High-performance lead-free bulk ceramics for electrical energy storage applications: design strategies and challenges
Compared with fuel cells and electrochemical capacitors, dielectric capacitors are regarded as promising devices to store electrical energy for pulsed power systems due to their fast charge/discharge rates and ultrahigh power density. Dielectric materials are core components of dielectric capacitors...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 9; no. 34; pp. 1826 - 1885 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
31.08.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Compared with fuel cells and electrochemical capacitors, dielectric capacitors are regarded as promising devices to store electrical energy for pulsed power systems due to their fast charge/discharge rates and ultrahigh power density. Dielectric materials are core components of dielectric capacitors and directly determine their performance. Over the past decade, extensive efforts have been devoted to develop high-performance dielectric materials for electrical energy storage applications and great progress has been achieved. Here, we present an overview on the current state-of-the-art lead-free bulk ceramics for electrical energy storage applications, including SrTiO
3
, CaTiO
3
, BaTiO
3
, (Bi
0.5
Na
0.5
)TiO
3
, (K
0.5
Na
0.5
)NbO
3
, BiFeO
3
, AgNbO
3
and NaNbO
3
-based ceramics. This review starts with a brief introduction of the research background, the development history and the basic fundamentals of dielectric materials for energy storage applications as well as the universal strategies to optimize their energy storage performance. Emphases are placed on the design strategies for each type of dielectric ceramic based on their special physical properties with a summary of their respective advantages and disadvantages. Challenges along with future prospects are presented at the end of this review. This review will not only accelerate the exploration of higher performance lead-free dielectric materials, but also provides a deeper understanding of the relationship among chemical composition, physical properties and energy storage performance.
This review summarizes the development history of lead-free bulk ceramics for electrical energy storage applications and stress the design strategies for each type of dielectric ceramic based on their special physical properties. |
---|---|
AbstractList | Compared with fuel cells and electrochemical capacitors, dielectric capacitors are regarded as promising devices to store electrical energy for pulsed power systems due to their fast charge/discharge rates and ultrahigh power density. Dielectric materials are core components of dielectric capacitors and directly determine their performance. Over the past decade, extensive efforts have been devoted to develop high-performance dielectric materials for electrical energy storage applications and great progress has been achieved. Here, we present an overview on the current state-of-the-art lead-free bulk ceramics for electrical energy storage applications, including SrTiO
3
, CaTiO
3
, BaTiO
3
, (Bi
0.5
Na
0.5
)TiO
3
, (K
0.5
Na
0.5
)NbO
3
, BiFeO
3
, AgNbO
3
and NaNbO
3
-based ceramics. This review starts with a brief introduction of the research background, the development history and the basic fundamentals of dielectric materials for energy storage applications as well as the universal strategies to optimize their energy storage performance. Emphases are placed on the design strategies for each type of dielectric ceramic based on their special physical properties with a summary of their respective advantages and disadvantages. Challenges along with future prospects are presented at the end of this review. This review will not only accelerate the exploration of higher performance lead-free dielectric materials, but also provides a deeper understanding of the relationship among chemical composition, physical properties and energy storage performance.
This review summarizes the development history of lead-free bulk ceramics for electrical energy storage applications and stress the design strategies for each type of dielectric ceramic based on their special physical properties. Compared with fuel cells and electrochemical capacitors, dielectric capacitors are regarded as promising devices to store electrical energy for pulsed power systems due to their fast charge/discharge rates and ultrahigh power density. Dielectric materials are core components of dielectric capacitors and directly determine their performance. Over the past decade, extensive efforts have been devoted to develop high-performance dielectric materials for electrical energy storage applications and great progress has been achieved. Here, we present an overview on the current state-of-the-art lead-free bulk ceramics for electrical energy storage applications, including SrTiO 3 , CaTiO 3 , BaTiO 3 , (Bi 0.5 Na 0.5 )TiO 3 , (K 0.5 Na 0.5 )NbO 3 , BiFeO 3 , AgNbO 3 and NaNbO 3 -based ceramics. This review starts with a brief introduction of the research background, the development history and the basic fundamentals of dielectric materials for energy storage applications as well as the universal strategies to optimize their energy storage performance. Emphases are placed on the design strategies for each type of dielectric ceramic based on their special physical properties with a summary of their respective advantages and disadvantages. Challenges along with future prospects are presented at the end of this review. This review will not only accelerate the exploration of higher performance lead-free dielectric materials, but also provides a deeper understanding of the relationship among chemical composition, physical properties and energy storage performance. Compared with fuel cells and electrochemical capacitors, dielectric capacitors are regarded as promising devices to store electrical energy for pulsed power systems due to their fast charge/discharge rates and ultrahigh power density. Dielectric materials are core components of dielectric capacitors and directly determine their performance. Over the past decade, extensive efforts have been devoted to develop high-performance dielectric materials for electrical energy storage applications and great progress has been achieved. Here, we present an overview on the current state-of-the-art lead-free bulk ceramics for electrical energy storage applications, including SrTiO3, CaTiO3, BaTiO3, (Bi0.5Na0.5)TiO3, (K0.5Na0.5)NbO3, BiFeO3, AgNbO3 and NaNbO3-based ceramics. This review starts with a brief introduction of the research background, the development history and the basic fundamentals of dielectric materials for energy storage applications as well as the universal strategies to optimize their energy storage performance. Emphases are placed on the design strategies for each type of dielectric ceramic based on their special physical properties with a summary of their respective advantages and disadvantages. Challenges along with future prospects are presented at the end of this review. This review will not only accelerate the exploration of higher performance lead-free dielectric materials, but also provides a deeper understanding of the relationship among chemical composition, physical properties and energy storage performance. Compared with fuel cells and electrochemical capacitors, dielectric capacitors are regarded as promising devices to store electrical energy for pulsed power systems due to their fast charge/discharge rates and ultrahigh power density. Dielectric materials are core components of dielectric capacitors and directly determine their performance. Over the past decade, extensive efforts have been devoted to develop high-performance dielectric materials for electrical energy storage applications and great progress has been achieved. Here, we present an overview on the current state-of-the-art lead-free bulk ceramics for electrical energy storage applications, including SrTiO₃, CaTiO₃, BaTiO₃, (Bi₀.₅Na₀.₅)TiO₃, (K₀.₅Na₀.₅)NbO₃, BiFeO₃, AgNbO₃ and NaNbO₃-based ceramics. This review starts with a brief introduction of the research background, the development history and the basic fundamentals of dielectric materials for energy storage applications as well as the universal strategies to optimize their energy storage performance. Emphases are placed on the design strategies for each type of dielectric ceramic based on their special physical properties with a summary of their respective advantages and disadvantages. Challenges along with future prospects are presented at the end of this review. This review will not only accelerate the exploration of higher performance lead-free dielectric materials, but also provides a deeper understanding of the relationship among chemical composition, physical properties and energy storage performance. |
Author | Du, Hongliang Yang, Zetian Jin, Li Poelman, Dirk |
AuthorAffiliation | Ghent University College of Engineering Key Laboratory of the Ministry of Education LumiLab School of Electronic Science and Engineering International Center for Dielectric Research Electronic Materials Research Laboratory Xi'an Jiaotong University Xi'an International University Department of Solid State Sciences |
AuthorAffiliation_xml | – name: Ghent University – name: Xi'an International University – name: Key Laboratory of the Ministry of Education – name: Xi'an Jiaotong University – name: LumiLab – name: College of Engineering – name: Electronic Materials Research Laboratory – name: International Center for Dielectric Research – name: Department of Solid State Sciences – name: School of Electronic Science and Engineering |
Author_xml | – sequence: 1 givenname: Zetian surname: Yang fullname: Yang, Zetian – sequence: 2 givenname: Hongliang surname: Du fullname: Du, Hongliang – sequence: 3 givenname: Li surname: Jin fullname: Jin, Li – sequence: 4 givenname: Dirk surname: Poelman fullname: Poelman, Dirk |
BookMark | eNptkU1r3DAQhkVJIdskl9wLgl5KwI2sL8u9hXw0IYFekrMZy2NHiVZ2Jfuw_77KbthC6FxmmHnmZZj3CzkIY0BCTkv2o2SiPu_KGZhUTL5-IivOFCsqWeuDfW3MITlJ6YXlMIzpul6R5dYNz8WEsR_jGoJF6hG6oo-ItF38K7UYYe1sohmg6NHO0VnwFAPGYUPTPEYYkMI0-dyf3RjST9phckPIwwgzDg4ThdBR-wzeYxgwHZPPPfiEJ-_5iDzdXD9e3hYPv3_dXV48FFYYNhel4UJxrWsrLLYKlcJW9lqgKE3HZFVLDi1w0fasV5Xo69JAxasWK2ilzNgR-b7TneL4Z8E0N2uXLHoPAcclNVwLLaWqjc7otw_oy7jEkK9ruNKam6rSPFNnO8rGMaWIfTNFt4a4aUrWvJnQXJWPF1sT7jPMPsDWzdsX5b84__-Vr7uVmOxe-p-v4i_3upYR |
CitedBy_id | crossref_primary_10_1016_j_jeurceramsoc_2023_01_027 crossref_primary_10_1002_smll_202309796 crossref_primary_10_1016_j_nanoen_2023_108275 crossref_primary_10_1002_advs_202409814 crossref_primary_10_1016_j_cej_2023_144973 crossref_primary_10_1016_j_ceramint_2023_06_303 crossref_primary_10_1016_j_cej_2023_145705 crossref_primary_10_1007_s40820_023_01290_4 crossref_primary_10_1016_j_jeurceramsoc_2023_08_017 crossref_primary_10_1063_5_0217327 crossref_primary_10_1111_jace_19611 crossref_primary_10_1007_s10853_022_07350_1 crossref_primary_10_1016_j_measen_2024_101286 crossref_primary_10_1016_j_ceramint_2024_02_368 crossref_primary_10_1063_5_0198962 crossref_primary_10_3390_ma15175881 crossref_primary_10_1063_5_0134282 crossref_primary_10_7498_aps_72_20230685 crossref_primary_10_1002_smll_202206662 crossref_primary_10_1016_j_jeurceramsoc_2023_01_036 crossref_primary_10_1111_jace_18539 crossref_primary_10_1007_s10854_023_10692_4 crossref_primary_10_1016_j_jeurceramsoc_2023_01_005 crossref_primary_10_1039_D4TA00921E crossref_primary_10_1016_j_ceramint_2023_06_208 crossref_primary_10_1111_ijac_14536 crossref_primary_10_3390_cryst15030287 crossref_primary_10_3390_cryst14060488 crossref_primary_10_1016_j_jpowsour_2024_235846 crossref_primary_10_1016_j_ceramint_2023_07_004 crossref_primary_10_1016_j_ceramint_2024_04_199 crossref_primary_10_1016_j_cej_2022_134678 crossref_primary_10_1016_j_est_2024_114992 crossref_primary_10_1021_acsaelm_4c00878 crossref_primary_10_1002_adma_202406219 crossref_primary_10_7498_aps_74_20240833 crossref_primary_10_1016_j_jmat_2023_10_002 crossref_primary_10_1021_acs_chemmater_2c01241 crossref_primary_10_1002_smll_202401229 crossref_primary_10_1007_s10854_025_14467_x crossref_primary_10_1007_s10853_024_10078_9 crossref_primary_10_1111_jace_19600 crossref_primary_10_1016_j_ceramint_2022_07_299 crossref_primary_10_1016_j_jeurceramsoc_2023_09_053 crossref_primary_10_1039_D2TA02534E crossref_primary_10_1016_j_ceramint_2023_07_114 crossref_primary_10_1016_j_jeurceramsoc_2023_02_045 crossref_primary_10_1016_j_cej_2023_147097 crossref_primary_10_1039_D2TA02094G crossref_primary_10_3390_molecules29133187 crossref_primary_10_1111_jace_18849 crossref_primary_10_1142_S2010135X2350008X crossref_primary_10_1002_aelm_202300590 crossref_primary_10_1016_j_physb_2024_416385 crossref_primary_10_1002_pssa_202400306 crossref_primary_10_1039_D3TC03815G crossref_primary_10_1016_j_jallcom_2024_176519 crossref_primary_10_1016_j_cej_2022_135789 crossref_primary_10_1021_acsami_2c11691 crossref_primary_10_1016_j_cej_2025_160500 crossref_primary_10_1039_D3TA03946C crossref_primary_10_1016_j_scriptamat_2023_115295 crossref_primary_10_1016_j_jallcom_2023_171908 crossref_primary_10_1016_j_ceramint_2022_12_104 crossref_primary_10_1016_j_cej_2023_142862 crossref_primary_10_1039_D3TA03294A crossref_primary_10_1016_j_jeurceramsoc_2024_02_040 crossref_primary_10_1002_anie_202500516 crossref_primary_10_1111_jace_18615 crossref_primary_10_1111_jace_18977 crossref_primary_10_1016_j_cej_2025_161727 crossref_primary_10_1007_s10854_024_12233_z crossref_primary_10_3390_ma15124360 crossref_primary_10_3390_ma17092118 crossref_primary_10_1016_j_ceramint_2021_12_295 crossref_primary_10_1016_j_jeurceramsoc_2022_07_029 crossref_primary_10_26599_JAC_2024_9220904 crossref_primary_10_3390_batteries9080409 crossref_primary_10_1016_j_ceramint_2024_01_349 crossref_primary_10_1111_jace_19919 crossref_primary_10_1016_j_scriptamat_2023_115387 crossref_primary_10_1039_D4TC02297A crossref_primary_10_1016_j_chemphys_2024_112203 crossref_primary_10_1021_acsami_3c03296 crossref_primary_10_1016_j_ceramint_2024_10_427 crossref_primary_10_1016_j_est_2024_110597 crossref_primary_10_1016_j_jeurceramsoc_2024_02_011 crossref_primary_10_1016_j_cej_2022_136538 crossref_primary_10_1016_j_tsf_2024_140480 crossref_primary_10_1016_j_cej_2022_139921 crossref_primary_10_1016_j_ceramint_2022_07_129 crossref_primary_10_1021_acsami_2c11599 crossref_primary_10_26599_JAC_2024_9220937 crossref_primary_10_1016_j_jmat_2023_09_004 crossref_primary_10_1016_j_actamat_2025_120759 crossref_primary_10_1111_jace_19927 crossref_primary_10_1016_j_ceramint_2025_03_129 crossref_primary_10_1016_j_jpcs_2024_112462 crossref_primary_10_1016_j_ceramint_2022_07_015 crossref_primary_10_1039_D3QI01924A crossref_primary_10_1016_j_jallcom_2023_173199 crossref_primary_10_1016_j_ceramint_2021_11_236 crossref_primary_10_1016_j_ceramint_2022_07_011 crossref_primary_10_3390_ma17153760 crossref_primary_10_1016_j_ceramint_2025_01_566 crossref_primary_10_1016_j_ensm_2023_103055 crossref_primary_10_1002_ange_202500516 crossref_primary_10_1016_j_jallcom_2023_171144 crossref_primary_10_1016_j_ceramint_2025_02_369 crossref_primary_10_1007_s10853_025_10778_w crossref_primary_10_1016_j_ceramint_2022_11_323 crossref_primary_10_1016_j_ceramint_2023_07_061 crossref_primary_10_3390_ma17205044 crossref_primary_10_1016_j_cej_2023_144205 crossref_primary_10_1016_j_est_2024_110546 crossref_primary_10_1016_j_est_2024_112841 crossref_primary_10_2139_ssrn_4127869 crossref_primary_10_1016_j_materresbull_2023_112392 crossref_primary_10_1021_acsami_4c02696 crossref_primary_10_1021_acsami_4c11161 crossref_primary_10_1016_j_jpowsour_2025_236845 crossref_primary_10_1002_adfm_202300658 crossref_primary_10_1016_j_ceramint_2022_03_114 crossref_primary_10_1016_j_arabjc_2023_105392 crossref_primary_10_1038_s41598_023_30965_6 crossref_primary_10_1007_s10854_023_11158_3 crossref_primary_10_1016_j_jmat_2023_08_006 crossref_primary_10_1002_adts_202200314 crossref_primary_10_1016_j_mseb_2022_116194 crossref_primary_10_1016_j_jpowsour_2024_235203 crossref_primary_10_1016_j_ceramint_2022_05_072 crossref_primary_10_1016_j_jeurceramsoc_2023_06_037 crossref_primary_10_1016_j_mtcomm_2024_110795 crossref_primary_10_1016_j_jpowsour_2024_234475 crossref_primary_10_1016_j_jpowsour_2024_235201 crossref_primary_10_1021_acsami_2c16577 crossref_primary_10_1007_s10854_022_07731_x crossref_primary_10_1016_j_physo_2024_100225 crossref_primary_10_1002_adma_202406625 crossref_primary_10_1016_j_ensm_2024_103659 crossref_primary_10_1063_5_0164880 crossref_primary_10_1021_acsami_4c14890 crossref_primary_10_1021_acsami_4c01348 crossref_primary_10_4028_p_qAPQV5 crossref_primary_10_1016_j_scriptamat_2024_115966 crossref_primary_10_1002_ange_202416291 crossref_primary_10_1002_cplu_202300324 crossref_primary_10_1016_j_cej_2023_145506 crossref_primary_10_3390_ma16144912 crossref_primary_10_1021_acsami_2c05205 crossref_primary_10_1002_adma_202204356 crossref_primary_10_1016_j_jpowsour_2024_235306 crossref_primary_10_1016_j_jallcom_2024_174610 crossref_primary_10_1016_j_apmt_2024_102326 crossref_primary_10_1016_j_sna_2024_115596 crossref_primary_10_1016_j_ceramint_2024_09_156 crossref_primary_10_1016_j_cej_2023_141376 crossref_primary_10_1016_j_nanoen_2024_109394 crossref_primary_10_1016_j_materresbull_2024_113018 crossref_primary_10_1016_j_ceramint_2023_08_087 crossref_primary_10_1016_j_ceramint_2022_06_197 crossref_primary_10_1016_j_jallcom_2024_174966 crossref_primary_10_1039_D4TA04324C crossref_primary_10_1016_j_ceramint_2024_05_407 crossref_primary_10_1021_acsami_3c16303 crossref_primary_10_1016_j_jpcs_2022_110627 crossref_primary_10_1007_s12598_022_02176_x crossref_primary_10_1016_j_ceramint_2022_11_112 crossref_primary_10_3390_nano15010059 crossref_primary_10_1016_j_ceramint_2022_12_073 crossref_primary_10_1016_j_cej_2023_141490 crossref_primary_10_1016_j_ceramint_2022_05_240 crossref_primary_10_1016_j_jeurceramsoc_2023_07_002 crossref_primary_10_1016_j_ceramint_2021_11_197 crossref_primary_10_1016_j_jeurceramsoc_2025_117197 crossref_primary_10_1021_acs_jpcc_4c05351 crossref_primary_10_1016_j_ceramint_2023_08_296 crossref_primary_10_1016_j_ceramint_2023_09_098 crossref_primary_10_1016_j_jallcom_2023_172255 crossref_primary_10_1111_ijac_15030 crossref_primary_10_1016_j_jeurceramsoc_2023_07_039 crossref_primary_10_1016_j_cej_2024_152786 crossref_primary_10_1002_adma_202312856 crossref_primary_10_1002_smll_202207464 crossref_primary_10_1016_j_apmt_2024_102543 crossref_primary_10_1016_j_jallcom_2023_171044 crossref_primary_10_1016_j_chphi_2024_100540 crossref_primary_10_1039_D2TA08874F crossref_primary_10_1016_j_nanoen_2024_109493 crossref_primary_10_1016_j_ceramint_2024_06_415 crossref_primary_10_2139_ssrn_4177901 crossref_primary_10_35848_1882_0786_acd047 crossref_primary_10_1016_j_jmst_2022_10_053 crossref_primary_10_2109_jcersj2_22161 crossref_primary_10_1016_j_jallcom_2023_172147 crossref_primary_10_1021_acsaelm_4c01778 crossref_primary_10_1039_D4QI02642J crossref_primary_10_1016_j_jeurceramsoc_2022_11_001 crossref_primary_10_1016_j_cej_2024_155803 crossref_primary_10_1016_j_ceramint_2022_01_323 crossref_primary_10_1007_s13391_023_00434_3 crossref_primary_10_1016_j_mtphys_2024_101418 crossref_primary_10_1016_j_ceramint_2022_08_311 crossref_primary_10_1038_s41467_022_33039_9 crossref_primary_10_1021_acsami_3c08168 crossref_primary_10_1088_1402_4896_ad38e8 crossref_primary_10_1016_j_ceramint_2022_02_123 crossref_primary_10_1021_acsami_2c21969 crossref_primary_10_1016_j_jeurceramsoc_2022_03_037 crossref_primary_10_1016_j_ceramint_2024_04_416 crossref_primary_10_1016_j_jallcom_2022_164851 crossref_primary_10_1016_j_jallcom_2022_163888 crossref_primary_10_1016_j_jmat_2024_100930 crossref_primary_10_1039_D2TA04200B crossref_primary_10_1016_j_ceramint_2022_08_300 crossref_primary_10_1007_s10853_023_08769_w crossref_primary_10_1039_D2QI02374A crossref_primary_10_1016_j_jclepro_2022_131179 crossref_primary_10_1016_j_jallcom_2023_172524 crossref_primary_10_1016_j_ceramint_2025_01_045 crossref_primary_10_1063_5_0232399 crossref_primary_10_1016_j_jeurceramsoc_2022_02_005 crossref_primary_10_1039_D3TC04558G crossref_primary_10_1016_j_nanoen_2022_107577 crossref_primary_10_1016_j_ceramint_2024_07_195 crossref_primary_10_1016_j_jeurceramsoc_2022_12_064 crossref_primary_10_1016_j_ceramint_2021_08_171 crossref_primary_10_1016_j_mtchem_2022_101353 crossref_primary_10_1016_j_ensm_2025_104082 crossref_primary_10_1039_D3TC03477A crossref_primary_10_1021_acsami_4c15339 crossref_primary_10_1142_S2010135X24500164 crossref_primary_10_1111_jace_20155 crossref_primary_10_1021_acsaem_4c01193 crossref_primary_10_1039_D2TA09395B crossref_primary_10_1016_j_actamat_2023_119135 crossref_primary_10_1016_j_ceramint_2023_05_197 crossref_primary_10_1016_j_mtener_2025_101800 crossref_primary_10_1016_j_jmat_2021_09_007 crossref_primary_10_1021_acsami_3c13860 crossref_primary_10_1002_smll_202302346 crossref_primary_10_1016_j_jmat_2025_101055 crossref_primary_10_1016_j_ceramint_2023_11_363 crossref_primary_10_1016_j_est_2024_110847 crossref_primary_10_1021_jacs_2c12200 crossref_primary_10_1021_jacs_4c02868 crossref_primary_10_1002_inf2_12488 crossref_primary_10_1016_j_ceramint_2024_05_302 crossref_primary_10_1039_D1TC03549E crossref_primary_10_1038_s41598_025_90448_8 crossref_primary_10_3390_cryst13040649 crossref_primary_10_1016_j_solidstatesciences_2022_107086 crossref_primary_10_1016_j_jeurceramsoc_2023_06_048 crossref_primary_10_1016_j_addma_2022_102804 crossref_primary_10_1016_j_scriptamat_2023_115602 crossref_primary_10_1039_D4TA00575A crossref_primary_10_1016_j_ensm_2024_103534 crossref_primary_10_1016_j_ceramint_2023_12_056 crossref_primary_10_1063_5_0155111 crossref_primary_10_1111_jace_19017 crossref_primary_10_1016_j_ceramint_2022_04_177 crossref_primary_10_1063_5_0199206 crossref_primary_10_1039_D3MH01965A crossref_primary_10_1016_j_cej_2024_158942 crossref_primary_10_1016_j_ceramint_2022_10_297 crossref_primary_10_1016_j_mtener_2022_101185 crossref_primary_10_1016_j_solidstatesciences_2022_107090 crossref_primary_10_1016_j_cej_2023_142071 crossref_primary_10_1039_D3TA00068K crossref_primary_10_1039_D4TA03637A crossref_primary_10_1016_j_cej_2023_146673 crossref_primary_10_1016_j_jmat_2023_05_002 crossref_primary_10_1039_D3QI01228J crossref_primary_10_1016_j_jeurceramsoc_2023_07_081 crossref_primary_10_1116_6_0004172 crossref_primary_10_1007_s10854_023_11774_z crossref_primary_10_1016_j_cej_2024_154695 crossref_primary_10_1016_j_mtener_2022_101193 crossref_primary_10_1016_j_cej_2023_143395 crossref_primary_10_1039_D1TA10524H crossref_primary_10_1021_acsami_4c22803 crossref_primary_10_1016_j_ceramint_2023_11_151 crossref_primary_10_1021_acsaelm_3c00739 crossref_primary_10_1016_j_jallcom_2021_163139 crossref_primary_10_1016_j_jeurceramsoc_2025_117239 crossref_primary_10_1016_j_jeurceramsoc_2022_04_057 crossref_primary_10_1016_j_cej_2024_151046 crossref_primary_10_1016_j_cej_2024_151043 crossref_primary_10_1016_j_ceramint_2022_02_106 crossref_primary_10_1016_j_cej_2023_145314 crossref_primary_10_1002_pssa_202100737 crossref_primary_10_1021_acsami_2c20508 crossref_primary_10_1039_D2TA08074E crossref_primary_10_1007_s10854_025_14393_y crossref_primary_10_1016_j_jssc_2023_124150 crossref_primary_10_1016_j_ceramint_2023_05_049 crossref_primary_10_1002_adom_202500305 crossref_primary_10_1039_D2TA00380E crossref_primary_10_1038_s41598_023_49603_2 crossref_primary_10_1016_j_molstruc_2024_137949 crossref_primary_10_1016_j_ceramint_2022_08_272 crossref_primary_10_1039_D2TA10098C crossref_primary_10_1007_s10854_023_10252_w crossref_primary_10_1007_s00339_023_06795_8 crossref_primary_10_1016_j_cap_2025_01_013 crossref_primary_10_1016_j_ceramint_2024_12_018 crossref_primary_10_1002_adem_202400010 crossref_primary_10_1016_j_cej_2025_160821 crossref_primary_10_1016_j_jallcom_2024_175469 crossref_primary_10_1142_S2010135X23430014 crossref_primary_10_1039_D2TC00812B crossref_primary_10_1111_ijac_14962 crossref_primary_10_1039_D4TC03151B crossref_primary_10_1016_j_apmt_2024_102097 crossref_primary_10_1063_5_0094919 crossref_primary_10_1111_jace_19349 crossref_primary_10_1016_j_jallcom_2023_169723 crossref_primary_10_1039_D3RA04117D crossref_primary_10_1016_j_est_2025_115961 crossref_primary_10_1002_smll_202406059 crossref_primary_10_3390_ceramics7020047 crossref_primary_10_1007_s10853_024_09953_2 crossref_primary_10_1016_j_ceramint_2021_09_006 crossref_primary_10_1007_s00339_024_07767_2 crossref_primary_10_1016_j_optmat_2022_113317 crossref_primary_10_1111_jace_18589 crossref_primary_10_1016_j_matchemphys_2022_125874 crossref_primary_10_1111_jace_19556 crossref_primary_10_1016_j_jmst_2023_08_031 crossref_primary_10_1016_j_ceramint_2023_02_225 crossref_primary_10_1016_j_ceramint_2024_12_280 crossref_primary_10_1002_anie_202416291 crossref_primary_10_1016_j_jmat_2024_03_014 crossref_primary_10_1016_j_jmat_2022_09_009 crossref_primary_10_1039_D2TA01808J crossref_primary_10_1016_j_jallcom_2024_174037 crossref_primary_10_1016_j_jmat_2022_09_008 crossref_primary_10_1016_j_ceramint_2023_09_210 crossref_primary_10_1016_j_matlet_2025_138116 crossref_primary_10_1021_acsami_2c11318 crossref_primary_10_3390_ceramics7030068 crossref_primary_10_1002_smll_202206840 crossref_primary_10_1103_PhysRevApplied_19_054058 crossref_primary_10_3390_ceramics7030065 crossref_primary_10_3390_coatings13030534 crossref_primary_10_1016_j_ssc_2025_115843 crossref_primary_10_1080_10584587_2023_2234629 crossref_primary_10_1111_jace_19329 crossref_primary_10_1016_j_matlet_2022_133524 crossref_primary_10_1021_acsaem_2c01029 crossref_primary_10_1016_j_ceramint_2022_07_334 crossref_primary_10_1016_j_ceramint_2023_10_167 crossref_primary_10_1021_acsami_3c08791 crossref_primary_10_1016_j_jallcom_2024_176569 crossref_primary_10_1016_j_solidstatesciences_2024_107616 crossref_primary_10_1016_j_ceramint_2023_11_079 crossref_primary_10_1016_j_cej_2024_149947 crossref_primary_10_1088_1402_4896_ad1907 crossref_primary_10_3390_ma15093151 crossref_primary_10_1111_jace_19770 crossref_primary_10_1111_jace_19774 crossref_primary_10_1111_jace_19410 crossref_primary_10_1016_j_ceramint_2021_09_158 crossref_primary_10_1039_D2TC00056C crossref_primary_10_1016_j_jpowsour_2025_236374 crossref_primary_10_1016_j_cej_2024_157561 crossref_primary_10_1002_adfm_202212861 crossref_primary_10_1039_D3TC03757F crossref_primary_10_1002_ente_202100777 crossref_primary_10_1016_j_jmat_2023_03_006 crossref_primary_10_1016_j_matpr_2024_05_048 crossref_primary_10_1016_j_jallcom_2024_177558 crossref_primary_10_1002_est2_642 crossref_primary_10_1016_j_cej_2023_144086 crossref_primary_10_1016_j_ceramint_2022_01_269 crossref_primary_10_1016_j_ceramint_2023_03_156 crossref_primary_10_1016_j_ceramint_2024_03_354 crossref_primary_10_1016_j_jallcom_2024_176372 crossref_primary_10_1007_s10854_023_11119_w crossref_primary_10_1002_adfm_202301027 crossref_primary_10_1016_j_cej_2022_138432 crossref_primary_10_1016_j_ceramint_2024_04_040 crossref_primary_10_1016_j_cej_2022_137105 crossref_primary_10_1088_1742_6596_2680_1_012007 crossref_primary_10_1007_s00339_022_06367_2 crossref_primary_10_1007_s10854_023_11655_5 crossref_primary_10_1016_j_jmat_2022_01_007 crossref_primary_10_1002_adma_202420566 crossref_primary_10_1016_j_ceramint_2024_04_278 crossref_primary_10_1016_j_matlet_2022_132126 crossref_primary_10_1016_j_est_2024_112010 crossref_primary_10_1039_D2TA02893J crossref_primary_10_1021_acsami_2c11871 crossref_primary_10_1021_acsami_3c19123 crossref_primary_10_1016_j_actamat_2022_118286 crossref_primary_10_1016_j_cscee_2024_100679 crossref_primary_10_1002_aelm_202200793 crossref_primary_10_1021_acsaem_3c03229 crossref_primary_10_1016_j_ceramint_2021_12_305 crossref_primary_10_1016_j_est_2024_113599 crossref_primary_10_1016_j_est_2024_112020 crossref_primary_10_1016_j_cej_2021_133812 crossref_primary_10_1016_j_ceramint_2022_09_243 |
Cites_doi | 10.1080/00150190902889267 10.1038/nature14647 10.1016/j.ceramint.2020.07.050 10.1016/j.jallcom.2015.02.225 10.1016/j.ceramint.2018.11.250 10.1111/jace.15371 10.1039/C9TC01239G 10.1142/S2010135X18300050 10.1021/acsami.7b02225 10.1111/jace.15870 10.1016/S0378-7753(96)80006-1 10.1016/j.cej.2021.129900 10.1103/PhysRev.82.729 10.1039/C8TC03003K 10.1016/j.jeurceramsoc.2018.03.026 10.1063/1.2903115 10.1111/jace.15389 10.1039/D0TC00589D 10.1109/TED.2003.815141 10.1016/j.rser.2007.01.023 10.1016/j.ceramint.2012.10.089 10.1016/j.jeurceramsoc.2015.09.029 10.1016/j.jallcom.2019.01.077 10.1039/C7TA05392D 10.1016/j.jmat.2019.03.006 10.1016/j.ceramint.2018.03.049 10.1021/acssuschemeng.8b01926 10.1039/C9TC05253D 10.1080/00150190590926373 10.1016/j.cej.2020.127151 10.1038/s41467-020-18665-5 10.1088/0370-1301/64/9/303 10.1109/MEI.2006.1705854 10.1063/1.351586 10.1142/S2010135X18300049 10.1016/j.jeurceramsoc.2017.11.053 10.1080/00150197408237956 10.1039/D0NR04479B 10.1021/am100146u 10.1016/j.ceramint.2016.11.148 10.1016/j.jeurceramsoc.2018.08.010 10.1002/smll.201503193 10.1039/C9TA02053E 10.1016/j.ceramint.2020.09.228 10.1557/JMR.1997.0288 10.1016/j.jeurceramsoc.2018.11.034 10.1016/j.jeurceramsoc.2018.01.010 10.1016/j.matlet.2014.08.133 10.1039/C8TC04447C 10.1063/1.4747937 10.1016/j.matlet.2011.12.119 10.1016/j.jeurceramsoc.2019.02.009 10.1021/acsaelm.0c00745 10.1038/s41467-017-02040-y 10.1016/j.jallcom.2017.06.252 10.1039/C9DT01738K 10.1016/j.ceramint.2018.07.182 10.1039/C9TA11314B 10.1080/00150199808009173 10.1016/j.jallcom.2019.153196 10.1002/adfm.201903877 10.1016/0040-6090(96)08640-3 10.1038/nature07853 10.1039/C9TC00087A 10.1016/j.ensm.2020.05.026 10.1016/j.ceramint.2017.12.188 10.1016/j.ceramint.2013.09.020 10.1016/j.jeurceramsoc.2005.03.146 10.1021/acsami.0c13057 10.1002/adfm.201803665 10.1039/C9CS00432G 10.1080/00150198008018801 10.1002/aenm.201200808 10.1016/j.jallcom.2018.01.276 10.1016/j.ceramint.2020.05.280 10.1016/j.ceramint.2017.12.174 10.1002/ente.201500173 10.1002/admt.201800111 10.1088/0508-3443/18/1/308 10.1016/j.mattod.2019.04.015 10.1021/acssuschemeng.7b02203 10.1016/j.cej.2020.126818 10.1016/j.ceramint.2010.05.009 10.1039/C9TC06218A 10.1002/adma.201601859 10.1016/j.physb.2017.07.013 10.1016/j.nanoen.2019.02.003 10.1016/j.jeurceramsoc.2019.05.043 10.1039/C6TA06353E 10.1016/j.jeurceramsoc.2014.01.015 10.3390/ma8125439 10.1016/j.jeurceramsoc.2006.05.047 10.1039/C7TA10821D 10.1016/j.ceramint.2020.08.024 10.1016/j.matlet.2018.11.105 10.1088/1361-6463/ab7bb1 10.1063/1.4755841 10.1111/jace.13412 10.1088/1361-6463/aaff41 10.1111/j.1151-2916.1999.tb01840.x 10.1021/acssuschemeng.0c05265 10.1016/j.ssc.2014.12.004 10.7498/aps.69.20200213 10.1039/D0TA02285C 10.4191/kcers.2019.56.1.02 10.1126/science.aaw8109 10.1016/j.ceramint.2019.05.323 10.1039/C9SE00836E 10.1016/0022-3697(59)90226-4 10.1016/j.jeurceramsoc.2019.09.022 10.1016/j.jeurceramsoc.2016.08.021 10.1016/j.jallcom.2019.05.367 10.1109/TUFFC.2012.2403 10.1016/j.ceramint.2020.08.293 10.1143/JJAP.43.L1072 10.1016/j.ceramint.2016.03.062 10.1038/ncomms15682 10.1039/C9TC01356C 10.1039/D0NR05709F 10.1038/s41563-020-0704-x 10.1002/aenm.201903338 10.1109/TMAG.2006.887682 10.1063/1.1313784 10.1016/j.jeurceramsoc.2018.01.003 10.1016/j.jmat.2020.06.005 10.1063/1.4975409 10.1016/j.jeurceramsoc.2019.02.007 10.1063/5.0027405 10.1063/1.3645054 10.1111/jace.15392 10.1063/1.124059 10.1039/C7TC02478A 10.1021/acsami.1c05824 10.1039/C8TA12232F 10.1016/j.jallcom.2019.153260 10.1016/j.cej.2019.123154 10.1080/14786440508520582 10.1016/j.jallcom.2018.10.025 10.1039/C9TA10347C 10.1039/D0EE03094E 10.1002/adfm.201801504 10.1039/C5RA21261H 10.1016/j.matlet.2017.05.007 10.1016/j.ceramint.2019.10.055 10.1016/j.jmat.2020.05.005 10.1016/j.ceramint.2015.10.014 10.1016/j.cej.2020.125639 10.1016/j.jeurceramsoc.2020.03.003 10.1016/j.cej.2020.128376 10.1039/C9TC06711F 10.1063/1.1735030 10.1103/PhysRevLett.103.257602 10.1111/jace.15546 10.1039/C8EE03287D 10.1038/nmat1051 10.1016/j.jeurceramsoc.2019.09.001 10.1016/j.ceramint.2018.03.176 10.1016/j.jeurceramsoc.2011.09.024 10.1021/acsaem.8b01001 10.1039/C8TC02368A 10.1007/s10853-020-05070-y 10.1007/s11664-018-6683-x 10.1002/ente.201300031 10.1039/C9TA05936A 10.1088/1361-665X/aa590c 10.1143/JJAP.42.6110 10.1016/j.jmat.2020.12.009 10.1111/jace.12184 10.1111/jace.12773 10.1103/PhysRevB.82.104112 10.1016/j.compscitech.2020.108501 10.1016/0038-1098(83)90132-1 10.1016/j.jeurceramsoc.2007.11.004 10.1039/C8TC06549G 10.1016/B978-0-08-102802-5.00009-1 10.1016/j.cej.2020.125625 10.1016/j.pmatsci.2016.09.001 10.1016/j.jeurceramsoc.2019.05.056 10.1016/j.ceramint.2011.06.049 10.1016/j.jallcom.2020.154611 10.1016/j.ceramint.2019.07.019 10.1016/j.jeurceramsoc.2014.09.003 10.1016/j.ceramint.2013.12.100 10.1016/j.jallcom.2019.152356 10.1039/C9TC01414D 10.1016/j.ceramint.2019.08.261 10.1103/PhysRevLett.87.217601 10.1016/j.jeurceramsoc.2020.11.051 10.1111/jace.14472 10.1002/aenm.201803048 10.1039/C6EE03597C 10.1016/j.jeurceramsoc.2020.09.017 10.1016/j.jallcom.2018.01.106 10.1016/j.jallcom.2016.07.078 10.1080/00150193.2017.1325709 10.1080/00150198708016945 10.1016/j.jeurceramsoc.2020.06.048 10.1007/s12613-010-0316-6 10.1073/pnas.1603792113 10.1111/jace.15803 10.1002/aenm.201803411 10.1103/PhysRevB.74.224412 10.1109/57.342041 10.1039/C7DT03140H 10.1039/C9TC04864B 10.1021/j100112a043 10.1016/j.jeurceramsoc.2018.07.006 10.1016/j.jeurceramsoc.2020.01.050 10.1016/j.jallcom.2020.154961 10.1002/adfm.201300640 10.1016/j.jallcom.2017.03.261 10.1143/JJAP.30.2236 10.1039/C8TC05458D 10.1021/acssuschemeng.8b02821 10.1016/j.jallcom.2013.09.072 10.1063/1.4928153 10.1063/1.346425 10.1002/adma.201503881 10.1039/C9TA02149C 10.1016/j.cej.2020.128231 10.1039/D0TA03526B 10.1111/j.1551-2916.2011.04731.x 10.1111/j.1551-2916.2009.03104.x 10.1111/j.1551-2916.2011.04962.x 10.1016/j.ceramint.2019.03.003 10.1039/C8TC03855D 10.1021/ma2024057 10.1016/j.ensm.2019.06.013 10.1109/TDEI.2010.5539672 10.1021/acsami.7b17382 10.1039/C9CS00043G 10.1016/j.nanoen.2020.104551 10.1063/1.5000980 10.1016/j.scriptamat.2018.05.022 10.1016/j.jeurceramsoc.2018.06.038 10.1016/j.jallcom.2019.153004 10.1016/j.ceramint.2020.03.292 10.1039/C6TA07803F 10.1039/C9TA01165J 10.1039/C7TA09857J 10.1016/j.jeurceramsoc.2019.07.021 10.1039/D0TC04381H 10.1021/acsami.9b10819 10.1002/pssr.201800165 10.1016/j.matlet.2020.128823 10.1080/00150190601180471 10.1016/j.jeurceramsoc.2017.01.036 10.1039/C4TA04282D 10.1016/j.ceramint.2016.02.155 10.1016/j.jeurceramsoc.2018.12.044 10.1016/j.mseb.2013.08.016 10.1016/j.jallcom.2014.08.077 10.1088/0022-3727/45/35/355302 10.1111/j.1151-2916.1964.tb15658.x 10.1016/j.ceramint.2019.06.237 10.1016/j.jeurceramsoc.2020.03.070 10.1016/j.jallcom.2019.05.092 10.1016/j.jmat.2019.07.006 10.1021/acsaem.8b01099 10.1016/j.physb.2017.09.014 10.1111/jace.14728 10.1021/acs.inorgchem.7b02181 10.1016/j.jallcom.2020.154160 10.1063/1.2955533 10.1038/358136a0 10.1039/C9TA00995G 10.1039/C5TC04005A 10.1002/adma.201601727 10.1016/j.jallcom.2018.09.252 10.1103/PhysRevLett.102.027602 10.1021/acsami.9b13215 10.1039/c2jm32078a 10.1007/s10853-016-0521-4 10.1016/j.ceramint.2017.11.092 10.1016/j.ceramint.2020.01.181 10.1111/j.1151-2916.1994.tb04655.x 10.1016/j.matdes.2015.11.002 10.1142/S2010135X13300016 10.1039/C8SE00276B 10.1021/acs.chemmater.5b04109 10.1016/j.ceramint.2019.06.166 10.1016/j.jeurceramsoc.2014.11.022 10.1021/acssuschemeng.7b04754 10.1063/1.4990046 10.1111/j.1551-2916.2009.03313.x 10.1080/00150199408244755 10.1111/jace.16844 10.1016/j.pmatsci.2018.12.005 10.1016/j.jpcs.2018.01.051 10.1016/j.jallcom.2018.11.106 10.1016/j.ceramint.2020.08.256 10.1021/cm8021648 10.1063/1.4921744 10.1016/j.cej.2020.124879 10.1016/j.ceramint.2016.09.117 10.1016/j.jeurceramsoc.2018.07.029 10.1016/j.jallcom.2014.08.038 10.1016/j.ceramint.2019.06.300 10.1111/j.1151-2916.1981.tb09879.x 10.1039/C6TA04107H 10.1039/C6RA01919F 10.1016/j.scriptamat.2017.07.010 10.1126/science.1212741 10.1016/j.jeurceramsoc.2018.11.025 10.1111/j.1551-2916.2012.05409.x 10.1109/MEI.2004.1367508 10.1039/C9TC06443E 10.1016/j.jeurceramsoc.2019.03.030 10.1016/j.cej.2020.124158 10.1039/C9TA00463G 10.1016/j.jallcom.2013.09.052 10.1021/acsami.0c09876 10.1016/j.jallcom.2015.05.005 10.1063/1.4995009 10.1016/j.jeurceramsoc.2016.07.011 10.1111/jace.13325 10.1016/j.jallcom.2013.09.108 10.1063/1.4968790 10.1063/1.1499579 10.1021/acs.jpcc.6b05068 10.1063/1.4775493 10.1002/adma.201802155 10.1039/C5TA03614C 10.1016/j.jallcom.2016.07.025 10.1063/1.2766657 10.1039/C6TC03289C 10.1080/10584587.2014.912939 10.1016/j.jallcom.2017.01.249 10.1063/1.2887908 10.1016/j.nanoen.2019.104264 10.1016/j.jeurceramsoc.2020.03.012 10.1007/BF01507527 10.1002/pssa.201700915 10.1063/1.4979467 10.1016/j.jallcom.2012.06.094 10.1007/BF00275336 10.1016/j.jallcom.2013.04.026 10.1039/C9TA06457E 10.1126/science.1160903 10.1016/j.ceramint.2014.05.147 10.1016/j.jeurceramsoc.2016.12.016 10.1016/j.ceramint.2018.12.014 10.1109/MEI.2010.5383924 10.1039/C7TA03821F 10.1039/C8TA00474A 10.1146/annurev-matsci-070317-124435 10.1111/j.1151-2916.1971.tb12184.x 10.1111/j.1551-2916.2012.05215.x 10.1002/9781118904923.ch5 10.1016/j.ceramint.2018.11.018 10.1016/j.nanoen.2018.07.055 10.1016/j.jeurceramsoc.2020.03.015 10.1016/j.ceramint.2020.09.144 10.1016/j.nanoen.2018.10.028 10.1039/D0TA08345C 10.1016/j.actamat.2018.09.056 10.1016/j.ceramint.2019.09.025 10.1016/j.jeurceramsoc.2019.03.001 10.1039/C9TC02088H 10.1016/j.jeurceramsoc.2020.05.076 10.1016/j.nanoen.2018.06.016 10.1016/j.jeurceramsoc.2013.11.039 10.1039/D0TA00216J 10.1080/00150197408238042 10.1088/0022-3727/40/4/043 10.1016/j.jeurceramsoc.2015.10.019 10.1016/j.ceramint.2019.08.019 10.1016/j.ceramint.2019.09.265 10.1016/j.jeurceramsoc.2018.03.008 10.1016/j.jallcom.2017.04.023 10.1016/j.jallcom.2017.09.022 10.1007/s10853-012-6990-1 10.1088/1757-899X/18/20/202024 10.1016/j.nanoen.2020.105423 10.1142/S2010135X1241010X 10.1002/aelm.201900698 10.1021/acsami.7b04175 10.1016/j.jeurceramsoc.2013.06.029 10.1016/j.ceramint.2017.04.051 10.1103/PhysRevB.73.064114 10.1088/0022-3727/43/44/445403 10.1002/adma.201203823 10.1016/j.pmatsci.2014.01.002 10.1088/0022-3727/38/5/003 10.1016/j.cej.2020.125520 10.1111/jace.13737 10.1016/j.ceramint.2020.09.235 10.1007/s40145-018-0310-4 10.1016/j.ceramint.2013.08.099 10.1111/jace.12495 10.1016/j.apenergy.2014.09.081 10.1016/j.jeurceramsoc.2019.04.031 10.1039/C8TA09353A 10.1126/science.1127798 10.1016/j.materresbull.2019.02.002 10.1016/j.ceramint.2018.02.054 10.1016/j.ceramint.2013.06.088 10.1021/acsami.0c08737 10.1016/j.ceramint.2019.06.245 10.1016/j.scriptamat.2017.08.045 10.1016/j.jallcom.2019.152498 10.1016/j.ceramint.2019.11.015 10.1021/cr5006809 10.1038/s41563-018-0059-8 10.1016/j.ceramint.2015.02.156 10.1016/j.ceramint.2017.04.081 10.1039/D0EE02104K 10.1016/j.jeurceramsoc.2020.10.046 10.1016/j.mtchem.2020.100304 10.1088/0022-3727/48/41/415304 10.1063/1.4953457 10.1103/PhysRevB.94.014107 10.1016/j.jeurceramsoc.2020.10.049 10.1021/acsami.0c02832 10.1111/j.1744-7402.2009.02456.x 10.1111/j.1151-2916.1987.tb04862.x 10.1063/1.5020515 10.1088/0022-3727/29/1/037 10.1007/s10853-013-7849-9 10.1016/j.ceramint.2017.03.139 10.1038/s41598-017-06966-7 10.1063/1.2266992 10.1021/cm8004634 10.1016/j.jeurceramsoc.2015.07.027 10.1007/BF02377992 10.1016/j.ceramint.2020.12.255 10.1039/C8TA07303A 10.1016/j.jeurceramsoc.2016.12.053 10.1002/lpor.202000525 10.1039/C4DT03919J 10.1039/D0TC01711F 10.1016/j.cej.2019.123729 10.1002/adma.201701824 10.1021/jz501831q 10.1111/j.1151-2916.1990.tb06513.x 10.1016/j.ceramint.2008.11.003 10.15541/jim20170594 10.1038/35254 10.1016/j.ceramint.2020.02.135 10.1016/j.cej.2021.130475 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2021 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2021 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
DOI | 10.1039/d1ta04504k |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Materials Research Database AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 1885 |
ExternalDocumentID | 10_1039_D1TA04504K d1ta04504k |
GroupedDBID | 0-7 0R 705 AAEMU AAGNR AAIWI AANOJ ABASK ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFRAH AFVBQ AGRSR AGSTE ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV BLAPV BSQNT C6K CKLOX EBS ECGLT EE0 EF- GNO HZ H~N J3I JG O-G O9- R7C RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH UCJ 0R~ AAJAE AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AHGCF AKMSF ALUYA APEMP CITATION GGIMP H13 HZ~ RAOCF 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c380t-182352669c3ceb5e55eb4f63e318d047942aba23bf0f573f918a727be7ab443e3 |
ISSN | 2050-7488 2050-7496 |
IngestDate | Thu Jul 10 17:21:05 EDT 2025 Mon Jun 30 11:44:08 EDT 2025 Thu Apr 24 23:05:32 EDT 2025 Tue Jul 01 01:13:13 EDT 2025 Sun Apr 17 04:30:15 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 34 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c380t-182352669c3ceb5e55eb4f63e318d047942aba23bf0f573f918a727be7ab443e3 |
Notes | Li Jin is a full professor in the School of Electronic Science and Engineering at Xi'an Jiaotong University (XJTU), China. He received his BEng and MEng degrees in Electronics Science and Technology from the XJTU in 2003 and 2006, respectively. He received his PhD degree in Materials Science and Engineering from the Swiss Federal Institute of Technology in Lausanne (EPFL), Switzerland in 2011. Subsequently, he completed his postdoctoral research at the Ceramics Laboratory of EPFL. His interests include ferroelectric/electrostrictive/dielectric materials and their applications in actuators, energy storage devices and other electronic devices. He has published more than 110+ papers in peer-reviewed journals with 6000+ citations. One of his paper has been selected as the 100 Most Influential International Academic Papers in China, in 2014. He has received the First Prize of Natural Science Award by the Ministry of Education of China (2015). Hongliang Du is currently a full professor at college of Engineering, Xi'an International University (XAIU), China. He received his Ph.D. degree from Northwestern Polytechnical University in 2011, and he was a visiting scholar in Technische Universitat Darmstadt (Germany) in 2016. His research interests mainly include lead-free piezoelectric materials, high-temperature piezoelectric ceramics, transparent ferroelectric ceramics and dielectric materials for energy storage applications. He received several awards including Natural Science Second Class Award from Ministry of Education (2010), Excellent Paper Award for Young Scientists from the 11th IUMRS International Conference in Asia (2010), and the First Prize of Scientific and Technological Award from Shaanxi Universities (2021). He has published more than 80 papers in the field of ferro/piezoelectric materials. He was identified as one of the top 1% of highly cited authors in Royal Society of Chemistry (RSC) journals in 2019. Zetian Yang is a Ph.D. student in LumiLab, Department of Solid State Sciences, Ghent University. His research interests mainly include piezoresistive properties of samarium monosulfide, inorganic photochromic materials for optical information storage and anti-counterfeiting applications, and ferroelectric ceramics for electrical energy storage. He has authored/co-authored 17 referred papers with three highly cited papers and one hot paper, and his work has been cited about 1000 times. Dirk Poelman is a full professor in the Department of Solid State Sciences at Ghent University, Belgium since 2012. He obtained his PhD in Ghent University on electroluminescent thin films in 1994. His recent interests include photocatalysis for air purification, luminescent materials for lighting and displays, persistent luminescent compounds for safety applications and near-infrared bio-imaging. He has published over 230 international publications in these fields. Currently, he is working on the relation between the persistent luminescent behaviour of materials, their thermoluminescence characteristics and their photo- and thermochromic properties. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6637-816X 0000-0002-3930-172X 0000-0002-0815-4587 |
PQID | 2566287762 |
PQPubID | 2047523 |
PageCount | 6 |
ParticipantIDs | proquest_journals_2566287762 crossref_citationtrail_10_1039_D1TA04504K crossref_primary_10_1039_D1TA04504K rsc_primary_d1ta04504k proquest_miscellaneous_2636445986 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210831 |
PublicationDateYYYYMMDD | 2021-08-31 |
PublicationDate_xml | – month: 8 year: 2021 text: 20210831 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Dorcet (D1TA04504K/cit326) 2008; 20 Li (D1TA04504K/cit352) 2017; 43 Wang (D1TA04504K/cit200) 2014; 617 Luo (D1TA04504K/cit322) 2020; 11 Li (D1TA04504K/cit379) 2017; 121 Lin (D1TA04504K/cit17) 2020; 8 Chauhan (D1TA04504K/cit51) 2015; 8 Kuroiwa (D1TA04504K/cit113) 2001; 87 Sri Gyan (D1TA04504K/cit443) 2019; 52 Goldschmidt (D1TA04504K/cit417) 1926; 14 Bai (D1TA04504K/cit400) 2019; 48 Li (D1TA04504K/cit421) 2019; 7 Cui (D1TA04504K/cit143) 2018; 740 Sindhu (D1TA04504K/cit190) 2013; 575 Cao (D1TA04504K/cit323) 2016; 36 Zhu (D1TA04504K/cit94) 2019; 39 Niwa (D1TA04504K/cit11) 1996; 60 Zhang (D1TA04504K/cit267) 2014; 40 Yuan (D1TA04504K/cit220) 2017; 5 Li (D1TA04504K/cit376) 2020; 6 Liu (D1TA04504K/cit56) 2018; 3 Ren (D1TA04504K/cit102) 2017; 37 Qi (D1TA04504K/cit46) 2019; 29 Li (D1TA04504K/cit286) 2010; 17 Eerd (D1TA04504K/cit335) 2010; 82 Huang (D1TA04504K/cit103) 2015; 35 Sun (D1TA04504K/cit87) 2012; 101 Bak (D1TA04504K/cit169) 2004; 10 Yang (D1TA04504K/cit304) 2019; 58 Wei (D1TA04504K/cit227) 2017; 43 Ibrahim (D1TA04504K/cit7) 2008; 12 Shi (D1TA04504K/cit453) 2020; 815 Alkathy (D1TA04504K/cit141) 2018; 44 Zhao (D1TA04504K/cit118) 2020; 13 Barshaw (D1TA04504K/cit22) 2007; 43 Ren (D1TA04504K/cit177) 2004; 3 Sun (D1TA04504K/cit452) 2021; 41 Chu (D1TA04504K/cit6) 2006; 313 Hall (D1TA04504K/cit302) 1951; 64 Zhao (D1TA04504K/cit385) 2018; 101 Wang (D1TA04504K/cit251) 2018; 1 Ma (D1TA04504K/cit337) 2013; 23 Curecheriu (D1TA04504K/cit125) 2012; 95 Li (D1TA04504K/cit339) 2017; 141 Leontsev (D1TA04504K/cit270) 2009; 92 Luo (D1TA04504K/cit120) 2019; 7 Qu (D1TA04504K/cit299) 2016; 6 Han (D1TA04504K/cit408) 2020; 40 Zhang (D1TA04504K/cit59) 2020; 8 Guerra (D1TA04504K/cit334) 2017; 525 Guo (D1TA04504K/cit157) 2020; 46 Chen (D1TA04504K/cit199) 2012; 23 Zhang (D1TA04504K/cit317) 2015; 98 Liu (D1TA04504K/cit410) 2020; 836 Hu (D1TA04504K/cit383) 2018; 44 Jin (D1TA04504K/cit366) 2021; 47 Chen (D1TA04504K/cit262) 2012; 541 Yang (D1TA04504K/cit449) 2019; 39 Wang (D1TA04504K/cit203) 2013; 24 Yan (D1TA04504K/cit359) 2020; 46 Liu (D1TA04504K/cit252) 2018; 6 Yao (D1TA04504K/cit364) 2018; 44 Xie (D1TA04504K/cit98) 2019; 39 Wu (D1TA04504K/cit97) 2020; 117 Megaw (D1TA04504K/cit433) 1974; 7 Huang (D1TA04504K/cit101) 2018; 6 Li (D1TA04504K/cit362) 2019; 45 Zhou (D1TA04504K/cit166) 2016; 688 Ping (D1TA04504K/cit180) 2019; 45 Chen (D1TA04504K/cit256) 2020; 46 Li (D1TA04504K/cit79) 2018; 28 Zhang (D1TA04504K/cit119) 2020; 40 Hou (D1TA04504K/cit36) 2017; 9 Yang (D1TA04504K/cit139) 2019; 773 Takenaka (D1TA04504K/cit331) 1991; 30 Chen (D1TA04504K/cit461) 2020; 12 Kim (D1TA04504K/cit165) 2016; 28 Cross (D1TA04504K/cit470) 1987; 76 Guo (D1TA04504K/cit128) 2021; 420 Sakata (D1TA04504K/cit371) 1974; 7 Liu (D1TA04504K/cit232) 2019; 778 Luo (D1TA04504K/cit106) 2011; 18 Wongsaenmai (D1TA04504K/cit284) 2012; 38 Smolensky (D1TA04504K/cit325) 1961; 2 Qu (D1TA04504K/cit460) 2019; 7 Murata (D1TA04504K/cit110) 2012; 95 Cox (D1TA04504K/cit168) 1967; 18 Tolédano (D1TA04504K/cit83) 2016; 94 Chen (D1TA04504K/cit215) 2020; 46 Li (D1TA04504K/cit99) 2020; 46 Lv (D1TA04504K/cit127) 2021; 420 Zhao (D1TA04504K/cit45) 2017; 29 Cross (D1TA04504K/cit164) 2011; 23 Lin (D1TA04504K/cit290) 2019; 7 Yang (D1TA04504K/cit147) 2017; 5 Yang (D1TA04504K/cit153) 2017; 5 Shi (D1TA04504K/cit377) 2019; 784 Basu (D1TA04504K/cit244) 2008; 92 Puli (D1TA04504K/cit187) 2016; 688 Yang (D1TA04504K/cit282) 2021; 15 Wu (D1TA04504K/cit16) 2018; 50 Su (D1TA04504K/cit100) 2014; 2 Wang (D1TA04504K/cit361) 2021; 47 Yao (D1TA04504K/cit473) 2020; 47 Zhu (D1TA04504K/cit257) 2019; 45 Webber (D1TA04504K/cit300) 2017; 26 Yan (D1TA04504K/cit413) 2020; 8 Xie (D1TA04504K/cit356) 2018; 29 Wang (D1TA04504K/cit354) 2019; 45 Wang (D1TA04504K/cit202) 2017; 201 Wang (D1TA04504K/cit194) 2015; 41 Li (D1TA04504K/cit20) 2015; 523 Yang (D1TA04504K/cit126) 2019; 7 Yang (D1TA04504K/cit142) 2018; 6 Wang (D1TA04504K/cit148) 2012; 112 Haertling (D1TA04504K/cit71) 1999; 82 Zhang (D1TA04504K/cit181) 2016; 28 Ahn (D1TA04504K/cit287) 1987; 70 Hreščak (D1TA04504K/cit294) 2017; 37 Li (D1TA04504K/cit219) 2018; 1 Li (D1TA04504K/cit8) 2016; 113 Zuo (D1TA04504K/cit442) 2018; 161 Shi (D1TA04504K/cit455) 2020; 8 Zhang (D1TA04504K/cit28) 2016; 28 Malik (D1TA04504K/cit393) 2018; 38 Wang (D1TA04504K/cit341) 2014; 40 Xu (D1TA04504K/cit346) 2017; 37 Yang (D1TA04504K/cit60) 2020; 8 Yang (D1TA04504K/cit318) 2015; 35 Dong (D1TA04504K/cit458) 2021; 47 EU-Directive 2002/96/EC (D1TA04504K/cit35) 2003; 46 Li (D1TA04504K/cit217) 2017; 5 Zhang (D1TA04504K/cit384) 2021; 406 Palneedi (D1TA04504K/cit61) 2021 Wang (D1TA04504K/cit340) 2014; 585 Han (D1TA04504K/cit321) 2019; 7 Zhang (D1TA04504K/cit395) 2018; 38 Li (D1TA04504K/cit211) 2018; 38 Li (D1TA04504K/cit218) 2020; 46 Zhao (D1TA04504K/cit431) 2016; 4 Pardo (D1TA04504K/cit448) 2012; 22 Hiruma (D1TA04504K/cit332) 2007; 346 Fan (D1TA04504K/cit404) 2020; 8 Wang (D1TA04504K/cit265) 2019; 08 Dong (D1TA04504K/cit225) 2020; 31 Lu (D1TA04504K/cit271) 2020; 13 Qu (D1TA04504K/cit280) 2016; 4 Luo (D1TA04504K/cit173) 2017; 9 Cui (D1TA04504K/cit151) 2017; 711 Ma (D1TA04504K/cit378) 2019; 7 Yan (D1TA04504K/cit428) 2019; 7 Kwei (D1TA04504K/cit175) 1993; 97 Yip (D1TA04504K/cit303) 1998; 391 Xue (D1TA04504K/cit29) 2014; 40 Yan (D1TA04504K/cit150) 2018; 6 Lu (D1TA04504K/cit14) 2020; 70 Yin (D1TA04504K/cit389) 2018; 6 Yadav (D1TA04504K/cit391) 2020; 46 Yang (D1TA04504K/cit467) 2020; 12 Lundstrom (D1TA04504K/cit105) 1999; 2 Leontsev (D1TA04504K/cit266) 2009; 92 Chen (D1TA04504K/cit65) 2020; 17 Wang (D1TA04504K/cit43) 2014; 137 Luo (D1TA04504K/cit68) 2019; 48 Xu (D1TA04504K/cit324) 2015; 35 Song (D1TA04504K/cit88) 2014; 34 Yang (D1TA04504K/cit154) 2017; 111 Kang (D1TA04504K/cit392) 2021; 410 Zhang (D1TA04504K/cit310) 2020; 8 Moya (D1TA04504K/cit178) 2013; 25 Tang (D1TA04504K/cit3) 2013; 3 Qi (D1TA04504K/cit464) 2019; 39 Puli (D1TA04504K/cit185) 2014; 584 Wei (D1TA04504K/cit468) 2021; 47 Dunn (D1TA04504K/cit5) 2011; 334 Owate (D1TA04504K/cit84) 1992; 72 Park (D1TA04504K/cit327) 1994; 77 Lu (D1TA04504K/cit444) 2018; 38 Malic (D1TA04504K/cit285) 2005; 314 Viehland (D1TA04504K/cit469) 1990; 68 Zhang (D1TA04504K/cit171) 2021; 41 Li (D1TA04504K/cit54) 2018; 08 Zhao (D1TA04504K/cit221) 2017; 43 Gao (D1TA04504K/cit42) 2011; 94 Zhou (D1TA04504K/cit224) 2019; 45 Tang (D1TA04504K/cit269) 2021; 47 Yang (D1TA04504K/cit357) 2019; 39 Kandula (D1TA04504K/cit360) 2018; 215 Ahmed (D1TA04504K/cit90) 2005; 25 Kittel (D1TA04504K/cit82) 1951; 82 Yao (D1TA04504K/cit58) 2017; 29 Liu (D1TA04504K/cit316) 2019; 7 Zuo (D1TA04504K/cit445) 2017; 111 Acosta (D1TA04504K/cit77) 2017; 4 Li (D1TA04504K/cit375) 2020; 392 Chai (D1TA04504K/cit309) 2018; 101 Hiruma (D1TA04504K/cit373) 2008; 92 Qiu (D1TA04504K/cit233) 2019; 797 Yoshimura (D1TA04504K/cit239) 1996; 281 Qi (D1TA04504K/cit250) 2020; 10 Badapanda (D1TA04504K/cit183) 2017; 521 McPherson (D1TA04504K/cit132) 2003; 50 Beauchamp (D1TA04504K/cit93) 1971; 54 Kang (D1TA04504K/cit2) 2009; 458 Gao (D1TA04504K/cit440) 2016; 120 Qi (D1TA04504K/cit403) 2019; 7 Kumar (D1TA04504K/cit292) 2017; 723 Badapanda (D1TA04504K/cit193) 2015; 645 Bhattacharjee (D1TA04504K/cit264) 2007; 91 Yu (D1TA04504K/cit396) 2020; 46 Yao (D1TA04504K/cit49) 2020; 12 Parija (D1TA04504K/cit328) 2012; 24 Wu (D1TA04504K/cit196) 2013; 24 Zhao (D1TA04504K/cit209) 2019; 9 Hao (D1TA04504K/cit81) 2014; 63 Zhou (D1TA04504K/cit222) 2018; 6 Bi (D1TA04504K/cit158) 2020; 821 Yu (D1TA04504K/cit191) 2013; 39 Ravindran (D1TA04504K/cit241) 2006; 74 Tian (D1TA04504K/cit419) 2017; 5 Tao (D1TA04504K/cit365) 2018; 38 Wang (D1TA04504K/cit254) 2018; 6 Beuerlein (D1TA04504K/cit205) 2016; 99 Lin (D1TA04504K/cit129) 2019; 11 Cao (D1TA04504K/cit342) 2015; 3 Li (D1TA04504K/cit47) 2020; 19 Wu (D1TA04504K/cit243) 2016; 84 Pu (D1TA04504K/cit388) 2018; 6 Si (D1TA04504K/cit223) 2019; 45 Shimizu (D1TA04504K/cit438) 2015; 44 Liu (D1TA04504K/cit320) 2018; 38 Tao (D1TA04504K/cit312) 2017; 28 Han (D1TA04504K/cit423) 2019; 45 Chen (D1TA04504K/cit307) 2020; 40 Wang (D1TA04504K/cit207) 2015; 98 Yang (D1TA04504K/cit253) 2019; 39 Yang (D1TA04504K/cit115) 2020; 12 Bian (D1TA04504K/cit463) 2019; 39 Dummer (D1TA04504K/cit10) 1978 Liu (D1TA04504K/cit249) 2018; 101 Xu (D1TA04504K/cit422) 2018; 6 Xu (D1TA04504K/cit242) 2017; 8 Lv (D1TA04504K/cit275) 2020; 49 Malic (D1TA04504K/cit295) 2008; 28 Jain (D1TA04504K/cit235) 2020; 53 Qi (D1TA04504K/cit108) 2004; 20 Sangwan (D1TA04504K/cit184) 2018; 117 Jo (D1TA04504K/cit336) 2011; 110 Raevski (D1TA04504K/cit450) 2002; 626 Kim (D1TA04504K/cit86) 2016; 120 Zhang (D1TA04504K/cit398) 2020; 383 Yoshimura (D1TA04504K/cit85) 1981; 64 Triamnak (D1TA04504K/cit206) 2013; 96 Xu (D1TA04504K/cit344) 2016; 42 Kang (D1TA04504K/cit130) 2021; 13 Puli (D1TA04504K/cit186) 2012; 48 Lin (D1TA04504K/cit289) 2019; 7 Wei (D1TA04504K/cit228) 2017; 43 Zhang (D1TA04504K/cit198) 2010; 7 Kong (D1TA04504K/cit140) 2019; 103 Dakin (D1TA04504K/cit112) 2006; 22 Zhou (D1TA04504K/cit348) 2019; 39 Wang (D1TA04504K/cit74) 2018; 44 Yang (D1TA04504K/cit146) 2017; 111 Zhang (D1TA04504K/cit161) 2012 Luo (D1TA04504K/cit412) 2013; 49 Cross (D1TA04504K/cit435) 2009; 46 Li (D1TA04504K/cit23) 2008; 20 Touzin (D1TA04504K/cit32) 2007; 27 Wang (D1TA04504K/cit189) 2012; 32 Zheng (D1TA04504K/cit246) 2015; 98 Ravel (D1TA04504K/cit174) 1998; 206 He (D1TA04504K/cit370) 2020; 8 Gao (D1TA04504K/cit255) 2019; 39 Wang (D1TA04504K/cit273) 2020; 8 Liu (D1TA04504K/cit231) 2020; 826 Sun (D1TA04504K/cit188) 2017; 46 Liu (D1TA04504K/cit213) 2019; 45 Li (D1TA04504K/cit39) 2018; 30 Pan (D1TA04504K/cit62) 2020; 12 Guo (D1TA04504K/cit64) 2019; 29 Yang (D1TA04504K/cit48) 2019; 102 Jayakrishnan (D1TA04504K/cit179) 2019; 45 Cross (D1TA04504K/cit80) 1994; 151 Guo (D1TA04504K/cit439) 2015; 118 Ye (D1TA04504K/cit459) 2019; 7 Shen (D1TA04504K/cit226) 2015; 3 Zhou (D1TA04504K/cit451) 2020; 4 Gupta (D1TA04504K/cit297) 2018; 143 Yuan (D1TA04504K/cit259) 2007; 40 Hao (D1TA04504K/cit53) 2013; 03 Zheng (D1TA04504K/cit247) 2017; 37 Liu (D1TA04504K/cit369) 2020; 6 Du (D1TA04504K/cit63) 2018; 33 Wang (D1TA04504K/cit368) 2017; 43 Yuzyuk (D1TA04504K/cit434) 2005; 17 Yang (D1TA04504K/cit18) 2019; 7 Musil (D1TA04504K/cit109) 1995; 11 Park (D1TA04504K/cit372) 1997; 12 Liu (D1TA04504K/cit176) 2009; 103 Cai (D1TA04504K/cit95) 2018; 101 Benyoussef (D1TA04504K/cit329) 2018; 44 Yadav (D1TA04504K/cit353) 2020; 46 Lu (D1TA04504K/cit447) 20 |
References_xml | – issn: 2021 end-page: p 279-356 publication-title: Lead-based and lead-free ferroelectric ceramic capacitors for electrical energy storage. Ferroelectric Materials for Energy Harvesting and Storage doi: Palneedi Peddigari Upadhyay Silva Hwang Ryu – issn: 2013 volume-title: An introduction to high voltage engineering publication-title: PHI Learning Pvt. Ltd doi: Ray – issn: 2020-2025 publication-title: Global and China Multi-Layer Ceramic Capacitor (MLCC) Industry Report – volume: 385 start-page: 6155 year: 2009 ident: D1TA04504K/cit268 publication-title: Ferroelectrics doi: 10.1080/00150190902889267 – volume: 523 start-page: 576 year: 2015 ident: D1TA04504K/cit20 publication-title: Nature doi: 10.1038/nature14647 – volume: 46 start-page: 25731 year: 2020 ident: D1TA04504K/cit454 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.07.050 – volume: 640 start-page: 416 year: 2015 ident: D1TA04504K/cit37 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2015.02.225 – volume: 45 start-page: 5808 year: 2019 ident: D1TA04504K/cit179 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.11.250 – volume: 101 start-page: 1999 year: 2018 ident: D1TA04504K/cit170 publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.15371 – volume: 7 start-page: 6222 year: 2019 ident: D1TA04504K/cit382 publication-title: J. Mater. Chem. C doi: 10.1039/C9TC01239G – volume: 08 start-page: 1830005 year: 2018 ident: D1TA04504K/cit54 publication-title: J. Adv. Dielectr. doi: 10.1142/S2010135X18300050 – volume: 9 start-page: 20484 year: 2017 ident: D1TA04504K/cit36 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b02225 – volume: 101 start-page: 5578 year: 2018 ident: D1TA04504K/cit385 publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.15870 – volume: 60 start-page: 165 year: 1996 ident: D1TA04504K/cit11 publication-title: J. Power Sources doi: 10.1016/S0378-7753(96)80006-1 – volume: 420 start-page: 129900 year: 2021 ident: D1TA04504K/cit127 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.129900 – volume: 82 start-page: 729 year: 1951 ident: D1TA04504K/cit82 publication-title: Phys. Rev. doi: 10.1103/PhysRev.82.729 – volume: 6 start-page: 8528 year: 2018 ident: D1TA04504K/cit222 publication-title: J. mater. Chem. C doi: 10.1039/C8TC03003K – volume: 38 start-page: 3127 year: 2018 ident: D1TA04504K/cit444 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2018.03.026 – volume: 92 start-page: 142909 year: 2008 ident: D1TA04504K/cit19 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2903115 – volume: 101 start-page: 2305 year: 2018 ident: D1TA04504K/cit288 publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.15389 – volume: 8 start-page: 5681 year: 2020 ident: D1TA04504K/cit404 publication-title: J. Mater. Chem. C doi: 10.1039/D0TC00589D – volume: 50 start-page: 1771 year: 2003 ident: D1TA04504K/cit132 publication-title: IEEE Trans. Electron. Devices doi: 10.1109/TED.2003.815141 – volume: 12 start-page: 1221 year: 2008 ident: D1TA04504K/cit7 publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2007.01.023 – volume: 39 start-page: S335 year: 2013 ident: D1TA04504K/cit191 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2012.10.089 – volume: 36 start-page: 81 year: 2016 ident: D1TA04504K/cit349 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2015.09.029 – volume: 784 start-page: 788 year: 2019 ident: D1TA04504K/cit377 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.01.077 – volume: 5 start-page: 19607 year: 2017 ident: D1TA04504K/cit217 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA05392D – volume: 5 start-page: 385 year: 2019 ident: D1TA04504K/cit394 publication-title: J. Materiomics doi: 10.1016/j.jmat.2019.03.006 – volume: 44 start-page: 10367 year: 2018 ident: D1TA04504K/cit141 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.03.049 – volume: 24 start-page: 4105 year: 2013 ident: D1TA04504K/cit196 publication-title: J. Mater. Sci.: Mater. Electron. – volume: 6 start-page: 12755 year: 2018 ident: D1TA04504K/cit465 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.8b01926 – volume: 7 start-page: 15118 year: 2019 ident: D1TA04504K/cit66 publication-title: J. Mater. Chem. C doi: 10.1039/C9TC05253D – volume: 314 start-page: 149 year: 2005 ident: D1TA04504K/cit285 publication-title: Ferroelectrics doi: 10.1080/00150190590926373 – volume: 406 start-page: 127151 year: 2021 ident: D1TA04504K/cit381 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127151 – volume: 11 start-page: 4824 year: 2020 ident: D1TA04504K/cit322 publication-title: Nat. Commun. doi: 10.1038/s41467-020-18665-5 – volume: 64 start-page: 747 year: 1951 ident: D1TA04504K/cit302 publication-title: Proc. Phys. Soc., London, Sect. B. doi: 10.1088/0370-1301/64/9/303 – volume: 22 start-page: 11 year: 2006 ident: D1TA04504K/cit112 publication-title: IEEE Electr. Insul. Mag. doi: 10.1109/MEI.2006.1705854 – volume: 72 start-page: 2418 year: 1992 ident: D1TA04504K/cit84 publication-title: J. Appl. Phys. doi: 10.1063/1.351586 – volume: 46 start-page: 24 issue: L37 year: 2003 ident: D1TA04504K/cit34 publication-title: Off. J. Eur. Union – volume: 08 start-page: 1830004 year: 2019 ident: D1TA04504K/cit265 publication-title: J. Adv. Dielectr. doi: 10.1142/S2010135X18300049 – volume: 38 start-page: 2304 year: 2018 ident: D1TA04504K/cit395 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2017.11.053 – volume: 7 start-page: 87 year: 1974 ident: D1TA04504K/cit433 publication-title: Ferroelectrics doi: 10.1080/00150197408237956 – volume: 12 start-page: 17165 year: 2020 ident: D1TA04504K/cit49 publication-title: Nanoscale doi: 10.1039/D0NR04479B – volume: 2 start-page: 1286 year: 2010 ident: D1TA04504K/cit25 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am100146u – volume: 43 start-page: 4768 year: 2017 ident: D1TA04504K/cit227 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2016.11.148 – volume: 38 start-page: 5388 year: 2018 ident: D1TA04504K/cit401 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2018.08.010 – volume: 12 start-page: 1688 year: 2016 ident: D1TA04504K/cit12 publication-title: Small doi: 10.1002/smll.201503193 – volume: 7 start-page: 14118 year: 2019 ident: D1TA04504K/cit420 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA02053E – volume-title: Global and China Multi-Layer Ceramic Capacitor (MLCC) Industry Report year: 2020–2025 ident: D1TA04504K/cit33 – volume: 47 start-page: 3713 year: 2021 ident: D1TA04504K/cit468 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.09.228 – volume: 12 start-page: 2152 year: 1997 ident: D1TA04504K/cit372 publication-title: J. Mater. Res. doi: 10.1557/JMR.1997.0288 – volume: 39 start-page: 1142 year: 2019 ident: D1TA04504K/cit94 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2018.11.034 – volume: 38 start-page: 2511 year: 2018 ident: D1TA04504K/cit393 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2018.01.010 – volume: 137 start-page: 79 year: 2014 ident: D1TA04504K/cit43 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2014.08.133 – volume: 7 start-page: 281 year: 2019 ident: D1TA04504K/cit378 publication-title: J. Mater. Chem. C doi: 10.1039/C8TC04447C – volume: 112 start-page: 044106 year: 2012 ident: D1TA04504K/cit148 publication-title: J. Appl. Phys. doi: 10.1063/1.4747937 – volume: 72 start-page: 160 year: 2012 ident: D1TA04504K/cit261 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2011.12.119 – volume: 39 start-page: 2331 year: 2019 ident: D1TA04504K/cit255 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2019.02.009 – volume: 2 start-page: 3717 year: 2020 ident: D1TA04504K/cit308 publication-title: ACS Appl. Electron. Mater. doi: 10.1021/acsaelm.0c00745 – volume: 8 start-page: 1999 year: 2017 ident: D1TA04504K/cit122 publication-title: Nat. Commun. doi: 10.1038/s41467-017-02040-y – volume: 723 start-page: 589 year: 2017 ident: D1TA04504K/cit292 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.06.252 – volume: 48 start-page: 10160 year: 2019 ident: D1TA04504K/cit400 publication-title: Dalton Trans. doi: 10.1039/C9DT01738K – volume: 44 start-page: 19451 year: 2018 ident: D1TA04504K/cit329 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.07.182 – volume: 7 start-page: 27256 year: 2019 ident: D1TA04504K/cit126 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA11314B – volume: 206 start-page: 407 year: 1998 ident: D1TA04504K/cit174 publication-title: Ferroelectrics doi: 10.1080/00150199808009173 – volume: 821 start-page: 153196 year: 2020 ident: D1TA04504K/cit158 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.153196 – volume: 29 start-page: 1903877 year: 2019 ident: D1TA04504K/cit46 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201903877 – volume: 281 start-page: 235 year: 1996 ident: D1TA04504K/cit239 publication-title: Thin Solid Films doi: 10.1016/0040-6090(96)08640-3 – volume: 458 start-page: 190 year: 2009 ident: D1TA04504K/cit2 publication-title: Nature doi: 10.1038/nature07853 – volume: 7 start-page: 4072 year: 2019 ident: D1TA04504K/cit386 publication-title: J. Mater. Chem. C doi: 10.1039/C9TC00087A – volume: 30 start-page: 392 year: 2020 ident: D1TA04504K/cit374 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.05.026 – volume: 44 start-page: 5492 year: 2018 ident: D1TA04504K/cit447 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.12.188 – volume: 40 start-page: 4759 year: 2014 ident: D1TA04504K/cit267 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2013.09.020 – volume: 25 start-page: 2813 year: 2005 ident: D1TA04504K/cit90 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2005.03.146 – volume: 12 start-page: 43942 year: 2020 ident: D1TA04504K/cit115 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c13057 – volume: 28 start-page: 1803665 year: 2018 ident: D1TA04504K/cit57 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201803665 – volume: 49 start-page: 671 year: 2020 ident: D1TA04504K/cit275 publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00432G – volume: 23 start-page: 187 year: 2011 ident: D1TA04504K/cit164 publication-title: Ferroelectrics doi: 10.1080/00150198008018801 – volume: 3 start-page: 451 year: 2013 ident: D1TA04504K/cit3 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201200808 – volume: 744 start-page: 721 year: 2018 ident: D1TA04504K/cit230 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.01.276 – volume: 46 start-page: 21719 year: 2020 ident: D1TA04504K/cit157 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.05.280 – volume: 44 start-page: 5961 year: 2018 ident: D1TA04504K/cit364 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.12.174 – volume: 3 start-page: 1198 year: 2015 ident: D1TA04504K/cit342 publication-title: Energy Technol. doi: 10.1002/ente.201500173 – volume: 31 start-page: 9974 year: 2020 ident: D1TA04504K/cit347 publication-title: J. Mater. Sci.: Mater. Electron. – volume: 3 start-page: 1800111 year: 2018 ident: D1TA04504K/cit56 publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201800111 – volume: 18 start-page: 37 year: 1967 ident: D1TA04504K/cit168 publication-title: Br. J. Appl. Phys. doi: 10.1088/0508-3443/18/1/308 – volume: 29 start-page: 49 year: 2019 ident: D1TA04504K/cit64 publication-title: Mater. Today doi: 10.1016/j.mattod.2019.04.015 – volume: 5 start-page: 10215 year: 2017 ident: D1TA04504K/cit153 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.7b02203 – volume: 406 start-page: 126818 year: 2021 ident: D1TA04504K/cit384 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126818 – volume: 36 start-page: 2011 year: 2010 ident: D1TA04504K/cit107 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2010.05.009 – volume: 8 start-page: 2258 year: 2020 ident: D1TA04504K/cit17 publication-title: J. Mater. Chem. C doi: 10.1039/C9TC06218A – volume: 28 start-page: 8519 year: 2016 ident: D1TA04504K/cit277 publication-title: Adv. Mater. doi: 10.1002/adma.201601859 – volume: 521 start-page: 264 year: 2017 ident: D1TA04504K/cit183 publication-title: Phys. B: Condens. Matter doi: 10.1016/j.physb.2017.07.013 – volume: 58 start-page: 768 year: 2019 ident: D1TA04504K/cit304 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.02.003 – volume: 39 start-page: 3703 year: 2019 ident: D1TA04504K/cit464 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2019.05.043 – volume: 4 start-page: 17279 year: 2016 ident: D1TA04504K/cit415 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA06353E – volume: 34 start-page: 1755 year: 2014 ident: D1TA04504K/cit135 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2014.01.015 – volume: 8 start-page: 8009 year: 2015 ident: D1TA04504K/cit51 publication-title: Materials doi: 10.3390/ma8125439 – volume: 2 start-page: 1489 year: 1999 ident: D1TA04504K/cit105 publication-title: 12th IEEE International Pulsed Power Conference – volume: 27 start-page: 1193 year: 2007 ident: D1TA04504K/cit32 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2006.05.047 – volume: 6 start-page: 4477 year: 2018 ident: D1TA04504K/cit101 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA10821D – volume: 46 start-page: 28652 year: 2020 ident: D1TA04504K/cit396 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.08.024 – volume: 237 start-page: 278 year: 2019 ident: D1TA04504K/cit427 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2018.11.105 – volume: 53 start-page: 235301 year: 2020 ident: D1TA04504K/cit235 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/1361-6463/ab7bb1 – volume: 101 start-page: 132906 year: 2012 ident: D1TA04504K/cit87 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4755841 – volume: 98 start-page: 1175 year: 2015 ident: D1TA04504K/cit317 publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.13412 – volume: 52 start-page: 165304 year: 2019 ident: D1TA04504K/cit443 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/1361-6463/aaff41 – volume-title: PHI Learning Pvt. Ltd year: 2013 ident: D1TA04504K/cit163 – volume: 82 start-page: 797 year: 1999 ident: D1TA04504K/cit71 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1999.tb01840.x – volume: 8 start-page: 14985 year: 2020 ident: D1TA04504K/cit456 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.0c05265 – volume: 204 start-page: 19 year: 2015 ident: D1TA04504K/cit367 publication-title: Solid State Commun. doi: 10.1016/j.ssc.2014.12.004 – volume: 69 start-page: 127703 year: 2020 ident: D1TA04504K/cit306 publication-title: Acta Phys. Sin. doi: 10.7498/aps.69.20200213 – volume: 8 start-page: 8352 year: 2020 ident: D1TA04504K/cit462 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA02285C – volume: 56 start-page: 1 year: 2019 ident: D1TA04504K/cit52 publication-title: J. Korean Ceram. Soc. doi: 10.4191/kcers.2019.56.1.02 – volume: 365 start-page: 578 year: 2019 ident: D1TA04504K/cit133 publication-title: Science doi: 10.1126/science.aaw8109 – volume: 45 start-page: 17580 year: 2019 ident: D1TA04504K/cit223 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.05.323 – volume: 4 start-page: 1225 year: 2020 ident: D1TA04504K/cit451 publication-title: Sustainable Energy Fuels. doi: 10.1039/C9SE00836E – volume: 11 start-page: 274 year: 1959 ident: D1TA04504K/cit134 publication-title: J. Phys. Chem. Solids doi: 10.1016/0022-3697(59)90226-4 – volume: 40 start-page: 56 year: 2020 ident: D1TA04504K/cit429 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2019.09.022 – volume: 37 start-page: 413 year: 2017 ident: D1TA04504K/cit247 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2016.08.021 – volume: 803 start-page: 185 year: 2019 ident: D1TA04504K/cit248 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.05.367 – volume: 59 start-page: 1894 year: 2012 ident: D1TA04504K/cit38 publication-title: IEEE Trans. Ultrason., Ferroelect., Freq. Contr. doi: 10.1109/TUFFC.2012.2403 – volume: 47 start-page: 2869 year: 2021 ident: D1TA04504K/cit366 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.08.293 – volume: 43 start-page: L1072 year: 2004 ident: D1TA04504K/cit291 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.43.L1072 – volume: 42 start-page: 9728 year: 2016 ident: D1TA04504K/cit344 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2016.03.062 – volume: 8 start-page: 15682 year: 2017 ident: D1TA04504K/cit242 publication-title: Nat. Commun. doi: 10.1038/ncomms15682 – volume: 7 start-page: 7885 year: 2019 ident: D1TA04504K/cit290 publication-title: J. Mater. Chem. C doi: 10.1039/C9TC01356C – volume: 28 start-page: 16199 year: 2017 ident: D1TA04504K/cit312 publication-title: J. Mater. Sci.: Mater. Electron. – volume: 12 start-page: 19582 year: 2020 ident: D1TA04504K/cit62 publication-title: Nanoscale doi: 10.1039/D0NR05709F – volume: 19 start-page: 999 year: 2020 ident: D1TA04504K/cit47 publication-title: Nat. Mater. doi: 10.1038/s41563-020-0704-x – volume: 10 start-page: 1903338 year: 2020 ident: D1TA04504K/cit250 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903338 – volume: 43 start-page: 223 year: 2007 ident: D1TA04504K/cit22 publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2006.887682 – volume: 88 start-page: 5166 year: 2000 ident: D1TA04504K/cit238 publication-title: J. Appl. Phys. doi: 10.1063/1.1313784 – volume: 38 start-page: 2312 year: 2018 ident: D1TA04504K/cit31 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2018.01.003 – volume: 6 start-page: 743 year: 2020 ident: D1TA04504K/cit376 publication-title: J. Materiomics doi: 10.1016/j.jmat.2020.06.005 – volume: 121 start-page: 054103 year: 2017 ident: D1TA04504K/cit379 publication-title: J. Appl. Phys. doi: 10.1063/1.4975409 – volume: 39 start-page: 2339 year: 2019 ident: D1TA04504K/cit463 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2019.02.007 – volume: 117 start-page: 212902 year: 2020 ident: D1TA04504K/cit97 publication-title: Appl. Phys. Lett. doi: 10.1063/5.0027405 – volume: 110 start-page: 074106 year: 2011 ident: D1TA04504K/cit336 publication-title: J. Appl. Phys. doi: 10.1063/1.3645054 – volume: 101 start-page: 2321 year: 2018 ident: D1TA04504K/cit309 publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.15392 – volume: 74 start-page: 3044 year: 1999 ident: D1TA04504K/cit149 publication-title: Appl. Phys. Lett. doi: 10.1063/1.124059 – volume: 5 start-page: 9552 year: 2017 ident: D1TA04504K/cit220 publication-title: J. Mater. Chem. C doi: 10.1039/C7TC02478A – volume: 28 start-page: 514 year: 2016 ident: D1TA04504K/cit181 publication-title: J. Mater. Sci.: Mater. Electron. – volume: 13 start-page: 25143 year: 2021 ident: D1TA04504K/cit130 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c05824 – volume: 7 start-page: 3971 year: 2019 ident: D1TA04504K/cit403 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA12232F – volume: 821 start-page: 153260 year: 2020 ident: D1TA04504K/cit430 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.153260 – volume: 383 start-page: 123154 year: 2020 ident: D1TA04504K/cit398 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123154 – volume: 24 start-page: 402 year: 2012 ident: D1TA04504K/cit328 publication-title: J. Mater. Sci.: Mater. Electron. – volume: 26 start-page: 2726 year: 2015 ident: D1TA04504K/cit137 publication-title: J. Mater. Sci.: Mater. Electron. – volume: 46 start-page: 453 year: 2009 ident: D1TA04504K/cit435 publication-title: London, Edinburgh Dublin Philos. Mag. J. Sci. doi: 10.1080/14786440508520582 – volume: 775 start-page: 342 year: 2019 ident: D1TA04504K/cit387 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.10.025 – volume: 8 start-page: 683 year: 2020 ident: D1TA04504K/cit380 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA10347C – volume: 13 start-page: 4882 year: 2020 ident: D1TA04504K/cit118 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE03094E – volume: 28 start-page: 1801504 year: 2018 ident: D1TA04504K/cit79 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201801504 – volume: 6 start-page: 14273 year: 2016 ident: D1TA04504K/cit212 publication-title: RSC Adv. doi: 10.1039/C5RA21261H – volume: 201 start-page: 203 year: 2017 ident: D1TA04504K/cit202 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2017.05.007 – volume: 46 start-page: 3426 year: 2020 ident: D1TA04504K/cit218 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.10.055 – volume: 6 start-page: 677 year: 2020 ident: D1TA04504K/cit369 publication-title: J. Materiomics doi: 10.1016/j.jmat.2020.05.005 – volume: 42 start-page: 2221 year: 2016 ident: D1TA04504K/cit345 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2015.10.014 – volume: 398 start-page: 125639 year: 2020 ident: D1TA04504K/cit406 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125639 – volume: 40 start-page: 2936 year: 2020 ident: D1TA04504K/cit307 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2020.03.003 – volume: 410 start-page: 128376 year: 2021 ident: D1TA04504K/cit392 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.128376 – volume: 8 start-page: 3784 year: 2020 ident: D1TA04504K/cit455 publication-title: J. Mater. Chem. C doi: 10.1039/C9TC06711F – volume: 30 start-page: 1650 year: 1959 ident: D1TA04504K/cit91 publication-title: J. Appl. Phys. doi: 10.1063/1.1735030 – volume: 103 start-page: 257602 year: 2009 ident: D1TA04504K/cit176 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.257602 – volume: 101 start-page: 3259 year: 2018 ident: D1TA04504K/cit249 publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.15546 – volume: 12 start-page: 582 year: 2019 ident: D1TA04504K/cit272 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE03287D – volume: 3 start-page: 91 year: 2004 ident: D1TA04504K/cit177 publication-title: Nat. Mater. doi: 10.1038/nmat1051 – volume: 40 start-page: 71 year: 2020 ident: D1TA04504K/cit397 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2019.09.001 – volume: 44 start-page: 10968 year: 2018 ident: D1TA04504K/cit383 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.03.176 – volume: 32 start-page: 559 year: 2012 ident: D1TA04504K/cit189 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2011.09.024 – volume: 1 start-page: 5016 year: 2018 ident: D1TA04504K/cit219 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b01001 – volume: 6 start-page: 7905 year: 2018 ident: D1TA04504K/cit150 publication-title: J. Mater. Chem. C doi: 10.1039/C8TC02368A – volume: 55 start-page: 14728 year: 2020 ident: D1TA04504K/cit355 publication-title: J. Mater. Sci. doi: 10.1007/s10853-020-05070-y – volume: 46 start-page: 19 issue: L37 year: 2003 ident: D1TA04504K/cit35 publication-title: Off. J. Eur. Union – volume: 47 start-page: 7429 year: 2018 ident: D1TA04504K/cit73 publication-title: J. Electron. Mater. doi: 10.1007/s11664-018-6683-x – volume: 1 start-page: 313 year: 2013 ident: D1TA04504K/cit76 publication-title: Energy Technol. doi: 10.1002/ente.201300031 – volume: 7 start-page: 19374 year: 2019 ident: D1TA04504K/cit289 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA05936A – volume: 26 start-page: 063001 year: 2017 ident: D1TA04504K/cit300 publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aa590c – volume: 42 start-page: 6110 year: 2003 ident: D1TA04504K/cit437 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.42.6110 – volume: 7 start-page: 780 year: 2020 ident: D1TA04504K/cit311 publication-title: J. Materiomics doi: 10.1016/j.jmat.2020.12.009 – volume: 96 start-page: 1209 year: 2013 ident: D1TA04504K/cit75 publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.12184 – volume: 97 start-page: 1 year: 2014 ident: D1TA04504K/cit72 publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.12773 – volume: 82 start-page: 104112 year: 2010 ident: D1TA04504K/cit335 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.82.104112 – volume: 201 start-page: 108501 year: 2021 ident: D1TA04504K/cit160 publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2020.108501 – volume: 48 start-page: 853 year: 1983 ident: D1TA04504K/cit471 publication-title: Solid State Commun. doi: 10.1016/0038-1098(83)90132-1 – volume: 28 start-page: 1191 year: 2008 ident: D1TA04504K/cit295 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2007.11.004 – volume: 7 start-page: 4999 year: 2019 ident: D1TA04504K/cit120 publication-title: J. Mater. Chem. C doi: 10.1039/C8TC06549G – start-page: 279 volume-title: Lead-based and lead-free ferroelectric ceramic capacitors for electrical energy storage. Ferroelectric Materials for Energy Harvesting and Storage year: 2021 ident: D1TA04504K/cit61 doi: 10.1016/B978-0-08-102802-5.00009-1 – volume: 398 start-page: 125625 year: 2020 ident: D1TA04504K/cit236 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125625 – volume: 84 start-page: 335 year: 2016 ident: D1TA04504K/cit243 publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2016.09.001 – start-page: 1 year: 2012 ident: D1TA04504K/cit161 publication-title: Proceedings of ISAF-ECAPD-PFM – volume: 39 start-page: 4053 year: 2019 ident: D1TA04504K/cit348 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2019.05.056 – volume: 38 start-page: 147 year: 2012 ident: D1TA04504K/cit284 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2011.06.049 – volume: 830 start-page: 154611 year: 2020 ident: D1TA04504K/cit138 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.154611 – volume: 45 start-page: 20427 year: 2019 ident: D1TA04504K/cit363 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.07.019 – volume: 35 start-page: 545 year: 2015 ident: D1TA04504K/cit324 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2014.09.003 – volume: 40 start-page: 7495 year: 2014 ident: D1TA04504K/cit29 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2013.12.100 – volume: 815 start-page: 152356 year: 2020 ident: D1TA04504K/cit453 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.152356 – volume: 7 start-page: 5639 year: 2019 ident: D1TA04504K/cit459 publication-title: J. Mater. Chem. C doi: 10.1039/C9TC01414D – volume: 46 start-page: 281 year: 2020 ident: D1TA04504K/cit359 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.08.261 – volume: 87 start-page: 217601 year: 2001 ident: D1TA04504K/cit113 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.217601 – volume: 41 start-page: 2533 year: 2021 ident: D1TA04504K/cit96 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2020.11.051 – volume: 99 start-page: 2849 year: 2016 ident: D1TA04504K/cit205 publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.14472 – volume: 9 start-page: 1803048 year: 2019 ident: D1TA04504K/cit209 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201803048 – volume: 10 start-page: 528 year: 2017 ident: D1TA04504K/cit276 publication-title: Energy Environ. Sci. doi: 10.1039/C6EE03597C – volume: 41 start-page: 352 year: 2021 ident: D1TA04504K/cit171 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2020.09.017 – volume: 740 start-page: 1180 year: 2018 ident: D1TA04504K/cit143 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.01.106 – volume: 688 start-page: 687 year: 2016 ident: D1TA04504K/cit166 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2016.07.078 – volume: 510 start-page: 8 year: 2017 ident: D1TA04504K/cit229 publication-title: Ferroelectrics doi: 10.1080/00150193.2017.1325709 – volume: 76 start-page: 241 year: 1987 ident: D1TA04504K/cit470 publication-title: Ferroelectrics doi: 10.1080/00150198708016945 – volume: 40 start-page: 5466 year: 2020 ident: D1TA04504K/cit315 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2020.06.048 – volume: 17 start-page: 340 year: 2010 ident: D1TA04504K/cit286 publication-title: Int. J. Miner., Metall. Mater. doi: 10.1007/s12613-010-0316-6 – volume: 113 start-page: 9995 year: 2016 ident: D1TA04504K/cit8 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1603792113 – volume: 101 start-page: 5487 year: 2018 ident: D1TA04504K/cit95 publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.15803 – volume: 9 start-page: 1803411 year: 2019 ident: D1TA04504K/cit27 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201803411 – volume: 74 start-page: 224412 year: 2006 ident: D1TA04504K/cit241 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.74.224412 – volume: 11 start-page: 21 year: 1995 ident: D1TA04504K/cit109 publication-title: IEEE Electr. Insul. Mag. doi: 10.1109/57.342041 – volume: 46 start-page: 14341 year: 2017 ident: D1TA04504K/cit188 publication-title: Dalton Trans. doi: 10.1039/C7DT03140H – volume: 8 start-page: 2411 year: 2020 ident: D1TA04504K/cit370 publication-title: J. Mater. Chem. C doi: 10.1039/C9TC04864B – volume: 97 start-page: 2368 year: 1993 ident: D1TA04504K/cit175 publication-title: J. Phys. Chem. doi: 10.1021/j100112a043 – volume: 38 start-page: 4946 year: 2018 ident: D1TA04504K/cit365 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2018.07.006 – volume: 40 start-page: 2357 year: 2020 ident: D1TA04504K/cit313 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2020.01.050 – volume: 836 start-page: 154961 year: 2020 ident: D1TA04504K/cit410 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.154961 – volume: 23 start-page: 5261 year: 2013 ident: D1TA04504K/cit337 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201300640 – volume: 710 start-page: 436 year: 2017 ident: D1TA04504K/cit144 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.03.261 – volume: 30 start-page: 2236 year: 1991 ident: D1TA04504K/cit331 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.30.2236 – volume: 7 start-page: 1551 year: 2019 ident: D1TA04504K/cit421 publication-title: J. Mater. Chem. C doi: 10.1039/C8TC05458D – volume: 6 start-page: 16151 year: 2018 ident: D1TA04504K/cit422 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.8b02821 – volume: 584 start-page: 461 year: 2014 ident: D1TA04504K/cit201 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2013.09.072 – volume: 118 start-page: 054102 year: 2015 ident: D1TA04504K/cit439 publication-title: J. Appl. Phys. doi: 10.1063/1.4928153 – volume: 68 start-page: 2916 year: 1990 ident: D1TA04504K/cit469 publication-title: J. Appl. Phys. doi: 10.1063/1.346425 – volume: 28 start-page: 2055 year: 2016 ident: D1TA04504K/cit28 publication-title: Adv. Mater. doi: 10.1002/adma.201503881 – volume: 7 start-page: 11858 year: 2019 ident: D1TA04504K/cit316 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA02149C – volume: 409 start-page: 128231 year: 2021 ident: D1TA04504K/cit472 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.128231 – volume: 8 start-page: 11656 year: 2020 ident: D1TA04504K/cit413 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA03526B – volume: 94 start-page: 4382 year: 2011 ident: D1TA04504K/cit42 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2011.04731.x – volume: 92 start-page: 1719 year: 2009 ident: D1TA04504K/cit41 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2009.03104.x – volume: 95 start-page: 1348 year: 2012 ident: D1TA04504K/cit172 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2011.04962.x – volume: 45 start-page: 11388 year: 2019 ident: D1TA04504K/cit180 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.03.003 – volume: 6 start-page: 10211 year: 2018 ident: D1TA04504K/cit252 publication-title: J. Mater. Chem. C doi: 10.1039/C8TC03855D – volume: 45 start-page: 2937 year: 2012 ident: D1TA04504K/cit70 publication-title: Macromolecules doi: 10.1021/ma2024057 – volume: 24 start-page: 626 year: 2020 ident: D1TA04504K/cit13 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.06.013 – volume: 17 start-page: 1036 year: 2010 ident: D1TA04504K/cit24 publication-title: IEEE Trans. Dielectr. Electr. Insul. doi: 10.1109/TDEI.2010.5539672 – volume: 10 start-page: 819 year: 2018 ident: D1TA04504K/cit432 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b17382 – volume: 48 start-page: 4424 year: 2019 ident: D1TA04504K/cit159 publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00043G – volume: 70 start-page: 104551 year: 2020 ident: D1TA04504K/cit14 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104551 – volume: 111 start-page: 253903 year: 2017 ident: D1TA04504K/cit154 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5000980 – volume: 154 start-page: 64 year: 2018 ident: D1TA04504K/cit296 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2018.05.022 – volume: 38 start-page: 4646 year: 2018 ident: D1TA04504K/cit211 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2018.06.038 – volume: 819 start-page: 153004 year: 2020 ident: D1TA04504K/cit216 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.153004 – volume: 46 start-page: 17044 year: 2020 ident: D1TA04504K/cit391 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.03.292 – volume: 5 start-page: 554 year: 2017 ident: D1TA04504K/cit305 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA07803F – volume: 7 start-page: 8573 year: 2019 ident: D1TA04504K/cit123 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA01165J – volume: 6 start-page: 4133 year: 2018 ident: D1TA04504K/cit254 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA09857J – volume: 39 start-page: 4770 year: 2019 ident: D1TA04504K/cit466 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2019.07.021 – volume: 8 start-page: 16648 year: 2020 ident: D1TA04504K/cit59 publication-title: J. Mater. Chem. C doi: 10.1039/D0TC04381H – volume: 11 start-page: 36824 year: 2019 ident: D1TA04504K/cit129 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b10819 – volume: 12 start-page: 1800165 year: 2018 ident: D1TA04504K/cit350 publication-title: Phys. Status Solidi RRL doi: 10.1002/pssr.201800165 – volume: 283 start-page: 128823 year: 2021 ident: D1TA04504K/cit116 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2020.128823 – volume: 346 start-page: 114 year: 2007 ident: D1TA04504K/cit332 publication-title: Ferroelectrics doi: 10.1080/00150190601180471 – volume: 37 start-page: 2379 year: 2017 ident: D1TA04504K/cit351 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2017.01.036 – volume: 2 start-page: 18087 year: 2014 ident: D1TA04504K/cit100 publication-title: J. Mater. Chem. A doi: 10.1039/C4TA04282D – volume: 13 start-page: 310 year: 2012 ident: D1TA04504K/cit162 publication-title: J. Ceram. Process. Res. – volume: 42 start-page: 8974 year: 2016 ident: D1TA04504K/cit409 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2016.02.155 – volume: 39 start-page: 1050 year: 2019 ident: D1TA04504K/cit98 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2018.12.044 – volume: 178 start-page: 1509 year: 2013 ident: D1TA04504K/cit155 publication-title: Mater. Sci. Eng., B. doi: 10.1016/j.mseb.2013.08.016 – volume: 617 start-page: 740 year: 2014 ident: D1TA04504K/cit30 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2014.08.077 – volume: 45 start-page: 355302 year: 2012 ident: D1TA04504K/cit338 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/45/35/355302 – volume: 47 start-page: 73 year: 1964 ident: D1TA04504K/cit436 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1964.tb15658.x – volume: 45 start-page: 19822 year: 2019 ident: D1TA04504K/cit362 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.06.237 – volume: 6 start-page: 367 year: 2020 ident: D1TA04504K/cit414 publication-title: Sci. Adv. – volume: 40 start-page: 3562 year: 2020 ident: D1TA04504K/cit408 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2020.03.070 – year: 1978 ident: D1TA04504K/cit10 publication-title: Pergamon Press – volume: 797 start-page: 348 year: 2019 ident: D1TA04504K/cit233 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.05.092 – volume: 5 start-page: 597 year: 2019 ident: D1TA04504K/cit424 publication-title: J. Materiomics doi: 10.1016/j.jmat.2019.07.006 – volume: 1 start-page: 4403 year: 2018 ident: D1TA04504K/cit251 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b01099 – volume: 525 start-page: 114 year: 2017 ident: D1TA04504K/cit334 publication-title: Phys. B: Condens. Matter doi: 10.1016/j.physb.2017.09.014 – volume: 100 start-page: 1517 year: 2017 ident: D1TA04504K/cit314 publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.14728 – volume: 56 start-page: 13510 year: 2017 ident: D1TA04504K/cit152 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.7b02181 – volume: 826 start-page: 154160 year: 2020 ident: D1TA04504K/cit231 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.154160 – volume: 92 start-page: 262904 year: 2008 ident: D1TA04504K/cit373 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2955533 – volume: 358 start-page: 136 year: 1992 ident: D1TA04504K/cit114 publication-title: Nature doi: 10.1038/358136a0 – volume: 7 start-page: 10702 year: 2019 ident: D1TA04504K/cit428 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA00995G – volume: 4 start-page: 1795 year: 2016 ident: D1TA04504K/cit280 publication-title: J. Mater. Chem. C doi: 10.1039/C5TC04005A – volume: 29 start-page: 1601727 year: 2017 ident: D1TA04504K/cit58 publication-title: Adv. Mater. doi: 10.1002/adma.201601727 – volume: 773 start-page: 244 year: 2019 ident: D1TA04504K/cit139 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.09.252 – volume: 102 start-page: 027602 year: 2009 ident: D1TA04504K/cit240 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.027602 – volume: 11 start-page: 43107 year: 2019 ident: D1TA04504K/cit407 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b13215 – volume: 22 start-page: 14938 year: 2012 ident: D1TA04504K/cit448 publication-title: J. Mater. Chem. doi: 10.1039/c2jm32078a – volume: 52 start-page: 2285 year: 2016 ident: D1TA04504K/cit293 publication-title: J. Mater. Sci. doi: 10.1007/s10853-016-0521-4 – volume: 44 start-page: 3211 year: 2018 ident: D1TA04504K/cit405 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.11.092 – volume: 46 start-page: 11549 year: 2020 ident: D1TA04504K/cit256 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.01.181 – volume: 77 start-page: 2641 year: 1994 ident: D1TA04504K/cit327 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1994.tb04655.x – volume: 90 start-page: 628 year: 2016 ident: D1TA04504K/cit301 publication-title: Mater. Des. doi: 10.1016/j.matdes.2015.11.002 – volume: 03 start-page: 1330001 year: 2013 ident: D1TA04504K/cit53 publication-title: J. Adv. Dielectr. doi: 10.1142/S2010135X13300016 – volume: 2 start-page: 2698 year: 2018 ident: D1TA04504K/cit298 publication-title: Sustainable Energy Fuels. doi: 10.1039/C8SE00276B – volume: 28 start-page: 1304 year: 2016 ident: D1TA04504K/cit165 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b04109 – volume: 45 start-page: 19189 year: 2019 ident: D1TA04504K/cit213 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.06.166 – volume: 35 start-page: 1469 year: 2015 ident: D1TA04504K/cit103 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2014.11.022 – volume: 6 start-page: 6102 year: 2018 ident: D1TA04504K/cit388 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.7b04754 – volume: 48 start-page: 4424 year: 2019 ident: D1TA04504K/cit68 publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00043G – volume: 4 start-page: 041305 year: 2017 ident: D1TA04504K/cit77 publication-title: Appl. Phys. Rev doi: 10.1063/1.4990046 – volume: 92 start-page: 2957 year: 2009 ident: D1TA04504K/cit266 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2009.03313.x – volume: 30 start-page: 13556 year: 2019 ident: D1TA04504K/cit411 publication-title: J. Mater. Sci.: Mater. Electron. – volume: 151 start-page: 305 year: 1994 ident: D1TA04504K/cit80 publication-title: Ferroelectrics doi: 10.1080/00150199408244755 – volume: 111 start-page: 253903 year: 2017 ident: D1TA04504K/cit146 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5000980 – volume: 103 start-page: 1722 year: 2019 ident: D1TA04504K/cit140 publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.16844 – volume: 24 start-page: 3309 year: 2013 ident: D1TA04504K/cit203 publication-title: J. Mater. Sci.: Mater. Electron. – volume: 102 start-page: 72 year: 2019 ident: D1TA04504K/cit48 publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2018.12.005 – volume: 117 start-page: 158 year: 2018 ident: D1TA04504K/cit184 publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2018.01.051 – volume: 24 start-page: 4764 year: 2013 ident: D1TA04504K/cit319 publication-title: J. Mater. Sci.: Mater. Electron. – volume: 778 start-page: 97 year: 2019 ident: D1TA04504K/cit232 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.11.106 – volume: 47 start-page: 1344 year: 2021 ident: D1TA04504K/cit361 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.08.256 – volume: 20 start-page: 6304 year: 2008 ident: D1TA04504K/cit23 publication-title: Chem. Mater. doi: 10.1021/cm8021648 – volume: 106 start-page: 202905 year: 2015 ident: D1TA04504K/cit279 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4921744 – volume: 394 start-page: 124879 year: 2020 ident: D1TA04504K/cit358 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124879 – volume: 43 start-page: 106 year: 2017 ident: D1TA04504K/cit352 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2016.09.117 – volume: 27 start-page: 322 year: 2015 ident: D1TA04504K/cit343 publication-title: J. Mater. Sci.: Mater. Electron. – volume: 31 start-page: 7731 year: 2020 ident: D1TA04504K/cit425 publication-title: J. Mater. Sci.: Mater. Electron. – volume: 38 start-page: 4939 year: 2018 ident: D1TA04504K/cit320 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2018.07.029 – volume: 617 start-page: 399 year: 2014 ident: D1TA04504K/cit200 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2014.08.038 – volume: 45 start-page: 20266 year: 2019 ident: D1TA04504K/cit257 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.06.300 – volume: 64 start-page: 404 year: 1981 ident: D1TA04504K/cit85 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1981.tb09879.x – volume: 4 start-page: 13778 year: 2016 ident: D1TA04504K/cit44 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA04107H – volume: 6 start-page: 34381 year: 2016 ident: D1TA04504K/cit299 publication-title: RSC Adv. doi: 10.1039/C6RA01919F – volume: 141 start-page: 15 year: 2017 ident: D1TA04504K/cit339 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2017.07.010 – volume: 334 start-page: 928 year: 2011 ident: D1TA04504K/cit5 publication-title: Science doi: 10.1126/science.1212741 – volume: 39 start-page: 1103 year: 2019 ident: D1TA04504K/cit214 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2018.11.025 – volume: 95 start-page: 3912 year: 2012 ident: D1TA04504K/cit125 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2012.05409.x – volume: 20 start-page: 27 year: 2004 ident: D1TA04504K/cit108 publication-title: IEEE Electr. Insul. Mag. doi: 10.1109/MEI.2004.1367508 – volume: 8 start-page: 4030 year: 2020 ident: D1TA04504K/cit278 publication-title: J. Mater. Chem. C doi: 10.1039/C9TC06443E – volume: 39 start-page: 2899 year: 2019 ident: D1TA04504K/cit449 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2019.03.030 – volume: 388 start-page: 124158 year: 2020 ident: D1TA04504K/cit399 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124158 – volume: 7 start-page: 8414 year: 2019 ident: D1TA04504K/cit18 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA00463G – volume: 585 start-page: 14 year: 2014 ident: D1TA04504K/cit340 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2013.09.052 – volume: 12 start-page: 32871 year: 2020 ident: D1TA04504K/cit461 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c09876 – volume: 645 start-page: 586 year: 2015 ident: D1TA04504K/cit193 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2015.05.005 – volume: 111 start-page: 132901 year: 2017 ident: D1TA04504K/cit445 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4995009 – volume: 37 start-page: 99 year: 2017 ident: D1TA04504K/cit346 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2016.07.011 – volume: 98 start-page: 559 year: 2015 ident: D1TA04504K/cit207 publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.13325 – volume: 584 start-page: 369 year: 2014 ident: D1TA04504K/cit185 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2013.09.108 – volume: 120 start-page: 204102 year: 2016 ident: D1TA04504K/cit440 publication-title: J. Appl. Phys. doi: 10.1063/1.4968790 – volume: 626 start-page: 294 year: 2002 ident: D1TA04504K/cit450 publication-title: AIP Conf. Proc. doi: 10.1063/1.1499579 – volume: 120 start-page: 14575 year: 2016 ident: D1TA04504K/cit86 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b05068 – volume: 113 start-page: 024103 year: 2013 ident: D1TA04504K/cit197 publication-title: J. Appl. Phys. doi: 10.1063/1.4775493 – volume: 30 start-page: 1802155 year: 2018 ident: D1TA04504K/cit39 publication-title: Adv. Mater. doi: 10.1002/adma.201802155 – volume: 3 start-page: 18146 year: 2015 ident: D1TA04504K/cit226 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA03614C – volume: 688 start-page: 721 year: 2016 ident: D1TA04504K/cit187 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2016.07.025 – volume: 91 start-page: 042903 year: 2007 ident: D1TA04504K/cit264 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2766657 – volume: 4 start-page: 8380 year: 2016 ident: D1TA04504K/cit431 publication-title: J. Mater. Chem. C doi: 10.1039/C6TC03289C – volume: 157 start-page: 139 year: 2014 ident: D1TA04504K/cit182 publication-title: Integr. Ferroelectr. doi: 10.1080/10584587.2014.912939 – volume: 702 start-page: 171 year: 2017 ident: D1TA04504K/cit104 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.01.249 – volume: 92 start-page: 091905 year: 2008 ident: D1TA04504K/cit244 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2887908 – volume: 67 start-page: 104264 year: 2020 ident: D1TA04504K/cit210 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104264 – volume: 40 start-page: 2929 year: 2020 ident: D1TA04504K/cit258 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2020.03.012 – volume: 14 start-page: 477 year: 1926 ident: D1TA04504K/cit417 publication-title: Naturwissenschaften doi: 10.1007/BF01507527 – volume: 215 start-page: 1700915 year: 2018 ident: D1TA04504K/cit360 publication-title: Phys. Status Solidi A doi: 10.1002/pssa.201700915 – volume: 110 start-page: 132902 year: 2017 ident: D1TA04504K/cit237 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4979467 – volume: 541 start-page: 173 year: 2012 ident: D1TA04504K/cit262 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2012.06.094 – volume: 15 start-page: 1767 year: 1996 ident: D1TA04504K/cit92 publication-title: J. Mater. Sci. Lett. doi: 10.1007/BF00275336 – volume: 92 start-page: 2957 year: 2009 ident: D1TA04504K/cit270 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2009.03313.x – volume: 29 start-page: 5349 year: 2018 ident: D1TA04504K/cit356 publication-title: J. Mater. Sci.: Mater. Electron. – volume: 575 start-page: 109 year: 2013 ident: D1TA04504K/cit190 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2013.04.026 – volume: 7 start-page: 26293 year: 2019 ident: D1TA04504K/cit321 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA06457E – volume: 322 start-page: 383 year: 2008 ident: D1TA04504K/cit89 publication-title: Science doi: 10.1126/science.1160903 – volume: 40 start-page: 14127 year: 2014 ident: D1TA04504K/cit156 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2014.05.147 – volume: 37 start-page: 1501 year: 2017 ident: D1TA04504K/cit102 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2016.12.016 – volume: 45 start-page: 5559 year: 2019 ident: D1TA04504K/cit423 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.12.014 – volume: 2 start-page: 2651 year: 1961 ident: D1TA04504K/cit325 publication-title: Sov. Phys.-Solid State – volume: 26 start-page: 20 year: 2010 ident: D1TA04504K/cit9 publication-title: IEEE Electr. Insul. Mag. doi: 10.1109/MEI.2010.5383924 – volume: 5 start-page: 17525 year: 2017 ident: D1TA04504K/cit419 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA03821F – volume: 6 start-page: 9823 year: 2018 ident: D1TA04504K/cit389 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA00474A – volume: 48 start-page: 219 year: 2018 ident: D1TA04504K/cit21 publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-070317-124435 – volume: 54 start-page: 484 year: 1971 ident: D1TA04504K/cit93 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1971.tb12184.x – volume: 95 start-page: 1915 year: 2012 ident: D1TA04504K/cit110 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2012.05215.x – volume: 5 start-page: 24880 year: 2018 ident: D1TA04504K/cit330 publication-title: Mater. Today: Proc. – start-page: 207 year: 2014 ident: D1TA04504K/cit26 publication-title: Adv. Energy Mater. doi: 10.1002/9781118904923.ch5 – volume: 45 start-page: 3582 year: 2019 ident: D1TA04504K/cit224 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.11.018 – volume: 52 start-page: 203 year: 2018 ident: D1TA04504K/cit208 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.07.055 – volume: 40 start-page: 3343 year: 2020 ident: D1TA04504K/cit119 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2020.03.015 – volume: 47 start-page: 3079 year: 2021 ident: D1TA04504K/cit458 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.09.144 – volume: 54 start-page: 288 year: 2018 ident: D1TA04504K/cit15 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.10.028 – volume: 8 start-page: 23724 year: 2020 ident: D1TA04504K/cit60 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA08345C – volume: 27 start-page: 10810 year: 2016 ident: D1TA04504K/cit333 publication-title: J. Mater. Sci.: Mater. Electron. – volume: 161 start-page: 352 year: 2018 ident: D1TA04504K/cit442 publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.09.056 – volume: 46 start-page: 722 year: 2020 ident: D1TA04504K/cit99 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.09.025 – volume: 39 start-page: 2673 year: 2019 ident: D1TA04504K/cit253 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2019.03.001 – volume: 7 start-page: 7993 year: 2019 ident: D1TA04504K/cit460 publication-title: J. Mater. Chem. C doi: 10.1039/C9TC02088H – volume: 40 start-page: 4495 year: 2020 ident: D1TA04504K/cit426 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2020.05.076 – volume: 50 start-page: 723 year: 2018 ident: D1TA04504K/cit16 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.06.016 – volume: 34 start-page: 1209 year: 2014 ident: D1TA04504K/cit88 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2013.11.039 – volume: 8 start-page: 11414 year: 2020 ident: D1TA04504K/cit273 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA00216J – volume: 7 start-page: 347 year: 1974 ident: D1TA04504K/cit371 publication-title: Ferroelectrics doi: 10.1080/00150197408238042 – volume: 40 start-page: 1196 year: 2007 ident: D1TA04504K/cit259 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/40/4/043 – volume: 36 start-page: 593 year: 2016 ident: D1TA04504K/cit323 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2015.10.019 – volume: 45 start-page: 23233 year: 2019 ident: D1TA04504K/cit354 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.08.019 – volume: 46 start-page: 2764 year: 2020 ident: D1TA04504K/cit215 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.09.265 – volume: 38 start-page: 3104 year: 2018 ident: D1TA04504K/cit441 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2018.03.008 – volume: 711 start-page: 319 year: 2017 ident: D1TA04504K/cit151 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.04.023 – volume: 728 start-page: 780 year: 2017 ident: D1TA04504K/cit145 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.09.022 – volume: 48 start-page: 2151 year: 2012 ident: D1TA04504K/cit186 publication-title: J. Mater. Sci. doi: 10.1007/s10853-012-6990-1 – volume: 18 start-page: 202024 year: 2011 ident: D1TA04504K/cit106 publication-title: IOP Conf. Ser.: Mater. Sci. Eng. doi: 10.1088/1757-899X/18/20/202024 – volume: 79 start-page: 105423 year: 2021 ident: D1TA04504K/cit416 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105423 – volume: 02 start-page: 1241010 year: 2012 ident: D1TA04504K/cit78 publication-title: J. Adv. Dielectr. doi: 10.1142/S2010135X1241010X – volume: 17 start-page: 4977 year: 2005 ident: D1TA04504K/cit434 publication-title: J. Phys.: Condens. Matter – volume: 6 start-page: 1900698 year: 2020 ident: D1TA04504K/cit55 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201900698 – volume: 9 start-page: 19963 year: 2017 ident: D1TA04504K/cit173 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b04175 – volume: 33 start-page: 3023 year: 2013 ident: D1TA04504K/cit263 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2013.06.029 – volume: 43 start-page: 9060 year: 2017 ident: D1TA04504K/cit221 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.04.051 – volume: 73 start-page: 064114 year: 2006 ident: D1TA04504K/cit124 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.73.064114 – volume: 43 start-page: 445403 year: 2010 ident: D1TA04504K/cit245 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/43/44/445403 – volume: 25 start-page: 1360 year: 2013 ident: D1TA04504K/cit178 publication-title: Adv. Mater. doi: 10.1002/adma.201203823 – volume: 63 start-page: 1 year: 2014 ident: D1TA04504K/cit81 publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2014.01.002 – volume: 38 start-page: 679 year: 2005 ident: D1TA04504K/cit281 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/38/5/003 – volume: 397 start-page: 125520 year: 2020 ident: D1TA04504K/cit234 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125520 – volume: 98 start-page: 2692 year: 2015 ident: D1TA04504K/cit246 publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.13737 – volume: 47 start-page: 3780 year: 2021 ident: D1TA04504K/cit269 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.09.235 – volume: 8 start-page: 247 year: 2019 ident: D1TA04504K/cit111 publication-title: J. Adv. Ceram. doi: 10.1007/s40145-018-0310-4 – volume: 40 start-page: 4323 year: 2014 ident: D1TA04504K/cit341 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2013.08.099 – volume: 96 start-page: 3176 year: 2013 ident: D1TA04504K/cit206 publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.12495 – volume: 137 start-page: 511 year: 2015 ident: D1TA04504K/cit1 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.09.081 – volume: 23 start-page: 1599 year: 2012 ident: D1TA04504K/cit199 publication-title: J. Mater. Sci.: Mater. Electron. – volume: 39 start-page: 3051 year: 2019 ident: D1TA04504K/cit357 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2019.04.031 – volume: 7 start-page: 2225 year: 2019 ident: D1TA04504K/cit418 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA09353A – volume: 313 start-page: 334 year: 2006 ident: D1TA04504K/cit6 publication-title: Science doi: 10.1126/science.1127798 – volume: 113 start-page: 190 year: 2019 ident: D1TA04504K/cit50 publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2019.02.002 – volume: 44 start-page: 8528 year: 2018 ident: D1TA04504K/cit74 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.02.054 – volume: 40 start-page: 929 year: 2014 ident: D1TA04504K/cit136 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2013.06.088 – volume: 12 start-page: 32834 year: 2020 ident: D1TA04504K/cit467 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c08737 – volume: 45 start-page: 19895 year: 2019 ident: D1TA04504K/cit402 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.06.245 – volume: 6 start-page: 7905 year: 2018 ident: D1TA04504K/cit142 publication-title: J. Mater. Chem. C doi: 10.1039/C8TC02368A – volume: 143 start-page: 5 year: 2018 ident: D1TA04504K/cit297 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2017.08.045 – volume: 816 start-page: 152498 year: 2020 ident: D1TA04504K/cit117 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.152498 – volume: 46 start-page: 5681 year: 2020 ident: D1TA04504K/cit353 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.11.015 – volume: 5 start-page: 10215 year: 2017 ident: D1TA04504K/cit147 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.7b02203 – volume: 115 start-page: 2559 year: 2015 ident: D1TA04504K/cit274 publication-title: Chem. Rev. doi: 10.1021/cr5006809 – volume: 17 start-page: 432 year: 2018 ident: D1TA04504K/cit4 publication-title: Nat. Mater. doi: 10.1038/s41563-018-0059-8 – volume: 41 start-page: 8252 year: 2015 ident: D1TA04504K/cit194 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2015.02.156 – volume: 43 start-page: 9253 year: 2017 ident: D1TA04504K/cit368 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.04.081 – volume: 13 start-page: 2938 year: 2020 ident: D1TA04504K/cit271 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE02104K – volume: 41 start-page: 1925 year: 2021 ident: D1TA04504K/cit283 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2020.10.046 – volume: 17 start-page: 100304 year: 2020 ident: D1TA04504K/cit65 publication-title: Mater. Today Chem. doi: 10.1016/j.mtchem.2020.100304 – volume: 48 start-page: 415304 year: 2015 ident: D1TA04504K/cit167 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/48/41/415304 – volume: 108 start-page: 232904 year: 2016 ident: D1TA04504K/cit446 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4953457 – volume: 94 start-page: 014107 year: 2016 ident: D1TA04504K/cit83 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.94.014107 – volume: 41 start-page: 1891 year: 2021 ident: D1TA04504K/cit452 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2020.10.049 – volume: 12 start-page: 30289 year: 2020 ident: D1TA04504K/cit131 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c02832 – volume: 7 start-page: E124 year: 2010 ident: D1TA04504K/cit198 publication-title: Int. J. Appl. Ceram. Technol. doi: 10.1111/j.1744-7402.2009.02456.x – volume: 70 start-page: C-18 year: 1987 ident: D1TA04504K/cit287 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1987.tb04862.x – volume: 112 start-page: 102901 year: 2018 ident: D1TA04504K/cit192 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5020515 – volume: 29 start-page: 253 year: 1996 ident: D1TA04504K/cit195 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/29/1/037 – volume: 49 start-page: 1659 year: 2013 ident: D1TA04504K/cit412 publication-title: J. Mater. Sci. doi: 10.1007/s10853-013-7849-9 – volume: 43 start-page: 9593 year: 2017 ident: D1TA04504K/cit228 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.03.139 – volume: 7 start-page: 8726 year: 2017 ident: D1TA04504K/cit390 publication-title: Sci. Rep. doi: 10.1038/s41598-017-06966-7 – volume: 89 start-page: 052905 year: 2006 ident: D1TA04504K/cit260 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2266992 – volume: 20 start-page: 5061 year: 2008 ident: D1TA04504K/cit326 publication-title: Chem. Mater. doi: 10.1021/cm8004634 – volume: 35 start-page: 4173 year: 2015 ident: D1TA04504K/cit318 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2015.07.027 – volume: 10 start-page: 334 year: 2004 ident: D1TA04504K/cit169 publication-title: Ionics doi: 10.1007/BF02377992 – volume: 47 start-page: 11294 year: 2020 ident: D1TA04504K/cit473 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.12.255 – volume: 6 start-page: 17896 year: 2018 ident: D1TA04504K/cit121 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA07303A – volume: 37 start-page: 2073 year: 2017 ident: D1TA04504K/cit294 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2016.12.053 – volume: 15 start-page: 2000525 year: 2021 ident: D1TA04504K/cit282 publication-title: Laser Photonics Rev. doi: 10.1002/lpor.202000525 – volume: 44 start-page: 10763 year: 2015 ident: D1TA04504K/cit438 publication-title: Dalton Trans. doi: 10.1039/C4DT03919J – volume: 8 start-page: 8777 year: 2020 ident: D1TA04504K/cit310 publication-title: J. Mater. Chem. C doi: 10.1039/D0TC01711F – volume: 31 start-page: 22780 year: 2020 ident: D1TA04504K/cit225 publication-title: J. Mater. Sci.: Mater. Electron. – volume: 392 start-page: 123729 year: 2020 ident: D1TA04504K/cit375 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123729 – volume: 29 start-page: 1701824 year: 2017 ident: D1TA04504K/cit45 publication-title: Adv. Mater. doi: 10.1002/adma.201701824 – volume: 5 start-page: 3677 year: 2014 ident: D1TA04504K/cit67 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz501831q – volume: 73 start-page: 323 year: 1990 ident: D1TA04504K/cit40 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1990.tb06513.x – volume: 35 start-page: 2069 year: 2009 ident: D1TA04504K/cit204 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2008.11.003 – volume: 33 start-page: 1046 year: 2018 ident: D1TA04504K/cit63 publication-title: J. Inorg. Mater. doi: 10.15541/jim20170594 – volume: 391 start-page: 532 year: 1998 ident: D1TA04504K/cit303 publication-title: Nature doi: 10.1038/35254 – volume: 46 start-page: 13511 year: 2020 ident: D1TA04504K/cit457 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.02.135 – volume: 420 start-page: 130475 year: 2021 ident: D1TA04504K/cit128 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.130475 |
SSID | ssj0000800699 |
Score | 2.7098246 |
SecondaryResourceType | review_article |
Snippet | Compared with fuel cells and electrochemical capacitors, dielectric capacitors are regarded as promising devices to store electrical energy for pulsed power... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1826 |
SubjectTerms | Barium titanates Capacitors Ceramics Chemical composition electric power Electric power systems Electrochemistry energy Energy storage Fuel cells Lead free Physical properties Strontium titanates |
Title | High-performance lead-free bulk ceramics for electrical energy storage applications: design strategies and challenges |
URI | https://www.proquest.com/docview/2566287762 https://www.proquest.com/docview/2636445986 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa27QUOiFfFQkFGcEGrlCR2XtxWtKhA4bSVCpfIdhwJ7Wq32k0u_CJ-JuO3gVYCLtHK9ubh-TIeT2bmQ-hl3cAqUWUiKQmtEtrBBqVmGU3SRggu04wVuUpw_vS5PLugHy6Ly8nkRxS1NA78WHy_Nq_kf6QKbSBXlSX7D5L1J4UG-A3yhSNIGI5_JWMVpJFcRaH_K5BY0m-lnPFxtZwJuVV08ztT11sT3miZSJPwpwIjVchO_BFbeQg6HdUx2w2ujIRJfnO0K7sbDFqwfc1Dw1DLInc8m5uEINejb8RcXXvsXfqWitD1zv0v1of9VQ4ReE9GvUxuVN4xs-utCv0xRRDOv3klv5Er69YFfb6M3Rq599M67ZenRaoKnRrlLOM2Q4Hr1HcTodT6RY0uVjunaF3PasMN9MeakRJVcrXLBgbmbUqXYWX08Yqhcw8d5LAhAY16MD9dvD_3_jxleZeartTfuauGS5rX4QS_2j9hU7O3dYwz2rJZ3EV3rATx3ODrHprI9X10OypU-QCNvyMNe6RhhTTskIZhAA5Iw0bW2CINx0h7gw3OcMAZBkzggLOH6OLd6eLtWWIJOxJB6nRIYMYV3ULZCCIkL2RRSE77UvvZO81lkDPOcsL7tC8q0jdZzcB-5rJinFIYdoj215u1fIRwXnWkI2BJ8YqCyQR_ZT1pGGuIoCmruyl65aaxFbaavSJVWbU6qoI07Um2mOsp_zhFL_zYK1PD5dpRR04arX3Hdy1sCMq8rsBimKLnvhteIfVZja3lZoQxJYFNheI5mKJDkKK_RhD645s6nqBbAfxHaH_YjvIpWLkDf2YB9hMwxa1K |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-performance+lead-free+bulk+ceramics+for+electrical+energy+storage+applications%3A+design+strategies+and+challenges&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Yang%2C+Zetian&rft.au=Du%2C+Hongliang&rft.au=Jin%2C+Li&rft.au=Poelman%2C+Dirk&rft.date=2021-08-31&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=9&rft.issue=34&rft.spage=1826&rft.epage=1885&rft_id=info:doi/10.1039%2Fd1ta04504k&rft.externalDocID=d1ta04504k |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |