crossref_primary_10_1039_D3QI01924A
crossref_primary_10_1016_j_jallcom_2023_173199
crossref_primary_10_1016_j_ceramint_2021_11_236
crossref_primary_10_1016_j_ceramint_2022_07_011
crossref_primary_10_3390_ma17153760
crossref_primary_10_1016_j_ceramint_2025_01_566
crossref_primary_10_1016_j_ensm_2023_103055
crossref_primary_10_1002_ange_202500516
crossref_primary_10_1016_j_jallcom_2023_171144
crossref_primary_10_1016_j_ceramint_2025_02_369
crossref_primary_10_1007_s10853_025_10778_w
crossref_primary_10_1016_j_ceramint_2022_11_323
crossref_primary_10_1016_j_ceramint_2023_07_061
crossref_primary_10_3390_ma17205044
crossref_primary_10_1016_j_cej_2023_144205
crossref_primary_10_1016_j_est_2024_110546
crossref_primary_10_1016_j_est_2024_112841
crossref_primary_10_2139_ssrn_4127869
crossref_primary_10_1016_j_materresbull_2023_112392
crossref_primary_10_1021_acsami_4c02696
crossref_primary_10_1021_acsami_4c11161
crossref_primary_10_1016_j_jpowsour_2025_236845
crossref_primary_10_1002_adfm_202300658
crossref_primary_10_1016_j_ceramint_2022_03_114
crossref_primary_10_1016_j_arabjc_2023_105392
crossref_primary_10_1038_s41598_023_30965_6
crossref_primary_10_1007_s10854_023_11158_3
crossref_primary_10_1016_j_jmat_2023_08_006
crossref_primary_10_1002_adts_202200314
crossref_primary_10_1016_j_mseb_2022_116194
crossref_primary_10_1016_j_jpowsour_2024_235203
crossref_primary_10_1016_j_ceramint_2022_05_072
crossref_primary_10_1016_j_jeurceramsoc_2023_06_037
crossref_primary_10_1016_j_mtcomm_2024_110795
crossref_primary_10_1016_j_jpowsour_2024_234475
crossref_primary_10_1016_j_jpowsour_2024_235201
crossref_primary_10_1021_acsami_2c16577
crossref_primary_10_1007_s10854_022_07731_x
crossref_primary_10_1016_j_physo_2024_100225
crossref_primary_10_1002_adma_202406625
crossref_primary_10_1016_j_ensm_2024_103659
crossref_primary_10_1063_5_0164880
crossref_primary_10_1021_acsami_4c14890
crossref_primary_10_1021_acsami_4c01348
crossref_primary_10_4028_p_qAPQV5
crossref_primary_10_1016_j_scriptamat_2024_115966
crossref_primary_10_1002_ange_202416291
crossref_primary_10_1002_cplu_202300324
crossref_primary_10_1016_j_cej_2023_145506
crossref_primary_10_3390_ma16144912
crossref_primary_10_1021_acsami_2c05205
crossref_primary_10_1002_adma_202204356
crossref_primary_10_1016_j_jpowsour_2024_235306
crossref_primary_10_1016_j_jallcom_2024_174610
crossref_primary_10_1016_j_apmt_2024_102326
crossref_primary_10_1016_j_sna_2024_115596
crossref_primary_10_1016_j_ceramint_2024_09_156
crossref_primary_10_1016_j_cej_2023_141376
crossref_primary_10_1016_j_nanoen_2024_109394
crossref_primary_10_1016_j_materresbull_2024_113018
crossref_primary_10_1016_j_ceramint_2023_08_087
crossref_primary_10_1016_j_ceramint_2022_06_197
crossref_primary_10_1016_j_jallcom_2024_174966
crossref_primary_10_1039_D4TA04324C
crossref_primary_10_1016_j_ceramint_2024_05_407
crossref_primary_10_1021_acsami_3c16303
crossref_primary_10_1016_j_jpcs_2022_110627
crossref_primary_10_1007_s12598_022_02176_x
crossref_primary_10_1016_j_ceramint_2022_11_112
crossref_primary_10_3390_nano15010059
crossref_primary_10_1016_j_ceramint_2022_12_073
crossref_primary_10_1016_j_cej_2023_141490
crossref_primary_10_1016_j_ceramint_2022_05_240
crossref_primary_10_1016_j_jeurceramsoc_2023_07_002
crossref_primary_10_1016_j_ceramint_2021_11_197
crossref_primary_10_1016_j_jeurceramsoc_2025_117197
crossref_primary_10_1021_acs_jpcc_4c05351
crossref_primary_10_1016_j_ceramint_2023_08_296
crossref_primary_10_1016_j_ceramint_2023_09_098
crossref_primary_10_1016_j_jallcom_2023_172255
crossref_primary_10_1111_ijac_15030
crossref_primary_10_1016_j_jeurceramsoc_2023_07_039
crossref_primary_10_1016_j_cej_2024_152786
crossref_primary_10_1002_adma_202312856
crossref_primary_10_1002_smll_202207464
crossref_primary_10_1016_j_apmt_2024_102543
crossref_primary_10_1016_j_jallcom_2023_171044
crossref_primary_10_1016_j_chphi_2024_100540
crossref_primary_10_1039_D2TA08874F
crossref_primary_10_1016_j_nanoen_2024_109493
crossref_primary_10_1016_j_ceramint_2024_06_415
crossref_primary_10_2139_ssrn_4177901
crossref_primary_10_35848_1882_0786_acd047
crossref_primary_10_1016_j_jmst_2022_10_053
crossref_primary_10_2109_jcersj2_22161
crossref_primary_10_1016_j_jallcom_2023_172147
crossref_primary_10_1021_acsaelm_4c01778
crossref_primary_10_1039_D4QI02642J
crossref_primary_10_1016_j_jeurceramsoc_2022_11_001
crossref_primary_10_1016_j_cej_2024_155803
crossref_primary_10_1016_j_ceramint_2022_01_323
crossref_primary_10_1007_s13391_023_00434_3
crossref_primary_10_1016_j_mtphys_2024_101418
crossref_primary_10_1016_j_ceramint_2022_08_311
crossref_primary_10_1038_s41467_022_33039_9
crossref_primary_10_1021_acsami_3c08168
crossref_primary_10_1088_1402_4896_ad38e8
crossref_primary_10_1016_j_ceramint_2022_02_123
crossref_primary_10_1021_acsami_2c21969
crossref_primary_10_1016_j_jeurceramsoc_2022_03_037
crossref_primary_10_1016_j_ceramint_2024_04_416
crossref_primary_10_1016_j_jallcom_2022_164851
crossref_primary_10_1016_j_jallcom_2022_163888
crossref_primary_10_1016_j_jmat_2024_100930
crossref_primary_10_1039_D2TA04200B
crossref_primary_10_1016_j_ceramint_2022_08_300
crossref_primary_10_1007_s10853_023_08769_w
crossref_primary_10_1039_D2QI02374A
crossref_primary_10_1016_j_jclepro_2022_131179
crossref_primary_10_1016_j_jallcom_2023_172524
crossref_primary_10_1016_j_ceramint_2025_01_045
crossref_primary_10_1063_5_0232399
crossref_primary_10_1016_j_jeurceramsoc_2022_02_005
crossref_primary_10_1039_D3TC04558G
crossref_primary_10_1016_j_nanoen_2022_107577
crossref_primary_10_1016_j_ceramint_2024_07_195
crossref_primary_10_1016_j_jeurceramsoc_2022_12_064
crossref_primary_10_1016_j_ceramint_2021_08_171
crossref_primary_10_1016_j_mtchem_2022_101353
crossref_primary_10_1016_j_ensm_2025_104082
crossref_primary_10_1039_D3TC03477A
crossref_primary_10_1021_acsami_4c15339
crossref_primary_10_1142_S2010135X24500164
crossref_primary_10_1111_jace_20155
crossref_primary_10_1021_acsaem_4c01193
crossref_primary_10_1039_D2TA09395B
crossref_primary_10_1016_j_actamat_2023_119135
crossref_primary_10_1016_j_ceramint_2023_05_197
crossref_primary_10_1016_j_mtener_2025_101800
crossref_primary_10_1016_j_jmat_2021_09_007
crossref_primary_10_1021_acsami_3c13860
crossref_primary_10_1002_smll_202302346
crossref_primary_10_1016_j_jmat_2025_101055
crossref_primary_10_1016_j_ceramint_2023_11_363
crossref_primary_10_1016_j_est_2024_110847
crossref_primary_10_1021_jacs_2c12200
crossref_primary_10_1021_jacs_4c02868
crossref_primary_10_1002_inf2_12488
crossref_primary_10_1016_j_ceramint_2024_05_302
crossref_primary_10_1039_D1TC03549E
crossref_primary_10_1038_s41598_025_90448_8
crossref_primary_10_3390_cryst13040649
crossref_primary_10_1016_j_solidstatesciences_2022_107086
crossref_primary_10_1016_j_jeurceramsoc_2023_06_048
crossref_primary_10_1016_j_addma_2022_102804
crossref_primary_10_1016_j_scriptamat_2023_115602
crossref_primary_10_1039_D4TA00575A
crossref_primary_10_1016_j_ensm_2024_103534
crossref_primary_10_1016_j_ceramint_2023_12_056
crossref_primary_10_1063_5_0155111
crossref_primary_10_1111_jace_19017
crossref_primary_10_1016_j_ceramint_2022_04_177
crossref_primary_10_1063_5_0199206
crossref_primary_10_1039_D3MH01965A
crossref_primary_10_1016_j_cej_2024_158942
crossref_primary_10_1016_j_ceramint_2022_10_297
crossref_primary_10_1016_j_mtener_2022_101185
crossref_primary_10_1016_j_solidstatesciences_2022_107090
crossref_primary_10_1016_j_cej_2023_142071
crossref_primary_10_1039_D3TA00068K
crossref_primary_10_1039_D4TA03637A
crossref_primary_10_1016_j_cej_2023_146673
crossref_primary_10_1016_j_jmat_2023_05_002
crossref_primary_10_1039_D3QI01228J
crossref_primary_10_1016_j_jeurceramsoc_2023_07_081
crossref_primary_10_1116_6_0004172
crossref_primary_10_1007_s10854_023_11774_z
crossref_primary_10_1016_j_cej_2024_154695
crossref_primary_10_1016_j_mtener_2022_101193
crossref_primary_10_1016_j_cej_2023_143395
crossref_primary_10_1039_D1TA10524H
crossref_primary_10_1021_acsami_4c22803
crossref_primary_10_1016_j_ceramint_2023_11_151
crossref_primary_10_1021_acsaelm_3c00739
crossref_primary_10_1016_j_jallcom_2021_163139
crossref_primary_10_1016_j_jeurceramsoc_2025_117239
crossref_primary_10_1016_j_jeurceramsoc_2022_04_057
crossref_primary_10_1016_j_cej_2024_151046
crossref_primary_10_1016_j_cej_2024_151043
crossref_primary_10_1016_j_ceramint_2022_02_106
crossref_primary_10_1016_j_cej_2023_145314
crossref_primary_10_1002_pssa_202100737
crossref_primary_10_1021_acsami_2c20508
crossref_primary_10_1039_D2TA08074E
crossref_primary_10_1007_s10854_025_14393_y
crossref_primary_10_1016_j_jssc_2023_124150
crossref_primary_10_1016_j_ceramint_2023_05_049
crossref_primary_10_1002_adom_202500305
crossref_primary_10_1039_D2TA00380E
crossref_primary_10_1038_s41598_023_49603_2
crossref_primary_10_1016_j_molstruc_2024_137949
crossref_primary_10_1016_j_ceramint_2022_08_272
crossref_primary_10_1039_D2TA10098C
crossref_primary_10_1007_s10854_023_10252_w
crossref_primary_10_1007_s00339_023_06795_8
crossref_primary_10_1016_j_cap_2025_01_013
crossref_primary_10_1016_j_ceramint_2024_12_018
crossref_primary_10_1002_adem_202400010
crossref_primary_10_1016_j_cej_2025_160821
crossref_primary_10_1016_j_jallcom_2024_175469
crossref_primary_10_1142_S2010135X23430014
crossref_primary_10_1039_D2TC00812B
crossref_primary_10_1111_ijac_14962
crossref_primary_10_1039_D4TC03151B
crossref_primary_10_1016_j_apmt_2024_102097
crossref_primary_10_1063_5_0094919
crossref_primary_10_1111_jace_19349
crossref_primary_10_1016_j_jallcom_2023_169723
crossref_primary_10_1039_D3RA04117D
crossref_primary_10_1016_j_est_2025_115961
crossref_primary_10_1002_smll_202406059
crossref_primary_10_3390_ceramics7020047
crossref_primary_10_1007_s10853_024_09953_2
crossref_primary_10_1016_j_ceramint_2021_09_006
crossref_primary_10_1007_s00339_024_07767_2
crossref_primary_10_1016_j_optmat_2022_113317
crossref_primary_10_1111_jace_18589
crossref_primary_10_1016_j_matchemphys_2022_125874
crossref_primary_10_1111_jace_19556
crossref_primary_10_1016_j_jmst_2023_08_031
crossref_primary_10_1016_j_ceramint_2023_02_225
crossref_primary_10_1016_j_ceramint_2024_12_280
crossref_primary_10_1002_anie_202416291
crossref_primary_10_1016_j_jmat_2024_03_014
crossref_primary_10_1016_j_jmat_2022_09_009
crossref_primary_10_1039_D2TA01808J
crossref_primary_10_1016_j_jallcom_2024_174037
crossref_primary_10_1016_j_jmat_2022_09_008
crossref_primary_10_1016_j_ceramint_2023_09_210
crossref_primary_10_1016_j_matlet_2025_138116
crossref_primary_10_1021_acsami_2c11318
crossref_primary_10_3390_ceramics7030068
crossref_primary_10_1002_smll_202206840
crossref_primary_10_1103_PhysRevApplied_19_054058
crossref_primary_10_3390_ceramics7030065
crossref_primary_10_3390_coatings13030534
crossref_primary_10_1016_j_ssc_2025_115843
crossref_primary_10_1080_10584587_2023_2234629
crossref_primary_10_1111_jace_19329
crossref_primary_10_1016_j_matlet_2022_133524
crossref_primary_10_1021_acsaem_2c01029
crossref_primary_10_1016_j_ceramint_2022_07_334
crossref_primary_10_1016_j_ceramint_2023_10_167
crossref_primary_10_1021_acsami_3c08791
crossref_primary_10_1016_j_jallcom_2024_176569
crossref_primary_10_1016_j_solidstatesciences_2024_107616
crossref_primary_10_1016_j_ceramint_2023_11_079
crossref_primary_10_1016_j_cej_2024_149947
crossref_primary_10_1088_1402_4896_ad1907
crossref_primary_10_3390_ma15093151
crossref_primary_10_1111_jace_19770
crossref_primary_10_1111_jace_19774
crossref_primary_10_1111_jace_19410
crossref_primary_10_1016_j_ceramint_2021_09_158
crossref_primary_10_1039_D2TC00056C
crossref_primary_10_1016_j_jpowsour_2025_236374
crossref_primary_10_1016_j_cej_2024_157561
crossref_primary_10_1002_adfm_202212861
crossref_primary_10_1039_D3TC03757F
crossref_primary_10_1002_ente_202100777
crossref_primary_10_1016_j_jmat_2023_03_006
crossref_primary_10_1016_j_matpr_2024_05_048
crossref_primary_10_1016_j_jallcom_2024_177558
crossref_primary_10_1002_est2_642
crossref_primary_10_1016_j_cej_2023_144086
crossref_primary_10_1016_j_ceramint_2022_01_269
crossref_primary_10_1016_j_ceramint_2023_03_156
crossref_primary_10_1016_j_ceramint_2024_03_354
crossref_primary_10_1016_j_jallcom_2024_176372
crossref_primary_10_1007_s10854_023_11119_w
crossref_primary_10_1002_adfm_202301027
crossref_primary_10_1016_j_cej_2022_138432
crossref_primary_10_1016_j_ceramint_2024_04_040
crossref_primary_10_1016_j_cej_2022_137105
crossref_primary_10_1088_1742_6596_2680_1_012007
crossref_primary_10_1007_s00339_022_06367_2
crossref_primary_10_1007_s10854_023_11655_5
crossref_primary_10_1016_j_jmat_2022_01_007
crossref_primary_10_1002_adma_202420566
crossref_primary_10_1016_j_ceramint_2024_04_278
crossref_primary_10_1016_j_matlet_2022_132126
crossref_primary_10_1016_j_est_2024_112010
crossref_primary_10_1039_D2TA02893J
crossref_primary_10_1021_acsami_2c11871
crossref_primary_10_1021_acsami_3c19123
crossref_primary_10_1016_j_actamat_2022_118286
crossref_primary_10_1016_j_cscee_2024_100679
crossref_primary_10_1002_aelm_202200793
crossref_primary_10_1021_acsaem_3c03229
crossref_primary_10_1016_j_ceramint_2021_12_305
crossref_primary_10_1016_j_est_2024_113599
crossref_primary_10_1016_j_est_2024_112020
crossref_primary_10_1016_j_cej_2021_133812
crossref_primary_10_1016_j_ceramint_2022_09_243
Cites_doi 10.1080/00150190902889267
10.1038/nature14647
10.1016/j.ceramint.2020.07.050
10.1016/j.jallcom.2015.02.225
10.1016/j.ceramint.2018.11.250
10.1111/jace.15371
10.1039/C9TC01239G
10.1142/S2010135X18300050
10.1021/acsami.7b02225
10.1111/jace.15870
10.1016/S0378-7753(96)80006-1
10.1016/j.cej.2021.129900
10.1103/PhysRev.82.729
10.1039/C8TC03003K
10.1016/j.jeurceramsoc.2018.03.026
10.1063/1.2903115
10.1111/jace.15389
10.1039/D0TC00589D
10.1109/TED.2003.815141
10.1016/j.rser.2007.01.023
10.1016/j.ceramint.2012.10.089
10.1016/j.jeurceramsoc.2015.09.029
10.1016/j.jallcom.2019.01.077
10.1039/C7TA05392D
10.1016/j.jmat.2019.03.006
10.1016/j.ceramint.2018.03.049
10.1021/acssuschemeng.8b01926
10.1039/C9TC05253D
10.1080/00150190590926373
10.1016/j.cej.2020.127151
10.1038/s41467-020-18665-5
10.1088/0370-1301/64/9/303
10.1109/MEI.2006.1705854
10.1063/1.351586
10.1142/S2010135X18300049
10.1016/j.jeurceramsoc.2017.11.053
10.1080/00150197408237956
10.1039/D0NR04479B
10.1021/am100146u
10.1016/j.ceramint.2016.11.148
10.1016/j.jeurceramsoc.2018.08.010
10.1002/smll.201503193
10.1039/C9TA02053E
10.1016/j.ceramint.2020.09.228
10.1557/JMR.1997.0288
10.1016/j.jeurceramsoc.2018.11.034
10.1016/j.jeurceramsoc.2018.01.010
10.1016/j.matlet.2014.08.133
10.1039/C8TC04447C
10.1063/1.4747937
10.1016/j.matlet.2011.12.119
10.1016/j.jeurceramsoc.2019.02.009
10.1021/acsaelm.0c00745
10.1038/s41467-017-02040-y
10.1016/j.jallcom.2017.06.252
10.1039/C9DT01738K
10.1016/j.ceramint.2018.07.182
10.1039/C9TA11314B
10.1080/00150199808009173
10.1016/j.jallcom.2019.153196
10.1002/adfm.201903877
10.1016/0040-6090(96)08640-3
10.1038/nature07853
10.1039/C9TC00087A
10.1016/j.ensm.2020.05.026
10.1016/j.ceramint.2017.12.188
10.1016/j.ceramint.2013.09.020
10.1016/j.jeurceramsoc.2005.03.146
10.1021/acsami.0c13057
10.1002/adfm.201803665
10.1039/C9CS00432G
10.1080/00150198008018801
10.1002/aenm.201200808
10.1016/j.jallcom.2018.01.276
10.1016/j.ceramint.2020.05.280
10.1016/j.ceramint.2017.12.174
10.1002/ente.201500173
10.1002/admt.201800111
10.1088/0508-3443/18/1/308
10.1016/j.mattod.2019.04.015
10.1021/acssuschemeng.7b02203
10.1016/j.cej.2020.126818
10.1016/j.ceramint.2010.05.009
10.1039/C9TC06218A
10.1002/adma.201601859
10.1016/j.physb.2017.07.013
10.1016/j.nanoen.2019.02.003
10.1016/j.jeurceramsoc.2019.05.043
10.1039/C6TA06353E
10.1016/j.jeurceramsoc.2014.01.015
10.3390/ma8125439
10.1016/j.jeurceramsoc.2006.05.047
10.1039/C7TA10821D
10.1016/j.ceramint.2020.08.024
10.1016/j.matlet.2018.11.105
10.1088/1361-6463/ab7bb1
10.1063/1.4755841
10.1111/jace.13412
10.1088/1361-6463/aaff41
10.1111/j.1151-2916.1999.tb01840.x
10.1021/acssuschemeng.0c05265
10.1016/j.ssc.2014.12.004
10.7498/aps.69.20200213
10.1039/D0TA02285C
10.4191/kcers.2019.56.1.02
10.1126/science.aaw8109
10.1016/j.ceramint.2019.05.323
10.1039/C9SE00836E
10.1016/0022-3697(59)90226-4
10.1016/j.jeurceramsoc.2019.09.022
10.1016/j.jeurceramsoc.2016.08.021
10.1016/j.jallcom.2019.05.367
10.1109/TUFFC.2012.2403
10.1016/j.ceramint.2020.08.293
10.1143/JJAP.43.L1072
10.1016/j.ceramint.2016.03.062
10.1038/ncomms15682
10.1039/C9TC01356C
10.1039/D0NR05709F
10.1038/s41563-020-0704-x
10.1002/aenm.201903338
10.1109/TMAG.2006.887682
10.1063/1.1313784
10.1016/j.jeurceramsoc.2018.01.003
10.1016/j.jmat.2020.06.005
10.1063/1.4975409
10.1016/j.jeurceramsoc.2019.02.007
10.1063/5.0027405
10.1063/1.3645054
10.1111/jace.15392
10.1063/1.124059
10.1039/C7TC02478A
10.1021/acsami.1c05824
10.1039/C8TA12232F
10.1016/j.jallcom.2019.153260
10.1016/j.cej.2019.123154
10.1080/14786440508520582
10.1016/j.jallcom.2018.10.025
10.1039/C9TA10347C
10.1039/D0EE03094E
10.1002/adfm.201801504
10.1039/C5RA21261H
10.1016/j.matlet.2017.05.007
10.1016/j.ceramint.2019.10.055
10.1016/j.jmat.2020.05.005
10.1016/j.ceramint.2015.10.014
10.1016/j.cej.2020.125639
10.1016/j.jeurceramsoc.2020.03.003
10.1016/j.cej.2020.128376
10.1039/C9TC06711F
10.1063/1.1735030
10.1103/PhysRevLett.103.257602
10.1111/jace.15546
10.1039/C8EE03287D
10.1038/nmat1051
10.1016/j.jeurceramsoc.2019.09.001
10.1016/j.ceramint.2018.03.176
10.1016/j.jeurceramsoc.2011.09.024
10.1021/acsaem.8b01001
10.1039/C8TC02368A
10.1007/s10853-020-05070-y
10.1007/s11664-018-6683-x
10.1002/ente.201300031
10.1039/C9TA05936A
10.1088/1361-665X/aa590c
10.1143/JJAP.42.6110
10.1016/j.jmat.2020.12.009
10.1111/jace.12184
10.1111/jace.12773
10.1103/PhysRevB.82.104112
10.1016/j.compscitech.2020.108501
10.1016/0038-1098(83)90132-1
10.1016/j.jeurceramsoc.2007.11.004
10.1039/C8TC06549G
10.1016/B978-0-08-102802-5.00009-1
10.1016/j.cej.2020.125625
10.1016/j.pmatsci.2016.09.001
10.1016/j.jeurceramsoc.2019.05.056
10.1016/j.ceramint.2011.06.049
10.1016/j.jallcom.2020.154611
10.1016/j.ceramint.2019.07.019
10.1016/j.jeurceramsoc.2014.09.003
10.1016/j.ceramint.2013.12.100
10.1016/j.jallcom.2019.152356
10.1039/C9TC01414D
10.1016/j.ceramint.2019.08.261
10.1103/PhysRevLett.87.217601
10.1016/j.jeurceramsoc.2020.11.051
10.1111/jace.14472
10.1002/aenm.201803048
10.1039/C6EE03597C
10.1016/j.jeurceramsoc.2020.09.017
10.1016/j.jallcom.2018.01.106
10.1016/j.jallcom.2016.07.078
10.1080/00150193.2017.1325709
10.1080/00150198708016945
10.1016/j.jeurceramsoc.2020.06.048
10.1007/s12613-010-0316-6
10.1073/pnas.1603792113
10.1111/jace.15803
10.1002/aenm.201803411
10.1103/PhysRevB.74.224412
10.1109/57.342041
10.1039/C7DT03140H
10.1039/C9TC04864B
10.1021/j100112a043
10.1016/j.jeurceramsoc.2018.07.006
10.1016/j.jeurceramsoc.2020.01.050
10.1016/j.jallcom.2020.154961
10.1002/adfm.201300640
10.1016/j.jallcom.2017.03.261
10.1143/JJAP.30.2236
10.1039/C8TC05458D
10.1021/acssuschemeng.8b02821
10.1016/j.jallcom.2013.09.072
10.1063/1.4928153
10.1063/1.346425
10.1002/adma.201503881
10.1039/C9TA02149C
10.1016/j.cej.2020.128231
10.1039/D0TA03526B
10.1111/j.1551-2916.2011.04731.x
10.1111/j.1551-2916.2009.03104.x
10.1111/j.1551-2916.2011.04962.x
10.1016/j.ceramint.2019.03.003
10.1039/C8TC03855D
10.1021/ma2024057
10.1016/j.ensm.2019.06.013
10.1109/TDEI.2010.5539672
10.1021/acsami.7b17382
10.1039/C9CS00043G
10.1016/j.nanoen.2020.104551
10.1063/1.5000980
10.1016/j.scriptamat.2018.05.022
10.1016/j.jeurceramsoc.2018.06.038
10.1016/j.jallcom.2019.153004
10.1016/j.ceramint.2020.03.292
10.1039/C6TA07803F
10.1039/C9TA01165J
10.1039/C7TA09857J
10.1016/j.jeurceramsoc.2019.07.021
10.1039/D0TC04381H
10.1021/acsami.9b10819
10.1002/pssr.201800165
10.1016/j.matlet.2020.128823
10.1080/00150190601180471
10.1016/j.jeurceramsoc.2017.01.036
10.1039/C4TA04282D
10.1016/j.ceramint.2016.02.155
10.1016/j.jeurceramsoc.2018.12.044
10.1016/j.mseb.2013.08.016
10.1016/j.jallcom.2014.08.077
10.1088/0022-3727/45/35/355302
10.1111/j.1151-2916.1964.tb15658.x
10.1016/j.ceramint.2019.06.237
10.1016/j.jeurceramsoc.2020.03.070
10.1016/j.jallcom.2019.05.092
10.1016/j.jmat.2019.07.006
10.1021/acsaem.8b01099
10.1016/j.physb.2017.09.014
10.1111/jace.14728
10.1021/acs.inorgchem.7b02181
10.1016/j.jallcom.2020.154160
10.1063/1.2955533
10.1038/358136a0
10.1039/C9TA00995G
10.1039/C5TC04005A
10.1002/adma.201601727
10.1016/j.jallcom.2018.09.252
10.1103/PhysRevLett.102.027602
10.1021/acsami.9b13215
10.1039/c2jm32078a
10.1007/s10853-016-0521-4
10.1016/j.ceramint.2017.11.092
10.1016/j.ceramint.2020.01.181
10.1111/j.1151-2916.1994.tb04655.x
10.1016/j.matdes.2015.11.002
10.1142/S2010135X13300016
10.1039/C8SE00276B
10.1021/acs.chemmater.5b04109
10.1016/j.ceramint.2019.06.166
10.1016/j.jeurceramsoc.2014.11.022
10.1021/acssuschemeng.7b04754
10.1063/1.4990046
10.1111/j.1551-2916.2009.03313.x
10.1080/00150199408244755
10.1111/jace.16844
10.1016/j.pmatsci.2018.12.005
10.1016/j.jpcs.2018.01.051
10.1016/j.jallcom.2018.11.106
10.1016/j.ceramint.2020.08.256
10.1021/cm8021648
10.1063/1.4921744
10.1016/j.cej.2020.124879
10.1016/j.ceramint.2016.09.117
10.1016/j.jeurceramsoc.2018.07.029
10.1016/j.jallcom.2014.08.038
10.1016/j.ceramint.2019.06.300
10.1111/j.1151-2916.1981.tb09879.x
10.1039/C6TA04107H
10.1039/C6RA01919F
10.1016/j.scriptamat.2017.07.010
10.1126/science.1212741
10.1016/j.jeurceramsoc.2018.11.025
10.1111/j.1551-2916.2012.05409.x
10.1109/MEI.2004.1367508
10.1039/C9TC06443E
10.1016/j.jeurceramsoc.2019.03.030
10.1016/j.cej.2020.124158
10.1039/C9TA00463G
10.1016/j.jallcom.2013.09.052
10.1021/acsami.0c09876
10.1016/j.jallcom.2015.05.005
10.1063/1.4995009
10.1016/j.jeurceramsoc.2016.07.011
10.1111/jace.13325
10.1016/j.jallcom.2013.09.108
10.1063/1.4968790
10.1063/1.1499579
10.1021/acs.jpcc.6b05068
10.1063/1.4775493
10.1002/adma.201802155
10.1039/C5TA03614C
10.1016/j.jallcom.2016.07.025
10.1063/1.2766657
10.1039/C6TC03289C
10.1080/10584587.2014.912939
10.1016/j.jallcom.2017.01.249
10.1063/1.2887908
10.1016/j.nanoen.2019.104264
10.1016/j.jeurceramsoc.2020.03.012
10.1007/BF01507527
10.1002/pssa.201700915
10.1063/1.4979467
10.1016/j.jallcom.2012.06.094
10.1007/BF00275336
10.1016/j.jallcom.2013.04.026
10.1039/C9TA06457E
10.1126/science.1160903
10.1016/j.ceramint.2014.05.147
10.1016/j.jeurceramsoc.2016.12.016
10.1016/j.ceramint.2018.12.014
10.1109/MEI.2010.5383924
10.1039/C7TA03821F
10.1039/C8TA00474A
10.1146/annurev-matsci-070317-124435
10.1111/j.1151-2916.1971.tb12184.x
10.1111/j.1551-2916.2012.05215.x
10.1002/9781118904923.ch5
10.1016/j.ceramint.2018.11.018
10.1016/j.nanoen.2018.07.055
10.1016/j.jeurceramsoc.2020.03.015
10.1016/j.ceramint.2020.09.144
10.1016/j.nanoen.2018.10.028
10.1039/D0TA08345C
10.1016/j.actamat.2018.09.056
10.1016/j.ceramint.2019.09.025
10.1016/j.jeurceramsoc.2019.03.001
10.1039/C9TC02088H
10.1016/j.jeurceramsoc.2020.05.076
10.1016/j.nanoen.2018.06.016
10.1016/j.jeurceramsoc.2013.11.039
10.1039/D0TA00216J
10.1080/00150197408238042
10.1088/0022-3727/40/4/043
10.1016/j.jeurceramsoc.2015.10.019
10.1016/j.ceramint.2019.08.019
10.1016/j.ceramint.2019.09.265
10.1016/j.jeurceramsoc.2018.03.008
10.1016/j.jallcom.2017.04.023
10.1016/j.jallcom.2017.09.022
10.1007/s10853-012-6990-1
10.1088/1757-899X/18/20/202024
10.1016/j.nanoen.2020.105423
10.1142/S2010135X1241010X
10.1002/aelm.201900698
10.1021/acsami.7b04175
10.1016/j.jeurceramsoc.2013.06.029
10.1016/j.ceramint.2017.04.051
10.1103/PhysRevB.73.064114
10.1088/0022-3727/43/44/445403
10.1002/adma.201203823
10.1016/j.pmatsci.2014.01.002
10.1088/0022-3727/38/5/003
10.1016/j.cej.2020.125520
10.1111/jace.13737
10.1016/j.ceramint.2020.09.235
10.1007/s40145-018-0310-4
10.1016/j.ceramint.2013.08.099
10.1111/jace.12495
10.1016/j.apenergy.2014.09.081
10.1016/j.jeurceramsoc.2019.04.031
10.1039/C8TA09353A
10.1126/science.1127798
10.1016/j.materresbull.2019.02.002
10.1016/j.ceramint.2018.02.054
10.1016/j.ceramint.2013.06.088
10.1021/acsami.0c08737
10.1016/j.ceramint.2019.06.245
10.1016/j.scriptamat.2017.08.045
10.1016/j.jallcom.2019.152498
10.1016/j.ceramint.2019.11.015
10.1021/cr5006809
10.1038/s41563-018-0059-8
10.1016/j.ceramint.2015.02.156
10.1016/j.ceramint.2017.04.081
10.1039/D0EE02104K
10.1016/j.jeurceramsoc.2020.10.046
10.1016/j.mtchem.2020.100304
10.1088/0022-3727/48/41/415304
10.1063/1.4953457
10.1103/PhysRevB.94.014107
10.1016/j.jeurceramsoc.2020.10.049
10.1021/acsami.0c02832
10.1111/j.1744-7402.2009.02456.x
10.1111/j.1151-2916.1987.tb04862.x
10.1063/1.5020515
10.1088/0022-3727/29/1/037
10.1007/s10853-013-7849-9
10.1016/j.ceramint.2017.03.139
10.1038/s41598-017-06966-7
10.1063/1.2266992
10.1021/cm8004634
10.1016/j.jeurceramsoc.2015.07.027
10.1007/BF02377992
10.1016/j.ceramint.2020.12.255
10.1039/C8TA07303A
10.1016/j.jeurceramsoc.2016.12.053
10.1002/lpor.202000525
10.1039/C4DT03919J
10.1039/D0TC01711F
10.1016/j.cej.2019.123729
10.1002/adma.201701824
10.1021/jz501831q
10.1111/j.1151-2916.1990.tb06513.x
10.1016/j.ceramint.2008.11.003
10.15541/jim20170594
10.1038/35254
10.1016/j.ceramint.2020.02.135
10.1016/j.cej.2021.130475
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2021
Copyright_xml – notice: Copyright Royal Society of Chemistry 2021
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
DOI 10.1039/d1ta04504k
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef
Materials Research Database
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 1885
ExternalDocumentID 10_1039_D1TA04504K
d1ta04504k
GroupedDBID 0-7
0R
705
AAEMU
AAGNR
AAIWI
AANOJ
ABASK
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFRAH
AFVBQ
AGRSR
AGSTE
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CKLOX
EBS
ECGLT
EE0
EF-
GNO
HZ
H~N
J3I
JG
O-G
O9-
R7C
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
0R~
AAJAE
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AHGCF
AKMSF
ALUYA
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c380t-182352669c3ceb5e55eb4f63e318d047942aba23bf0f573f918a727be7ab443e3
ISSN 2050-7488
2050-7496
IngestDate Thu Jul 10 17:21:05 EDT 2025
Mon Jun 30 11:44:08 EDT 2025
Thu Apr 24 23:05:32 EDT 2025
Tue Jul 01 01:13:13 EDT 2025
Sun Apr 17 04:30:15 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 34
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c380t-182352669c3ceb5e55eb4f63e318d047942aba23bf0f573f918a727be7ab443e3
Notes Li Jin is a full professor in the School of Electronic Science and Engineering at Xi'an Jiaotong University (XJTU), China. He received his BEng and MEng degrees in Electronics Science and Technology from the XJTU in 2003 and 2006, respectively. He received his PhD degree in Materials Science and Engineering from the Swiss Federal Institute of Technology in Lausanne (EPFL), Switzerland in 2011. Subsequently, he completed his postdoctoral research at the Ceramics Laboratory of EPFL. His interests include ferroelectric/electrostrictive/dielectric materials and their applications in actuators, energy storage devices and other electronic devices. He has published more than 110+ papers in peer-reviewed journals with 6000+ citations. One of his paper has been selected as the 100 Most Influential International Academic Papers in China, in 2014. He has received the First Prize of Natural Science Award by the Ministry of Education of China (2015).
Hongliang Du is currently a full professor at college of Engineering, Xi'an International University (XAIU), China. He received his Ph.D. degree from Northwestern Polytechnical University in 2011, and he was a visiting scholar in Technische Universitat Darmstadt (Germany) in 2016. His research interests mainly include lead-free piezoelectric materials, high-temperature piezoelectric ceramics, transparent ferroelectric ceramics and dielectric materials for energy storage applications. He received several awards including Natural Science Second Class Award from Ministry of Education (2010), Excellent Paper Award for Young Scientists from the 11th IUMRS International Conference in Asia (2010), and the First Prize of Scientific and Technological Award from Shaanxi Universities (2021). He has published more than 80 papers in the field of ferro/piezoelectric materials. He was identified as one of the top 1% of highly cited authors in Royal Society of Chemistry (RSC) journals in 2019.
Zetian Yang is a Ph.D. student in LumiLab, Department of Solid State Sciences, Ghent University. His research interests mainly include piezoresistive properties of samarium monosulfide, inorganic photochromic materials for optical information storage and anti-counterfeiting applications, and ferroelectric ceramics for electrical energy storage. He has authored/co-authored 17 referred papers with three highly cited papers and one hot paper, and his work has been cited about 1000 times.
Dirk Poelman is a full professor in the Department of Solid State Sciences at Ghent University, Belgium since 2012. He obtained his PhD in Ghent University on electroluminescent thin films in 1994. His recent interests include photocatalysis for air purification, luminescent materials for lighting and displays, persistent luminescent compounds for safety applications and near-infrared bio-imaging. He has published over 230 international publications in these fields. Currently, he is working on the relation between the persistent luminescent behaviour of materials, their thermoluminescence characteristics and their photo- and thermochromic properties.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6637-816X
0000-0002-3930-172X
0000-0002-0815-4587
PQID 2566287762
PQPubID 2047523
PageCount 6
ParticipantIDs proquest_journals_2566287762
crossref_citationtrail_10_1039_D1TA04504K
crossref_primary_10_1039_D1TA04504K
rsc_primary_d1ta04504k
proquest_miscellaneous_2636445986
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210831
PublicationDateYYYYMMDD 2021-08-31
PublicationDate_xml – month: 8
  year: 2021
  text: 20210831
  day: 31
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2021
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Dorcet (D1TA04504K/cit326) 2008; 20
Li (D1TA04504K/cit352) 2017; 43
Wang (D1TA04504K/cit200) 2014; 617
Luo (D1TA04504K/cit322) 2020; 11
Li (D1TA04504K/cit379) 2017; 121
Lin (D1TA04504K/cit17) 2020; 8
Chauhan (D1TA04504K/cit51) 2015; 8
Kuroiwa (D1TA04504K/cit113) 2001; 87
Sri Gyan (D1TA04504K/cit443) 2019; 52
Goldschmidt (D1TA04504K/cit417) 1926; 14
Bai (D1TA04504K/cit400) 2019; 48
Li (D1TA04504K/cit421) 2019; 7
Cui (D1TA04504K/cit143) 2018; 740
Sindhu (D1TA04504K/cit190) 2013; 575
Cao (D1TA04504K/cit323) 2016; 36
Zhu (D1TA04504K/cit94) 2019; 39
Niwa (D1TA04504K/cit11) 1996; 60
Zhang (D1TA04504K/cit267) 2014; 40
Yuan (D1TA04504K/cit220) 2017; 5
Li (D1TA04504K/cit376) 2020; 6
Liu (D1TA04504K/cit56) 2018; 3
Ren (D1TA04504K/cit102) 2017; 37
Qi (D1TA04504K/cit46) 2019; 29
Li (D1TA04504K/cit286) 2010; 17
Eerd (D1TA04504K/cit335) 2010; 82
Huang (D1TA04504K/cit103) 2015; 35
Sun (D1TA04504K/cit87) 2012; 101
Bak (D1TA04504K/cit169) 2004; 10
Yang (D1TA04504K/cit304) 2019; 58
Wei (D1TA04504K/cit227) 2017; 43
Ibrahim (D1TA04504K/cit7) 2008; 12
Shi (D1TA04504K/cit453) 2020; 815
Alkathy (D1TA04504K/cit141) 2018; 44
Zhao (D1TA04504K/cit118) 2020; 13
Barshaw (D1TA04504K/cit22) 2007; 43
Ren (D1TA04504K/cit177) 2004; 3
Sun (D1TA04504K/cit452) 2021; 41
Chu (D1TA04504K/cit6) 2006; 313
Hall (D1TA04504K/cit302) 1951; 64
Zhao (D1TA04504K/cit385) 2018; 101
Wang (D1TA04504K/cit251) 2018; 1
Ma (D1TA04504K/cit337) 2013; 23
Curecheriu (D1TA04504K/cit125) 2012; 95
Li (D1TA04504K/cit339) 2017; 141
Leontsev (D1TA04504K/cit270) 2009; 92
Luo (D1TA04504K/cit120) 2019; 7
Qu (D1TA04504K/cit299) 2016; 6
Han (D1TA04504K/cit408) 2020; 40
Zhang (D1TA04504K/cit59) 2020; 8
Guerra (D1TA04504K/cit334) 2017; 525
Guo (D1TA04504K/cit157) 2020; 46
Chen (D1TA04504K/cit199) 2012; 23
Zhang (D1TA04504K/cit317) 2015; 98
Liu (D1TA04504K/cit410) 2020; 836
Hu (D1TA04504K/cit383) 2018; 44
Jin (D1TA04504K/cit366) 2021; 47
Chen (D1TA04504K/cit262) 2012; 541
Yang (D1TA04504K/cit449) 2019; 39
Wang (D1TA04504K/cit203) 2013; 24
Yan (D1TA04504K/cit359) 2020; 46
Liu (D1TA04504K/cit252) 2018; 6
Yao (D1TA04504K/cit364) 2018; 44
Xie (D1TA04504K/cit98) 2019; 39
Wu (D1TA04504K/cit97) 2020; 117
Megaw (D1TA04504K/cit433) 1974; 7
Huang (D1TA04504K/cit101) 2018; 6
Li (D1TA04504K/cit362) 2019; 45
Zhou (D1TA04504K/cit166) 2016; 688
Ping (D1TA04504K/cit180) 2019; 45
Chen (D1TA04504K/cit256) 2020; 46
Li (D1TA04504K/cit79) 2018; 28
Zhang (D1TA04504K/cit119) 2020; 40
Hou (D1TA04504K/cit36) 2017; 9
Yang (D1TA04504K/cit139) 2019; 773
Takenaka (D1TA04504K/cit331) 1991; 30
Chen (D1TA04504K/cit461) 2020; 12
Kim (D1TA04504K/cit165) 2016; 28
Cross (D1TA04504K/cit470) 1987; 76
Guo (D1TA04504K/cit128) 2021; 420
Sakata (D1TA04504K/cit371) 1974; 7
Liu (D1TA04504K/cit232) 2019; 778
Luo (D1TA04504K/cit106) 2011; 18
Wongsaenmai (D1TA04504K/cit284) 2012; 38
Smolensky (D1TA04504K/cit325) 1961; 2
Qu (D1TA04504K/cit460) 2019; 7
Murata (D1TA04504K/cit110) 2012; 95
Cox (D1TA04504K/cit168) 1967; 18
Tolédano (D1TA04504K/cit83) 2016; 94
Chen (D1TA04504K/cit215) 2020; 46
Li (D1TA04504K/cit99) 2020; 46
Lv (D1TA04504K/cit127) 2021; 420
Zhao (D1TA04504K/cit45) 2017; 29
Cross (D1TA04504K/cit164) 2011; 23
Lin (D1TA04504K/cit290) 2019; 7
Yang (D1TA04504K/cit147) 2017; 5
Yang (D1TA04504K/cit153) 2017; 5
Shi (D1TA04504K/cit377) 2019; 784
Basu (D1TA04504K/cit244) 2008; 92
Puli (D1TA04504K/cit187) 2016; 688
Yang (D1TA04504K/cit282) 2021; 15
Wu (D1TA04504K/cit16) 2018; 50
Su (D1TA04504K/cit100) 2014; 2
Wang (D1TA04504K/cit361) 2021; 47
Yao (D1TA04504K/cit473) 2020; 47
Zhu (D1TA04504K/cit257) 2019; 45
Webber (D1TA04504K/cit300) 2017; 26
Yan (D1TA04504K/cit413) 2020; 8
Xie (D1TA04504K/cit356) 2018; 29
Wang (D1TA04504K/cit354) 2019; 45
Wang (D1TA04504K/cit202) 2017; 201
Wang (D1TA04504K/cit194) 2015; 41
Li (D1TA04504K/cit20) 2015; 523
Yang (D1TA04504K/cit126) 2019; 7
Yang (D1TA04504K/cit142) 2018; 6
Wang (D1TA04504K/cit148) 2012; 112
Haertling (D1TA04504K/cit71) 1999; 82
Zhang (D1TA04504K/cit181) 2016; 28
Ahn (D1TA04504K/cit287) 1987; 70
Hreščak (D1TA04504K/cit294) 2017; 37
Li (D1TA04504K/cit219) 2018; 1
Li (D1TA04504K/cit8) 2016; 113
Zuo (D1TA04504K/cit442) 2018; 161
Shi (D1TA04504K/cit455) 2020; 8
Zhang (D1TA04504K/cit28) 2016; 28
Malik (D1TA04504K/cit393) 2018; 38
Wang (D1TA04504K/cit341) 2014; 40
Xu (D1TA04504K/cit346) 2017; 37
Yang (D1TA04504K/cit60) 2020; 8
Yang (D1TA04504K/cit318) 2015; 35
Dong (D1TA04504K/cit458) 2021; 47
EU-Directive 2002/96/EC (D1TA04504K/cit35) 2003; 46
Li (D1TA04504K/cit217) 2017; 5
Zhang (D1TA04504K/cit384) 2021; 406
Palneedi (D1TA04504K/cit61) 2021
Wang (D1TA04504K/cit340) 2014; 585
Han (D1TA04504K/cit321) 2019; 7
Zhang (D1TA04504K/cit395) 2018; 38
Li (D1TA04504K/cit211) 2018; 38
Li (D1TA04504K/cit218) 2020; 46
Zhao (D1TA04504K/cit431) 2016; 4
Pardo (D1TA04504K/cit448) 2012; 22
Hiruma (D1TA04504K/cit332) 2007; 346
Fan (D1TA04504K/cit404) 2020; 8
Wang (D1TA04504K/cit265) 2019; 08
Dong (D1TA04504K/cit225) 2020; 31
Lu (D1TA04504K/cit271) 2020; 13
Qu (D1TA04504K/cit280) 2016; 4
Luo (D1TA04504K/cit173) 2017; 9
Cui (D1TA04504K/cit151) 2017; 711
Ma (D1TA04504K/cit378) 2019; 7
Yan (D1TA04504K/cit428) 2019; 7
Kwei (D1TA04504K/cit175) 1993; 97
Yip (D1TA04504K/cit303) 1998; 391
Xue (D1TA04504K/cit29) 2014; 40
Yan (D1TA04504K/cit150) 2018; 6
Lu (D1TA04504K/cit14) 2020; 70
Yin (D1TA04504K/cit389) 2018; 6
Yadav (D1TA04504K/cit391) 2020; 46
Yang (D1TA04504K/cit467) 2020; 12
Lundstrom (D1TA04504K/cit105) 1999; 2
Leontsev (D1TA04504K/cit266) 2009; 92
Chen (D1TA04504K/cit65) 2020; 17
Wang (D1TA04504K/cit43) 2014; 137
Luo (D1TA04504K/cit68) 2019; 48
Xu (D1TA04504K/cit324) 2015; 35
Song (D1TA04504K/cit88) 2014; 34
Yang (D1TA04504K/cit154) 2017; 111
Kang (D1TA04504K/cit392) 2021; 410
Zhang (D1TA04504K/cit310) 2020; 8
Moya (D1TA04504K/cit178) 2013; 25
Tang (D1TA04504K/cit3) 2013; 3
Qi (D1TA04504K/cit464) 2019; 39
Puli (D1TA04504K/cit185) 2014; 584
Wei (D1TA04504K/cit468) 2021; 47
Dunn (D1TA04504K/cit5) 2011; 334
Owate (D1TA04504K/cit84) 1992; 72
Park (D1TA04504K/cit327) 1994; 77
Lu (D1TA04504K/cit444) 2018; 38
Malic (D1TA04504K/cit285) 2005; 314
Viehland (D1TA04504K/cit469) 1990; 68
Zhang (D1TA04504K/cit171) 2021; 41
Li (D1TA04504K/cit54) 2018; 08
Zhao (D1TA04504K/cit221) 2017; 43
Gao (D1TA04504K/cit42) 2011; 94
Zhou (D1TA04504K/cit224) 2019; 45
Tang (D1TA04504K/cit269) 2021; 47
Yang (D1TA04504K/cit357) 2019; 39
Kandula (D1TA04504K/cit360) 2018; 215
Ahmed (D1TA04504K/cit90) 2005; 25
Kittel (D1TA04504K/cit82) 1951; 82
Yao (D1TA04504K/cit58) 2017; 29
Liu (D1TA04504K/cit316) 2019; 7
Zuo (D1TA04504K/cit445) 2017; 111
Acosta (D1TA04504K/cit77) 2017; 4
Li (D1TA04504K/cit375) 2020; 392
Chai (D1TA04504K/cit309) 2018; 101
Hiruma (D1TA04504K/cit373) 2008; 92
Qiu (D1TA04504K/cit233) 2019; 797
Yoshimura (D1TA04504K/cit239) 1996; 281
Qi (D1TA04504K/cit250) 2020; 10
Badapanda (D1TA04504K/cit183) 2017; 521
McPherson (D1TA04504K/cit132) 2003; 50
Beauchamp (D1TA04504K/cit93) 1971; 54
Kang (D1TA04504K/cit2) 2009; 458
Gao (D1TA04504K/cit440) 2016; 120
Qi (D1TA04504K/cit403) 2019; 7
Kumar (D1TA04504K/cit292) 2017; 723
Badapanda (D1TA04504K/cit193) 2015; 645
Bhattacharjee (D1TA04504K/cit264) 2007; 91
Yu (D1TA04504K/cit396) 2020; 46
Yao (D1TA04504K/cit49) 2020; 12
Parija (D1TA04504K/cit328) 2012; 24
Wu (D1TA04504K/cit196) 2013; 24
Zhao (D1TA04504K/cit209) 2019; 9
Hao (D1TA04504K/cit81) 2014; 63
Zhou (D1TA04504K/cit222) 2018; 6
Bi (D1TA04504K/cit158) 2020; 821
Yu (D1TA04504K/cit191) 2013; 39
Ravindran (D1TA04504K/cit241) 2006; 74
Tian (D1TA04504K/cit419) 2017; 5
Tao (D1TA04504K/cit365) 2018; 38
Wang (D1TA04504K/cit254) 2018; 6
Beuerlein (D1TA04504K/cit205) 2016; 99
Lin (D1TA04504K/cit129) 2019; 11
Cao (D1TA04504K/cit342) 2015; 3
Li (D1TA04504K/cit47) 2020; 19
Wu (D1TA04504K/cit243) 2016; 84
Pu (D1TA04504K/cit388) 2018; 6
Si (D1TA04504K/cit223) 2019; 45
Shimizu (D1TA04504K/cit438) 2015; 44
Liu (D1TA04504K/cit320) 2018; 38
Tao (D1TA04504K/cit312) 2017; 28
Han (D1TA04504K/cit423) 2019; 45
Chen (D1TA04504K/cit307) 2020; 40
Wang (D1TA04504K/cit207) 2015; 98
Yang (D1TA04504K/cit253) 2019; 39
Yang (D1TA04504K/cit115) 2020; 12
Bian (D1TA04504K/cit463) 2019; 39
Dummer (D1TA04504K/cit10) 1978
Liu (D1TA04504K/cit249) 2018; 101
Xu (D1TA04504K/cit422) 2018; 6
Xu (D1TA04504K/cit242) 2017; 8
Lv (D1TA04504K/cit275) 2020; 49
Malic (D1TA04504K/cit295) 2008; 28
Jain (D1TA04504K/cit235) 2020; 53
Qi (D1TA04504K/cit108) 2004; 20
Sangwan (D1TA04504K/cit184) 2018; 117
Jo (D1TA04504K/cit336) 2011; 110
Raevski (D1TA04504K/cit450) 2002; 626
Kim (D1TA04504K/cit86) 2016; 120
Zhang (D1TA04504K/cit398) 2020; 383
Yoshimura (D1TA04504K/cit85) 1981; 64
Triamnak (D1TA04504K/cit206) 2013; 96
Xu (D1TA04504K/cit344) 2016; 42
Kang (D1TA04504K/cit130) 2021; 13
Puli (D1TA04504K/cit186) 2012; 48
Lin (D1TA04504K/cit289) 2019; 7
Wei (D1TA04504K/cit228) 2017; 43
Zhang (D1TA04504K/cit198) 2010; 7
Kong (D1TA04504K/cit140) 2019; 103
Dakin (D1TA04504K/cit112) 2006; 22
Zhou (D1TA04504K/cit348) 2019; 39
Wang (D1TA04504K/cit74) 2018; 44
Yang (D1TA04504K/cit146) 2017; 111
Zhang (D1TA04504K/cit161) 2012
Luo (D1TA04504K/cit412) 2013; 49
Cross (D1TA04504K/cit435) 2009; 46
Li (D1TA04504K/cit23) 2008; 20
Touzin (D1TA04504K/cit32) 2007; 27
Wang (D1TA04504K/cit189) 2012; 32
Zheng (D1TA04504K/cit246) 2015; 98
Ravel (D1TA04504K/cit174) 1998; 206
He (D1TA04504K/cit370) 2020; 8
Gao (D1TA04504K/cit255) 2019; 39
Wang (D1TA04504K/cit273) 2020; 8
Liu (D1TA04504K/cit231) 2020; 826
Sun (D1TA04504K/cit188) 2017; 46
Liu (D1TA04504K/cit213) 2019; 45
Li (D1TA04504K/cit39) 2018; 30
Pan (D1TA04504K/cit62) 2020; 12
Guo (D1TA04504K/cit64) 2019; 29
Yang (D1TA04504K/cit48) 2019; 102
Jayakrishnan (D1TA04504K/cit179) 2019; 45
Cross (D1TA04504K/cit80) 1994; 151
Guo (D1TA04504K/cit439) 2015; 118
Ye (D1TA04504K/cit459) 2019; 7
Shen (D1TA04504K/cit226) 2015; 3
Zhou (D1TA04504K/cit451) 2020; 4
Gupta (D1TA04504K/cit297) 2018; 143
Yuan (D1TA04504K/cit259) 2007; 40
Hao (D1TA04504K/cit53) 2013; 03
Zheng (D1TA04504K/cit247) 2017; 37
Liu (D1TA04504K/cit369) 2020; 6
Du (D1TA04504K/cit63) 2018; 33
Wang (D1TA04504K/cit368) 2017; 43
Yuzyuk (D1TA04504K/cit434) 2005; 17
Yang (D1TA04504K/cit18) 2019; 7
Musil (D1TA04504K/cit109) 1995; 11
Park (D1TA04504K/cit372) 1997; 12
Liu (D1TA04504K/cit176) 2009; 103
Cai (D1TA04504K/cit95) 2018; 101
Benyoussef (D1TA04504K/cit329) 2018; 44
Yadav (D1TA04504K/cit353) 2020; 46
Lu (D1TA04504K/cit447) 20
References_xml – issn: 2021
  end-page: p 279-356
  publication-title: Lead-based and lead-free ferroelectric ceramic capacitors for electrical energy storage. Ferroelectric Materials for Energy Harvesting and Storage
  doi: Palneedi Peddigari Upadhyay Silva Hwang Ryu
– issn: 2013
  volume-title: An introduction to high voltage engineering
  publication-title: PHI Learning Pvt. Ltd
  doi: Ray
– issn: 2020-2025
  publication-title: Global and China Multi-Layer Ceramic Capacitor (MLCC) Industry Report
– volume: 385
  start-page: 6155
  year: 2009
  ident: D1TA04504K/cit268
  publication-title: Ferroelectrics
  doi: 10.1080/00150190902889267
– volume: 523
  start-page: 576
  year: 2015
  ident: D1TA04504K/cit20
  publication-title: Nature
  doi: 10.1038/nature14647
– volume: 46
  start-page: 25731
  year: 2020
  ident: D1TA04504K/cit454
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.07.050
– volume: 640
  start-page: 416
  year: 2015
  ident: D1TA04504K/cit37
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2015.02.225
– volume: 45
  start-page: 5808
  year: 2019
  ident: D1TA04504K/cit179
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2018.11.250
– volume: 101
  start-page: 1999
  year: 2018
  ident: D1TA04504K/cit170
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.15371
– volume: 7
  start-page: 6222
  year: 2019
  ident: D1TA04504K/cit382
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC01239G
– volume: 08
  start-page: 1830005
  year: 2018
  ident: D1TA04504K/cit54
  publication-title: J. Adv. Dielectr.
  doi: 10.1142/S2010135X18300050
– volume: 9
  start-page: 20484
  year: 2017
  ident: D1TA04504K/cit36
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b02225
– volume: 101
  start-page: 5578
  year: 2018
  ident: D1TA04504K/cit385
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.15870
– volume: 60
  start-page: 165
  year: 1996
  ident: D1TA04504K/cit11
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(96)80006-1
– volume: 420
  start-page: 129900
  year: 2021
  ident: D1TA04504K/cit127
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.129900
– volume: 82
  start-page: 729
  year: 1951
  ident: D1TA04504K/cit82
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.82.729
– volume: 6
  start-page: 8528
  year: 2018
  ident: D1TA04504K/cit222
  publication-title: J. mater. Chem. C
  doi: 10.1039/C8TC03003K
– volume: 38
  start-page: 3127
  year: 2018
  ident: D1TA04504K/cit444
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2018.03.026
– volume: 92
  start-page: 142909
  year: 2008
  ident: D1TA04504K/cit19
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2903115
– volume: 101
  start-page: 2305
  year: 2018
  ident: D1TA04504K/cit288
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.15389
– volume: 8
  start-page: 5681
  year: 2020
  ident: D1TA04504K/cit404
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D0TC00589D
– volume: 50
  start-page: 1771
  year: 2003
  ident: D1TA04504K/cit132
  publication-title: IEEE Trans. Electron. Devices
  doi: 10.1109/TED.2003.815141
– volume: 12
  start-page: 1221
  year: 2008
  ident: D1TA04504K/cit7
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2007.01.023
– volume: 39
  start-page: S335
  year: 2013
  ident: D1TA04504K/cit191
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2012.10.089
– volume: 36
  start-page: 81
  year: 2016
  ident: D1TA04504K/cit349
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2015.09.029
– volume: 784
  start-page: 788
  year: 2019
  ident: D1TA04504K/cit377
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.01.077
– volume: 5
  start-page: 19607
  year: 2017
  ident: D1TA04504K/cit217
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA05392D
– volume: 5
  start-page: 385
  year: 2019
  ident: D1TA04504K/cit394
  publication-title: J. Materiomics
  doi: 10.1016/j.jmat.2019.03.006
– volume: 44
  start-page: 10367
  year: 2018
  ident: D1TA04504K/cit141
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2018.03.049
– volume: 24
  start-page: 4105
  year: 2013
  ident: D1TA04504K/cit196
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 6
  start-page: 12755
  year: 2018
  ident: D1TA04504K/cit465
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b01926
– volume: 7
  start-page: 15118
  year: 2019
  ident: D1TA04504K/cit66
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC05253D
– volume: 314
  start-page: 149
  year: 2005
  ident: D1TA04504K/cit285
  publication-title: Ferroelectrics
  doi: 10.1080/00150190590926373
– volume: 406
  start-page: 127151
  year: 2021
  ident: D1TA04504K/cit381
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.127151
– volume: 11
  start-page: 4824
  year: 2020
  ident: D1TA04504K/cit322
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18665-5
– volume: 64
  start-page: 747
  year: 1951
  ident: D1TA04504K/cit302
  publication-title: Proc. Phys. Soc., London, Sect. B.
  doi: 10.1088/0370-1301/64/9/303
– volume: 22
  start-page: 11
  year: 2006
  ident: D1TA04504K/cit112
  publication-title: IEEE Electr. Insul. Mag.
  doi: 10.1109/MEI.2006.1705854
– volume: 72
  start-page: 2418
  year: 1992
  ident: D1TA04504K/cit84
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.351586
– volume: 46
  start-page: 24
  issue: L37
  year: 2003
  ident: D1TA04504K/cit34
  publication-title: Off. J. Eur. Union
– volume: 08
  start-page: 1830004
  year: 2019
  ident: D1TA04504K/cit265
  publication-title: J. Adv. Dielectr.
  doi: 10.1142/S2010135X18300049
– volume: 38
  start-page: 2304
  year: 2018
  ident: D1TA04504K/cit395
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2017.11.053
– volume: 7
  start-page: 87
  year: 1974
  ident: D1TA04504K/cit433
  publication-title: Ferroelectrics
  doi: 10.1080/00150197408237956
– volume: 12
  start-page: 17165
  year: 2020
  ident: D1TA04504K/cit49
  publication-title: Nanoscale
  doi: 10.1039/D0NR04479B
– volume: 2
  start-page: 1286
  year: 2010
  ident: D1TA04504K/cit25
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am100146u
– volume: 43
  start-page: 4768
  year: 2017
  ident: D1TA04504K/cit227
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2016.11.148
– volume: 38
  start-page: 5388
  year: 2018
  ident: D1TA04504K/cit401
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2018.08.010
– volume: 12
  start-page: 1688
  year: 2016
  ident: D1TA04504K/cit12
  publication-title: Small
  doi: 10.1002/smll.201503193
– volume: 7
  start-page: 14118
  year: 2019
  ident: D1TA04504K/cit420
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA02053E
– volume-title: Global and China Multi-Layer Ceramic Capacitor (MLCC) Industry Report
  year: 2020–2025
  ident: D1TA04504K/cit33
– volume: 47
  start-page: 3713
  year: 2021
  ident: D1TA04504K/cit468
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.09.228
– volume: 12
  start-page: 2152
  year: 1997
  ident: D1TA04504K/cit372
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.1997.0288
– volume: 39
  start-page: 1142
  year: 2019
  ident: D1TA04504K/cit94
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2018.11.034
– volume: 38
  start-page: 2511
  year: 2018
  ident: D1TA04504K/cit393
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2018.01.010
– volume: 137
  start-page: 79
  year: 2014
  ident: D1TA04504K/cit43
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2014.08.133
– volume: 7
  start-page: 281
  year: 2019
  ident: D1TA04504K/cit378
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC04447C
– volume: 112
  start-page: 044106
  year: 2012
  ident: D1TA04504K/cit148
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4747937
– volume: 72
  start-page: 160
  year: 2012
  ident: D1TA04504K/cit261
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2011.12.119
– volume: 39
  start-page: 2331
  year: 2019
  ident: D1TA04504K/cit255
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2019.02.009
– volume: 2
  start-page: 3717
  year: 2020
  ident: D1TA04504K/cit308
  publication-title: ACS Appl. Electron. Mater.
  doi: 10.1021/acsaelm.0c00745
– volume: 8
  start-page: 1999
  year: 2017
  ident: D1TA04504K/cit122
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02040-y
– volume: 723
  start-page: 589
  year: 2017
  ident: D1TA04504K/cit292
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.06.252
– volume: 48
  start-page: 10160
  year: 2019
  ident: D1TA04504K/cit400
  publication-title: Dalton Trans.
  doi: 10.1039/C9DT01738K
– volume: 44
  start-page: 19451
  year: 2018
  ident: D1TA04504K/cit329
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2018.07.182
– volume: 7
  start-page: 27256
  year: 2019
  ident: D1TA04504K/cit126
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA11314B
– volume: 206
  start-page: 407
  year: 1998
  ident: D1TA04504K/cit174
  publication-title: Ferroelectrics
  doi: 10.1080/00150199808009173
– volume: 821
  start-page: 153196
  year: 2020
  ident: D1TA04504K/cit158
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.153196
– volume: 29
  start-page: 1903877
  year: 2019
  ident: D1TA04504K/cit46
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201903877
– volume: 281
  start-page: 235
  year: 1996
  ident: D1TA04504K/cit239
  publication-title: Thin Solid Films
  doi: 10.1016/0040-6090(96)08640-3
– volume: 458
  start-page: 190
  year: 2009
  ident: D1TA04504K/cit2
  publication-title: Nature
  doi: 10.1038/nature07853
– volume: 7
  start-page: 4072
  year: 2019
  ident: D1TA04504K/cit386
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC00087A
– volume: 30
  start-page: 392
  year: 2020
  ident: D1TA04504K/cit374
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.05.026
– volume: 44
  start-page: 5492
  year: 2018
  ident: D1TA04504K/cit447
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2017.12.188
– volume: 40
  start-page: 4759
  year: 2014
  ident: D1TA04504K/cit267
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2013.09.020
– volume: 25
  start-page: 2813
  year: 2005
  ident: D1TA04504K/cit90
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2005.03.146
– volume: 12
  start-page: 43942
  year: 2020
  ident: D1TA04504K/cit115
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c13057
– volume: 28
  start-page: 1803665
  year: 2018
  ident: D1TA04504K/cit57
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201803665
– volume: 49
  start-page: 671
  year: 2020
  ident: D1TA04504K/cit275
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00432G
– volume: 23
  start-page: 187
  year: 2011
  ident: D1TA04504K/cit164
  publication-title: Ferroelectrics
  doi: 10.1080/00150198008018801
– volume: 3
  start-page: 451
  year: 2013
  ident: D1TA04504K/cit3
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201200808
– volume: 744
  start-page: 721
  year: 2018
  ident: D1TA04504K/cit230
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.01.276
– volume: 46
  start-page: 21719
  year: 2020
  ident: D1TA04504K/cit157
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.05.280
– volume: 44
  start-page: 5961
  year: 2018
  ident: D1TA04504K/cit364
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2017.12.174
– volume: 3
  start-page: 1198
  year: 2015
  ident: D1TA04504K/cit342
  publication-title: Energy Technol.
  doi: 10.1002/ente.201500173
– volume: 31
  start-page: 9974
  year: 2020
  ident: D1TA04504K/cit347
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 3
  start-page: 1800111
  year: 2018
  ident: D1TA04504K/cit56
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201800111
– volume: 18
  start-page: 37
  year: 1967
  ident: D1TA04504K/cit168
  publication-title: Br. J. Appl. Phys.
  doi: 10.1088/0508-3443/18/1/308
– volume: 29
  start-page: 49
  year: 2019
  ident: D1TA04504K/cit64
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2019.04.015
– volume: 5
  start-page: 10215
  year: 2017
  ident: D1TA04504K/cit153
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.7b02203
– volume: 406
  start-page: 126818
  year: 2021
  ident: D1TA04504K/cit384
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126818
– volume: 36
  start-page: 2011
  year: 2010
  ident: D1TA04504K/cit107
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2010.05.009
– volume: 8
  start-page: 2258
  year: 2020
  ident: D1TA04504K/cit17
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC06218A
– volume: 28
  start-page: 8519
  year: 2016
  ident: D1TA04504K/cit277
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601859
– volume: 521
  start-page: 264
  year: 2017
  ident: D1TA04504K/cit183
  publication-title: Phys. B: Condens. Matter
  doi: 10.1016/j.physb.2017.07.013
– volume: 58
  start-page: 768
  year: 2019
  ident: D1TA04504K/cit304
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.02.003
– volume: 39
  start-page: 3703
  year: 2019
  ident: D1TA04504K/cit464
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2019.05.043
– volume: 4
  start-page: 17279
  year: 2016
  ident: D1TA04504K/cit415
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA06353E
– volume: 34
  start-page: 1755
  year: 2014
  ident: D1TA04504K/cit135
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2014.01.015
– volume: 8
  start-page: 8009
  year: 2015
  ident: D1TA04504K/cit51
  publication-title: Materials
  doi: 10.3390/ma8125439
– volume: 2
  start-page: 1489
  year: 1999
  ident: D1TA04504K/cit105
  publication-title: 12th IEEE International Pulsed Power Conference
– volume: 27
  start-page: 1193
  year: 2007
  ident: D1TA04504K/cit32
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2006.05.047
– volume: 6
  start-page: 4477
  year: 2018
  ident: D1TA04504K/cit101
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA10821D
– volume: 46
  start-page: 28652
  year: 2020
  ident: D1TA04504K/cit396
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.08.024
– volume: 237
  start-page: 278
  year: 2019
  ident: D1TA04504K/cit427
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2018.11.105
– volume: 53
  start-page: 235301
  year: 2020
  ident: D1TA04504K/cit235
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/1361-6463/ab7bb1
– volume: 101
  start-page: 132906
  year: 2012
  ident: D1TA04504K/cit87
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4755841
– volume: 98
  start-page: 1175
  year: 2015
  ident: D1TA04504K/cit317
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.13412
– volume: 52
  start-page: 165304
  year: 2019
  ident: D1TA04504K/cit443
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/1361-6463/aaff41
– volume-title: PHI Learning Pvt. Ltd
  year: 2013
  ident: D1TA04504K/cit163
– volume: 82
  start-page: 797
  year: 1999
  ident: D1TA04504K/cit71
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1999.tb01840.x
– volume: 8
  start-page: 14985
  year: 2020
  ident: D1TA04504K/cit456
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.0c05265
– volume: 204
  start-page: 19
  year: 2015
  ident: D1TA04504K/cit367
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2014.12.004
– volume: 69
  start-page: 127703
  year: 2020
  ident: D1TA04504K/cit306
  publication-title: Acta Phys. Sin.
  doi: 10.7498/aps.69.20200213
– volume: 8
  start-page: 8352
  year: 2020
  ident: D1TA04504K/cit462
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA02285C
– volume: 56
  start-page: 1
  year: 2019
  ident: D1TA04504K/cit52
  publication-title: J. Korean Ceram. Soc.
  doi: 10.4191/kcers.2019.56.1.02
– volume: 365
  start-page: 578
  year: 2019
  ident: D1TA04504K/cit133
  publication-title: Science
  doi: 10.1126/science.aaw8109
– volume: 45
  start-page: 17580
  year: 2019
  ident: D1TA04504K/cit223
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.05.323
– volume: 4
  start-page: 1225
  year: 2020
  ident: D1TA04504K/cit451
  publication-title: Sustainable Energy Fuels.
  doi: 10.1039/C9SE00836E
– volume: 11
  start-page: 274
  year: 1959
  ident: D1TA04504K/cit134
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/0022-3697(59)90226-4
– volume: 40
  start-page: 56
  year: 2020
  ident: D1TA04504K/cit429
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2019.09.022
– volume: 37
  start-page: 413
  year: 2017
  ident: D1TA04504K/cit247
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2016.08.021
– volume: 803
  start-page: 185
  year: 2019
  ident: D1TA04504K/cit248
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.05.367
– volume: 59
  start-page: 1894
  year: 2012
  ident: D1TA04504K/cit38
  publication-title: IEEE Trans. Ultrason., Ferroelect., Freq. Contr.
  doi: 10.1109/TUFFC.2012.2403
– volume: 47
  start-page: 2869
  year: 2021
  ident: D1TA04504K/cit366
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.08.293
– volume: 43
  start-page: L1072
  year: 2004
  ident: D1TA04504K/cit291
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.43.L1072
– volume: 42
  start-page: 9728
  year: 2016
  ident: D1TA04504K/cit344
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2016.03.062
– volume: 8
  start-page: 15682
  year: 2017
  ident: D1TA04504K/cit242
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15682
– volume: 7
  start-page: 7885
  year: 2019
  ident: D1TA04504K/cit290
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC01356C
– volume: 28
  start-page: 16199
  year: 2017
  ident: D1TA04504K/cit312
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 12
  start-page: 19582
  year: 2020
  ident: D1TA04504K/cit62
  publication-title: Nanoscale
  doi: 10.1039/D0NR05709F
– volume: 19
  start-page: 999
  year: 2020
  ident: D1TA04504K/cit47
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-0704-x
– volume: 10
  start-page: 1903338
  year: 2020
  ident: D1TA04504K/cit250
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903338
– volume: 43
  start-page: 223
  year: 2007
  ident: D1TA04504K/cit22
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2006.887682
– volume: 88
  start-page: 5166
  year: 2000
  ident: D1TA04504K/cit238
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1313784
– volume: 38
  start-page: 2312
  year: 2018
  ident: D1TA04504K/cit31
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2018.01.003
– volume: 6
  start-page: 743
  year: 2020
  ident: D1TA04504K/cit376
  publication-title: J. Materiomics
  doi: 10.1016/j.jmat.2020.06.005
– volume: 121
  start-page: 054103
  year: 2017
  ident: D1TA04504K/cit379
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4975409
– volume: 39
  start-page: 2339
  year: 2019
  ident: D1TA04504K/cit463
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2019.02.007
– volume: 117
  start-page: 212902
  year: 2020
  ident: D1TA04504K/cit97
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0027405
– volume: 110
  start-page: 074106
  year: 2011
  ident: D1TA04504K/cit336
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3645054
– volume: 101
  start-page: 2321
  year: 2018
  ident: D1TA04504K/cit309
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.15392
– volume: 74
  start-page: 3044
  year: 1999
  ident: D1TA04504K/cit149
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.124059
– volume: 5
  start-page: 9552
  year: 2017
  ident: D1TA04504K/cit220
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC02478A
– volume: 28
  start-page: 514
  year: 2016
  ident: D1TA04504K/cit181
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 13
  start-page: 25143
  year: 2021
  ident: D1TA04504K/cit130
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c05824
– volume: 7
  start-page: 3971
  year: 2019
  ident: D1TA04504K/cit403
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA12232F
– volume: 821
  start-page: 153260
  year: 2020
  ident: D1TA04504K/cit430
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.153260
– volume: 383
  start-page: 123154
  year: 2020
  ident: D1TA04504K/cit398
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123154
– volume: 24
  start-page: 402
  year: 2012
  ident: D1TA04504K/cit328
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 26
  start-page: 2726
  year: 2015
  ident: D1TA04504K/cit137
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 46
  start-page: 453
  year: 2009
  ident: D1TA04504K/cit435
  publication-title: London, Edinburgh Dublin Philos. Mag. J. Sci.
  doi: 10.1080/14786440508520582
– volume: 775
  start-page: 342
  year: 2019
  ident: D1TA04504K/cit387
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.10.025
– volume: 8
  start-page: 683
  year: 2020
  ident: D1TA04504K/cit380
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA10347C
– volume: 13
  start-page: 4882
  year: 2020
  ident: D1TA04504K/cit118
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE03094E
– volume: 28
  start-page: 1801504
  year: 2018
  ident: D1TA04504K/cit79
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201801504
– volume: 6
  start-page: 14273
  year: 2016
  ident: D1TA04504K/cit212
  publication-title: RSC Adv.
  doi: 10.1039/C5RA21261H
– volume: 201
  start-page: 203
  year: 2017
  ident: D1TA04504K/cit202
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2017.05.007
– volume: 46
  start-page: 3426
  year: 2020
  ident: D1TA04504K/cit218
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.10.055
– volume: 6
  start-page: 677
  year: 2020
  ident: D1TA04504K/cit369
  publication-title: J. Materiomics
  doi: 10.1016/j.jmat.2020.05.005
– volume: 42
  start-page: 2221
  year: 2016
  ident: D1TA04504K/cit345
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2015.10.014
– volume: 398
  start-page: 125639
  year: 2020
  ident: D1TA04504K/cit406
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125639
– volume: 40
  start-page: 2936
  year: 2020
  ident: D1TA04504K/cit307
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2020.03.003
– volume: 410
  start-page: 128376
  year: 2021
  ident: D1TA04504K/cit392
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.128376
– volume: 8
  start-page: 3784
  year: 2020
  ident: D1TA04504K/cit455
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC06711F
– volume: 30
  start-page: 1650
  year: 1959
  ident: D1TA04504K/cit91
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1735030
– volume: 103
  start-page: 257602
  year: 2009
  ident: D1TA04504K/cit176
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.257602
– volume: 101
  start-page: 3259
  year: 2018
  ident: D1TA04504K/cit249
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.15546
– volume: 12
  start-page: 582
  year: 2019
  ident: D1TA04504K/cit272
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE03287D
– volume: 3
  start-page: 91
  year: 2004
  ident: D1TA04504K/cit177
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1051
– volume: 40
  start-page: 71
  year: 2020
  ident: D1TA04504K/cit397
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2019.09.001
– volume: 44
  start-page: 10968
  year: 2018
  ident: D1TA04504K/cit383
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2018.03.176
– volume: 32
  start-page: 559
  year: 2012
  ident: D1TA04504K/cit189
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2011.09.024
– volume: 1
  start-page: 5016
  year: 2018
  ident: D1TA04504K/cit219
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b01001
– volume: 6
  start-page: 7905
  year: 2018
  ident: D1TA04504K/cit150
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC02368A
– volume: 55
  start-page: 14728
  year: 2020
  ident: D1TA04504K/cit355
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-020-05070-y
– volume: 46
  start-page: 19
  issue: L37
  year: 2003
  ident: D1TA04504K/cit35
  publication-title: Off. J. Eur. Union
– volume: 47
  start-page: 7429
  year: 2018
  ident: D1TA04504K/cit73
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-018-6683-x
– volume: 1
  start-page: 313
  year: 2013
  ident: D1TA04504K/cit76
  publication-title: Energy Technol.
  doi: 10.1002/ente.201300031
– volume: 7
  start-page: 19374
  year: 2019
  ident: D1TA04504K/cit289
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA05936A
– volume: 26
  start-page: 063001
  year: 2017
  ident: D1TA04504K/cit300
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aa590c
– volume: 42
  start-page: 6110
  year: 2003
  ident: D1TA04504K/cit437
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.42.6110
– volume: 7
  start-page: 780
  year: 2020
  ident: D1TA04504K/cit311
  publication-title: J. Materiomics
  doi: 10.1016/j.jmat.2020.12.009
– volume: 96
  start-page: 1209
  year: 2013
  ident: D1TA04504K/cit75
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.12184
– volume: 97
  start-page: 1
  year: 2014
  ident: D1TA04504K/cit72
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.12773
– volume: 82
  start-page: 104112
  year: 2010
  ident: D1TA04504K/cit335
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.82.104112
– volume: 201
  start-page: 108501
  year: 2021
  ident: D1TA04504K/cit160
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2020.108501
– volume: 48
  start-page: 853
  year: 1983
  ident: D1TA04504K/cit471
  publication-title: Solid State Commun.
  doi: 10.1016/0038-1098(83)90132-1
– volume: 28
  start-page: 1191
  year: 2008
  ident: D1TA04504K/cit295
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2007.11.004
– volume: 7
  start-page: 4999
  year: 2019
  ident: D1TA04504K/cit120
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC06549G
– start-page: 279
  volume-title: Lead-based and lead-free ferroelectric ceramic capacitors for electrical energy storage. Ferroelectric Materials for Energy Harvesting and Storage
  year: 2021
  ident: D1TA04504K/cit61
  doi: 10.1016/B978-0-08-102802-5.00009-1
– volume: 398
  start-page: 125625
  year: 2020
  ident: D1TA04504K/cit236
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125625
– volume: 84
  start-page: 335
  year: 2016
  ident: D1TA04504K/cit243
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2016.09.001
– start-page: 1
  year: 2012
  ident: D1TA04504K/cit161
  publication-title: Proceedings of ISAF-ECAPD-PFM
– volume: 39
  start-page: 4053
  year: 2019
  ident: D1TA04504K/cit348
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2019.05.056
– volume: 38
  start-page: 147
  year: 2012
  ident: D1TA04504K/cit284
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2011.06.049
– volume: 830
  start-page: 154611
  year: 2020
  ident: D1TA04504K/cit138
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.154611
– volume: 45
  start-page: 20427
  year: 2019
  ident: D1TA04504K/cit363
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.07.019
– volume: 35
  start-page: 545
  year: 2015
  ident: D1TA04504K/cit324
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2014.09.003
– volume: 40
  start-page: 7495
  year: 2014
  ident: D1TA04504K/cit29
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2013.12.100
– volume: 815
  start-page: 152356
  year: 2020
  ident: D1TA04504K/cit453
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.152356
– volume: 7
  start-page: 5639
  year: 2019
  ident: D1TA04504K/cit459
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC01414D
– volume: 46
  start-page: 281
  year: 2020
  ident: D1TA04504K/cit359
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.08.261
– volume: 87
  start-page: 217601
  year: 2001
  ident: D1TA04504K/cit113
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.217601
– volume: 41
  start-page: 2533
  year: 2021
  ident: D1TA04504K/cit96
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2020.11.051
– volume: 99
  start-page: 2849
  year: 2016
  ident: D1TA04504K/cit205
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.14472
– volume: 9
  start-page: 1803048
  year: 2019
  ident: D1TA04504K/cit209
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201803048
– volume: 10
  start-page: 528
  year: 2017
  ident: D1TA04504K/cit276
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE03597C
– volume: 41
  start-page: 352
  year: 2021
  ident: D1TA04504K/cit171
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2020.09.017
– volume: 740
  start-page: 1180
  year: 2018
  ident: D1TA04504K/cit143
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.01.106
– volume: 688
  start-page: 687
  year: 2016
  ident: D1TA04504K/cit166
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2016.07.078
– volume: 510
  start-page: 8
  year: 2017
  ident: D1TA04504K/cit229
  publication-title: Ferroelectrics
  doi: 10.1080/00150193.2017.1325709
– volume: 76
  start-page: 241
  year: 1987
  ident: D1TA04504K/cit470
  publication-title: Ferroelectrics
  doi: 10.1080/00150198708016945
– volume: 40
  start-page: 5466
  year: 2020
  ident: D1TA04504K/cit315
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2020.06.048
– volume: 17
  start-page: 340
  year: 2010
  ident: D1TA04504K/cit286
  publication-title: Int. J. Miner., Metall. Mater.
  doi: 10.1007/s12613-010-0316-6
– volume: 113
  start-page: 9995
  year: 2016
  ident: D1TA04504K/cit8
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1603792113
– volume: 101
  start-page: 5487
  year: 2018
  ident: D1TA04504K/cit95
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.15803
– volume: 9
  start-page: 1803411
  year: 2019
  ident: D1TA04504K/cit27
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201803411
– volume: 74
  start-page: 224412
  year: 2006
  ident: D1TA04504K/cit241
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.74.224412
– volume: 11
  start-page: 21
  year: 1995
  ident: D1TA04504K/cit109
  publication-title: IEEE Electr. Insul. Mag.
  doi: 10.1109/57.342041
– volume: 46
  start-page: 14341
  year: 2017
  ident: D1TA04504K/cit188
  publication-title: Dalton Trans.
  doi: 10.1039/C7DT03140H
– volume: 8
  start-page: 2411
  year: 2020
  ident: D1TA04504K/cit370
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC04864B
– volume: 97
  start-page: 2368
  year: 1993
  ident: D1TA04504K/cit175
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100112a043
– volume: 38
  start-page: 4946
  year: 2018
  ident: D1TA04504K/cit365
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2018.07.006
– volume: 40
  start-page: 2357
  year: 2020
  ident: D1TA04504K/cit313
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2020.01.050
– volume: 836
  start-page: 154961
  year: 2020
  ident: D1TA04504K/cit410
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.154961
– volume: 23
  start-page: 5261
  year: 2013
  ident: D1TA04504K/cit337
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201300640
– volume: 710
  start-page: 436
  year: 2017
  ident: D1TA04504K/cit144
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.03.261
– volume: 30
  start-page: 2236
  year: 1991
  ident: D1TA04504K/cit331
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.30.2236
– volume: 7
  start-page: 1551
  year: 2019
  ident: D1TA04504K/cit421
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC05458D
– volume: 6
  start-page: 16151
  year: 2018
  ident: D1TA04504K/cit422
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b02821
– volume: 584
  start-page: 461
  year: 2014
  ident: D1TA04504K/cit201
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2013.09.072
– volume: 118
  start-page: 054102
  year: 2015
  ident: D1TA04504K/cit439
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4928153
– volume: 68
  start-page: 2916
  year: 1990
  ident: D1TA04504K/cit469
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.346425
– volume: 28
  start-page: 2055
  year: 2016
  ident: D1TA04504K/cit28
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503881
– volume: 7
  start-page: 11858
  year: 2019
  ident: D1TA04504K/cit316
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA02149C
– volume: 409
  start-page: 128231
  year: 2021
  ident: D1TA04504K/cit472
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.128231
– volume: 8
  start-page: 11656
  year: 2020
  ident: D1TA04504K/cit413
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA03526B
– volume: 94
  start-page: 4382
  year: 2011
  ident: D1TA04504K/cit42
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2011.04731.x
– volume: 92
  start-page: 1719
  year: 2009
  ident: D1TA04504K/cit41
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2009.03104.x
– volume: 95
  start-page: 1348
  year: 2012
  ident: D1TA04504K/cit172
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2011.04962.x
– volume: 45
  start-page: 11388
  year: 2019
  ident: D1TA04504K/cit180
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.03.003
– volume: 6
  start-page: 10211
  year: 2018
  ident: D1TA04504K/cit252
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC03855D
– volume: 45
  start-page: 2937
  year: 2012
  ident: D1TA04504K/cit70
  publication-title: Macromolecules
  doi: 10.1021/ma2024057
– volume: 24
  start-page: 626
  year: 2020
  ident: D1TA04504K/cit13
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.06.013
– volume: 17
  start-page: 1036
  year: 2010
  ident: D1TA04504K/cit24
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
  doi: 10.1109/TDEI.2010.5539672
– volume: 10
  start-page: 819
  year: 2018
  ident: D1TA04504K/cit432
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b17382
– volume: 48
  start-page: 4424
  year: 2019
  ident: D1TA04504K/cit159
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00043G
– volume: 70
  start-page: 104551
  year: 2020
  ident: D1TA04504K/cit14
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104551
– volume: 111
  start-page: 253903
  year: 2017
  ident: D1TA04504K/cit154
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5000980
– volume: 154
  start-page: 64
  year: 2018
  ident: D1TA04504K/cit296
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2018.05.022
– volume: 38
  start-page: 4646
  year: 2018
  ident: D1TA04504K/cit211
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2018.06.038
– volume: 819
  start-page: 153004
  year: 2020
  ident: D1TA04504K/cit216
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.153004
– volume: 46
  start-page: 17044
  year: 2020
  ident: D1TA04504K/cit391
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.03.292
– volume: 5
  start-page: 554
  year: 2017
  ident: D1TA04504K/cit305
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA07803F
– volume: 7
  start-page: 8573
  year: 2019
  ident: D1TA04504K/cit123
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA01165J
– volume: 6
  start-page: 4133
  year: 2018
  ident: D1TA04504K/cit254
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA09857J
– volume: 39
  start-page: 4770
  year: 2019
  ident: D1TA04504K/cit466
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2019.07.021
– volume: 8
  start-page: 16648
  year: 2020
  ident: D1TA04504K/cit59
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D0TC04381H
– volume: 11
  start-page: 36824
  year: 2019
  ident: D1TA04504K/cit129
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b10819
– volume: 12
  start-page: 1800165
  year: 2018
  ident: D1TA04504K/cit350
  publication-title: Phys. Status Solidi RRL
  doi: 10.1002/pssr.201800165
– volume: 283
  start-page: 128823
  year: 2021
  ident: D1TA04504K/cit116
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2020.128823
– volume: 346
  start-page: 114
  year: 2007
  ident: D1TA04504K/cit332
  publication-title: Ferroelectrics
  doi: 10.1080/00150190601180471
– volume: 37
  start-page: 2379
  year: 2017
  ident: D1TA04504K/cit351
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2017.01.036
– volume: 2
  start-page: 18087
  year: 2014
  ident: D1TA04504K/cit100
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA04282D
– volume: 13
  start-page: 310
  year: 2012
  ident: D1TA04504K/cit162
  publication-title: J. Ceram. Process. Res.
– volume: 42
  start-page: 8974
  year: 2016
  ident: D1TA04504K/cit409
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2016.02.155
– volume: 39
  start-page: 1050
  year: 2019
  ident: D1TA04504K/cit98
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2018.12.044
– volume: 178
  start-page: 1509
  year: 2013
  ident: D1TA04504K/cit155
  publication-title: Mater. Sci. Eng., B.
  doi: 10.1016/j.mseb.2013.08.016
– volume: 617
  start-page: 740
  year: 2014
  ident: D1TA04504K/cit30
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2014.08.077
– volume: 45
  start-page: 355302
  year: 2012
  ident: D1TA04504K/cit338
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/45/35/355302
– volume: 47
  start-page: 73
  year: 1964
  ident: D1TA04504K/cit436
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1964.tb15658.x
– volume: 45
  start-page: 19822
  year: 2019
  ident: D1TA04504K/cit362
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.06.237
– volume: 6
  start-page: 367
  year: 2020
  ident: D1TA04504K/cit414
  publication-title: Sci. Adv.
– volume: 40
  start-page: 3562
  year: 2020
  ident: D1TA04504K/cit408
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2020.03.070
– year: 1978
  ident: D1TA04504K/cit10
  publication-title: Pergamon Press
– volume: 797
  start-page: 348
  year: 2019
  ident: D1TA04504K/cit233
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.05.092
– volume: 5
  start-page: 597
  year: 2019
  ident: D1TA04504K/cit424
  publication-title: J. Materiomics
  doi: 10.1016/j.jmat.2019.07.006
– volume: 1
  start-page: 4403
  year: 2018
  ident: D1TA04504K/cit251
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b01099
– volume: 525
  start-page: 114
  year: 2017
  ident: D1TA04504K/cit334
  publication-title: Phys. B: Condens. Matter
  doi: 10.1016/j.physb.2017.09.014
– volume: 100
  start-page: 1517
  year: 2017
  ident: D1TA04504K/cit314
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.14728
– volume: 56
  start-page: 13510
  year: 2017
  ident: D1TA04504K/cit152
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.7b02181
– volume: 826
  start-page: 154160
  year: 2020
  ident: D1TA04504K/cit231
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.154160
– volume: 92
  start-page: 262904
  year: 2008
  ident: D1TA04504K/cit373
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2955533
– volume: 358
  start-page: 136
  year: 1992
  ident: D1TA04504K/cit114
  publication-title: Nature
  doi: 10.1038/358136a0
– volume: 7
  start-page: 10702
  year: 2019
  ident: D1TA04504K/cit428
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA00995G
– volume: 4
  start-page: 1795
  year: 2016
  ident: D1TA04504K/cit280
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C5TC04005A
– volume: 29
  start-page: 1601727
  year: 2017
  ident: D1TA04504K/cit58
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601727
– volume: 773
  start-page: 244
  year: 2019
  ident: D1TA04504K/cit139
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.09.252
– volume: 102
  start-page: 027602
  year: 2009
  ident: D1TA04504K/cit240
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.027602
– volume: 11
  start-page: 43107
  year: 2019
  ident: D1TA04504K/cit407
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b13215
– volume: 22
  start-page: 14938
  year: 2012
  ident: D1TA04504K/cit448
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm32078a
– volume: 52
  start-page: 2285
  year: 2016
  ident: D1TA04504K/cit293
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-016-0521-4
– volume: 44
  start-page: 3211
  year: 2018
  ident: D1TA04504K/cit405
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2017.11.092
– volume: 46
  start-page: 11549
  year: 2020
  ident: D1TA04504K/cit256
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.01.181
– volume: 77
  start-page: 2641
  year: 1994
  ident: D1TA04504K/cit327
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1994.tb04655.x
– volume: 90
  start-page: 628
  year: 2016
  ident: D1TA04504K/cit301
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2015.11.002
– volume: 03
  start-page: 1330001
  year: 2013
  ident: D1TA04504K/cit53
  publication-title: J. Adv. Dielectr.
  doi: 10.1142/S2010135X13300016
– volume: 2
  start-page: 2698
  year: 2018
  ident: D1TA04504K/cit298
  publication-title: Sustainable Energy Fuels.
  doi: 10.1039/C8SE00276B
– volume: 28
  start-page: 1304
  year: 2016
  ident: D1TA04504K/cit165
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b04109
– volume: 45
  start-page: 19189
  year: 2019
  ident: D1TA04504K/cit213
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.06.166
– volume: 35
  start-page: 1469
  year: 2015
  ident: D1TA04504K/cit103
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2014.11.022
– volume: 6
  start-page: 6102
  year: 2018
  ident: D1TA04504K/cit388
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.7b04754
– volume: 48
  start-page: 4424
  year: 2019
  ident: D1TA04504K/cit68
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00043G
– volume: 4
  start-page: 041305
  year: 2017
  ident: D1TA04504K/cit77
  publication-title: Appl. Phys. Rev
  doi: 10.1063/1.4990046
– volume: 92
  start-page: 2957
  year: 2009
  ident: D1TA04504K/cit266
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2009.03313.x
– volume: 30
  start-page: 13556
  year: 2019
  ident: D1TA04504K/cit411
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 151
  start-page: 305
  year: 1994
  ident: D1TA04504K/cit80
  publication-title: Ferroelectrics
  doi: 10.1080/00150199408244755
– volume: 111
  start-page: 253903
  year: 2017
  ident: D1TA04504K/cit146
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5000980
– volume: 103
  start-page: 1722
  year: 2019
  ident: D1TA04504K/cit140
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.16844
– volume: 24
  start-page: 3309
  year: 2013
  ident: D1TA04504K/cit203
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 102
  start-page: 72
  year: 2019
  ident: D1TA04504K/cit48
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2018.12.005
– volume: 117
  start-page: 158
  year: 2018
  ident: D1TA04504K/cit184
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/j.jpcs.2018.01.051
– volume: 24
  start-page: 4764
  year: 2013
  ident: D1TA04504K/cit319
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 778
  start-page: 97
  year: 2019
  ident: D1TA04504K/cit232
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.11.106
– volume: 47
  start-page: 1344
  year: 2021
  ident: D1TA04504K/cit361
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.08.256
– volume: 20
  start-page: 6304
  year: 2008
  ident: D1TA04504K/cit23
  publication-title: Chem. Mater.
  doi: 10.1021/cm8021648
– volume: 106
  start-page: 202905
  year: 2015
  ident: D1TA04504K/cit279
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4921744
– volume: 394
  start-page: 124879
  year: 2020
  ident: D1TA04504K/cit358
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124879
– volume: 43
  start-page: 106
  year: 2017
  ident: D1TA04504K/cit352
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2016.09.117
– volume: 27
  start-page: 322
  year: 2015
  ident: D1TA04504K/cit343
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 31
  start-page: 7731
  year: 2020
  ident: D1TA04504K/cit425
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 38
  start-page: 4939
  year: 2018
  ident: D1TA04504K/cit320
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2018.07.029
– volume: 617
  start-page: 399
  year: 2014
  ident: D1TA04504K/cit200
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2014.08.038
– volume: 45
  start-page: 20266
  year: 2019
  ident: D1TA04504K/cit257
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.06.300
– volume: 64
  start-page: 404
  year: 1981
  ident: D1TA04504K/cit85
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1981.tb09879.x
– volume: 4
  start-page: 13778
  year: 2016
  ident: D1TA04504K/cit44
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA04107H
– volume: 6
  start-page: 34381
  year: 2016
  ident: D1TA04504K/cit299
  publication-title: RSC Adv.
  doi: 10.1039/C6RA01919F
– volume: 141
  start-page: 15
  year: 2017
  ident: D1TA04504K/cit339
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2017.07.010
– volume: 334
  start-page: 928
  year: 2011
  ident: D1TA04504K/cit5
  publication-title: Science
  doi: 10.1126/science.1212741
– volume: 39
  start-page: 1103
  year: 2019
  ident: D1TA04504K/cit214
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2018.11.025
– volume: 95
  start-page: 3912
  year: 2012
  ident: D1TA04504K/cit125
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2012.05409.x
– volume: 20
  start-page: 27
  year: 2004
  ident: D1TA04504K/cit108
  publication-title: IEEE Electr. Insul. Mag.
  doi: 10.1109/MEI.2004.1367508
– volume: 8
  start-page: 4030
  year: 2020
  ident: D1TA04504K/cit278
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC06443E
– volume: 39
  start-page: 2899
  year: 2019
  ident: D1TA04504K/cit449
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2019.03.030
– volume: 388
  start-page: 124158
  year: 2020
  ident: D1TA04504K/cit399
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124158
– volume: 7
  start-page: 8414
  year: 2019
  ident: D1TA04504K/cit18
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA00463G
– volume: 585
  start-page: 14
  year: 2014
  ident: D1TA04504K/cit340
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2013.09.052
– volume: 12
  start-page: 32871
  year: 2020
  ident: D1TA04504K/cit461
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c09876
– volume: 645
  start-page: 586
  year: 2015
  ident: D1TA04504K/cit193
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2015.05.005
– volume: 111
  start-page: 132901
  year: 2017
  ident: D1TA04504K/cit445
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4995009
– volume: 37
  start-page: 99
  year: 2017
  ident: D1TA04504K/cit346
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2016.07.011
– volume: 98
  start-page: 559
  year: 2015
  ident: D1TA04504K/cit207
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.13325
– volume: 584
  start-page: 369
  year: 2014
  ident: D1TA04504K/cit185
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2013.09.108
– volume: 120
  start-page: 204102
  year: 2016
  ident: D1TA04504K/cit440
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4968790
– volume: 626
  start-page: 294
  year: 2002
  ident: D1TA04504K/cit450
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.1499579
– volume: 120
  start-page: 14575
  year: 2016
  ident: D1TA04504K/cit86
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b05068
– volume: 113
  start-page: 024103
  year: 2013
  ident: D1TA04504K/cit197
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4775493
– volume: 30
  start-page: 1802155
  year: 2018
  ident: D1TA04504K/cit39
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802155
– volume: 3
  start-page: 18146
  year: 2015
  ident: D1TA04504K/cit226
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA03614C
– volume: 688
  start-page: 721
  year: 2016
  ident: D1TA04504K/cit187
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2016.07.025
– volume: 91
  start-page: 042903
  year: 2007
  ident: D1TA04504K/cit264
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2766657
– volume: 4
  start-page: 8380
  year: 2016
  ident: D1TA04504K/cit431
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC03289C
– volume: 157
  start-page: 139
  year: 2014
  ident: D1TA04504K/cit182
  publication-title: Integr. Ferroelectr.
  doi: 10.1080/10584587.2014.912939
– volume: 702
  start-page: 171
  year: 2017
  ident: D1TA04504K/cit104
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.01.249
– volume: 92
  start-page: 091905
  year: 2008
  ident: D1TA04504K/cit244
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2887908
– volume: 67
  start-page: 104264
  year: 2020
  ident: D1TA04504K/cit210
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104264
– volume: 40
  start-page: 2929
  year: 2020
  ident: D1TA04504K/cit258
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2020.03.012
– volume: 14
  start-page: 477
  year: 1926
  ident: D1TA04504K/cit417
  publication-title: Naturwissenschaften
  doi: 10.1007/BF01507527
– volume: 215
  start-page: 1700915
  year: 2018
  ident: D1TA04504K/cit360
  publication-title: Phys. Status Solidi A
  doi: 10.1002/pssa.201700915
– volume: 110
  start-page: 132902
  year: 2017
  ident: D1TA04504K/cit237
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4979467
– volume: 541
  start-page: 173
  year: 2012
  ident: D1TA04504K/cit262
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2012.06.094
– volume: 15
  start-page: 1767
  year: 1996
  ident: D1TA04504K/cit92
  publication-title: J. Mater. Sci. Lett.
  doi: 10.1007/BF00275336
– volume: 92
  start-page: 2957
  year: 2009
  ident: D1TA04504K/cit270
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2009.03313.x
– volume: 29
  start-page: 5349
  year: 2018
  ident: D1TA04504K/cit356
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 575
  start-page: 109
  year: 2013
  ident: D1TA04504K/cit190
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2013.04.026
– volume: 7
  start-page: 26293
  year: 2019
  ident: D1TA04504K/cit321
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA06457E
– volume: 322
  start-page: 383
  year: 2008
  ident: D1TA04504K/cit89
  publication-title: Science
  doi: 10.1126/science.1160903
– volume: 40
  start-page: 14127
  year: 2014
  ident: D1TA04504K/cit156
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2014.05.147
– volume: 37
  start-page: 1501
  year: 2017
  ident: D1TA04504K/cit102
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2016.12.016
– volume: 45
  start-page: 5559
  year: 2019
  ident: D1TA04504K/cit423
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2018.12.014
– volume: 2
  start-page: 2651
  year: 1961
  ident: D1TA04504K/cit325
  publication-title: Sov. Phys.-Solid State
– volume: 26
  start-page: 20
  year: 2010
  ident: D1TA04504K/cit9
  publication-title: IEEE Electr. Insul. Mag.
  doi: 10.1109/MEI.2010.5383924
– volume: 5
  start-page: 17525
  year: 2017
  ident: D1TA04504K/cit419
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA03821F
– volume: 6
  start-page: 9823
  year: 2018
  ident: D1TA04504K/cit389
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA00474A
– volume: 48
  start-page: 219
  year: 2018
  ident: D1TA04504K/cit21
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-070317-124435
– volume: 54
  start-page: 484
  year: 1971
  ident: D1TA04504K/cit93
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1971.tb12184.x
– volume: 95
  start-page: 1915
  year: 2012
  ident: D1TA04504K/cit110
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2012.05215.x
– volume: 5
  start-page: 24880
  year: 2018
  ident: D1TA04504K/cit330
  publication-title: Mater. Today: Proc.
– start-page: 207
  year: 2014
  ident: D1TA04504K/cit26
  publication-title: Adv. Energy Mater.
  doi: 10.1002/9781118904923.ch5
– volume: 45
  start-page: 3582
  year: 2019
  ident: D1TA04504K/cit224
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2018.11.018
– volume: 52
  start-page: 203
  year: 2018
  ident: D1TA04504K/cit208
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.07.055
– volume: 40
  start-page: 3343
  year: 2020
  ident: D1TA04504K/cit119
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2020.03.015
– volume: 47
  start-page: 3079
  year: 2021
  ident: D1TA04504K/cit458
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.09.144
– volume: 54
  start-page: 288
  year: 2018
  ident: D1TA04504K/cit15
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.10.028
– volume: 8
  start-page: 23724
  year: 2020
  ident: D1TA04504K/cit60
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA08345C
– volume: 27
  start-page: 10810
  year: 2016
  ident: D1TA04504K/cit333
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 161
  start-page: 352
  year: 2018
  ident: D1TA04504K/cit442
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2018.09.056
– volume: 46
  start-page: 722
  year: 2020
  ident: D1TA04504K/cit99
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.09.025
– volume: 39
  start-page: 2673
  year: 2019
  ident: D1TA04504K/cit253
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2019.03.001
– volume: 7
  start-page: 7993
  year: 2019
  ident: D1TA04504K/cit460
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC02088H
– volume: 40
  start-page: 4495
  year: 2020
  ident: D1TA04504K/cit426
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2020.05.076
– volume: 50
  start-page: 723
  year: 2018
  ident: D1TA04504K/cit16
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.06.016
– volume: 34
  start-page: 1209
  year: 2014
  ident: D1TA04504K/cit88
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2013.11.039
– volume: 8
  start-page: 11414
  year: 2020
  ident: D1TA04504K/cit273
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA00216J
– volume: 7
  start-page: 347
  year: 1974
  ident: D1TA04504K/cit371
  publication-title: Ferroelectrics
  doi: 10.1080/00150197408238042
– volume: 40
  start-page: 1196
  year: 2007
  ident: D1TA04504K/cit259
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/40/4/043
– volume: 36
  start-page: 593
  year: 2016
  ident: D1TA04504K/cit323
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2015.10.019
– volume: 45
  start-page: 23233
  year: 2019
  ident: D1TA04504K/cit354
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.08.019
– volume: 46
  start-page: 2764
  year: 2020
  ident: D1TA04504K/cit215
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.09.265
– volume: 38
  start-page: 3104
  year: 2018
  ident: D1TA04504K/cit441
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2018.03.008
– volume: 711
  start-page: 319
  year: 2017
  ident: D1TA04504K/cit151
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.04.023
– volume: 728
  start-page: 780
  year: 2017
  ident: D1TA04504K/cit145
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.09.022
– volume: 48
  start-page: 2151
  year: 2012
  ident: D1TA04504K/cit186
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-012-6990-1
– volume: 18
  start-page: 202024
  year: 2011
  ident: D1TA04504K/cit106
  publication-title: IOP Conf. Ser.: Mater. Sci. Eng.
  doi: 10.1088/1757-899X/18/20/202024
– volume: 79
  start-page: 105423
  year: 2021
  ident: D1TA04504K/cit416
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105423
– volume: 02
  start-page: 1241010
  year: 2012
  ident: D1TA04504K/cit78
  publication-title: J. Adv. Dielectr.
  doi: 10.1142/S2010135X1241010X
– volume: 17
  start-page: 4977
  year: 2005
  ident: D1TA04504K/cit434
  publication-title: J. Phys.: Condens. Matter
– volume: 6
  start-page: 1900698
  year: 2020
  ident: D1TA04504K/cit55
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201900698
– volume: 9
  start-page: 19963
  year: 2017
  ident: D1TA04504K/cit173
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b04175
– volume: 33
  start-page: 3023
  year: 2013
  ident: D1TA04504K/cit263
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2013.06.029
– volume: 43
  start-page: 9060
  year: 2017
  ident: D1TA04504K/cit221
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2017.04.051
– volume: 73
  start-page: 064114
  year: 2006
  ident: D1TA04504K/cit124
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.73.064114
– volume: 43
  start-page: 445403
  year: 2010
  ident: D1TA04504K/cit245
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/43/44/445403
– volume: 25
  start-page: 1360
  year: 2013
  ident: D1TA04504K/cit178
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201203823
– volume: 63
  start-page: 1
  year: 2014
  ident: D1TA04504K/cit81
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2014.01.002
– volume: 38
  start-page: 679
  year: 2005
  ident: D1TA04504K/cit281
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/38/5/003
– volume: 397
  start-page: 125520
  year: 2020
  ident: D1TA04504K/cit234
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125520
– volume: 98
  start-page: 2692
  year: 2015
  ident: D1TA04504K/cit246
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.13737
– volume: 47
  start-page: 3780
  year: 2021
  ident: D1TA04504K/cit269
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.09.235
– volume: 8
  start-page: 247
  year: 2019
  ident: D1TA04504K/cit111
  publication-title: J. Adv. Ceram.
  doi: 10.1007/s40145-018-0310-4
– volume: 40
  start-page: 4323
  year: 2014
  ident: D1TA04504K/cit341
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2013.08.099
– volume: 96
  start-page: 3176
  year: 2013
  ident: D1TA04504K/cit206
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.12495
– volume: 137
  start-page: 511
  year: 2015
  ident: D1TA04504K/cit1
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.09.081
– volume: 23
  start-page: 1599
  year: 2012
  ident: D1TA04504K/cit199
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 39
  start-page: 3051
  year: 2019
  ident: D1TA04504K/cit357
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2019.04.031
– volume: 7
  start-page: 2225
  year: 2019
  ident: D1TA04504K/cit418
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA09353A
– volume: 313
  start-page: 334
  year: 2006
  ident: D1TA04504K/cit6
  publication-title: Science
  doi: 10.1126/science.1127798
– volume: 113
  start-page: 190
  year: 2019
  ident: D1TA04504K/cit50
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2019.02.002
– volume: 44
  start-page: 8528
  year: 2018
  ident: D1TA04504K/cit74
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2018.02.054
– volume: 40
  start-page: 929
  year: 2014
  ident: D1TA04504K/cit136
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2013.06.088
– volume: 12
  start-page: 32834
  year: 2020
  ident: D1TA04504K/cit467
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c08737
– volume: 45
  start-page: 19895
  year: 2019
  ident: D1TA04504K/cit402
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.06.245
– volume: 6
  start-page: 7905
  year: 2018
  ident: D1TA04504K/cit142
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC02368A
– volume: 143
  start-page: 5
  year: 2018
  ident: D1TA04504K/cit297
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2017.08.045
– volume: 816
  start-page: 152498
  year: 2020
  ident: D1TA04504K/cit117
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.152498
– volume: 46
  start-page: 5681
  year: 2020
  ident: D1TA04504K/cit353
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.11.015
– volume: 5
  start-page: 10215
  year: 2017
  ident: D1TA04504K/cit147
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.7b02203
– volume: 115
  start-page: 2559
  year: 2015
  ident: D1TA04504K/cit274
  publication-title: Chem. Rev.
  doi: 10.1021/cr5006809
– volume: 17
  start-page: 432
  year: 2018
  ident: D1TA04504K/cit4
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0059-8
– volume: 41
  start-page: 8252
  year: 2015
  ident: D1TA04504K/cit194
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2015.02.156
– volume: 43
  start-page: 9253
  year: 2017
  ident: D1TA04504K/cit368
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2017.04.081
– volume: 13
  start-page: 2938
  year: 2020
  ident: D1TA04504K/cit271
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE02104K
– volume: 41
  start-page: 1925
  year: 2021
  ident: D1TA04504K/cit283
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2020.10.046
– volume: 17
  start-page: 100304
  year: 2020
  ident: D1TA04504K/cit65
  publication-title: Mater. Today Chem.
  doi: 10.1016/j.mtchem.2020.100304
– volume: 48
  start-page: 415304
  year: 2015
  ident: D1TA04504K/cit167
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/48/41/415304
– volume: 108
  start-page: 232904
  year: 2016
  ident: D1TA04504K/cit446
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4953457
– volume: 94
  start-page: 014107
  year: 2016
  ident: D1TA04504K/cit83
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.94.014107
– volume: 41
  start-page: 1891
  year: 2021
  ident: D1TA04504K/cit452
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2020.10.049
– volume: 12
  start-page: 30289
  year: 2020
  ident: D1TA04504K/cit131
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c02832
– volume: 7
  start-page: E124
  year: 2010
  ident: D1TA04504K/cit198
  publication-title: Int. J. Appl. Ceram. Technol.
  doi: 10.1111/j.1744-7402.2009.02456.x
– volume: 70
  start-page: C-18
  year: 1987
  ident: D1TA04504K/cit287
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1987.tb04862.x
– volume: 112
  start-page: 102901
  year: 2018
  ident: D1TA04504K/cit192
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5020515
– volume: 29
  start-page: 253
  year: 1996
  ident: D1TA04504K/cit195
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/29/1/037
– volume: 49
  start-page: 1659
  year: 2013
  ident: D1TA04504K/cit412
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-013-7849-9
– volume: 43
  start-page: 9593
  year: 2017
  ident: D1TA04504K/cit228
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2017.03.139
– volume: 7
  start-page: 8726
  year: 2017
  ident: D1TA04504K/cit390
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-06966-7
– volume: 89
  start-page: 052905
  year: 2006
  ident: D1TA04504K/cit260
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2266992
– volume: 20
  start-page: 5061
  year: 2008
  ident: D1TA04504K/cit326
  publication-title: Chem. Mater.
  doi: 10.1021/cm8004634
– volume: 35
  start-page: 4173
  year: 2015
  ident: D1TA04504K/cit318
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2015.07.027
– volume: 10
  start-page: 334
  year: 2004
  ident: D1TA04504K/cit169
  publication-title: Ionics
  doi: 10.1007/BF02377992
– volume: 47
  start-page: 11294
  year: 2020
  ident: D1TA04504K/cit473
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.12.255
– volume: 6
  start-page: 17896
  year: 2018
  ident: D1TA04504K/cit121
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA07303A
– volume: 37
  start-page: 2073
  year: 2017
  ident: D1TA04504K/cit294
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2016.12.053
– volume: 15
  start-page: 2000525
  year: 2021
  ident: D1TA04504K/cit282
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.202000525
– volume: 44
  start-page: 10763
  year: 2015
  ident: D1TA04504K/cit438
  publication-title: Dalton Trans.
  doi: 10.1039/C4DT03919J
– volume: 8
  start-page: 8777
  year: 2020
  ident: D1TA04504K/cit310
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D0TC01711F
– volume: 31
  start-page: 22780
  year: 2020
  ident: D1TA04504K/cit225
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 392
  start-page: 123729
  year: 2020
  ident: D1TA04504K/cit375
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123729
– volume: 29
  start-page: 1701824
  year: 2017
  ident: D1TA04504K/cit45
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701824
– volume: 5
  start-page: 3677
  year: 2014
  ident: D1TA04504K/cit67
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz501831q
– volume: 73
  start-page: 323
  year: 1990
  ident: D1TA04504K/cit40
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1990.tb06513.x
– volume: 35
  start-page: 2069
  year: 2009
  ident: D1TA04504K/cit204
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2008.11.003
– volume: 33
  start-page: 1046
  year: 2018
  ident: D1TA04504K/cit63
  publication-title: J. Inorg. Mater.
  doi: 10.15541/jim20170594
– volume: 391
  start-page: 532
  year: 1998
  ident: D1TA04504K/cit303
  publication-title: Nature
  doi: 10.1038/35254
– volume: 46
  start-page: 13511
  year: 2020
  ident: D1TA04504K/cit457
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.02.135
– volume: 420
  start-page: 130475
  year: 2021
  ident: D1TA04504K/cit128
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.130475
SSID ssj0000800699
Score 2.7098246
SecondaryResourceType review_article
Snippet Compared with fuel cells and electrochemical capacitors, dielectric capacitors are regarded as promising devices to store electrical energy for pulsed power...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1826
SubjectTerms Barium titanates
Capacitors
Ceramics
Chemical composition
electric power
Electric power systems
Electrochemistry
energy
Energy storage
Fuel cells
Lead free
Physical properties
Strontium titanates
Title High-performance lead-free bulk ceramics for electrical energy storage applications: design strategies and challenges
URI https://www.proquest.com/docview/2566287762
https://www.proquest.com/docview/2636445986
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa27QUOiFfFQkFGcEGrlCR2XtxWtKhA4bSVCpfIdhwJ7Wq32k0u_CJ-JuO3gVYCLtHK9ubh-TIeT2bmQ-hl3cAqUWUiKQmtEtrBBqVmGU3SRggu04wVuUpw_vS5PLugHy6Ly8nkRxS1NA78WHy_Nq_kf6QKbSBXlSX7D5L1J4UG-A3yhSNIGI5_JWMVpJFcRaH_K5BY0m-lnPFxtZwJuVV08ztT11sT3miZSJPwpwIjVchO_BFbeQg6HdUx2w2ujIRJfnO0K7sbDFqwfc1Dw1DLInc8m5uEINejb8RcXXvsXfqWitD1zv0v1of9VQ4ReE9GvUxuVN4xs-utCv0xRRDOv3klv5Er69YFfb6M3Rq599M67ZenRaoKnRrlLOM2Q4Hr1HcTodT6RY0uVjunaF3PasMN9MeakRJVcrXLBgbmbUqXYWX08Yqhcw8d5LAhAY16MD9dvD_3_jxleZeartTfuauGS5rX4QS_2j9hU7O3dYwz2rJZ3EV3rATx3ODrHprI9X10OypU-QCNvyMNe6RhhTTskIZhAA5Iw0bW2CINx0h7gw3OcMAZBkzggLOH6OLd6eLtWWIJOxJB6nRIYMYV3ULZCCIkL2RRSE77UvvZO81lkDPOcsL7tC8q0jdZzcB-5rJinFIYdoj215u1fIRwXnWkI2BJ8YqCyQR_ZT1pGGuIoCmruyl65aaxFbaavSJVWbU6qoI07Um2mOsp_zhFL_zYK1PD5dpRR04arX3Hdy1sCMq8rsBimKLnvhteIfVZja3lZoQxJYFNheI5mKJDkKK_RhD645s6nqBbAfxHaH_YjvIpWLkDf2YB9hMwxa1K
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-performance+lead-free+bulk+ceramics+for+electrical+energy+storage+applications%3A+design+strategies+and+challenges&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Yang%2C+Zetian&rft.au=Du%2C+Hongliang&rft.au=Jin%2C+Li&rft.au=Poelman%2C+Dirk&rft.date=2021-08-31&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=9&rft.issue=34&rft.spage=1826&rft.epage=1885&rft_id=info:doi/10.1039%2Fd1ta04504k&rft.externalDocID=d1ta04504k
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon